TWI279090B - Serial input digital-to-analog converting device - Google Patents

Serial input digital-to-analog converting device Download PDF

Info

Publication number
TWI279090B
TWI279090B TW94112393A TW94112393A TWI279090B TW I279090 B TWI279090 B TW I279090B TW 94112393 A TW94112393 A TW 94112393A TW 94112393 A TW94112393 A TW 94112393A TW I279090 B TWI279090 B TW I279090B
Authority
TW
Taiwan
Prior art keywords
switch
voltage
capacitor
digital
digital analog
Prior art date
Application number
TW94112393A
Other languages
Chinese (zh)
Other versions
TW200638685A (en
Inventor
Fang-Hsing Wang
Jia-Ming Yang
Original Assignee
Univ Nat Chunghsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chunghsing filed Critical Univ Nat Chunghsing
Priority to TW94112393A priority Critical patent/TWI279090B/en
Publication of TW200638685A publication Critical patent/TW200638685A/en
Application granted granted Critical
Publication of TWI279090B publication Critical patent/TWI279090B/en

Links

Abstract

A serial input digital-to-analog converting device suitable for converting an n-bit digital signal to an analog signal is disclosed, wherein the digital signal is early divided into m bytes and the converting device comprises m digital-to-analog converters for independently receiving the m bytes before converting the m bytes into corresponding analog voltages, a voltage divider capable of providing two voltages to each digital-to-analog converter so that each digital-to-analog converter can use the difference between the two received voltages as a dynamic voltage variation range for converting the m bytes and the difference between the two received voltages provided by the voltage divider to the kth digital-to-analog converter is (delta V)/(2<n(m-k)/m>}, and an adder for adding the analog voltages to generate the analog signal.

Description

1279090' 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種數位類比轉換裝置,特別是指一 種串列輸入式數位類比轉換裝置。 【先前技術】 參閱圖1,習知一種數位類比轉換器9是與美國專利號 622593 1 B1中所提出的類似,包含一電壓選擇單元91、一 第一電容92、一第二電容93、一第一開關94、一第二開關 95及一第三開關96。 該電壓選擇單元91包括一反向器911、一第一切換開 關912及一第二切換開關913。而該第一切換開關912可接 收一最高電壓Vh,且該第二切換開關913可接收一最低電 壓λΠ ’而該最高電壓vh的值比該最低電壓vi的值大,且 該二電壓Vh、VI的差值Δν(= Vh-Vl)即為該數位類比轉換器 9的動態電壓範圍。此外,該第一切換開關912是一 p型通 道金屬氧化半導體(positive_channel Metal-Oxide Semiconductor,簡稱PM0S),而該第二切換開關913是一 N型通道金屬氣化半導體(Negative_channei Metal-OxideBACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a digital analog conversion device, and more particularly to a serial input digital analog conversion device. [Prior Art] Referring to FIG. 1, a digital analog converter 9 is similar to that proposed in US Pat. No. 622,593,1 B1, and includes a voltage selection unit 91, a first capacitor 92, a second capacitor 93, and a capacitor. The first switch 94, the second switch 95 and a third switch 96. The voltage selection unit 91 includes an inverter 911, a first switching switch 912 and a second switching switch 913. The first switch 912 can receive a maximum voltage Vh, and the second switch 913 can receive a minimum voltage λ Π ' and the value of the highest voltage vh is greater than the value of the lowest voltage vi, and the two voltages Vh, The difference Δν (= Vh - Vl) of the VI is the dynamic voltage range of the digital analog converter 9. In addition, the first switch 912 is a p-channel metal-oxide semiconductor (PM0S), and the second switch 913 is an N-channel metallized semiconductor (Negative_channei Metal-Oxide)

Semiconductor,簡稱 NM0S)。 而該反向器911可依序接收一 n位元的串列數位信號 ,且是由該串位數位信號的最小位元(LeastSemiconductor, referred to as NM0S). The inverter 911 can sequentially receive an n-bit serial digital signal, and is the least bit of the serial bit signal (Least)

Significant Bit,簡稱LSB)dJ4始接收,然後依序接收較大 的位元’直到接收到最大位元(M〇si: gignificant Bit,簡稱 MSB) dw 為止。 1279090 該反向器911的輸出端 、on μ 这第一、第二切換開關912 913的閘極電連接,且1給 一 ,、輸出^唬可用來控制該第一、第 一切換開關912、913的切換,g〆 ^ θ 、即虽輸入至該反向器911的 教位“號是1時,則該反向 #0a Β 态911的輸出信號將使該第一切 換開關912導通且該第-切揸 +广、 弟一切換開關913不導通,而此時該 %壓選擇單元91則產生爷笋古帝^ 法士 亥取呵電壓Vh和該最低電壓VI的 差值Δ V,且該最高電壓Vh 1 vn則逯過該第一切換開關912送 至該第一開關94 〇而杏鈐入石斗广The Significant Bit (LSB) dJ4 starts to receive and then receives the larger bit ' in sequence' until the maximum bit (M〇si: gignificant Bit, MSB) dw is received. 1279090 The output of the inverter 911, the gates of the first and second switch 912 913 of the on μ are electrically connected, and the output of the first switch is 912, and the output switch 912 can be used to control the first and first switch 912. The switching of 913, g〆^ θ, that is, the input signal to the inverter 911 is “1, the output signal of the reverse #0a state 911 will turn on the first switch 912 and the The first-cut 广+广, 弟一-switch 913 is not turned on, and at this time, the %-pressure selection unit 91 generates a difference ΔV between the sacred sacred voltage Vh and the lowest voltage VI, and The highest voltage Vh 1 vn is sent to the first switch 94 through the first switch 912, and the apricot enters the Shidouguang

