1278659 玖、發明說明: 【發明所屬之技術領域】 本發明係有關於微透鏡的製作方式,尤其是一種自我調變之 微透鏡製作方法。 ' 【先前技術】 微透鏡應用的層面相當的廣’尤其是微透鏡陣列,舉凡光通 訊、高速攝影、或顯示器等均扮演重要的角色;此外,可變焦之 微透鏡在數位相機以及顯微鏡、光學讀寫頭等有相當重要^應 用;傳統的光學元件中的鏡面或透鏡本身大多不具變焦的功能,多 半疋依賴如齒輪以及滑動件等機制輔助變焦,不僅需要魔大的組 件組合成複雜的結構,降低使用壽命,且佔空間。有鑑於此,本 身可變焦之微透鏡模組的發展,也是近幾年開始熱門的話題。 以下就針對數種微透鏡之製造方法作介紹: 熱融法(re-flow) 種利用光阻加熱之先刚技術’其技術是應用利用微機電技 術製作微透鏡,製作方式是在基板上以光阻或高分子材料定義出 圓柱,再將此基板加熱至光阻或高分子材料的玻璃轉換溫度(Glass tmnsition temperature,Tg) ’使圓柱回流,由於表面張力的緣故, 圓柱表面回流成非球狀,形成微透鏡陣列,不過受限於材料無法 做出大尺寸範圍的透鏡,且也有製程穩定性以及透光率不加的問 題。 :另一種是利用雙層光阻加熱之先前技術。其技術主要之精神 係利用兩層高分子材料的表面能不同,驅使在高溫的情況下,加 熱至兩分子的玻璃轉換溫點((JlaSS杜⑽也丨⑽temperature,Tg )點, 光阻材料因受熱而軟化,其因有内聚力及表面張力能的不同,因 此會形成一個圓球之形狀。其製作方式仍是利用微影製程 (photolithography)的方式先定義出第一層光阻後,在定義出第 二層光阻。其體積也是如同利用單層光阻加熱的體積計算。最後 1278659 長時間的高溫加熱,驅使高分子材料軟化變形。盆缺點 於而在長_的加高溫的條件下製作 不、、:、 熱壓模造·枯%; 千吸別不易。 -種利用熱壓模造之先前技術,係利用壓 作微透鏡陣列;其利用板上電_模,利;^^方2 ί,不:=ί;;:精密控制並不容易,以及製程整合性不 驅動力產生微透鏟 -種係施加-外力改變表面張力能變化機制來 微透鏡之先前技術,其機侧統中加人可施加m作 件,如電極。藉由數個電極的排列,進而產生一表面張力能的變 化驅使以體雜’其外力包括電制(EleetrGwetting),熱及光學 的方式。__hii之能#將其移駐粒後,再上述之相關 動力源,將液體調控至固定之曲率後,再給予一適當能量,將停 滯於固定基材表面的液體固化,完成微透鏡。此方法雖可將液體 移動至定位,但是移動的路徑受限於電極的設計及佈局,不僅服 制了平面移動的空間,所加的電源還會影響液體的成分。 另種疋利用表面張力之親殊水特性完成微透鏡陣列之先前 技術,其主要技術在於,先於基材上定義出殊水的表面之後,將 基材浸入液體中,利用基材拉起的角度、速度、時間,來控制微 透鏡鎮列的曲率。此法雖可大量制作出微透鏡之方法,但因控制 因素條件過多,導制控制上較為不易。 點膠技街 一種利用點膠之先前技術,其利用一個注射器,將液體填充 於注射筒中,施加一外力將液體注射出於基板上,而形成一微透 鏡的形態。然而若要成形為陣列的透鏡,常常需要一俩ZYX的三 轴平台控制,精確的控制液體的位置。 1278659 此外,另一種是利用表面為結構控制液珠的接觸 法,當液體停滞於一固體表面時,隨著表面粗糙度的改^ 觸處角度也隨之變化,然而這種方法依舊不能解決需力 其他辅助設備才能夠將液體定位的缺點。 / 因此,在微透鏡的製造技術暨方法的領域中,極需.盔 須借助於外力並可精密控制的微透鏡定位暨製造 「、 製程,又能達職錄造的目的。 w万▲既此間化 【發明内容】 為達上述目#,本發明提供一種賴鏡之製作方法 ΐί:: 具ϊί面能變化之基材’(2)設置-液體於該 5^3你^表面能梯度之變化而於該基材上移動, 以及(3)硬化該液體而成為一微透鏡。 子材方法’其中雜材係選㈣⑼、玻璃以及高分 如上所述之方法,其中該基材係包含一第一表 ί了表面能區’該第—表面能區與第二表面能區具有不同之表面 化中述之方法’其表面能變化係選自化學能變化與結構變 停滯。桃之方去’其巾該基材上更設置—停雜提供該液體 -種如上所述之方法,其中該停滞面顧自親水性與斥水性中之 之方法’其中該停滯區為-中空結構。 級中的一種Γ之方法,其中該停滯區之結構顧自微米級與奈米 透鏡======罐減財,該微 1278659 種。女上所述之停滯區結構’係選自繞射元件與光學元件中之- 如上所述之方法,其中該微透鏡具有雙面結構ό 如上所述之方法,其中該液體係筚口 光阻、高分子材料、紫外光_膠以縣光之=樂时 子材料中^法’其中該液體係選自鐵電高分子與鐵磁高分 (ccD^m^法’其巾該微透鏡’可應用於電餘合元件 i感f器以及互補性氧化金屬半導體(CMOS)感應器中。 ^述之方法,其中該微透鏡係得應用於光學讀取頭中。 技術、°雷射ΓΪ方法,其中該基材的製作方式喜選自電子束微影 的一種。〇 、沈積、熱壓、射出、模造以及微影製程技術中 金屬模造之模仁的材料係選自梦晶片、 之方法,其中該基材本身具有斥水性。 &卜之方法,其中該基材上更沈積一斥水性材料。 如卜之方法,係得運用於將該液體移動、定位以及對準。 兔$ μ ^之方法,係得運用於改變該微透鏡的曲率。 •動定ίί结再提供一種使製造微透鏡的液體自 面能區协一第二表面能;以及一停滯區,其中該第二表 能低二^第丄=二表面能區與該停滯區之間’其中該第一表面 面能“面=用以製造微透鏡的液體得自該第-表 抑如構’其中該第—表面能區係—最高斥水區,而 忒玆===高斥水區’又該停滯區係—最低斥水區, 面能區且最後自該第-表面能區到該第二表 1278659 動定之目的’本發明另提供—種使製造微魏的液體自 一包含—第—表面能區,具有—第—表面能;以及 停:::二:近芑該第一表面能區並具有-大於該第-表面能的 雜滯區成為—最低斥水區,故當—取製造微透 t液體得以自該第-表面能區移動至該停滯區且停滯於該停滞 盥該产包含一第二表面能區位於該第-表面能 ϋ 之間,’、中§亥第二表面能區具有―第二表面能係高於 该第一表面能而低於該停滯表面能。 【實施方式】 先就發明原理做說明·· 當液珠被放置在-HJ縣面時,會產生_接㈣度。而當固 體表面具有不同之介面時,液珠之此特性將被改變,當液珠懸浮 於具有結構之斥核面時,液珠與賴^面之漏面即為一複合 表面,液珠翻㈣紐合麵之液翻面纟液打表面總面 積^比值有關,下文中以“結構分佈密度,,表示此比值,結構分 佈邊度愈小,則接觸角愈大,結構分佈密度愈大,則接觸角愈小。 根據 〜 COS% = / COS0 + /2 COS A, 其中0〇為複合表面之接觸角度,Λ為第一種材料之接觸比 例,為第一種材料之接觸角度,心為第二種材料之接觸角度, ’2第一種材料之接觸比例。 考慮熱力學平衡,液珠與周圍空氣之間接觸界面必須符合 Laplace - Young equation * 丄+丄]1278659 发明, DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of fabricating a microlens, and more particularly to a method of fabricating a self-modulating microlens. [Prior Art] The level of microlens applications is quite wide, especially for microlens arrays, which play an important role in optical communication, high-speed photography, or displays; in addition, zoomable microlenses in digital cameras and microscopes, optics The read and write heads are quite important. The mirrors or lenses in traditional optical components do not have the function of zooming. Most of them rely on mechanisms such as gears and sliders to assist the zoom, which not only requires the combination of the large components into a complex structure. , reducing the service life and occupying space. In view of this, the development of the zoomable microlens module is also a hot topic in recent years. The following is a description of the manufacturing methods of several kinds of microlenses: The re-flow method uses the first technology of photoresist heating. The technology is to use