JPH04165685A - Laser beam source of variable wavelength - Google Patents

Laser beam source of variable wavelength

Info

Publication number
JPH04165685A
JPH04165685A JP29245390A JP29245390A JPH04165685A JP H04165685 A JPH04165685 A JP H04165685A JP 29245390 A JP29245390 A JP 29245390A JP 29245390 A JP29245390 A JP 29245390A JP H04165685 A JPH04165685 A JP H04165685A
Authority
JP
Japan
Prior art keywords
wavelength
optical fiber
laser beam
light
beam source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29245390A
Other languages
Japanese (ja)
Inventor
Mikio Maeda
幹夫 前田
Shoji Adachi
足立 正二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP29245390A priority Critical patent/JPH04165685A/en
Publication of JPH04165685A publication Critical patent/JPH04165685A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To obtain a laser beam source of a wide variable wavelength utilizing a rare earth element-doped optical fiber amplifier as an external oscillator by a method wherein the laser beam source is provided with a wavelength multiplexer for making wave combined light incide in the first end part of an optical fiber and a half mirror, which is mounted to the second end part of the optical fiber. CONSTITUTION:A laser beam source is provided with a rare earth element-doped optical fiber 1, an excitation light source 2 for exciting the fiber 1, a wave- length selecting element 3 for selecting a wavelength, a wavelength selecting element control part 4 for controlling the element 3, a wavelength multiplexer 5, which combines return light from the element 3 with output light of the light source 2 and makes the wave combined light incide in an end part 1A of the fiber 1, and a half mirror 6 which is mounted to an end part 1B of the film 1. Thereby, as a rare earth element-doped optical fiber amplification and the element 3 are adopted, the laser beam source of a wide variable wavelength can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、発光波長を変えられるレーザ光源について
のものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a laser light source whose emission wavelength can be changed.

[従来の技術] 将来のコヒーレントyt通信や、波長多重光メモリなど
の応用に対しては、広い範囲にわたって高速かつ安定に
波長を可変する技術が要求される。
[Prior Art] For future applications such as coherent YT communication and wavelength multiplexed optical memory, a technology that can quickly and stably vary the wavelength over a wide range will be required.

従来の技術は、半導体レーザを使用するもので、バンド
ギャップエネルギーの変化や、屈折率の変化を利用して
いる。半導体レーザでは、バンドギャップエネルギーと
屈折率の双方が温度に依存するので、温度によって波長
を変えることができる。
Conventional techniques use semiconductor lasers and utilize changes in bandgap energy and refractive index. In a semiconductor laser, both the bandgap energy and the refractive index depend on temperature, so the wavelength can be changed depending on the temperature.

次に、半導体レーザの波長と温度の関係を第2図により
説明する。
Next, the relationship between wavelength and temperature of a semiconductor laser will be explained with reference to FIG.

第2図の曲線で連続的に変化している部分は屈折率の変
化による部分であり、温度変化の割合は50〜60pm
/’C,最大連続可変範囲は0.4.nm程度である。
The part that changes continuously in the curve in Figure 2 is due to the change in refractive index, and the rate of temperature change is 50 to 60 pm.
/'C, maximum continuous variable range is 0.4. It is about nm.

また、不連続に変化している部分は縦モードホッピング
と呼ばれ、温度変化によるエネルギーギャップのシフト
(0,2〜Q、5nm/’ C)が屈折率のシフトより
大きいため起こる部分である。
Further, the discontinuously changing portion is called longitudinal mode hopping, which occurs because the energy gap shift (0,2 to Q, 5 nm/'C) due to temperature change is larger than the refractive index shift.

樅モードホッピングのために、必要とする波長に必ずし
も同調できない場合がある。
Due to mode hopping, it may not always be possible to tune to the desired wavelength.