田輸至該反向器911的數位信號是〇 時道該第—切換開關912將不導通且該第二切換開關913 將導通,故該電壓選擇單元91產生的電壓差值將為零’且 该取低電1 V!則透過該第二切換開關913送至該第一開關 94 ° 該第一、第二、第三開關94、95、96 φ聯在-起且位 於該電壓選擇單;^ Q〗β &amp; . _ 之第一切換開關912和該最低電壓V1 之間。而該第一電容92的-端是電連接於該第一開關94 ί口第二開關95之間,且另一端是電連接於該最低電壓ν卜 而該第二電容93的-歧電連接於該第二開關95和該第 一開關96之間,且另一端是電連接於該最低電壓。且該 第一電容92和第二電容93的電容值相同。 當該第一開關94導通,而該第二及第三開關95、 不導通時,則該第一電容92會被充電,而當第二開關95 導通且第一與第三開關94、96皆不導通時,則該第一電容 92上的電量會平均分散在該第一、第二電容92、93上。 若假設待處理的串列數位信號是4位元,即為 1279090 [AH d〇],則習知之數位類比轉換器9將該數位信號轉成 一類比信號的流程包含以下步驟: 步驟S1是在一第一時脈週期(Clock Cycle)時,在該第 一、第三開關94、96導通且第二開關95不導通的狀態下 ,將數位信號d〇輸入至該反向器911,故該第一電容92會 被充電直到該第一電容92的跨壓達到AVxd〇,且該第二電 容93將會被重設(Reset)。 而步驟S2是在下一個時脈週期,即第二時脈週期時, 開啟該第二開關95,使該第二開關95導通且使第一、第三 開關94、96皆不導通,則第一電容92上的電荷會平均分 配至第一與第二電容92、93上,且第二電容93上的電壓 值將變成(Δνχ(1())/2。 步驟S3是在第三時脈週期時,且在該第一開關94導 通且第二、第三開關95、96不導通的狀態下,將數位信號 山輸入至該反向器911,故該第一電容92會被充電直到該 第一電容92的跨壓達到Δνχΐ。 步驟S4是在第四時脈週期時,開啟該第二開關95,使 該第二開關95導通且使第一、第三開關94、96皆不導通 ,則第一電谷92上的電荷會平均分配至第一與第二電容92 、93上,且第二電容93上的電壓值將變成(((△ v x d〇)/2) +(厶¥\山))/2。 步驟S5是在第五時脈週期時,且是在該第一開關94 導通且第一、第二開關95、96不導通的狀態下,將數位信 號i輸入至該反向器911,故該第一電容92會被充電直到 1279090 吞亥第一電谷92的跨壓達到a ν χ d2。 步驟S6是在第六時脈週期時,且開啟該第二開關95, 使該第二開關95導通且使第一、第三開關94、96皆不導 通,則第一電容92上的電荷會平均分配至第一與第二電容 92、93上’且第二電容93上的電壓值將變成(((((Avxd〇)/2 )+(AVxdi))/2)+(AVxd2))/2。The digital signal input to the inverter 911 is that the first switch 912 will not conduct and the second switch 913 will be turned on, so the voltage difference generated by the voltage selection unit 91 will be zero 'and The low power 1 V! is sent to the first switch 94 through the second switch 913. The first, second, and third switches 94, 95, 96 φ are connected to each other and located in the voltage selection list; ^ Q Between the first switch 912 of β &amp; . _ and the lowest voltage V1. The first end of the first capacitor 92 is electrically connected between the first switch 94 and the second switch 95, and the other end is electrically connected to the lowest voltage and the second capacitor 93 is electrically connected. Between the second switch 95 and the first switch 96, and the other end is electrically connected to the lowest voltage. And the capacitance values of the first capacitor 92 and the second capacitor 93 are the same. When the first switch 94 is turned on, and the second and third switches 95 are not turned on, the first capacitor 92 is charged, and when the second switch 95 is turned on and the first and third switches 94, 96 are both When not conducting, the amount of power on the first capacitor 92 is evenly distributed on the first and second capacitors 92, 93. If it is assumed that the serial digital signal to be processed is 4 bits, that is, 1279090 [AH d〇], the process of converting the digital signal into an analog signal by the conventional digital analog converter 9 includes the following steps: Step S1 is In a first clock cycle, the digital signal d〇 is input to the inverter 911 in a state where the first and third switches 94 and 96 are turned on and the second switch 95 is not turned on. The first capacitor 92 will be charged until the voltage across the first capacitor 92 reaches AVxd, and the second capacitor 93 will be reset. In the next clock cycle, that is, the second clock cycle, the second switch 95 is turned on, and the second switch 95 is turned on and the first and third switches 94 and 96 are not turned on. The charge on the capacitor 92 is evenly distributed across the first and second capacitors 92, 93, and the voltage value on the second capacitor 93 will become (Δν χ (1 ()) / 2. Step S3 is in the third clock cycle And when the first switch 94 is turned on and the second and third switches 95, 96 are not turned on, the digital signal mountain is input to the inverter 911, so the first capacitor 92 is charged until the first The voltage across a capacitor 92 reaches Δν χΐ. Step S4 is to turn on the second switch 95 during the fourth clock cycle, and the second switch 95 is turned on and the first and third switches 94 and 96 are not turned on. The charge on the first valley 92 is evenly distributed to the first and second capacitors 92, 93, and the voltage value on the second capacitor 93 becomes (((Δvxd〇)/2) + (厶¥\山)) / 2. Step S5 is in the fifth clock cycle, and is in a state where the first switch 94 is turned on and the first and second switches 95, 96 are not turned on. The digital signal i is input to the inverter 911, so the first capacitor 92 is charged until the voltage across the first valley 92 of 1279090 reaches a ν χ d2. Step S6 is in the sixth clock cycle, And the second switch 95 is turned on, and the second switch 95 is turned on and the first and third switches 94, 96 are not turned on, and the electric charge on the first capacitor 92 is evenly distributed to the first and second capacitors 92, The voltage value on the '93' and the second capacitor 93 will become ((((((( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (

步驟S7是在第七時脈週期時,且在該第一開關94導 通且第二、第三開關95、90不導通的狀態下,將數位信號 毛輸入至該反向器911,故該第一電容92會被充電直到該 第一電容92的跨壓達到AVxd3。、 步驟S8是在第八時脈週期時,且開啟該第二開關95 , 使該第二開關95導通且使第一、第三開關94、%皆不導 通,則第一電容92上的電荷會平均分配至第一與第二電容 92、93上,且第二電容93上的電壓值將變成(((((((△〜% ,且此式可整理 成((4/2)+(4/4)+(^/8)+((10/16)) X AV。 故習知在輸入一個位元的數位信號時,都需要一個使 該第一電容92充電的步驟,且另一個使該第一、第二電容 92、93之電荷平均分配的步驟,故輸入一個位元則需要= 個時脈週期的時間才能處理完成,所以上述在輪入數位信 位元的情形下,則需要有8(=4x2)個時脈週期才能^ 70整數位信號’故當輸入數位信號有N位元時 要NX2個時脈週期,且# N的數目變大時,所門: 以倍數成長。 亏間將 1279090 【發明内容】 因此,本發明之目的,即在提供一種可加快處理效能 的串列輸入式數位類比轉換裝置。 於疋,本發明串列輸入式數位類比轉換裝置是適用於 將一具有11位元的串列式數位信號轉換成一類比信號,且 該串列式數位信號之n位元是先依序分割成m個位元組, 而m為大於或等於2的整數,且該等位元組由較低至較高 籲 位元順序依序為一第一位元組至一第瓜位元組。 該串列輸入式數位類比轉換裝置包含m個數位類比轉 換器、一分壓器及一加法器。該等數位類比轉換器分別是 一第一數位類比轉換器至一第m數位類比轉換器,且該第 q數位類比轉換H是接收該第q位元組,並分別將該等位元 組轉成一相對應的類比電塵,❿q為j至m間且含工與㈤ 的整數。 該分壓器與該等數位類比轉換器電連接,並能對每一 • |位類比轉換器提供二電壓’使該等數位類比轉換器能分 別根據接收到之該二„的差值t作其動態電璧變動範圍 以轉換該等位元組,而該分麼器提供至該第k數位類比轉 換器之該二電麼的電壓差值為謂(2&gt;、,❿k為1至瓜 間且含1與m的整數。 而該加法器是將該等數位類比轉換器處理完的該等類 •比電壓相加以產生該類比信號。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 !279〇9〇 ^ 以下配合參考圖式之一個較佳實施例的詳細說响中,將可 清楚的呈現。 參閱圖2與圖3,本發明串列輸入式數位類比轉換裝置 之較佳實施例包含m(m為大於或等於2的整數)個數位類比 轉換器DACfDACm、一分壓器2及一加法器3 〇 該等數位類比轉換器DACl〜DACm分別是一第一數位類 比轉換器DAC!、一第二數位類比轉換器DAc2至一第m數 • 位類比轉換器DACm。 一個為η位元的串列式數位信號[dnidn2.did〇]可依序 等分成m個位元組D丨〜Dm,且該等位元組Di〜Dm分別是 ^i = [d(n/m).,...d〇] - ^ 。而該Dj位元組則是輸入至第j個數位類比轉換器DACj, 且j為1至m間並含1與m的正整數。 而該分壓器2包括m個電阻Ri〜Rm,且該等電阻 Ri〜Rm分別是一第一電阻心、一第二電阻&amp;至一第m電阻 • ,而該等電阻Rl〜Rm彼此間之電阻值的關係為式(1)所列Step S7 is in the seventh clock cycle, and in a state where the first switch 94 is turned on and the second and third switches 95, 90 are not turned on, the digital signal hair is input to the inverter 911, so the first A capacitor 92 will be charged until the voltage across the first capacitor 92 reaches AVxd3. Step S8 is that during the eighth clock cycle, the second switch 95 is turned on, the second switch 95 is turned on, and the first and third switches 94 and % are not turned on, and the charge on the first capacitor 92 is It will be evenly distributed to the first and second capacitors 92, 93, and the voltage value on the second capacitor 93 will become (((((( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (4/4)+(^/8)+((10/16)) X AV. Therefore, when inputting a bit signal of one bit, a step of charging the first capacitor 92 is required, and another a step of evenly distributing the charges of the first and second capacitors 92, 93, so inputting one bit requires time of = clock cycle to be processed, so in the case of rounding in digital information bits, Then you need 8 (= 4x2) clock cycles to ^ 70 integer bit signal 'so when the input digital signal has N bits, NX2 clock cycles, and when the number of # N becomes larger, the gate: in multiples [Department] Accordingly, it is an object of the present invention to provide a serial input digital analog conversion device that can speed up processing performance. In the present invention, the serial input digital analog conversion device of the present invention is suitable for converting a serial digital signal having 11 bits into an analog signal, and the n bits of the serial digital signal are sequentially divided into m bytes, and m is an integer greater than or equal to 2, and the bits are sequentially ordered from a lower to a higher caller to a first byte to a first bit. The serial input digital analog conversion device includes m digital analog converters, a voltage divider and an adder. The digital analog converters are respectively a first digital analog converter to an mth digital analog converter, and The q-th digital analog conversion H is to receive the q-th byte, and respectively convert the byte into a corresponding analog electric dust, where q is an integer between j and m and contains (5). The voltage converter is electrically coupled to the digital analog converters and is capable of providing two voltages for each of the |bit analog converters such that the digital analog converters can respectively perform dynamics based on the difference t of the received two The range of eMule changes to convert the bits, and the device provides The voltage difference of the second power of the k-th digital analog converter is (2), ❿k is an integer between 1 and melon and contains 1 and m. The adder is to process the digital analog converter The above-mentioned classes are added to the analog signal to generate the analog signal. [Embodiment] The above-mentioned and other technical contents, features and effects of the present invention are preferably implemented in conjunction with the reference pattern below: 279〇9〇^ The detailed description of the example will be clearly shown. Referring to Figures 2 and 3, a preferred embodiment of the serial input digital analog conversion device of the present invention comprises m (m is an integer greater than or equal to 2) digit analogy The converter DACfDACm, a voltage divider 2 and an adder 3 〇 the digital analog converters DAC1 to DACm are a first digital analog converter DAC!, a second digital analog converter DAc2 to an mth number, respectively. Bit analog converter DACm. A tandem digital signal [dnidn2.did〇] which is an n-bit can be equally divided into m bytes D丨~Dm, and the bits Di~Dm are ^i = [d(n /m).,...d〇] - ^ . The Dj byte is input to the j-th digital analog converter DACj, and j is a positive integer between 1 and m and containing 1 and m. The voltage divider 2 includes m resistors Ri~Rm, and the resistors Ri~Rm are a first resistor core, a second resistor &amp; to a mth resistor, and the resistors R1 Rmm are mutually The relationship between the resistance values is as listed in equation (1)