the microelectromechanical technology to make microlenses, which are made on the substrate. The photoresist or the polymer material defines a cylinder, and then the substrate is heated to a photoresist or glass transition temperature (Tg) of the polymer material to make the cylinder reflow. Due to the surface tension, the cylindrical surface reflows into an aspherical ball. In the form of a microlens array, it is limited by the fact that the material cannot make a lens of a large size range, and there is also a problem that process stability and light transmittance are not added. : The other is a prior art that utilizes double-layer photoresist heating. The main spirit of the technology is to use the surface energy of two layers of polymer materials to drive the temperature to the temperature of two molecules of glass transition temperature ((JlaSS Du (10) also 丨 (10) temperature, Tg) point, the photoresist material It is softened by heat, and it has a cohesive force and surface tension energy, so it will form a sphere shape. It is still produced by means of photolithography to define the first layer of photoresist after definition. The second layer of photoresist is used, and its volume is calculated as the volume of heating with a single layer of photoresist. Finally, 1278659 long-time high-temperature heating drives the polymer material to soften and deform. The pot is disadvantageous and is produced under the condition of long temperature. No, , :, hot press molding, dry %; thousands of suction is not easy. - The prior art using hot stamping is based on pressing microlens array; it uses on-board electricity, die; ^^ square 2 ί , not:=ί;;:Precision control is not easy, and process integration does not drive the force to produce micro-transparent shovel - seed application - external force changes the surface tension energy change mechanism to the micro-lens prior art, its machine side A person can apply m as an electrode, such as an electrode. By arranging a plurality of electrodes, a change in the surface tension energy is generated to drive the body's external force including electro-mechanical (EleetrGwetting), thermal and optical means.__hii之能# After moving the particles, the above-mentioned related power source, after adjusting the liquid to a fixed curvature, and then giving an appropriate energy to solidify the liquid stagnating on the surface of the fixed substrate to complete the microlens. This method can move the liquid. To the positioning, but the path of the movement is limited by the design and layout of the electrode, not only the space for the plane to move, but also the power supply that affects the composition of the liquid. The other is to use the special water characteristic of the surface tension to complete the microlens. Prior art of the array, the main technique is to immerse the substrate in the liquid before the surface of the substrate is defined on the substrate, and use the angle, speed and time of the substrate to control the curvature of the microlens. Although this method can produce a large number of microlenses, it is not easy to control the control due to too many control factors. Dispensing Technology Street is a technique that uses dispensing. Using a syringe, the liquid is filled in the syringe, and an external force is applied to inject the liquid onto the substrate to form a microlens. However, if the lens is to be formed into an array, a two-axis ZYX is often required. Platform control, precise control of the position of the liquid. 