第2図の現象を利用し、複合共振器の干渉効果を利用し
たものや、DFBレーザ・DBRレーザのような位相制
御領域をもっレーザを多電極構造とし、ここに流れる電
流を制御して波長を変える集積形タイプがある。また、
回折格子、鏡とエタロンの組み合わせなど、波長選択性
をもつ光学素子を半導体レーザに用いて外部共振器を構
成すれば、レーザの利得幅内の任意の縦モードで発振さ
せることができる。この場合、発振モードは回折格子や
エタロンを回転することにより変えることができる。
Utilizing the phenomenon shown in Figure 2, lasers that utilize the interference effect of a composite resonator, or lasers with a phase control region such as DFB lasers and DBR lasers, are made into multi-electrode structures, and the current flowing there is controlled to achieve wavelength control. There is an integrated type that changes the Also,
If an external resonator is constructed by using a wavelength-selective optical element such as a diffraction grating or a combination of a mirror and an etalon in a semiconductor laser, it is possible to oscillate in any longitudinal mode within the gain width of the laser. In this case, the oscillation mode can be changed by rotating the diffraction grating or etalon.

このような方法でも、可変波長の範囲はレーザの利得幅
で決定され、数rxmが限界である。また、光学的にレ
ーザ光を制御するので、機構的に微細構造となり、調整
が困難になる。
Even in this method, the range of variable wavelength is determined by the gain width of the laser, and the limit is several rxm. Furthermore, since the laser beam is optically controlled, the structure becomes mechanically fine, making adjustment difficult.

[発明が解決しようとする課題] 従来技術では、半導体レーザのバンドギャップエネルギ
ーや屈折率の変化を利用しているので、可変幅が狭く、
またモードホッピングにより必要とする波長に必ずしも
同調できないことがある。
[Problem to be solved by the invention] In the conventional technology, since changes in the bandgap energy and refractive index of a semiconductor laser are used, the variable width is narrow,
Furthermore, due to mode hopping, it may not always be possible to tune to the required wavelength.

この発明は、希土類元素をドープした光フアイバ増幅器
を外部共振器として利用し、可変波長の広いレーザ光源
の提供を目的とする。
The present invention aims to provide a laser light source with a wide tunable wavelength by using an optical fiber amplifier doped with a rare earth element as an external resonator.

[課題を解決するための手段] この目的を達成するため、この発明では、希土類元素を
ドープした光ファイバ1と、光ファイバ1を励起する励
起光源2と、波長を選択する波長選択素子3と、波長選
択素子3を制御する波長選択素子制御部4と、波長選択
素子3からの戻り光と励起光M、2の出力光を合波し、
光ファイバ]、の@部IAに合波光を入射する波長合波
器5と、光ファイバ1の端部1Bに取り付けられるハー
フミラ−6とを備える。
[Means for Solving the Problems] In order to achieve this object, the present invention includes an optical fiber 1 doped with a rare earth element, an excitation light source 2 that excites the optical fiber 1, and a wavelength selection element 3 that selects a wavelength. , a wavelength selection element control unit 4 that controls the wavelength selection element 3, and combines the return light from the wavelength selection element 3 and the output light of the excitation light M, 2,
The optical fiber 1 includes a wavelength multiplexer 5 that inputs multiplexed light into the @ section IA of the optical fiber, and a half mirror 6 that is attached to the end 1B of the optical fiber 1.

[作用] 一般に、希土類をドープした光ファイバに、ある特定の
波長をもつ励起光を入射すると、その光ファイバは励起
状態となり、そのエネルギー準位から比較的波長領域の
広い範囲で蛍光特性を示し、その状態で蛍光特性をもつ
波長範囲の中の特定の波長をもつ光を外部から光ファイ
バに入れると、誘導放出現象が発生し、光を増幅するこ
とができる。
[Function] Generally, when excitation light with a certain wavelength is incident on an optical fiber doped with rare earth elements, the optical fiber enters an excited state and exhibits fluorescence characteristics over a relatively wide range of wavelengths based on its energy level. In this state, when light with a specific wavelength within the wavelength range that has fluorescent characteristics is input into the optical fiber from the outside, a stimulated emission phenomenon occurs and the light can be amplified.

次に、光フアイバ増幅器の構成を第3図により説明する
。第3図アは光フアイバ増幅器の構成図であり、1は光
ファイバ、2は励起光源、5は波長合波器、7は信号光
である。
Next, the configuration of the optical fiber amplifier will be explained with reference to FIG. FIG. 3A is a block diagram of an optical fiber amplifier, in which 1 is an optical fiber, 2 is a pumping light source, 5 is a wavelength multiplexer, and 7 is a signal light.