一 _R, 式⑴ 10 l2?9〇9〇 R,a _R, formula (1) 10 l2?9〇9〇 R,

R 2--1 2m -2_ (m-l)n、 2--1R 2--1 2m -2_ (m-l)n, 2--1

一 R m-2 -Rw - Rm_2An R m-2 -Rw - Rm_2

該等電阻R^Rm串聯在一起,而電連接順序依序為第 一電阻心、第二電阻R2、第三電阻心至第m電阻Rm,且 讀第一電阻I與一最低電壓V1電連接,該第m電阻與一 最高電壓Vh電連接,而該等電阻Ri〜Rm將該最高電壓 與該最低電壓VI分壓以產生許多不同的參考電壓Vfi〜Vfm 1 ,每一數位類比轉換器DAC1〜DACm皆接收該最低電壓 VI,此外,該第i數位類比轉換器DACi也接收該參考電壓 Vfi,而1為1至(111-1)間且含1與(111_1)的整數,而該第111數 位類比轉換器DACm則是接收該最高電壓Vh。故該分壓器 2提供。至該第k數位類比轉換器之該二電壓的電壓差 ( ),而AV為Vh々卜且k為1至m之間並含i與 m的整數。 該第一數位類比轉換器DACl與先前技術中所提的數位 類比轉換器9相似,包括一電壓選擇單元u、一第一電容 12、一第二電容13、一第一開關14、一第二開關15及一 第三開關16。 而該電壓選擇單元U包括一反向器m、一第一切換 開關112及-第二切換開關113。且該第一、第二電容12、 11 1279090 13與第一〜第三開關14〜16及該電壓選擇單元u所包括的 元件(即該反向器m、該第一、第二切換開關li2、ii3)的 作動情形皆與習知相同,故在此不再贅述。 該第-數位類比轉換器說丨與習知較為不同的是,該 第一切換開關112是接收該參考電壓Vfi。且該反向器m ,疋依序接收該第一位元組Dl=[d(n/m)丨·為]的串列數位信號 ,並由該串位數位信號的最小位元d〇開始接收,然後依序 接收較大的位元,直到接收到該位元組Di中的最大位元 d(n/m)-l 為止。 當輸入至該反向器111的數位信號是i時,則該第一數 位類比轉換器DAC1之電壓選擇單元u產生的電壓差值為 VfrVl。而當輸入至該反向器lu的數位信號是〇時,該電 壓選擇單元11產生的電壓差值將為零。 而該第二至第m數位類比轉換器DAC2〜DACm與該第 數位類比轉換|§ D AC 1相似,皆包括一電壓選擇單元η 、一第一電容12、一第二電容13、一第一開關14、一第二 開關15及一第三開關16。但該第二至第m數位類比轉換 器DAC2〜DACm與該第一數位類比轉換器DAC!不同的是, 該第二至第㈤數位類比轉換器DAC2〜DACm更包括一第四 開關17友一第五開關18。 該第四開關17電連接於該最低電壓vi與該第一電容 12之一端間,且該第五開關18與該第四開關17串聯,並 與該第一電容12之一端及該第二電容13之一端電連接。 而第p(p為2至m的正整數)數位類比轉換器DACP之 12 1279090 反向器111是分別接收該Dp位元組的串列數位信號,並由 該位元組Dp的最小位元開始接收,然後依序接收較大的位 元。 且該第q(q為2至(m-1)的正整數)個數位類比轉換器 D ACq之第一切換開關112是接收該參考電壓vfq,當輸入 至该反向器111的數位信號是1時,則該電壓選擇單元i j 則產生的電壓差值為Vfq-VI。而當輸入至該反向器in的數 位信號是0時,電壓選擇單元u產生的電壓差值將為零。 而该第m數位類比轉換器之第一切換開關112則是、接收該 最高電壓Vh,且當輸入至該反向器ln的數位信號是丨時 ’則該電壓選擇單元11則產生的電壓差值為Vh-VI。 逡加法器3包括(m-1)個控制開關3 1,且該等控制開關 31分別電連接於相鄰的數位類比轉換器DACl〜DACm之第 二電容13之間,而當該加法器3的控制開關31呈不導通 狀態時,位於第二至第㈤數位類比轉換器DAc2〜DACm之 第四、第五開關17、18將會呈導通,此時,每一數位類比 轉換器DAG〜DACm可正常運作並直到所有數位類比轉換器 DACpDACm都處理完該等位元組Di〜Dm内的數位信號時, 該等控制開關3 1才會導通。 〆且當該等控制開關3 1導通時,位於該第二至該第m數 位類比轉換器DAG〜DACm上的第四及第五開關17、18將 會呈不導通狀悲’此時,位於每一數位類比轉換器 DAC^DACm之第二電容13上的跨壓將會相加而得到最後 轉換完成妁一類比信號,且該類比信號是從該第m數位類 13 1279090 比轉換器DACm輸出。 如圖4所示,以下舉一簡單例子來說明本實施例的運 作情形,且為了方便說明,在此以瓜為2,4 4來做說明 ,且此時,該等數位類比轉換器即分別是該第—數位類比 轉換器DACl及該第二數位類比轉換器dac2, m該分壓器 2則只包括該第一電阻Ri及該第二電阻R2。且豸串列式數 位信號則為[d3d2d為]…位元,並可分成兩位元組,分 別是第一位元組Drl^do]與第二位元組D2=[d3d2]。 根據式(1)肖第—電阻r2與該第一電阻&amp;的關係為 下式: (2η η \ f 2x4 4 \ r2 = 2 m — 2m -心= 2了一 ,2-^1 y 4 -Rj = 4-Rj 且在此例中’令該第-電阻Ri的電阻值為1歐姆,則 該第二電阻R2即為3(=4])歐姆。故由該第一電阻&amp;與該 第二電阻R2間輸出的參考電壓Vfi即等於νι+Δν/4,且 △V = Vh-V1。而該第—數位類比轉換器DACl的輸入電壓即 為該最低電壓V1及該參考電壓Vfl,而該二電壓的電壓差 為Δν/4。而該第二數位類比轉換器Μ。的輸入電壓即為該 最低電壓vi與該最高電壓Vh,而該兩電壓%、vh的電壓 差為Δν。故輸人該第二數位類比轉換器Μ。的電壓差為 該第一數位類比轉換器£)八〇:1的4(=22)倍。 . 而在此例下,該加法器3只包括一個位於該第一數位 類比轉換器DAC!之第二電容13及該第二數位類比轉換器 dac2之第二電容13間的控制開關31。且該第—與第二數 14 1279090 位類比轉換器DAC,、DAC2將該數位信號轉成一 颠比信號的流程是包含以下步驟: 步驟S1是在一第一時脈週期時,在該加法器3之控制 開關31不導通,且該第一數位類比轉換器DACi之第一、 第二開關14、16導通而第二開關15不導通的狀態下,將 數位信號d〇輸入至該第一數位類比轉換器DACi&lt;反向器 111。且同時,在該第二數位類比轉換器DA。之第一、第The resistors R^Rm are connected in series, and the electrical connection sequence is sequentially the first resistor core, the second resistor R2, the third resistor core to the mth resistor Rm, and the read first resistor I is electrically connected to a minimum voltage V1. The mth resistor is electrically connected to a highest voltage Vh, and the resistors Ri~Rm divide the highest voltage and the lowest voltage VI to generate a plurality of different reference voltages Vfi~Vfm1, each digital analog converter DAC1 ~ DACm receives the lowest voltage VI, in addition, the ith digital analog converter DACI also receives the reference voltage Vfi, and 1 is between 1 and (111-1) and contains an integer of 1 and (111_1), and the The 111 digital analog converter DACm receives the highest voltage Vh. Therefore, the voltage divider 2 is provided. The voltage difference ( ) of the two voltages to the k-th digital analog converter, and AV is Vh and k is an integer between 1 and m and containing i and m. The first digital analog converter DAC1 is similar to the digital analog converter 9 mentioned in the prior art, and includes a voltage selection unit u, a first capacitor 12, a second capacitor 13, a first switch 14, and a second The switch 15 and a third switch 16. The voltage selection unit U includes an inverter m, a first switching switch 112, and a second switching switch 113. And the first and second capacitors 12, 11 1279090 13 and the first to third switches 14 to 16 and the components included in the voltage selection unit u (ie, the inverter m, the first and second switch li2) The operation of ii3) is the same as the prior art, so it will not be repeated here. The first-to-digital analog converter is different from the conventional one in that the first changeover switch 112 receives the reference voltage Vfi. And the inverter m, 接收 sequentially receives the serial digit signal of the first byte D1=[d(n/m)丨· is], and starts from the smallest bit d〇 of the serial bit signal Receive, and then receive the larger bit in sequence until the maximum bit d(n/m)-l in the byte Di is received. When the digital signal input to the inverter 111 is i, the voltage difference generated by the voltage selection unit u of the first digital analog converter DAC1 is VfrV1. When the digital signal input to the inverter lu is 〇, the voltage difference generated by the voltage selection unit 11 will be zero. The second to mth digital analog converters DAC2 to DACm are similar to the digital analog conversion |§ D AC 1, and include a voltage selection unit η, a first capacitor 12, a second capacitor 13, and a first The switch 14, the second switch 15 and a third switch 16. However, the second to mth digital analog converters DAC2 to DACm are different from the first digital analog converter DAC!, and the second to fifth digital analog converters DAC2 to DACm further include a fourth switch 17 The fifth switch 18. The fourth switch 17 is electrically connected between the lowest voltage vi and one end of the first capacitor 12, and the fifth switch 18 is connected in series with the fourth switch 17, and is connected to one end of the first capacitor 12 and the second capacitor 13 one end is electrically connected. And the pth (p is a positive integer of 2 to m) digital analog converter DACP 12 1279090 reverser 111 is a serial digital signal respectively receiving the Dp byte, and the least bit of the byte Dp Start receiving and then receive larger bits in sequence. And the qth (q is a positive integer of 2 to (m-1)) the first switching switch 112 of the digital analog converter D ACq receives the reference voltage vfq, when the digital signal input to the inverter 111 is At 1 o'clock, the voltage difference generated by the voltage selection unit ij is Vfq-VI. When the digital signal input to the inverter in is 0, the voltage difference generated by the voltage selecting unit u will be zero. And the first switching switch 112 of the m-th digital analog converter is, receives the highest voltage Vh, and when the digital signal input to the inverter ln is 丨, then the voltage difference generated by the voltage selecting unit 11 The value is Vh-VI. The 逡 adder 3 includes (m-1) control switches 31, and the control switches 31 are electrically connected between the second capacitors 13 of the adjacent digital analog converters DAC1 to DACm, respectively, and when the adder 3 When the control switch 31 is in a non-conducting state, the fourth and fifth switches 17, 18 located in the second to fifth (five) digital analog converters DAc2 to DACm will be turned on. At this time, each digital analog converter DAG~DACm These control switches 31 will be turned on when they are operating normally and until all of the digital analog converters DACpDACm have processed the digital signals in the bits Di~Dm. And when the control switches 31 are turned on, the fourth and fifth switches 17, 18 located on the second to the m-th digital analog converters DAG~DACm will be non-conducting. The voltage across the second capacitor 13 of each digital analog converter DAC^DACm will be added to obtain the final converted complete analog signal, and the analog signal is output from the mth digital class 13 1279090 than the converter DACm . As shown in FIG. 4, a simple example is given to illustrate the operation of the embodiment, and for convenience of explanation, the melon is described as 2, 4, and at this time, the digital analog converters are respectively The first digital analog converter DAC1 and the second digital analog converter dac2, m the voltage divider 2 includes only the first resistor Ri and the second resistor R2. And the tandem digital signal is [d3d2d is]...bit and can be divided into two tuples, which are the first byte Dr1^do] and the second byte D2=[d3d2]. According to the formula (1), the relationship between the first resistor R2 and the first resistor &amp; is: (2η η \ f 2x4 4 \ r2 = 2 m - 2m - heart = 2, 2-^1 y 4 -Rj = 4-Rj and in this case 'the resistance of the first-resistance Ri is 1 ohm, then the second resistor R2 is 3 (=4)) ohm. Therefore, the first resistor &amp; The reference voltage Vfi outputted between the second resistor R2 is equal to νι + Δν / 4, and ΔV = Vh - V1. The input voltage of the first-digital analog converter DAC1 is the lowest voltage V1 and the reference voltage Vfl The voltage difference between the two voltages is Δν/4, and the input voltage of the second digital analog converter is the lowest voltage vi and the highest voltage Vh, and the voltage difference between the two voltages % and vh is Δν Therefore, the voltage difference of the input of the second digital analog converter is the first digital analog converter £) gossip: 4 (= 22) times of 1. In this case, the adder 3 includes only one control switch 31 between the second capacitor 13 of the first digital analog converter DAC! and the second capacitor 13 of the second digital analog converter dac2. And the first and the second number 14 12790900 bit analog converter DAC, DAC2 converts the digital signal into a parallel ratio signal flow comprising the following steps: Step S1 is in a first clock cycle, in the addition The control switch 31 of the device 3 is not turned on, and the first and second switches 14, 16 of the first digital analog converter DACI are turned on and the second switch 15 is not turned on, and the digital signal d is input to the first Digital analog converter DACI&lt;inverter 111. And at the same time, in the second digital analog converter DA. First, first