1278659 In addition, the other method is to use the surface to control the liquid droplet contact method. When the liquid stagnates on a solid surface, the angle of contact with the surface roughness changes. Change, however, this method still does not solve the shortcomings of requiring other auxiliary equipment to position the liquid. / Therefore, in the field of microlens manufacturing techniques and methods, it is extremely necessary. The helmet must be externally controlled and precisely controlled. Microlens positioning and manufacturing ", process, and can achieve the purpose of record. w 万 ▲ 此 此 【 发明 发明 发明 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 : : : : : : : : : : : : The surface energy gradient changes to move on the substrate, and (3) hardens the liquid to become a microlens. The sub-material method 'where the miscellaneous material is selected (4) (9), the glass and the high score are as described above, wherein the substrate comprises a first surface energy region, the first surface energy region and the second surface energy region have The method described in the different surfaceization 'the surface energy change is selected from the chemical energy change and the structural change stagnation. Peach's side goes to 'the towel is set on the substrate--the method of providing the liquid-species as described above, wherein the stagnant surface is taken from the method of hydrophilicity and water repellency, wherein the stagnant zone is - hollow structure. A method of enthalpy in the class, wherein the structure of the stagnation zone is from the micron-scale and nano-lens ====== cans to reduce wealth, the micro 1278659 species. The stagnation zone structure described in the above is selected from the group consisting of a diffractive element and an optical element - the method as described above, wherein the microlens has a double-sided structure, as described above, wherein the liquid system is a photoresist , polymer material, ultraviolet light _ glue to the county light = music time material ^ method 'where the liquid system is selected from ferroelectric polymer and ferromagnetic high score (ccD ^ m ^ method 'the towel of the microlens' It can be applied to an electric remnant component and a complementary metal oxide semiconductor (CMOS) inductor. The method described above, wherein the microlens is applied to an optical pickup. Wherein the substrate is produced in a manner selected from the group consisting of electron beam lithography. The materials of the metal molds of the enamel, deposition, hot pressing, injection, molding, and lithography process are selected from the group consisting of a dream wafer, and a method. Wherein the substrate itself has water repellency, and the method further comprises depositing a water repellent material on the substrate. The method is applied to move, position and align the liquid. Rabbit $ μ ^ Method, which is used to change the curvature of the microlens • 动 ί 结 再 再 再 再 再 再 再 再 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造Between the 'the first surface surface energy' surface = the liquid used to make the microlens is derived from the first surface, such as the structure, wherein the first surface energy zone - the highest water repellent zone, and 忒 === The high water repellency zone is the stagnation zone - the lowest water repellency zone, the surface energy zone and finally from the first surface energy zone to the second table 1278659. The purpose of the invention is to provide a liquid for making microwei. From a first-first surface energy region, having a -first surface energy; and a stop:::two: near the first surface energy region and having a hysteresis region greater than the first surface energy becomes - a minimum water repellent Zone, such that when a micro-transparent t-liquid is moved from the first-surface energy zone to the stagnant zone and stagnated in the stagnation, the product comprises a second surface energy zone between the first-surface energy ,, ' The second surface energy region of the middle §hai has a second surface energy system higher than the first surface energy and lower than the stop [Embodiment] First, explain the principle of the invention. · When the liquid bead is placed in the -HJ county, it will produce _ (four) degrees. When the solid surface has different interfaces, this characteristic of the liquid bead will It is changed. When the liquid bead is