光ファイバ1は希土類元素としてエルビウムをドープし
た光ファイバであり、励起光源2は光ファイバ1を励起
する。波長合波器5は信号光7と励起光[2の出力光を
合波する。信号光7として例えば1.554μmの光源
を使用する。
The optical fiber 1 is an optical fiber doped with erbium as a rare earth element, and the excitation light source 2 excites the optical fiber 1. The wavelength multiplexer 5 combines the output light of the signal light 7 and the pump light [2]. For example, a 1.554 μm light source is used as the signal light 7.

第3図イは信号光7の出力スペクトラムであり、第3図
つは信号光7がオフで励起光源2だけがオンのときの光
ファイバ1の出射光のスペクトラムである。第3図工は
第3図つの状態で信号光7をオンにしたときの光ファイ
バ1の出力スペクトラムである。
FIG. 3A shows the output spectrum of the signal light 7, and FIG. 3 shows the spectrum of the output light from the optical fiber 1 when the signal light 7 is off and only the excitation light source 2 is on. Figure 3 shows the output spectrum of the optical fiber 1 when the signal light 7 is turned on in the state shown in Figure 3.

第3図イ・工の信号光のレベル差が第3図アの光ファイ
バ増@器の利得である。通常、20dB程度の利得が得
られ、第3図つの蛍光スペクトラムが現れる範囲で増幅
をすることができる。
The level difference between the signal lights in Figure 3A and Figure 3A is the gain of the optical fiber amplifier in Figure 3A. Normally, a gain of about 20 dB can be obtained, and amplification can be performed within the range in which the fluorescence spectra shown in Figure 3 appear.

次に、この発明による可変波長のレーザ光源の構成図を
第1図により説明する。
Next, a configuration diagram of a variable wavelength laser light source according to the present invention will be explained with reference to FIG.

第1図の3は波長選択素子、4は波長選択素子制御部で
あり、その他は第3図アと同じものである。波長台′i
F′1器5の端部5Aには、波長選択素子3が取り1」
けられる。光ファイバ1の端部IAは波長合波器5の端
部5Bに取り付けられ、光ファイバlの端部1Bにはハ
ーフミラ−6が取り付けられる。
3 in FIG. 1 is a wavelength selection element, 4 is a wavelength selection element control section, and the other parts are the same as in FIG. 3A. Wavelength table'i
A wavelength selection element 3 is installed at the end 5A of the F'1 device 5.
I get kicked. The end IA of the optical fiber 1 is attached to the end 5B of the wavelength multiplexer 5, and the half mirror 6 is attached to the end 1B of the optical fiber 1.

第1図は第3図アの光フアイバ増幅器を構成要素にして
おり、第3図つの蛍光スペクトラムの一部が信号となっ
て、波長選択素子3とハーフミラ−6により光ファイバ
1の中に戻ってくるので、その波長域で増幅することが
できる。この増幅作用は瞬時に動作し、遂には発振し、
レーザ光として強い九を出す。光ファイバ1−へ任意の
波長の光を戻すには、波長選択素子3の角度を制御する
In FIG. 1, the optical fiber amplifier in FIG. 3A is used as a component, and a part of the fluorescence spectrum in FIG. Therefore, it is possible to amplify in that wavelength range. This amplification action works instantaneously, and finally oscillates,
Emits a strong 9 as a laser beam. In order to return light of an arbitrary wavelength to the optical fiber 1-, the angle of the wavelength selection element 3 is controlled.

[発明の効果] この発明によ扛ば、希土類元素をドープした光ファイバ
増幅器と波長選択素子を採用しているので、可変波長の
広いレーザ光源を提供することができる。
[Effects of the Invention] According to the present invention, since an optical fiber amplifier doped with a rare earth element and a wavelength selection element are employed, it is possible to provide a laser light source with a wide variable wavelength range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による可変波長のレーザ光源の構成図
、第2図は半導体レーザの波長と温度の関係説明図、第
3図は光フアイバ増幅器の構成図である。 ]・・・・・・光ファイバ、2・・・・・・励起光源、
3・・・・・・波長選択素子、4・・・・・・波長選択
素子制御部、5・・・・・・波長合波器5.6・・・・
・・ハーフミラ−0代理人  弁理士  小 俣 欽 
同 第1図 0m 温度 第2図
FIG. 1 is a block diagram of a variable wavelength laser light source according to the present invention, FIG. 2 is a diagram illustrating the relationship between wavelength and temperature of a semiconductor laser, and FIG. 3 is a block diagram of an optical fiber amplifier. ]... Optical fiber, 2... Excitation light source,
3...Wavelength selection element, 4...Wavelength selection element control section, 5...Wavelength multiplexer 5.6...
...Half Mirror-0 agent patent attorney Kin Omata
Figure 1 0m Temperature Figure 2