二、第四、第五開_ 14、16、17、18導通且第二開關15 不導通的狀態下,將數位信號d2輸人至該第二數位類比轉 換器DAC2之反向器111。 此時,該第一數位類比轉換器DAC1之第一電容12會 被充電直到其跨壓達到Λν/4Χ(1。,且該第二電容13合被^ 設。而該第二數位類比轉換器DAC2之第—電容12:合被 充電直到其跨壓達到ΛνΧ(ΐ2,且該第二電容13將會被Μ 而步驟S2是在下一個時脈週期’即第二時脈 , 使該加法器3之控制_31不導通,該第_與第二數位類 比轉換益叫DAC2的第一、第三開關Μ、Μ皆不導通2. The fourth and fifth open _ 14, 16, 17, 18 are turned on and the second switch 15 is not turned on, and the digital signal d2 is input to the inverter 111 of the second digital analog converter DAC2. At this time, the first capacitor 12 of the first digital analog converter DAC1 is charged until its voltage across the voltage reaches Λν/4Χ (1., and the second capacitor 13 is combined. The second digital analog converter Cap DAC2 - Capacitor 12: The charge is charged until its voltage across the voltage reaches ΛνΧ (ΐ2, and the second capacitor 13 will be clamped and step S2 is at the next clock cycle', ie the second clock, causing the adder 3 The control_31 is not turned on, and the first and third switches Μ and Μ of the DAC and the second digital analog conversion are not turned on.