suspended in the nucleus surface of the structure, the leakage surface of the liquid bead and the surface of the liquid is a composite surface, and the liquid bead turns over (four) the surface of the matching surface. Relatedly, in the following, "structure distribution density, the ratio is expressed, the smaller the edge of the structure distribution is, the larger the contact angle is, and the larger the structure distribution density is, the smaller the contact angle is. According to ~ COS% = / COS0 + /2 COS A, where 0〇 is the contact angle of the composite surface, Λ is the contact ratio of the first material, the contact angle of the first material, the contact angle of the second material, and the contact of the first material proportion. Considering the thermodynamic equilibrium, the contact interface between the bead and the surrounding air must conform to Laplace - Young equation * 丄 + 丄]
Vri r2j 式中Γι與h為液珠曲面上某點之曲率半徑,ap為液^^此點 與周圍空氣之間壓力差。若液珠沾在兩個具有不同斥水程>^表面 1278659 之交界面處,此稱斥水性較強之表面為超斥水表面,因超斥水表 面之液珠與周圍空氣之間壓力差大於斥水表面之液珠與周圍空氣 之間壓力差’使液珠内部存在一淨壓差驅動液珠往接觸角較小之 方向移動,即液珠由超斥水表面往斥水表面移動。 一靜止液滴欲產生運動則必需克服液滴與固體表面之間遲滞 作用力: 尸= 〜./.(c〇s4 -COS&) 式(2) 式(2)中/為一特徵長度,而力與夕及則分別代表液滴之前進 後退接觸角,由式(1)與式⑺,當驅動之淨壓差大於遲滯作用力, 則液滴可自發性地產生運動現象。以微製程在斥水表面產生相異 分佈密度之液珠具有往斥水減較财向移動之 ’1’因此,可以達成在不外加任何動力情形下,藉由表面結橼 S又計進行液珠操控0 、所以本發明係利用具有表面能變化的表面變化,做微透鏡的 液體之,輸、定位及曲率控制。而當液體停滯於停滯面時,其表 面具有微奈米的表面結構於其中,此結構可以精確的控制液體 置於表面的曲率。 首先’就本發明的微透鏡之自我定位(self-position)、移動 (self_transportations)之設計,作一說明: • 凊參,圖1a,為本發明之自我調校之微透鏡之立體示意圖, :工所揭不的是已利用本發明之方法完成自我調校及定位後的微 透、兄= 液體110,可以看到液體110已然在停滯區2〇1 .完成定位。 —立請配合參閱圖lb,為本發明之微透鏡液體110的自發性移動 =忍圖^其中在一基材106上係一液體移動面m,在液體移動面 ill上則設置有一停滞區201,自停滯區2〇1向外則依序設置一第 一表面能區102以及一對稱第一表面能區1〇21,一第二表面能區 103以對稱第二表面能區顧,—第三表面能區1G4以及一 對ί,二表面能區1041,一第四表面能區105以及一對稱第四表 面忐區1051。其中第一表面能區1〇2與對稱第一表面能區1〇21 11 1278659 具有相同之表面能而位置相對稱,同理於第二、三、四表面能區 103、104、105及對稱第-、二、三、四表面能區腦、麗、 1051 〇 * .... • . · · . 、請繼續參閱® lb,本發0月的原理即是利用前述的物理現象並 ^以發揮創思’由於液體110具有朝向表面能高的地方移動的傾 °故而為了使液體110能夠移動到所欲停留的位置,即停滯區 201 ’故而各表面能區的設定是自外而内的逐漸升高,亦即第 •區105具有最低的表面能,而第三表面能區1〇4則較高 會傾向朝第第三表面能區1G4之間時,液體110 方區移動’以此類推,液體u°就以移動 110*虚第四"ΐίΛ停滞區2〇1移動並且"^後滞留於其上。而液體 義出二液體蒋動月Λ =第三表面能區104的接觸面的邊緣則定 義出液體移動邊界107、1071。又,整體夾訝,芒饬骑欲私品 為對雛(對稱第—表面能11至對·四表面能區 而/m計時,最外區將具有最低齡雜(超級斥水區), 自我調iiTr:卜圍有較高的表面能(相對斥水區)'*微透鏡 與空。卩疋紐11G所能賴換曲率的範圍,即液體110 除了 本發明之單一液珠定位之示意圖。停滯區201 同,如二=== :=;各_成第—曲侧鏡 四矣而?;曲率微透鏡1103。而自第四表面能區1〇5盘自對稱第 108、液體移動區細的整個區域則是液體移動區 °° 。最後,當液體H0已然達到所欲形成的曲 12 1278659 率之後,即可施以一能量120將液體110硬化或固化,此時微透 鏡已完成。此能量120隨著液體11〇的材質而有所不同,通常液 體110的製造材料係選自水、溶劑、化學藥品、光阻、高分子材 料、紫外光(UV)膠、鐵電高分子、鐵磁高分子材料以及感光材料 中之一種’若以感光材料而言,為配合其特性,能量120則以光 線為佳。 、In Vri r2j, Γι and h are the radius of curvature of a point on the surface of the bead, and ap is the difference between the point and the surrounding air. If the liquid droplets are applied to the interface of two surfaces with different water repellents > ^ surface 1278659, the surface with high water repellency is a super water repellent surface due to the pressure between the liquid droplets on the surface of the super water repellent and the surrounding air. The pressure difference between the liquid bead and the surrounding air on the surface of the water repellent is such that there is a net pressure difference inside the liquid bead to drive the liquid bead to move in a direction with a smaller contact angle, that is, the liquid bead moves from the surface of the super-repellent water to the surface of the water repellent . For a stationary droplet to produce motion, it is necessary to overcome the hysteretic force between the droplet and the solid surface: corpse = ~./.