Claims (1)

【特許請求の範囲】 1、希土類元素をドープした光ファイバ(1)と、光フ
ァイバ(1)を励起する励起光源(2)と、波長を選択
する波長選択素子(3)と、 波長選択素子(3)を制御する波長選択素子制御部(4
)と、 波長選択素子(3)からの戻り光と励起光源(2)の出
力光を合波し、光ファイバ(1)の第1の端部(1A)
に合波光を入射する波長合波器(5)と、 光ファイバ(1)の第2の端部(1B)に取り付けられ
るハーフミラー(6)とを備えることを特徴とする可変
波長のレーザ光源。
[Claims] 1. An optical fiber (1) doped with a rare earth element, an excitation light source (2) that excites the optical fiber (1), a wavelength selection element (3) that selects a wavelength, and a wavelength selection element. (3) Wavelength selection element control section (4
), and combines the return light from the wavelength selection element (3) and the output light of the excitation light source (2), and connects the light to the first end (1A) of the optical fiber (1).
A variable wavelength laser light source characterized by comprising: a wavelength multiplexer (5) that inputs multiplexed light into the optical fiber (1); and a half mirror (6) attached to the second end (1B) of the optical fiber (1). .
JP29245390A 1990-10-30 1990-10-30 Laser beam source of variable wavelength Pending JPH04165685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29245390A JPH04165685A (en) 1990-10-30 1990-10-30 Laser beam source of variable wavelength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29245390A JPH04165685A (en) 1990-10-30 1990-10-30 Laser beam source of variable wavelength

Publications (1)

Publication Number Publication Date
JPH04165685A true JPH04165685A (en) 1992-06-11

Family

ID=17782000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29245390A Pending JPH04165685A (en) 1990-10-30 1990-10-30 Laser beam source of variable wavelength

Country Status (1)

Country Link
JP (1) JPH04165685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196554A (en) * 2005-01-11 2006-07-27 Nec Corp Multiplex resonator and wavelength variable optical source using this

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196554A (en) * 2005-01-11 2006-07-27 Nec Corp Multiplex resonator and wavelength variable optical source using this
JP4678191B2 (en) * 2005-01-11 2011-04-27 日本電気株式会社 Multiple resonator design method

Similar Documents

Publication Publication Date Title
US6185230B1 (en) Resonant pumped short cavity fiber laser
CA1292797C (en) Solid state microlaser
JP2648417B2 (en) Ring laser
JPH09260753A (en) External resonator-type variable wavelength light source
JP2016102926A (en) Wavelength-variable laser and wavelength-variable laser module
JPH05218556A (en) Solid laser
JP2006278770A (en) Variable wavelength laser
JP2006278769A (en) Variable wavelength laser
KR20040047845A (en) Intracavity frequency conversion of laser radiation
KR100394457B1 (en) Erbium-doped fiber laser for long wavelength band
US20050053101A1 (en) Mode selection for single frequency fiber laser
JP2007115900A (en) Wavelength tunable light source, module thereof, and method for driving the same
JP4713073B2 (en) Tunable laser and control method thereof
US6816518B2 (en) Wavelength tunable high repetition rate optical pulse generator
KR100448743B1 (en) Distributed feedback ring laser
JP2002368327A (en) Semiconductor laser
US6560247B2 (en) Dual wavelength optical fiber laser
JP2007535159A (en) Stable laser source with very high relative feedback and narrow bandwidth
CN115764544B (en) High side mode rejection ratio narrow linewidth external cavity laser and optical equipment
US20060002436A1 (en) Wavelength tunable laser and method of controlling the same
JP3176682B2 (en) Tunable laser device
JPH04165685A (en) Laser beam source of variable wavelength
JP2002280668A (en) High power, kink-free, single mode laser diode
US20060018007A1 (en) System and method for dynamic range extension and stable low power operation of optical amplifiers using pump laser pulse modulation
JP2008543101A (en) Ultra-low noise semiconductor laser