’但该第-數位類比轉換器DACi之第二開關Μ導通,且 使忒第一數位類比轉換器DAC !5、17、i8導通。 之第―、第四、第五開關 則第一與第二數位類比轉換器DaCi、d 容12上的電荷會平均分配至第-與第二電容ί22、13 :電 故該第—數位類比轉換器㈣1之第二電容丨3上的„值 15 1279090 將變成(謂以咖,而該第二數位類比轉換胃μ。之第 二電容13上的電壓值將變成(Δνχ(ΐ2)/2。 步驟S3是在第三時脈週期時’在該第一與第二數位類 比轉換器DAC丨、DAC2之第一開關14導通且第二、第三開 關15、16不導通,而該第二數位類比轉換器dac2的;: 開關17和第五開關18也導通的狀許,將數位信號山與 屯分別同時輸入至該第一與第二數位類比轉換器DAq、 DAC2之反向器ill,此時,第一數位類比轉換器DA。之 第一電容12會被充電直到其跨壓達到Δν/4χ(1ι。而該第二 數位類比轉換器DAC2之第·電容12也會被充電直到其跨 壓達到AVxd3。 步驟S4是在第四時脈週期時,使該加法器3之控制開 關31不導通,並分別開啟第一與第二數位類比轉換器 DAC!、DAG之第二開關15,使該第二開關15導通且使第 一、第三開關14、16皆不導通,同時,也使該第二數位類 比轉換器DAC2之第四開關17和第五開關18導通。則第一 與第二數位類比轉換器DACi、DAG之第一電容12上的電 荷會平均分配至第一與第二電容12、13上,故該第一數位 類比轉換器DACi之第二電容13上的電壓值將變成 (((Δ V/4 X d〇)/2) +( A v/4 X 山))/2 ,可整理為 ((di/8)+(d〇/16))xAV,而該第二數位類比轉換器DAC2之第 二電容13上的電壓值將變成(((ΔνΧ(ΐ2)/2) +(AVxd3))/2,可 整理為((d3/2)+(d2/4)) X A V。 步驟S5是使該加法器3之控制開關31導通,而該第 16 1279090 一、第二數位類比轉換器DACl、DAC2的第一、 1 4、1 A 丁、盆 示二開關 不導通,且使第二數位類比轉換器DA。的第四與 第五開關17、18也不導通,則該第二數位類比轉換器 2 p 輸出—((d3/2)+(d2/4)+(di/8)+(d〇/16))XAv 的類比作 號。 ^ 故同樣是將一個具有4位元的輸入數位信號轉成該類 比信號’習知則需要8個時脈週期,而本例只需要5個時 脈週期^且在此具有兩個數位類比轉換器DAC!、DAC2的 例子下,當輸入數位信號具有n位元時,則只需2要 _&gt;&lt;2小n+1個時脈週期,比習知之%個時脈週期=了 很多二且當該等數位類比轉換器的數目m增加時,本發明 的運开速度更會大幅提昇’而只需要(n/m)x2+i個時脈週期 〇 且值得注意的是,若輸人至本發明之數位信號的位元 數η非為m之倍數,則可將該數位信號的前面插入零,且 插入零的個數t,為使t加n達到m之倍數即可。 此外,值得注意的是,每一數位類比轉換器 DACl〜DAC2之電壓選擇單元11也可如圖5所示’且與上述 不同的地方在於’該第一切換開關112 麵0S,且該 NMOS之閘極是接收該位元組Dj而不是與該反向器⑴電 連接。 惟以上所述者’僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 17 ^79090 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一習知之數位類比轉換器的電路圖; 圖2是本發明串列輸入式數位類比轉換裝置之較佳實 施例的系統架構圖; ·,、一 n \7'\ wv 电吩固, 圖4是當該較佳實施例之爪為2時的電路圖 圖5是該較佳實施例之一電壓選擇單元的 接情形。 及 種電連'But the second switch of the first-digital analog converter DACI turns on, and turns on the first digital analog converters DAC !5, 17, and i8. The first, fourth, and fifth switches convert the charges on the first and second digital analog converters DaCi, d to the first and second capacitors ί22, 13: electricity, so the first-to-digital analog conversion The value 152 1279090 on the second capacitor 丨3 of the device (4) 1 will become (the coffee frequency, and the second digital analogy converts the stomach μ. The voltage value on the second capacitor 13 will become (Δνχ(ΐ2)/2. Step S3 is: when the third clock cycle is 'on the first and second digital analog converters DAC 丨, the first switch 14 of the DAC 2 is turned on and the second and third switches 15, 16 are not turned on, and the second digit Analog converter dac2;: The switch 17 and the fifth switch 18 are also turned on, and the digital signal mountain and the 信号 are simultaneously input to the inverter ill of the first and second digital analog converters DAq, DAC2, respectively. When the first digital analog converter DA is used, the first capacitor 12 is charged until its voltage across the voltage reaches Δν/4χ (1, and the second capacitor of the second digital analog converter DAC2 is also charged until its cross The voltage reaches AVxd3. Step S4 is to make the control switch 31 of the adder 3 during the fourth clock cycle. Not conducting, and respectively turning on the first and second digital analog converter DAC!, the second switch 15 of the DAG, so that the second switch 15 is turned on and the first and third switches 14 and 16 are not turned on, and at the same time, The fourth switch 17 and the fifth switch 18 of the second digital analog converter DAC2 are turned on. The charges on the first capacitor 12 of the first and second digital analog converters DACI, DAG are evenly distributed to the first and the first On the two capacitors 12, 13, the voltage value on the second capacitor 13 of the first digital analog converter DACI will become (((ΔV/4 X d〇)/2) + (A v / 4 X mountain) /2 can be organized as ((di/8)+(d〇/16))xAV, and the voltage value on the second capacitor 13 of the second digital analog converter DAC2 will become (((ΔνΧ(ΐ2)) /2) +(AVxd3))/2, which can be sorted into ((d3/2)+(d2/4)) XAV. Step S5 is to turn on the control switch 31 of the adder 3, and the 16th 1279090 The first digits of the second digital analog converters DAC1, DAC2, 1 4, 1 A, and the second switches are non-conducting, and the fourth and fifth switches 17, 18 of the second digital analog converter DA are not turned on. , the second digit analogy 2 p output - ((d3/2) + (d2 / 4) + (di / 8) + (d 〇 / 16)) XAv analog number. ^ So the same is a 4-bit input digit The signal is converted into the analog signal. The conventional signal requires 8 clock cycles, and this example only requires 5 clock cycles ^ and here there are two digital analog converters DAC!, DAC2, when the input digital signal has In the case of n bits, only 2 _&gt;&lt;2 small n+1 clock cycles are required, which is a lot more than the conventional clock cycle = 2 and when the number m of the digital analog converters increases The speed of the invention of the present invention is greatly increased, and only (n/m) x 2 + i clock cycles are required. It is worth noting that if the number of bits η input to the digital signal of the present invention is not If the multiple of m is used, the front of the digital signal can be inserted into zero, and the number t of zeros can be inserted, so that t plus n can be multiplied by m. In addition, it should be noted that the voltage selection unit 11 of each of the digital analog converters DAC1 to DAC2 may also be as shown in FIG. 5 and differ from the above in that the first switching switch 112 is 0S, and the NMOS is The gate receives the byte Dj instead of being electrically connected to the inverter (1). However, the above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention, All still 17 ^79090 is covered by the patent of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a conventional digital analog converter; FIG. 2 is a system architecture diagram of a preferred embodiment of the serial input digital analog conversion device of the present invention; ·, a n \7' \wv Electrically fixed, Fig. 4 is a circuit diagram when the claw of the preferred embodiment is 2. Fig. 5 is a connection of a voltage selecting unit of the preferred embodiment. Electrical connection

18 1279090 【主要元件符號說明】 11 _··.· •…電壓選擇單元 111 ··· •…反向器 112… •…第一切換開關 113… •…第二切換開關 12··.·. •…第一電容 13····· •…第二電容 14••… •…第一開關 15··.·· •…第二開關 16·.··_ •…第三開關 17···.. •…第四開關 18••… •…第五開關 2…… ……分壓器 3 ....... •…加法器 31…… •…控制開關 〇!…… …·位元組 D2…· …位元組 Dj…· …位元組 Dm_i … …位元組18 1279090 [Description of main component symbols] 11 _·····... Voltage selection unit 111 ··· •...Inverter 112...•...First changeover switch 113...•...Second switcher 12··.·. •...first capacitor 13·····•...second capacitor 14••... •...first switch 15······...second switch 16·.··_•...third switch 17·· ·.. •...fourth switch 18••...•...fifth switch 2.........divider 3.........•...adder 31... •...control switch〇!......... Bytes D2...·...bits Dj...·...bits Dm_i...bytes

Dm........位元組 DACi •…第一數位類比轉 換器 DAC2 ····第二數位類比轉 換器 DAC.! ••第(m-1)數位類比 轉換器 DACm·…第m數位類比轉 換器Dm........bytes DACI •...first digital analog converter DAC2 ····second digital analog converter DAC.! •• (m-1) digital analog converter DACm·... Mth analog analog converter

Ri.........第一電阻 R2.........第二電阻Ri.........the first resistor R2.........the second resistor

Rm-i ......第(m-1)電阻Rm-i ... the (m-1) resistor

Rm ........第m電阻Rm ........mth resistance

Vh........最高電壓 VI.........最低電壓Vh........the highest voltage VI.........the lowest voltage

Vfl .......參考電壓Vfl .......reference voltage

Vfm.! ••…參考電壓 19Vfm.! ••...reference voltage 19

Claims (1)