(c〇s4 -COS&) Equation (2) Equation (2) / is a characteristic length And the force and the eve are respectively representing the forward and backward contact angles of the droplets. From the equations (1) and (7), when the net pressure difference of the driving is greater than the hysteresis force, the droplets spontaneously generate a motion phenomenon. The liquid bead which produces a different distribution density on the water repellent surface by the micro-process has a '1' which shifts to the water-repellent weight reduction. Therefore, it is possible to achieve the liquid by the surface crucible S without any additional power. Bead manipulation 0, so the present invention utilizes surface changes with surface energy changes to make liquid, transfer, position and curvature control of the microlens. When the liquid stagnates on the stagnation surface, its surface has a micronano surface structure in which the structure can precisely control the curvature of the liquid placed on the surface. First, a description will be given of the design of the self-position and self-transportations of the microlens of the present invention: • 凊, Figure 1a is a perspective view of the self-tuning microlens of the present invention: What is not revealed by the factory is that the micro-transparent, brother = liquid 110 has been self-tuned and positioned by the method of the present invention, and it can be seen that the liquid 110 is already in the stagnant zone 2〇1 to complete the positioning. - Referring to FIG. 1b, the spontaneous movement of the microlens liquid 110 of the present invention is a forced movement surface m on a substrate 106, and a stagnant zone 201 is disposed on the liquid moving surface ill. a first surface energy region 102 and a symmetric first surface energy region 1〇21 are sequentially disposed from the stagnation region 2〇1, and a second surface energy region 103 is symmetrically symmetrical to the second surface energy region, The three surface energy regions 1G4 and a pair of ί, two surface energy regions 1041, a fourth surface energy region 105, and a symmetrical fourth surface germanium region 1051. Wherein the first surface energy region 1〇2 and the symmetric first surface energy region 1〇21 11 1278659 have the same surface energy and are symmetrical in position, similar to the second, third and fourth surface energy regions 103, 104, 105 and symmetry The first, second, third, and fourth surface energy regions are brain, Li, 1051 〇* .... • . · · . Please continue to refer to ® lb. The principle of this month is to use the aforementioned physical phenomena and In order to make the liquid 110 have a tilt toward the surface where the surface energy is high, in order to enable the liquid 110 to move to the desired position, that is, the stagnant zone 201', the surface energy zones are set from the outside to the inside. Gradually increasing, that is, the first region 105 has the lowest surface energy, and the third surface energy region 1〇4 is higher toward the third surface energy region 1G4, and the liquid 110 square region moves ' By analogy, the liquid u° moves by moving the 110* virtual fourth "ΐίΛ stagnation zone 2〇1 and staying on it after "^. The liquid boundary is defined by the edge of the contact surface of the third surface energy region 104 defining the liquid moving boundary 107, 1071. In addition, the overall folder is amazed, the awning rides the private goods for the young (symmetric first - surface energy 11 to the four surface energy area and / m timing, the outermost area will have the lowest age (super water-repellent area), self Ii iiTr: 卜 围 has a higher surface energy (relative to the water-repellent zone) '* microlens and empty. 卩疋 New 11G can vary the range of curvature, that is, liquid 110 in addition to the single bead positioning of the present invention. The stagnation zone 201 is the same as the two === :=; each _ into the first - curved side mirror four 矣 ;; curvature microlens 1103. And from the fourth surface energy zone 1 〇 5 disk self-symmetry 108, liquid moving zone The entire area of the fine is the liquid moving zone °. Finally, after the liquid H0 has reached the desired rate of the curvature 12 1278659, an energy 120 can be applied to harden or solidify the liquid 110, at which point the microlens is completed. The energy 120 varies depending on the material of the liquid 11 ,. Generally, the material of the liquid 110 is selected from the group consisting of water, solvent, chemicals, photoresist, polymer materials, ultraviolet (UV) glue, ferroelectric polymer, One of ferromagnetic polymer materials and photosensitive materials, if used in the case of photosensitive materials, Characteristic, the light energy line 120 preferably places.,
本發明利用此方式將可以使液體110在無施加任何外力的條 件下,完成液體的移動及定位。而當液體110到達液體停滯區2〇1, 可經由停滯區201的設計自行完成形貌的調控。而液體移動面11〇 的表面能變化,可以透過利用黃光微影製程方式完成,也可以透 過材料本身的特性,更可以透過複合材料於同一表面上,產生一 梯度能的變化。 其次,就本發明的微透鏡自我調控形貌作一說明,請夂閱圖 2a,為本發明之液體在高表面能區的結果示意圖。當基材^^的 表面具有高表面能,即具有一高表面能停滯區2〇la,則液體11〇 與基材106所形成的高表面能接觸角度2〇5a即如圖所示,小於直 角、,而液體110並呈現出第一曲率蘭。請參閱圖2b,為本 之液體在t表雖區的結果示意圖。當基材的表面具有 面能,即具有一中表面能停滯區2〇lb,則液體11〇與基^ 1〇6 形成的中表面能接觸角度2G5b即如圖所示,很明顯的大於二 而液體110並呈現出第二曲率聰。請參閱圖2e,為本 體在低表面舰的絲示意圖。t基材的表面具 ^ 即具有-絲面能停滞區2Gle,即斥水性高,職體 H)6所形成的中表面能接觸角度施即如圖所示 & = 180度,而液體110並呈現出第三曲率測。 ^員的近手 再者’為了增加微透鏡的光學性能,就必須在同 上做出變化」其中-種方式就是將微透鏡設計成具有雙面結槿, 而達成此-效果的方式即是將停滯區2G1設計成具有光學= 這樣當液體11G被後即可得到—個具㈣面光學效果j透 13 1278659 鏡。 - 參閱圖3a,為本發明之停滯區結構示意圖。其中停滯區201 「具有微料級或是奈米等級的結構體2G2,一如前述,本 t #液體移動面111係以複數的表面能區(編號102至105)所組 各個之間的表面能差異來達到液體自行移動的效果,而 土個結構除了_材料本身的斥水性之外,更可以個兩種或兩 於同—平面。在本發明圖3a的實施财,是利用結 構,2。2為第-材料並以空氣洲為第二材料形成於同一平面, 進,液體110操控。而為了讓微奈米結構2〇2與空氣是間隔 排列’結構體202得'間隔形成並凸出於基材106上,而各個結構 • 體2〇3間即存有空氣204。而空氣正是具有最高斥水性的物質, 故而停滞區201成為-低表面能表面2〇3外,更可具有中空的結 ΤηΠ工氣、,?此當液體11G在無動力的情況下被驅動至停 坪面201時,會被停滯面2〇1的設計所控制。 若是基材106為一透光的材料時,更可以透過此液體移動面 111的精讀定位達到精確位置,直接做上下光源的使用,若停滯面 2=1係-平面鏡,當液體11〇被硬化而成為一微透鏡(如凸透 時,此時即具有凸透鏡與平面鏡的複合光學元件。 接著,就本發明的基材製作方法作一說明,利用微機 鲁 (MEMS)的制程技術,更可以完成大量的基材1〇6製作。利用製作 出-健仁,可大量複製出基材,可用熱壓或射㈣方式完 成,模仁的製作上,可用電鑄的方式或用石夕晶片完成。利用加熱 加壓的方式,可完成基材1〇6的大量複製。利用此方法可以在短 時間内70成大量的基材,提供微陣列透鏡的製作。本發明的停滯 面201,結構上可以為微米級或是奈米級之結構,利用一般之微機 電裝程技術,雷射加工製成技術或電子束的加工製成技術完成。 請參閱圖4,為本發明之微透鏡成形過程示意圖,並請配合 圖lb,藉由同時參照此二圖式,其中,液體110係自第四表面食I 區105以及對稱第四表面能區1051以移動方向1〇9向停滞區2〇1The present invention utilizes this approach to allow the liquid 110 to complete the movement and positioning of the liquid without applying any external force. When the liquid 110 reaches the liquid stagnant zone 2〇1, the regulation of the morphology can be completed by the design of the stagnant zone 201. The surface energy of the liquid moving surface 11 变化 can be changed by using a yellow lithography process, or by the characteristics of the material itself, and the composite material can be applied to the same surface to produce a gradient energy change. Next, with reference to the microlens self-regulating topography of the present invention, please refer to Fig. 2a, which is a schematic diagram showing the results of the liquid in the high surface energy region of the present invention. When the surface of the substrate has a high surface energy, that is, has a high surface energy stagnant zone 2〇la, the high surface energy contact angle 2〇5a formed by the liquid 11〇 and the substrate 106 is as shown in the figure. At right angles, the liquid 110 exhibits a first curvature blue. Please refer to Figure 2b for a schematic diagram of the results of the liquid in the t-zone. When the surface of the substrate has a surface energy, that is, has a middle surface energy stagnant zone 2 〇 lb, the medium surface energy contact angle 2G5b formed by the liquid 11 〇 and the base ^ 1 〇 6 is as shown in the figure, which is obviously greater than two The liquid 110 also exhibits a second curvature. Please refer to Figure 2e, which is a schematic diagram of the filament of the low surface ship. The surface of the t substrate has a silk surface stagnation zone 2Gle, that is, the water repellency is high, and the medium surface energy contact angle formed by the body H) 6 is as shown in the figure & = 180 degrees, and the liquid 110 And presents a third curvature test. In addition, in order to increase the optical performance of the microlens, it is necessary to make changes in the same way. One of the ways is to design the microlens to have double-sided crusting, and the way to achieve this effect is The stagnation zone 2G1 is designed to have optical = such that when the liquid 