1279090 十、申請專利範圍: 1 · 一種串列輸入式數位類比轉換裝置,適用於將一具有η 位元的串列式數位信號轉換成一類比信號,且該串列式 數位彳5戒之η位元可先依序分割成m個位元組,而m為 大於或等於2的整數,且該等位元組依位元高低順序由 較低至較高位元依序是一第一位元組、一第二位元組至 第m位元組,該串列輸入式數位類比轉換裝置包含·· m個數位類比轉換器,分別是一第一數位類比轉換 态至一第瓜數位類比轉換器,且該第q數位類比轉換器 疋接收該第q位元組,並將該第q位元組轉成一相對應 的類比電壓,而q為1至m間且含1與m的整數; 一分壓器,與該等數位類比轉換器電連接,並能對 每一數位類比轉換器提供二電壓,使該等數位類比轉換 裔能分別根據接收到之該二電壓的差值當作其動態電壓 k動範圍以轉換該等位元組,而該分壓器提供至該第匕 數位類比轉換器之該二電壓的電壓差值為, 而k為1至!!1間且含1與111的整數;及 一加法器,將該等數位類比轉換器處理完的該等類 比電壓相加以產生該類比信號。 2·依據申請專利範圍帛1項所述之串列輸入式數位類比轉 換裝置,其尹,該分壓器產生的電壓中是包括一最高電 壓、一最低電壓及(m-1)個電壓值位於該最高電壓盥該最 低電壓間的參考電塵,而每一數位類比轉換器皆接:該 最低電壓,此外,該第i數位類比轉換器也接收該參考 20 1279090 5 ·依據申凊專利範圍第2項所述之串列輸入式數位類比轉 換裝置,其中,該第一數位類比轉換器包括一電壓選擇 單元、一第一開關、一第二開關、一第三開關、一第一 電容及一第二電容,該電壓選擇單元與該第一開關之一 端電連接,且依序接收該第一位元組,並由該第一位元 組的最小位元開始接收,然後依序接收較大的位元,而 當輸入至該電壓選擇严元的數位信號是i時,該電壓選 擇單元將產生Δν/(2;Χ(Π1-1))的動態電塵範圍且輸出該參考 電壓至该第一開關,而當輸入至該電壓選擇單元的數位 信號是0時,該電壓選擇單元產生的動態電壓範圍將為 零,且輸出該最低電壓至該第一開關,該第一、第二、 第三開關争聯在一起且位於該電壓選擇單元和該最低電 壓之間,而該第一電容的一端是電連接於該第一開關和 第二開關之間,且另一端是電連接於該最低電壓,而該 第二電容的一端是電連接於該第二開關和該第三開關之 鲁間,且另一端是電連接於該最低電壓,當該第一開關導 通丄而該第二及第三開關不導通時,則該第一電容會被 充电而s第二開關導通且第一與第三開關皆不導通時 ,則該第一電容上的電量會平均分散在該第一、第二電 容上。 6.依據申請專利範圍第5項所述之串列輸入式數位類比轉 '奐哀置,其中’該第χ數位類比轉換器包括一電壓選擇 單兀、—第-電容、-第二電容、-第一開關、一第二 開關、一第三開關、一第四開關及一第五開關,且X為 22 1279090 2至Π1之間且含2與m的整數,該電壓選擇單元與該第 開關之一端電連接,且依序接收該第χ位元組,並由 β玄第X位元組的最小位元開始接收,然後依序接收較大 的位元,而當輸入至該電壓選擇單元的數位信號是丨時 ,該電壓選擇單元將產生△V/(2i(-))的動態電壓範圍且 輸出&quot;亥參考電壓或該最南電壓至該第-開關,而當輸入 至該電壓選擇單元的數位信號是〇時,該電壓選擇單元 產生的動態電壓範圍將為零,且輸出該最低電壓至該第 開關δ亥第一、第一、第三開關串聯在一起且該第一 開關之一端是與該電壓選擇單元電連接,該第四開關與 該最低電壓及該第-電容之—端電連接,而該第一電容 之另一端是電連接於該第一、第二開關之間,且該第五 開關與該第四開關串聯,並與該第一電容之一端及該第 二電容之一端電連接,而該第二電容之另一端是電連接 於該第二與第三開關之間,當該第一、第四、第五開關 導通,而該第二及第三開關不導通時,則該第一電容會 被充電’而當第二、第四、第五開關導通且第一與第三 開關皆不導通時,則該第一電容上的電量會平均分散在 該第一、第二電容上。 依據申請專利範圍第6項所述之串列輸入式數位類比轉 換裝置,其中,該電壓選擇單元包括一反向器、一第一 切換開關及一第二切換開關,該第一切換開關是一 ρ型 通道金屬氧化半導體,而該第二切換開關是一 Ν型通道 金屬氧化半導體,而該反向器之輪入端是接收該位元組 231279090 X. Patent application scope: 1 · A serial input digital analog conversion device, which is suitable for converting a serial digital signal with n bits into an analog signal, and the serial number is η5 or η bit The element may be firstly divided into m bytes, and m is an integer greater than or equal to 2, and the bits are sequentially ranked from the lower to the higher bits by a first byte according to the order of the bits. a second byte to an mth byte, the serial input digital analog conversion device comprises: · m digital analog converters, respectively a first digital analog conversion state to a first digital analog converter And the q-th digital analog converter receives the q-th byte and converts the q-th byte into a corresponding analog voltage, and q is an integer between 1 and m and containing 1 and m; a voltage divider electrically coupled to the digital analog converters and capable of providing two voltages to each digital analog converter such that the digital analog conversions can respectively be based on the difference between the received two voltages Dynamic voltage k range to convert the bits, and the voltage divider The voltage difference between the two voltages supplied to the second digital to analog converter ladle is of, and k is 1 to! Between 1 and an integer of 1 and 111; and an adder that adds the analog voltages processed by the analog to the converter to produce the analog signal. 2. According to the serial input digital analog conversion device described in the scope of the patent application, the voltage generated by the voltage divider includes a maximum voltage, a minimum voltage and (m-1) voltage values. a reference electric dust located between the highest voltage and the lowest voltage, and each digital analog converter is connected to: the lowest voltage, in addition, the ith digital analog converter also receives the reference 20 1279090 5 · According to the scope of application The serial input digital analog conversion device of claim 2, wherein the first digital analog converter comprises a voltage selection unit, a first switch, a second switch, a third switch, a first capacitor, and a second capacitor, the voltage selection unit is electrically connected to one end of the first switch, and sequentially receives the first byte, and receives the minimum bit of the first byte, and then sequentially receives a large bit, and when the digital signal input to the voltage selection strict element is i, the voltage selection unit will generate a dynamic electric dust range of Δν/(2; Χ(Π1-1)) and output the reference voltage to The first switch When the digital signal input to the voltage selection unit is 0, the dynamic voltage range generated by the voltage selection unit will be zero, and the minimum voltage is output to the first switch, and the first, second, and third switches are contending Connected together and between the voltage selection unit and the lowest voltage, and one end of the first capacitor is electrically connected between the first switch and the second switch, and the other end is electrically connected to the lowest voltage, and One end of the second capacitor is electrically connected between the second switch and the third switch, and the other end is electrically connected to the lowest voltage, when the first switch is turned on and the second and third switches are not When the current is turned on, the first capacitor is charged, and when the second switch is turned on and the first and third switches are not turned on, the power on the first capacitor is evenly distributed on the first and second capacitors. 6. According to the serial input digital analogy described in item 5 of the scope of the patent application, the analog digital converter comprises a voltage selection unit, a first capacitor, a second capacitor, a first switch, a second switch, a third switch, a fourth switch and a fifth switch, and X is between 22 1279090 2 and Π1 and includes an integer of 2 and m, the voltage selection unit and the first One end of the switch is electrically connected, and sequentially receives the third byte, and starts receiving by the smallest bit of the β-X-th byte, and then sequentially receives the larger bit, and when input to the voltage selection When the digital signal of the unit is 丨, the voltage selection unit will generate a dynamic voltage range of ΔV/(2i(-)) and output a &quot;hai reference voltage or the southmost voltage to the first switch, and when input to the When the digital signal of the voltage selection unit is 〇, the dynamic voltage range generated by the voltage selection unit will be zero, and the minimum voltage is output to the first switch, the first, first, and third switches are connected in series and the first One end of the switch is electrically connected to the voltage selection unit, The fourth switch is electrically connected to the lowest voltage and the terminal of the first capacitor, and the other end of the first capacitor is electrically connected between the first switch and the second switch, and the fifth switch is connected in series with the fourth switch And electrically connected to one end of the first capacitor and one end of the second capacitor, and the other end of the second capacitor is electrically connected between the second and third switches, when the first, fourth, and When the five switches are turned on, and the second and third switches are not turned on, the first capacitor is charged, and when the second, fourth, and fifth switches are turned on and the first and third switches are not turned on, The amount of electricity on the first capacitor is evenly distributed over the first and second capacitors. The serial input digital analog conversion device according to the sixth aspect of the invention, wherein the voltage selection unit comprises an inverter, a first switch and a second switch, the first switch is a The p-channel metal oxide semiconductor, and the second switch is a germanium channel metal oxide semiconductor, and the turn-in end of the inverter receives the byte 23 反向器的數位信號是〇日车,兮楚 ^ 疋呀.該第一切換開關將不導通且 δ亥弟--切換開關將導捐目丨+田Α 關肝导通,則该取低電壓則透過該第二切 換開關送至該第一開關。 1279090 ,且其輸出端則與該第一、第二切換開關的閘極電連接 父同日守控制該第一、第二切換開關的切換,而當輸入至 X反向器的數位信號是1時,則該反向器的輸出信號將 使該第一切換開關導通且該第二切換開關不導通,而該 參考電壓或該最高電壓則透過該第一切換開關送至該第 一開關,而當輸入至該反向器的數位信號是〇時,該第 一切換開關將不導通且該第二切換開關將導通,則該最 低電壓則透過該第二切換開關送至該第一開關。 8·依^巾請專㈣圍第6項所述之串列輸人式數位類比轉 換裝置,其中,該電壓選擇單元包括一反向器、一第一 切換開關及一第二切換開關,該第一與第二切換開關是 種N型通道金屬氧化半導體,而該第一切換開關的閘 極與該反向器之輸入端是接收該位元組,且該反向器的 輸出端則與該第二切換開關的問極電連接,當輸入至該 反向H的數位㈣是1時’則該第—切換開關將導通且 d第_切換開關將不導通’而該參考電壓或該最高電壓 則透過該第-切換開關送至該第一開關,而當輸入至該 9. 依據申請專利範圍第 換裝置,其中,該第 6項所述之串列輸入式數位類比轉 一電容和該第二電容的電容值相同 10·依據申請專利範圍第 6項所述之串列輸入式數位類比轉 24 1279090 換裝置,其中,兮 〜力σ法器包括複數控制開關,且該等控 制開關分別電連接於 该弟ρ與第(Ρ+1)數位類比轉換器的 第二電容之間,且 ρ馮1至(m-ι)並含1和(m_l)的整數 ’而“亥等控制開關導通時,位於該第二至該帛m數位 類比轉換ϋ上的第四及第五開關將會呈不導通狀態,此 時,位於每一數位類比轉換器之第二電容上的跨壓將會 相加而得到最後轉換完成的該類比信號。 曰The digital signal of the inverter is the Japanese car, 兮楚^ 疋 呀. The first switch will not be turned on and the δ hai brother--the switch will guide the donkey + Tian Hao Guan liver conduction, then the lower The voltage is sent to the first switch through the second switch. 1279090, and the output end is electrically connected to the gates of the first and second switchers, and the switch is controlled by the first and second switchers, and when the digital signal input to the X inverter is 1 The output signal of the inverter will turn on the first switch and the second switch will not be turned on, and the reference voltage or the highest voltage is sent to the first switch through the first switch, and When the digital signal input to the inverter is ,, the first switch will not conduct and the second switch will be turned on, and the lowest voltage is sent to the first switch through the second switch. 8. The serial input-type digital analog conversion device according to the sixth item, wherein the voltage selection unit includes an inverter, a first switch, and a second switch. The first and second switchers are N-type channel metal oxide semiconductors, and the gate of the first switch and the input of the inverter receive the byte, and the output of the inverter is The second switch is electrically connected. When the digit (4) input to the reverse H is 1, then the first switch will be turned on and the d switch will not be turned on and the reference voltage or the highest The voltage is sent to the first switch through the first switch, and is input to the 9. according to the patent application range changing device, wherein the serial input digital analogy of the sixth item is converted to a capacitor and the The capacitance value of the second capacitor is the same. 10. The serial input digital analogy according to the sixth aspect of the patent application refers to the 24 1279090 changing device, wherein the 兮~force σ method includes a plurality of control switches, and the control switches respectively Electrically connected to the brother (Ρ+1) between the second capacitance of the digital analog converter, and ρ von 1 to (m-ι) and containing an integer of 1 and (m_l)' and "when the control switch is turned on, the second to The fourth and fifth switches on the 帛m digital analog conversion switch will be in a non-conducting state. At this time, the voltage across the second capacitance of each digital analog converter will be added to obtain the final conversion. The analog signal. 2525
TW94112393A 2005-04-19 2005-04-19 Serial input digital-to-analog converting device TWI279090B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94112393A TWI279090B (en) 2005-04-19 2005-04-19 Serial input digital-to-analog converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94112393A TWI279090B (en) 2005-04-19 2005-04-19 Serial input digital-to-analog converting device