11G is obtained, a (four) plane optical effect is passed through the 13 1278659 mirror. - Refer to Figure 3a, which is a schematic view of the structure of the stagnation zone of the present invention. Wherein the stagnant zone 201 "structure 2G2 having a micro-level or a nano-scale, as described above, the t-liquid moving surface 111 is a surface between a plurality of surface energy regions (numbers 102 to 105). The difference can be used to achieve the effect of liquid self-movement, and the soil structure can be two or two in the same plane except for the water repellency of the material itself. In the implementation of Fig. 3a of the present invention, the structure is utilized, 2 2 is the first material and the air material is formed as the second material on the same plane, and the liquid 110 is manipulated. In order to arrange the micro-nano structure 2〇2 and the air to be spaced apart, the structure 202 is formed and convex. Out of the substrate 106, there is air 204 in each structure and body. The air is the material with the highest water repellency, so the stagnation zone 201 becomes a low surface energy surface of 2 〇 3, and With a hollow knot Τ Π gas, when the liquid 11G is driven to the stop surface 201 without power, it will be controlled by the design of the stagnation surface 2 〇 1. If the substrate 106 is a light transmissive When the material is used, it can be better read through the liquid moving surface 111. To achieve the precise position, directly use the upper and lower light sources. If the stagnation surface 2 = 1 - plane mirror, when the liquid 11 〇 is hardened to become a microlens (such as convexity, this is the composite optical element with convex lens and plane mirror). Next, the substrate manufacturing method of the present invention is described. By using the micro-machine (MEMS) process technology, a large number of substrates 1 〇 6 can be produced. By using the jianren, a large amount of the substrate can be reproduced. The hot pressing or shooting (four) method is completed, and the production of the mold core can be completed by electroforming or by using a stone wafer. The heating and pressing method can complete a large amount of copying of the substrate 1〇6. 70% into a large number of substrates, providing microarray lens production. The stagnation surface 201 of the present invention can be micron-scale or nano-structured, using general MEMS process technology, laser processing The technology or electron beam processing technology is completed. Please refer to FIG. 4, which is a schematic diagram of the microlens forming process of the present invention, and please refer to FIG. 1b, by referring to the two drawings, wherein the liquid 110 From the fourth surface food I region 105 and the symmetrical fourth surface energy region 1051 to the stagnant region 2〇1 in the moving direction 1〇9
1278659 自發性的移動,並經過第三表面能區l〇4以及對稱第三表面能區 1041、第二表面能區103以及對稱第二表面能區1〇31、第一表面 能區102以及對稱第一表面能區1(m,最後到達停滯區2〇1(請配 合圖4之a部分),請參閱圖4,當液體no移動至停滯區2〇1時, 由於停滯區201的表面能設計,使的液體11〇進行自我調控,自 行的改變曲率,相關說明請參見圖2a、圖2b與圖2c及其相關說 明,於此不再贅述。並請以』部分、b部分、e部分、d部分、e 部分至f部分的順序參閱圖4,其中在圖4之b部分,可以看到液 體110正在進行自我調控變形的狀態,而在圖4的c部分與d部 分則I以看到液體110已幾乎完成移動並且液體11〇逐漸接近變 开>的疋成階段,至圖4的e部分則顯示液體no已經完成了變形 並依據停滞區201的表面能設計而達到了其所預定的曲率。最後, 再透過一能量120(請配合圖lc)將液體11〇固化,如此一微透鏡及 製造完成。若是複數個液體110(液珠)落於移動面m(圖lb),則 會因為表面能的設計而移動到停滯區2〇1,故各個液體11〇的移動 方式一如上述,且最後會匯集到停滯區2〇1。 、故而由上述的說明可知,液體110在此發明的表面上完成自 我移動、自我疋位及自我調整的的結果圖。並配合圖化、圖k 4全部,可以很清楚的看出,當液體11G在液體移動面111 日,曰自發,的移動到輯需的位置固定,只藉由數區表面能 的?化,即可使液體110在不需任何外力施加的條件 下,精確的到達停滞面201上,並經由停滯面2〇1上的設計自我 形貌。_此方式可以完成在同—平面上複數個微 遗獄的凝纟日。 【圖式簡單說明】 圖la,為本發明之自我調校之微透鏡之立體示意圖; 15 1278659 圖lb,為本發明之微透鏡液體的自發性移動示意圖· 圖lc,為本發明之單一液珠定位之示意圖;· ’ 為本發明之液體在高表面能區的結果示龙 為本發明之絲在巾表面能_結^ 為本發明之㈣在域面騎果 為本發明之停滯區結構示意圖;禾不思圖 圖2a, 圖2b, 圖2c, 圖3a, 圖3b,雙面透鏡;以及 圖4 ’微透鏡成形過程示意圖。 【符號簡單說明】 _ 101 ··微透鏡自我調控區 102 :第一表面能區 1021 :對稱第一表面能區 103 :第二表面能區 1031 ·對稱第二表面能區 104 :第三表面能區 1041 :對稱第三表面能區 105 ·第四表面能區 1051 :對稱第四表面能區 106 ·基材 107 :液體移動邊界 108 :液體移動區 1081 ··液體移動區 109 ·移動方向 110 :液體 111 :液體移動面 1101 ·第一曲率 1102 :第二曲率 1103:第三曲率 1278659 120 :能量 201 :停滯區 202 :微奈米結構 203 :低表面能表面 204 :空氣 205a:高表面能接觸角度 205b:中表面能接觸角度 205c:低表面能接觸角度 206 :雙面透鏡1278659 Spontaneous movement through the third surface energy region 104 and the symmetric third surface energy region 1041, the second surface energy region 103, and the symmetric second surface energy region 1〇31, the first surface energy region 102, and the symmetry The first surface energy zone 1 (m, finally reaches the stagnant zone 2〇1 (please match the part a of Figure 4), please refer to Figure 4, when the liquid no moves to the stagnant zone 2〇1, due to the surface energy of the stagnant zone 201 Design, so that the liquid 11〇 self-regulation, change the curvature by itself, please refer to Fig. 2a, Fig. 2b and Fig. 2c and related description for related explanations, and will not be repeated here, and please use the part, b part, e part Referring to Fig. 4, the d portion, the e portion to the f portion, wherein in the portion b of Fig. 4, it can be seen that the liquid 110 is in a self-regulating state, and in the c and d portions of Fig. 4, I see When the liquid 110 has almost completed moving and the liquid 11〇 is gradually approaching the opening state, the portion e of FIG. 4 shows that the liquid no has been deformed and has reached its design according to the surface energy design of the stagnant zone 201. The predetermined curvature. Finally, pass an energy of 120 (please match Lc) curing the liquid 11〇, such a microlens and manufacturing is completed. If a plurality of liquids 110 (liquid beads) fall on the moving surface m (Fig. 1b), it will move to the stagnant zone due to the design of the surface energy. Therefore, the movement of each liquid 11〇 is as described above, and finally collects into the stagnant zone 2〇1. Therefore, as can be seen from the above description, the liquid 110 performs self-movement, self-alignment and self-adjustment on the surface of the invention. The result of the graph, together with the graph, and all of the graph k 4 , can be clearly seen that when the liquid 11G is on the liquid moving surface 111, the sputum spontaneously moves to the desired position, only by the surface of the number The energy can be obtained, so that the liquid 110 can accurately reach the stagnation surface 201 without any external force application, and the self-morphology is designed through the stagnation surface 2 〇 1 _ this way can be completed in the same - Figure 1 is a perspective view of the self-tuning microlens of the present invention; 15 1278659 Figure lb, the spontaneity of the microlens liquid of the present invention Mobile diagram · Figure lc, based Schematic diagram of single liquid bead positioning; · 'The result of the liquid in the high surface energy region of the present invention is that the silk of the invention is on the surface energy of the towel _ knot ^ is the invention (4) riding on the surface of the invention is the invention Schematic diagram of the stagnation zone; Figure 2a, Figure 2b, Figure 2c, Figure 3a, Figure 3b, double-sided lens; and Figure 4 'Microlens forming process schematic. [Simplified symbol] _ 101 ··Microlens self Regulating region 102: first surface energy region 1021: symmetric first surface energy region 103: second surface energy region 1031, symmetric second surface energy region 104: third surface energy region 1041: symmetric third surface energy region 105 Four surface energy region 1051 : symmetric fourth surface energy region 106 · substrate 107 : liquid moving boundary 108 : liquid moving region 1081 · liquid moving region 109 · moving direction 110 : liquid 111 : liquid moving surface 1101 · first curvature 1102 : second curvature 1103: third curvature 1278659 120 : energy 201 : stagnant zone 202 : micronial structure 203 : low surface energy surface 204 : air 205a : high surface energy contact angle 205b : middle surface energy contact angle 205c : low surface Can contact angle 206: Double-sided lens