Publications (2)

Publication Number Publication Date
TW200638685A TW200638685A (en) 2006-11-01
TWI279090B true TWI279090B (en) 2007-04-11

Family

ID=38645282

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94112393A TWI279090B (en) 2005-04-19 2005-04-19 Serial input digital-to-analog converting device

Country Status (1)

Country Link
TW (1) TWI279090B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8648779B2 (en) 2009-10-20 2014-02-11 Taiwan Semiconductor Manufacturing Co., Ltd. LCD driver

Also Published As

Publication number Publication date
TW200638685A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US20200401206A1 (en) Method and system for saving power in a real time hardware processing unit
US20030234736A1 (en) A/D converter
JPS6331315A (en) Monolithic integrated digital/analog converter
EP1066684A1 (en) Circuit and method for reducing sampling noise
JPH07107981B2 (en) Low noise switch capacitor digital / analog converter
US20110254717A1 (en) Ad converter
CA1279932C (en) High resolution pipelined digital-to-analog converter
JPS6165626A (en) A/d converter
JPS6161578B2 (en)
EP0289081B1 (en) Digital-to-analog converter
JPH11308082A (en) Chopper type comparator
TWI279090B (en) Serial input digital-to-analog converting device
US6154165A (en) Variable clock rate, variable bit-depth analog-to-digital converter
US5889485A (en) Charge-summing digital-to-analog converter
US20100283651A1 (en) Cyclic digital to analog converter
WO2001041311A1 (en) Digital-to-analog converter
JP2001053612A (en) Sequential comparison type ad converter and microcomputer having same built in
EP0952672A2 (en) Digital-to-analog conversion circuit and analog-to-digital conversion device using the circuit
US6127959A (en) Flash analog-to-digital converter with reduced number of resistors and comparators
JPH0149055B2 (en)
JP3331081B2 (en) Subranging type A / D converter
JP2014112818A (en) Successive approximation a/d converter
TWI330003B (en)
WO2022085324A1 (en) Sequential-comparison type analog/digital converter
JP2844617B2 (en) C array type A / D converter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees