TWI278606B - Method and system for flow measurement and validation of a mass flow controller - Google Patents

Method and system for flow measurement and validation of a mass flow controller Download PDF

Info

Publication number
TWI278606B
TWI278606B TW094123260A TW94123260A TWI278606B TW I278606 B TWI278606 B TW I278606B TW 094123260 A TW094123260 A TW 094123260A TW 94123260 A TW94123260 A TW 94123260A TW I278606 B TWI278606 B TW I278606B
Authority
TW
Taiwan
Prior art keywords
volume
data
error
flow rate
pressure
Prior art date
Application number
TW094123260A
Other languages
Chinese (zh)
Other versions
TW200613700A (en
Inventor
Stuart A Tison
Sandeep Sukumaran
James Barker
Original Assignee
Celerity Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/887,591 external-priority patent/US7412986B2/en
Application filed by Celerity Inc filed Critical Celerity Inc
Publication of TW200613700A publication Critical patent/TW200613700A/en
Application granted granted Critical
Publication of TWI278606B publication Critical patent/TWI278606B/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/15Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters specially adapted for gas meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/17Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters using calibrated reservoirs

Abstract

Systems and methods for flow verification and validation of mass flow controllers are disclosed. A mass flow controller may be commanded to a specified flow and flow measurement commenced. During an interval, gas is accumulated in a first volume and measurements taken within this volume. The various measurements taken during the interval may then be used to calculate the flow rate. The flow rate, in turn, may be used to determine the accuracy of the mass flow controller relative to a setpoint.

Description

1278606 九、發明說明: 【發明所屬之技術領域】 本發明大體而言係關於用於驗證一質流控制器之效能的 方法及系、统’且更特定言之,本發明係關於使用一上升率 .流量標準來驗證一質流控制器之效能。 【先前技術】 現代製造方法在特定製造階段期間有時需要化學元素之 精確化學計量比率。為達成此等精確比率,可在特定製造 • ㉟段期間將不同處理氣體傳遞入-處理腔室中。一氣體面 板可用於將此等處理氣體傳遞至一具有一或多自腔室或反 •應器的處理工具。一氣體面板為-含有一或多個粒狀發泡 '劑(gas pallet)之外殼,其專用於將處理氣體傳遞至該處理 工具。該氣體面板又包括一組粒狀發泡劑,其本身包括一 組氣體棒。 一氣體棒總成可含有若干離散組件,諸如—引入管接 動隔離閥門、二元控制氣動隔離閥門、氣體過滤 Γ £力凋節器、壓力傳感器、線内㈣心)壓力顯示器、 質流控制器及一排出管接頭。此等組件之每一者串聯連結 為:通用流動路徑或用於—特殊處理氣體之專用通道。一 歧官及-閥Η矩陣在每_氣體棒之排出管至該處理腔室間 形成通道。 料成―料化學計量比率,—處敎具控制器為質流 確疋„又疋點’且為間門矩陣排序’此與特定氣體棒 目關聯。所指示之流量值由每一氣體棒之質流控制器輸 103147.doc 1278606 出’且由處理工具控制器監控。1278606 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to methods and systems for verifying the performance of a mass flow controller, and more particularly, the present invention relates to the use of a rise Rate. Flow rate criteria to verify the performance of a mass flow controller. [Prior Art] Modern manufacturing methods sometimes require precise stoichiometric ratios of chemical elements during a particular manufacturing stage. To achieve these precise ratios, different process gases can be delivered into the processing chamber during a specific manufacturing process. A gas panel can be used to deliver the process gases to a processing tool having one or more self-chambers or counters. A gas panel is an outer casing containing one or more particulate foams that are dedicated to delivering process gases to the processing tool. The gas panel in turn includes a plurality of particulate blowing agents which themselves comprise a set of gas bars. A gas rod assembly can contain a number of discrete components, such as - inlet tube isolation isolation valve, binary control pneumatic isolation valve, gas filter, force eliminator, pressure sensor, in-line (four) heart pressure display, mass flow control And a discharge fitting. Each of these components is connected in series as: a universal flow path or a dedicated channel for special processing gases. A manifold and a valve matrix form a channel between the discharge tube of each gas column and the processing chamber. The material is stoichiometrically ratio--the cookware controller is the mass flow confirmation 疋 疋 ' 且 and is sorted by the door matrix'. This is associated with a specific gas rod. The indicated flow value is determined by each gas rod. The mass flow controller loses 103147.doc 1278606 out and is monitored by the processing tool controller.

藉由將一流量感應器及比例控制閥門與一控制系統建立 介面來建構一質流控制器(MFC)。該流量感應器藉由一類 比/數位轉換器連結至該控制系統。藉由一電流控制之螺 線管閥門驅動電路驅動該控制閥門。一質流測定系統位於 該控制閥門之上游處。該控制系統監控設定點之輸入及流 篁感應器之輸出,同時更新控制閥之輸入及所指示之流量 輸出。由嵌入之控制系統執行的封閉迴路控制演算法可操 作以用於通遇比例控制閥門及排出管接頭來調節源自引入 管接頭處之處理氣體的質流,以使得設定點之輸入與所指 示之流量輸出之間的即時差值或誤差盡可能快地接近零或 空值’且具有最小之突增及盡可能少之控制時間。 由於超過500種氣體可用於特定電子組件之製造中,因 此個別質流控制器之每一者之操作皆為關鍵的。通常,使 用處理腔室本身來驗證此等質流控制器。圖丨描繪一個該 先前技術系統,其中處理腔室130用作一流量核對工具。 為核對質流控制器12〇,一設定點訊號輸入至質流控制器 120,其接著又開始將氣體流向處理腔室13〇。由於已知處 理腔室130之體積,因此一已知為上升率之初步流量測定 技術可用於測定進入彼體積之流量。此方法利用質量守恆 原理及氣體狀態方程來得出一固定體積内之壓力與進入彼 體積内之流量(質流)間的關係。如下給出該方程: Δρ v Δί Eq.⑴ 103147.doc !278606 其中ΔΡ為在時間間隔At期間壓力之變化,R為通用氣體常 數,T為氣體之絕對溫度,且v為測定腔室之體積。i 利用該理想氣體方程作為狀態方程;可得出類似方程用於 其它狀態方程。 不幸地,典型處理腔室130之體積(可為約2〇至6〇公升) 使得小流量之測定極其消耗時間。另外,處理腔室13〇在 其整個體積中可展示出大的溫度梯度,從而扭曲了進入處 理腔室130内之質流的測定及計算。 圖2展示使用20與60公升之間的典型處理腔室13〇來對某 些典型流動速率達成一給定之壓力變化所需的時間量。歸 因於許多其它約束條件’可需要一 〇」托之最小壓力來起 始測定’且需要0.3托之最小積累之壓力來做出測定。結 果,執行2 SCCm流量之單一流量點之驗證可需要高達5分 鐘之時間,且一質流控制器之核對則可花費長達3〇分鐘之 時間。此冗長之驗證週期降低了工具的可用性,且給使用 者增加了成本。 除了測定之緩慢外,測定之準確度通常不會比讀數之 仏5。/。更佳。起主要作用之誤差為:溫度之誤差、腔室體 積之誤差及未考慮氣體(吸附或解吸附)。 驗證質流控制器12〇之其它方法可利用_與處理腔室13〇 並行之第二體積來測定流量。然而,此#方法不允許測定 質流控制器⑶之瞬態(非敎狀態)效$,且狀質流控制 器120上游處之體積所需之許多步驟使得此技術難以整合 於現有系統中並可使已經很長之驗證時間的需求加劇。 103147.doc 1278606 因此,存在對於用於驗證一質流控制器之系統及方法的 需要’該等系統及該等方法可快速測定動態效能並驗證一 貝流控制器’同時藉由減少測定之不確定因素改良驗證過 程之準確度。 【發明内容】 本發明揭不了用於質流控制器之流量核對及驗證的系統 及方法。此等系統及方法可測定一質流控制器之動態效A mass flow controller (MFC) is constructed by establishing a flow sensor and a proportional control valve with a control system. The flow sensor is coupled to the control system by a analog/digital converter. The control valve is driven by a current controlled solenoid valve drive circuit. A mass flow measurement system is located upstream of the control valve. The control system monitors the input of the set point and the output of the flow sensor while updating the input of the control valve and the indicated flow output. A closed loop control algorithm executed by the embedded control system is operable to meet the proportional control valve and the exhaust pipe joint to regulate the mass flow from the process gas at the inlet pipe joint such that the set point is input and indicated The instantaneous difference or error between the flow outputs is close to zero or null as quickly as possible' with minimal spikes and as little control time as possible. Since more than 500 gases are available for the manufacture of specific electronic components, the operation of each of the individual mass flow controllers is critical. Typically, the processing chamber itself is used to verify the mass flow controllers. The figure depicts a prior art system in which the processing chamber 130 acts as a flow collation tool. To verify the mass flow controller 12, a set point signal is input to the mass flow controller 120, which in turn begins to flow the gas to the processing chamber 13A. Since the volume of the processing chamber 130 is known, a preliminary flow measurement technique known as the rate of rise can be used to determine the flow into the volume. This method uses the mass conservation principle and the gas state equation to derive the relationship between the pressure in a fixed volume and the flow (mass flow) into the volume. The equation is given as follows: Δρ v Δί Eq. (1) 103147.doc !278606 where ΔΡ is the change in pressure during the time interval At, R is the general gas constant, T is the absolute temperature of the gas, and v is the volume of the measurement chamber . i Use this ideal gas equation as the equation of state; similar equations can be derived for other equations of state. Unfortunately, the volume of a typical processing chamber 130 (which can range from about 2 Torr to about 6 liters) makes the measurement of small flows extremely time consuming. In addition, the processing chamber 13 can exhibit a large temperature gradient throughout its volume, thereby distorting the measurement and calculation of the mass flow into the processing chamber 130. Figure 2 shows the amount of time required to achieve a given pressure change for some typical flow rates using a typical processing chamber 13 20 between 20 and 60 liters. This is due to the fact that many other constraints 'may require a minimum pressure to initiate the measurement' and require a minimum accumulated pressure of 0.3 Torr to make the determination. As a result, verification of a single flow point for 2 SCCm traffic can take up to 5 minutes, and a quality flow controller can take up to 3 minutes to verify. This lengthy verification cycle reduces the availability of tools and adds cost to the user. In addition to the slowness of the assay, the accuracy of the assay is usually no more than 读数5. /. Better. The main errors are: temperature error, chamber volume error, and unconsidered gas (adsorption or desorption). Other methods of verifying the mass flow controller 12 may utilize a second volume in parallel with the processing chamber 13A to determine the flow rate. However, this # method does not allow for the determination of the transient (non-敎 state) effect of the mass flow controller (3), and the many steps required for the volume upstream of the mass flow controller 120 make this technique difficult to integrate into existing systems and This can exacerbate the need for very long verification times. 103147.doc 1278606 Therefore, there is a need for systems and methods for verifying a mass flow controller 'these systems and methods can quickly measure dynamic performance and verify a flow controller' while simultaneously reducing the measurement Determining the factors improves the accuracy of the verification process. SUMMARY OF THE INVENTION The present invention discloses a system and method for traffic verification and verification of a mass flow controller. These systems and methods can measure the dynamic effect of a mass flow controller

能,且可在一步驟中執行流量核對及測定。 根據一實拖例,可結合使用兩個體積,以在一測定排序 j間精確判疋總體積,最小化錯誤流量情況並減少對壓力 瞬態之敏感性。質流控制器可連結至一測定系统。可命令 :質流控制器以產生一特定流量,且該系統可開始流量測 定。氣體積累於該質流控制器與該測定系統之間的一體積 中,並在此體積内測定壓力。氣體可接著流人—已知體積 内’亚測定壓力。在兩個時間間隔期間進行之各種測定可 接著用於計算該質流控制器與該測H统之間的體積以及 流動速率。該流動速率又可用於判定該質流控制器相對於 一設定點之準確度。 在κ知例中,在一第一時間間隔期間收集關於一第 體積之第一資料,在一第二時間間隔期間收集關於一第 體積之第二資料,判定該第一體積並計算流量。 在另5知例中,該第_體積包含··基於該第一資料 該第二資料來計算該第一體積。 、 在另κ知例中’该第一資料包括在該第一時間間隔: 103147.doc 1278606 間壓力之變化,且該第二資料包括在該第二時間間隔期間 壓力之變化。 在另一實施例中,該第一體積係藉由接收一輸入來判 定。 在其它實施例中,一用於測定一通過一質流控制器之流 里的糸統在该質流控制器之下游處連結至該質流控制器, 該系統包括一腔室、一在該腔室之上游處連結至該腔室之 弟一閥門、一在该腔至之下游處連結至該腔室之第二閥門 及一在該第一閥門之上游處連結至該腔室之壓力感應器。 在其它實施例中,該系統可操作以用於在一第一時間間 隔期間收集關於一第一體積之第一資料及在一第二時間間 隔期間收集關於一第二體積之第二資料。 在某些實施例中,該第二資料係在收集該第一資料之前 收集。 在某些實施例中,該第一資料係在收集該第二資料之前 收集。 根據另一實施例,可結合一體積使用一阻塞孔(ch〇king orifice)以不管該阻塞孔上游處之體積的幾何形狀或壓力來 精確判定一流動速率。另外,可利用使用阻塞孔而判定之 誤差點來得出並擬合出一誤差曲線。隨後,可無需使用阻 塞孔來計算出流量,並可基於所得出及擬合出之誤差曲線 調整流量。一質流控制器可連結至一測定系統。可命令該 質流控制器以產生一特定流量,且該系統可開始流量測 定。接著可將在該時間間隔期間進行之各種測定用於計算 103147.doc -10 - 1278606 器相對 該流動速率。該流動速率 疋千又J用於判定該質流控制 於一設定點之準確度。 牡一貫施例中 、j间隔期間队示牌』一第— 體積之第一資料,接著計算一第_、土旦 乐 /爪里,亚基於_誤差 線調整該第一流量。 萌 在另一實施例中,藉由蔣一张々 、 猎由將所侍出誤差曲線擬合一組 差點來判定該誤差曲線,該組 w、 差點包括-組已判定之誤 其中母—已敎之誤差點係藉由以下步驟判定:在 -第-設定馱處於一第二時間間隔期間收集關於該第—體 積之第二資料,其中—阻塞孔處於—打開位置;基於 二資料計算一第二流量;在該第—設定點處於一第三= 間隔期間收集關於該第一體積之第三資料,其中該阻塞孔 處於一阻塞位置;基於該第三資料計算-第三流量;:比 較該第二流量與該第三流量。 在其它實施例t,該阻塞孔可操作以用於在該阻塞位置 中生成-壓力梯度,其中該阻塞孔之上游處的壓力約為該 阻塞孔之下游處之壓力的兩倍。 該第一設定 一點表示該 在另一實施例中,該阻塞孔可操作以用於當 點為至少500 seem時生成壓力梯度。 在其它實施例中,該組已判定之誤差點的每 弟 6又疋點為至少500 seem時之一寧差。 在又一實施例中 點,其中每一被觀 弟—设疋點處於— ,該組誤差點包括一組被觀察之誤差 察之誤差點係藉由以下步騾判定··在一 第四時間間隔期間收集關於該第一體積 103147.doc -11 - 1278606 之第四資料;及基於該第四資料計算一第四流量。 在另一實施例中,基於氣體類型來調整該誤差曲線。 在一實施例中,一系統在質流控制器之下游處連結至該 質流控制器,該系統包含一腔室、一在該腔室之上游處連 結至該腔室之第一閥門、一在該腔室之下游處連結至該腔 室之壓力感應器及一在該壓力感應器之上游處連結至該腔 室之阻塞孔。 在一特定實施例中,該系統可操作以用於在一第一時間 間隔期間收氣關於一第一體積之第一資料並計算一第一流 量。 當結合以下之描述及隨附圖式考慮時,將更佳瞭解及理 解本發明之此等及其它態樣。雖然以下說明指示本發明之 各種實施例及其大量具體細節,但是以下說明係以說明而 非限制之方式給出。可在本發明之範疇内做出許多替代、 修正、添加或重新配置,且本發明包括所有該等替代、修 正、添加或重新配置。 【實施方式】 本申請案係關於2002年2月5曰頒佈之Tinsley等人的標題 % &quot;System and Method of Operation of a Digital Mass Flow Controller”的第6,343,617號美國專利;2003年11月4曰頒 佈之 Tinsley 等人的標題為 ’’System and Method of Operation of a Digital Mass Flow Controller” 的第 6,640,822號美國專 利;2004年1月27日頒佈之Tinsley等人的標題為’’System and Method of Operation of a Digital Mass Flow Controller” 的第 103147.doc -12- 1278606 6,681,787號美國專利;2002年5月14日頒佈之¥丫6^的標題The flow check and measurement can be performed in one step. According to a real example, two volumes can be used in combination to accurately determine the total volume between a given sequence j, minimizing false flow conditions and reducing sensitivity to pressure transients. The mass flow controller can be coupled to a measurement system. The mass flow controller can be commanded to generate a specific flow rate and the system can begin flow measurement. Gas accumulates in a volume between the mass flow controller and the assay system and the pressure is measured within this volume. The gas can then flow into the human-known volume within the sub-measurement pressure. The various measurements made during the two time intervals can then be used to calculate the volume and flow rate between the mass flow controller and the test system. This flow rate can in turn be used to determine the accuracy of the mass flow controller relative to a set point. In a known example, a first data for a first volume is collected during a first time interval, a second data for a first volume is collected during a second time interval, the first volume is determined and the flow is calculated. In another example, the first volume includes the first volume calculated based on the first data. In another embodiment, the first data includes a change in pressure between the first time interval: 103147.doc 1278606, and the second data includes a change in pressure during the second time interval. In another embodiment, the first volume is determined by receiving an input. In other embodiments, a system for determining a flow through a mass flow controller is coupled to the mass flow controller downstream of the mass flow controller, the system including a chamber, and a a valve connected to the chamber upstream of the chamber, a second valve connected to the chamber downstream of the chamber, and a pressure sensing coupled to the chamber upstream of the first valve Device. In other embodiments, the system is operative to collect first data for a first volume during a first time interval and to collect second data for a second volume during a second time interval. In some embodiments, the second data is collected prior to collecting the first data. In some embodiments, the first data is collected prior to collecting the second material. According to another embodiment, a ch〇king orifice can be used in conjunction with a volume to accurately determine a flow rate regardless of the geometry or pressure of the volume upstream of the occlusion hole. Alternatively, an error curve can be derived and fitted using the error points determined using the blocked holes. The flow can then be calculated without the use of a stop hole and the flow rate can be adjusted based on the resulting and fitted error curve. A mass flow controller can be coupled to a measurement system. The mass flow controller can be commanded to generate a particular flow rate and the system can begin flow measurement. The various measurements made during this time interval can then be used to calculate the relative flow rate of the 103147.doc -10 - 1278606 device. The flow rate is used to determine the accuracy of the mass flow control at a set point. In the consistent application of the syllabus, during the interval between j and the team, the first sign of the volume, the first data of the volume, and then the calculation of a _, the dan dan / claw, the sub-based error line adjusts the first flow. In another embodiment, the error curve is determined by fitting a set of error curves to the set of error curves by Jiang Yiqi and Hunting. The set w and the difference include the group-determined error. The error point is determined by the following steps: collecting the second data about the first volume during the second time interval, wherein the blocking hole is in the -open position; a second flow; collecting a third data about the first volume during the third set interval, wherein the blocked hole is in a blocked position; calculating a third flow based on the third data; comparing the The second flow rate and the third flow rate. In other embodiments t, the blocking aperture is operable to generate a -pressure gradient in the blocking position, wherein the pressure upstream of the blocking aperture is about twice the pressure downstream of the blocking aperture. This first set point indicates that in another embodiment, the blocking aperture is operable to generate a pressure gradient when the point is at least 500 seem. In other embodiments, each of the determined error points of the set of points is at least 500 seem. In another embodiment, wherein each of the viewers is set to be at - the set of error points includes a set of observed errors and the error points are determined by the following steps: A fourth data about the first volume 103147.doc -11 - 1278606 is collected during the interval; and a fourth flow rate is calculated based on the fourth data. In another embodiment, the error curve is adjusted based on the type of gas. In one embodiment, a system is coupled to the mass flow controller downstream of the mass flow controller, the system including a chamber, a first valve coupled to the chamber upstream of the chamber, and a A pressure sensor coupled to the chamber downstream of the chamber and a blocking aperture joined to the chamber upstream of the pressure sensor. In a particular embodiment, the system is operative to deflate the first data for a first volume and calculate a first amount of flow during a first time interval. These and other aspects of the present invention will be better understood and understood from the <RTIgt; The following description, while indicating the various embodiments of the invention, Many alternatives, modifications, additions or rearrangements are possible within the scope of the invention, and the invention includes all such alternatives, modifications, additions or re-configurations. [Embodiment] This application is related to U.S. Patent No. 6,343,617 to the name of &quot;System and Method of Operation of a Digital Mass Flow Controller&quot; of Tinsley et al., issued February 5, 2002; November 4, 2003 U.S. Patent No. 6,640,822 issued to Tinsley et al., entitled &quot;System and Method of Operation of a Digital Mass Flow Controller&quot; issued by Jansley et al., issued Jan. 27, 2004 entitled "System and Method of Operation" US Patent No. 103147.doc -12- 1278606 6,681,787 of the a Digital Mass Flow Controller; title of ¥丫6^ promulgated on May 14, 2002

為&quot;System and Method for a Digital Mass Flow Controller” 的第6,3 89,364號美國專利;2004年3月30日頒佈之Vyers的 標題為 ’’System and Method for a Digital Mass Flow Controller”的第6,714,878號美國專利;2002年9月3曰頒佈 之 Vyers的標題為’’System and Method for a Variable Gain Proportional-Integral (PI) Controller”的第 6,445,980號美國 專利;2002年9月10日頒佈之Tariq等人的標題為&quot;System and Method for Sensor Response Linearization&quot;的第 6,449,571號美國專利;2003年6月10曰頒佈之Larsen等人 的標題為&quot;Mass Flow Sensor Interface Circuit&quot;的第 6,575,027號美國專利;1999年5月11日頒佈之Mudd等人的 標題為 ’’Flow Controller, Parts of Flow Controller, and Related Method” 的第 5,901,741 號美國專利;1998 年 12 月 22 日頒佈之 Mudd 的標題為1’Flow Controller,Parts of Flow Controller,and Related Method’,的第 5,850,850 號美國專 利;1998年6月16日頒佈之Mudd的標題為&quot;Method of Making a Flow Controller” 的第 5,765,283號美國專利。該 段落中所引用之所有專利及申請案以引用的方式全部併入 本文中。 將參考隨附圖式中所說明且在隨後之描述中詳細說明之 非限制性實施例更加完整地解釋本發明及其各種特徵及有 利之細節。省略了對熟知的起始材料、處理技術、組件及 設備之描述,.以便不在細節上不必要地使本發明晦澀難 103147.doc -13· 1278606 懂。然而,應瞭解:雖然詳細描述及特定實例指示了本發 月,之幸乂彳土實施例,但是僅以說明而非限制之方式給出該等 詳細描述及特定實例。在閱讀本說明書之後,不脫離附加 申明專利範圍之各種替代、修正、添加及重新配置對於閱 讀本揭示内容之熟習此項技術者而言將變得顯而易見。 現在將注意力導向用於流量核對以及驗證質流控制器之 系、、先及方法,該等系統及方法可測定_質流控制器的動態 效此。此等系統及方法之實施例除了允許俘獲一流量控制 器之穩定狀態j于為外還允許俘獲其瞬態流量行為,且可操 作以用於计异具有至少5〇 ms之更新速率的流量。照此, 忒測疋系統及該方法可測定質流控制器之突增、穩定時 間、回應時間、所提及之變數的可重複性,且可在動態流 量情況下對體積做出定量測定,且可用於初始體積校正。 根據一實施例,可一同使用兩個體積,以在一測定排序 期間精確判定總體積,最小化錯誤流量情況並減少對壓力 瞬態之敏感性。質流控制器可連結至一測定系統。可命令 該質流控制器以產生一特定流量,且該系統可開始流量測 定。氣體可積累於該質流控制器與該測定系統之間的一體 積内,且在此體積内測定壓力。氣體可接著流入一已知體 積中,並測定壓力。在兩個時間間隔期間所進行之各種測 疋可接著用於計异該質流控制器與該測定系統之間的體積 以及流動速率,該流動速率又可用於判定一質流控制器相 對於一設定點之準確度。類似地,此等系統及方法亦可允 許測試通過質流控制器内之閥門的洩漏。藉由將一零流動 103147.doc -14- 1278606 速率么訊就至貝流控制器,所谓測出之麼力的變化可歸因 於通過彼等閥門之洩漏。 a匕等U及方法可採用—上升率技術來測定—質流控制 器之效能,結合氣體狀態方程及質量守怪原理得出-類似 於Eq· 1之方程,其中質流可由下式判定:U.S. Patent No. 6,3,89,364 to &quot;System and Method for a Digital Mass Flow Controller; U.S. Patent No. 6,714,878, entitled "'System and Method for a Digital Mass Flow Controller" by Vyers, issued March 30, 2004. U.S. Patent; U.S. Patent No. 6,445,980 entitled "System and Method for a Variable Gain Proportional-Integral (PI) Controller" issued by Vyers, September 3, 2002; Tariq et al., issued on September 10, 2002 U.S. Patent No. 6,449,571 to &quot;System and Method for Sensor Response Linearization&quot;; U.S. Patent No. 6,575,027 to Larsen et al., issued June 10, 2003, entitled &quot;Mass Flow Sensor Interface Circuit&quot;; U.S. Patent No. 5,901,741 to Mudd et al., issued May 11, 1999, entitled "'Flow Controller, Parts of Flow Controller, and Related Method"; Mudd, issued on December 22, 1998, titled 1 'Flow Controller, Parts of Flow Controller, and Related Method', US Patent No. 5,850,850; June 1998 U.S. Patent No. 5,765,283, the entire disclosure of which is incorporated herein by reference in its entirety herein in The invention and its various features and advantageous details are explained more fully in the non-limiting embodiments, which are illustrated in the Detailed Description, which is described in the following description. Descriptions of well-known starting materials, processing techniques, components and devices are omitted. In order not to unnecessarily obscure the present invention in detail, 103147.doc -13·1278606. However, it should be understood that although the detailed description and specific examples indicate the present embodiment, the embodiment is only The Detailed Description and specific examples are given by way of illustration and not limitation. Various alternatives, modifications, additions and rearrangements of the present disclosure will become apparent to those skilled in the art. Attention is now directed to the use of flow checks and verification of mass flow controllers, methods, and methods that determine the dynamics of the _ mass flow controller. Embodiments of such systems and methods allow for capture of their transient flow behavior in addition to allowing the steady state j of a flow controller to be captured, and are operable to account for traffic having an update rate of at least 5 〇 ms. As such, the sputum measurement system and the method can determine the spurt of the mass flow controller, the settling time, the response time, the repeatability of the variables mentioned, and the quantitative determination of the volume under dynamic flow conditions, And can be used for initial volume correction. According to one embodiment, two volumes can be used together to accurately determine the total volume during a measurement sequence, minimize false flow conditions and reduce sensitivity to pressure transients. The mass flow controller can be coupled to a measurement system. The mass flow controller can be commanded to generate a specific flow rate and the system can begin flow measurement. Gas can accumulate in the integral between the mass flow controller and the assay system and the pressure is measured within this volume. The gas can then flow into a known volume and the pressure is measured. The various measurements performed during the two time intervals can then be used to account for the volume and flow rate between the mass flow controller and the assay system, which in turn can be used to determine a mass flow controller relative to a The accuracy of the set point. Similarly, such systems and methods may also permit testing of leaks through valves within the mass flow controller. By passing a zero flow 103147.doc -14 - 1278606 rate to the billiard controller, the so-called measured force changes can be attributed to leakage through their valves. A匕 and other methods can be measured by the ascending rate technique—the efficiency of the mass flow controller, combined with the gas state equation and the principle of mass obscurity—similar to the equation of Eq·1, where the mass flow can be determined by:

mS~ZRT 一^ΖΓ~ Eq. (2) 其中ΔΡ為在時間間隔Μ期間壓力之變&amp;,r為通用氣體常 數T為氣體之絕對溫度,2為氣體壓縮因數,且v為測定 腔室之體積。,氣體壓、缩因數Z通常等於輕氣體之單位 (mnty)且可顯著少於諸如WF6之較重分子的單位。壓縮因 數之使用可改良以非理想之壓縮氣體之流量測定的準確 度。 現轉至圖3,其描繪一可與一處理腔室並行併入氣體流 中來貝轭本發明之該等系統及該等方法之硬體配置的一例 示性實施例。上升率系統(汉〇]^)3〇〇可用於測定質流控制器 120相對於一設定點之準確度。上升率系統3〇〇可併入通過 氣體棒302至處理腔室130之氣體流中。在一特殊實施例 中,閥門350、370在質流控制器12〇之下游且在處理腔室 130之上游處。ROR 300可含有閥門33〇、31〇之間的腔室 305及在閥門310之下游的壓力感應器32〇。壓力感應器可 為此項技術中普遍已知之類型,其可測定自〇·丨托至丨〇〇〇 托之壓力。與用於處理腔室13〇之在1〇與6〇公升之間的典 型體積相比,腔室305通常具有自10 cc至高達一公升的任 103147.doc -15- 1278606 一體積。 ROR 300可連結於質流控制器120與閥門35〇之下游處及 閥門370與處理腔室130之上游處的氣體流中。連結於閥門 350、370與3 10之間的實體體積由體積36〇表示。雖然諸如 鎳或鎢之其它材料可用於氣體棒302正用於傳輸一特定氣 體之狀況中,但疋在許多狀況下,使用具有· 2 $至· $叶直徑 之316 L不銹鋼管將R〇r 300連結至該氣體棒。氣體自氣體 供應裝置110流向回應一設定點調節所通過之氣體體積的 貝控制态1^0,该氣體流量通常在· 1 SCCn^每分鐘1 〇〇公 升之間。若閥門310、350為打開的且閥門37〇為關閉的, 則氣體自質流控制器120流入腔室305,然而,若閥門 350、370為打開的且閥門310為關閉的,則氣體自質流控 制器120流入處理腔室13〇。 在特疋貝施例中,為能以ROR 300進行流量測定,閥門 370對處理腔室130關閉,閥門350對質流控制器12〇開放, 且ROR 3 00内之閥門3 10關閉。命令質流控制器12〇以產生 一特定流量’且ROR系統300開始流量測定。氣體積累於 閥門350、370與ROR系統300内之閥門310之間的體積36〇 中。ROR 300内之壓力感應器320位於閥門31〇之上游,且 此幾何形狀使得能進行體積360中之壓力的測定。可測定 作為時間之函數的壓力變化,以稍後用於流量測定之量 化。在某一時間八^處,閥門330關閉且閥門310打開以允 許氣體流入ROR 300之(一已知體積)腔室3〇5。繼續以r〇r 300中之壓力感應器320監控作為時間之函數的壓力。 103147.doc -16- 1278606 圖4中給出以時間之函數表示之壓力變化的典型曲線。 在讜圖中,所描緣之初始壓力變化出現於一樣本體積36〇 中,且壓力變化及時間間隔分別為△1&gt;1與。在約1〇秒處 打開始之第一斜坡為閥門3 1 〇打開且閥門330關閉之時。在 该狀況下,該積累體積為體積360與腔室3〇5之已知體積的 組合。隨著時間之壓力變化為在時間間隔At2期間的Δρ2。mS~ZRT 一^ΖΓ~ Eq. (2) where ΔΡ is the pressure change during the time interval ,, r is the general gas constant T is the absolute temperature of the gas, 2 is the gas compression factor, and v is the measurement chamber The volume. The gas pressure and shrinkage factor Z is generally equal to the unit of light gas (mnty) and can be significantly less than the unit of heavier molecules such as WF6. The use of compression factors improves the accuracy of flow measurements with non-ideal compressed gases. Turning now to Figure 3, an exemplary embodiment of a system in which the present invention and the hardware configuration of the methods can be incorporated into a gas stream in parallel with a processing chamber is depicted. The rate of rise system (〇) ^) 3〇〇 can be used to determine the accuracy of the mass flow controller 120 relative to a set point. The rate of rise system 3〇〇 can be incorporated into the gas stream passing through the gas rod 302 to the processing chamber 130. In a particular embodiment, valves 350, 370 are downstream of mass flow controller 12 and upstream of processing chamber 130. The ROR 300 can include a chamber 305 between the valves 33A, 31A and a pressure sensor 32A downstream of the valve 310. Pressure sensors are a type generally known in the art that can measure the pressure from 〇·丨托 to 丨〇〇〇. The chamber 305 typically has a volume of from 10 cc up to one liter of any of 103147.doc -15-1278606 compared to a typical volume between the 1 〇 and 6 〇 liters for the processing chamber 13〇. The ROR 300 can be coupled to the gas stream downstream of the mass flow controller 120 and the valve 35A and upstream of the valve 370 and the processing chamber 130. The volume of solids connected between valves 350, 370 and 3 10 is represented by a volume of 36 。. While other materials such as nickel or tungsten may be used in the condition that the gas rod 302 is being used to transport a particular gas, in many cases, a 316 L stainless steel tube having a leaf diameter of · 2 $ to · $ will be used for R〇r 300 is attached to the gas rod. The gas flows from the gas supply unit 110 to a shell control state 1^0 that is responsive to a set point to regulate the volume of gas passing therethrough, which is typically between 1 liter and 1 liter per minute. If the valves 310, 350 are open and the valve 37 is closed, the gas flows from the mass flow controller 120 into the chamber 305. However, if the valves 350, 370 are open and the valve 310 is closed, the gas is self-quality. The flow controller 120 flows into the processing chamber 13A. In the special example, in order to be able to perform flow measurement with ROR 300, valve 370 is closed to processing chamber 130, valve 350 is open to mass flow controller 12, and valve 3 10 within ROR 3 00 is closed. The mass flow controller 12 is commanded to generate a specific flow rate&apos; and the ROR system 300 begins flow measurement. The gas accumulates in a volume 36 之间 between the valves 350, 370 and the valve 310 in the ROR system 300. The pressure sensor 320 within the ROR 300 is located upstream of the valve 31, and this geometry enables the determination of the pressure in the volume 360. The change in pressure as a function of time can be determined for later use in the quantification of flow measurements. At a certain time, valve 330 is closed and valve 310 is opened to allow gas to flow into (a known volume) chamber 3〇5 of ROR 300. The pressure as a function of time is monitored by the pressure sensor 320 in r〇r 300. 103147.doc -16- 1278606 A typical curve of the pressure change as a function of time is given in Figure 4. In the map, the initial pressure change of the depicted edge appears in the same volume 36 ,, and the pressure change and time interval are Δ1 &gt; 1 and . The first ramp that begins at about 1 second is when valve 3 1 〇 opens and valve 330 closes. In this case, the accumulation volume is a combination of the volume 360 and the known volume of the chamber 3〇5. The pressure change over time is Δρ2 during the time interval At2.

接著可使用以下表達式計算體積36〇。 δρ2 ·v Ί -Δ^2 ΔΛ ap2 - 吃△,丨At2The volume 36 接着 can then be calculated using the following expression. Δρ2 ·v Ί -Δ^2 ΔΛ ap2 - eat △, 丨At2

接著可結合Eq· 2使用Eq· 3來判定流量。接著可將所判定 之流量與質流控制器之設定點進行比較,以判定質流控制 器120之準;度。 現轉至圖5,描繪一用於測定流量屬性及驗證質流控制 器之準確度之方法的一實施例的流程圖。當測定大流量 (大於20〇sccm)時,此特殊方法可為有利的,因為在流量The Eq·3 can then be used in conjunction with Eq·2 to determine the flow rate. The determined flow rate can then be compared to the set point of the mass flow controller to determine the accuracy of the mass flow controller 120. Turning now to Figure 5, a flow diagram of an embodiment of a method for determining flow attributes and verifying the accuracy of a mass flow controller is depicted. This particular method can be advantageous when measuring large flows (greater than 20 〇 sccm) because of the flow rate

之初始瞬恶測定期間利用較大之體積t減少測定之不確定 因素。 广特殊實施例中,閥門37〇可由一控制系統關閉,此 扣不將進仃貝流控制器之測試或驗證。為開始測試,打開 閥門310、330 ’且由泵38〇抽真空(步驟$ 1〇)。接著關閉閥 門330 ’且可取出初始狀態之資料(步驟520)。質流控制器 1—20基於—特定設定點流動,接著可收集第—時間間隔之 資料(步驟530)。使用諸如屢力感應器似之此項技術中已 知的感應ϋ可對日㈣、M力及溫度監控—特定時段。在某 103147.doc -17- 1278606 些實施例中,可由一壓力或時間檢查點來判定該時段之長 度。舉例而言,當體積内之壓力達到一特定托時,可結束 第-時間間隔。雖然第一時間間隔結束時所處之壓力可取 決於測定之流量而大幅改變,但是此壓力通常在ι〇托與 1000托之間。亦可在一預定的時間量之後結束該第一時間 間隔,該預定的時間量通常為至少10秒,但不多於60秒。 在第一時間間隔結束(步驟530)後,可接著關閉闕門 3 10(步驟540),且收集第二時間間隔之資料(步驟55〇)。如 同第一時間間_隔期間,此資料可包括壓力、溫度及時間, 且可使用與關於上文中之第一日夺間間隔所論述之標準相同 的標準來判定第二時間間隔之長度。 在第二時間間隔結束(步驟550)之後,可接著使用Eq. 2 與Eq. 3來計算體積360與流量屬性(步驟57〇、58〇)。或 者,可輸入體積360(步驟590),且接著可使用所輸入之體 積計算流量屬性(步驟580)。接著可將該流量與質流控制器 120之原始設定點比較來判定質流控制器12〇之準確度。 普通熟習此項技術者將瞭解可以大量方式控制及執行各 種步驟、測定及計算,該等方式包括··藉由—嵌於r〇r系 統300内之控制系統,或藉由結合質流控制器120、氣體棒 302及處理腔室130而使用之控制系統來控制並執行。 類似地,圖6為一用於測定流量及驗證可有利於中等流 量(20 SCCm至200 sccm)的質流控制器12〇之方法的流程 圖,其中在初始瞬態階段期間使用較大體積之腔室3〇5並 非必要地有用。 103147.doc -18- 1278606 在—實施射,射1 370可由一控制系、统_,此指示 將進行質流控制器12〇之流量測定或驗證。為進行質流控 制器之測試,打開閥門310、330,且由果38〇抽真空 61〇)。接著關閉閥門310,且可取出資料用於初始狀態(步 驟620)。奴著貝流控制器12〇基於一特定設定點之流動, 接著可在第一時間間隔期間收集資料(步驟63〇)。使用諸如 壓力感應器320之此項技術中已知的感應器可對時間、壓 力及溫度監控一特定時段。如上文中關於圖5所論述的, 可由一壓力或時間檢查點來判定該時段之長度。 在第一時間間隔結束(步驟63〇)後,可接著關閉閥門 330、打開閥門310(步驟64〇),且在第二時間間隔期間收集 資料(步驟550)。在該第一時間間隔期間,此資料可包括壓 力、溫度及時間,且可使用與關於上文中之第一時間間隔 所論述之標準相同的標準來判定第二時間間隔之長度。 在第二時間間隔結束(步驟65〇)之後,可接著使用Eq. 2 與^· 3來計算體積360與流量屬性(步驟67〇、68〇)。或 者,可輸入體積360(步驟690),且接著可使用所輸入之體 積计异流量屬性(步驟680)。接著可將該流量與質流控制器 12Ό之原始設定點比較來判定質流控制器12〇之準確度。 一旦判定了閥門350、370與31〇之間的體積36〇,則可僅 使用體積360來進行流量測^。在許多裝配中,體積36〇為 J的(&gt;\於20 cc) ’因此可較為容易地測定對於一特定流動 速率之壓力變化,通常將對於給定流動速率之測定時間減 少為1/5。 103147.doc -19- 1278606 圖7說明一種利用體積360來測定流量屬性或核對質流控 制器120之方法。此方法可對少於2〇 sccm之流動速率ϋ 尤其有效並允許使用一短得多的測定時間間隔。閥門37〇 可由一控制系統關閉,此指示將進行質流控制器12〇之流 量測定或驗證。為進行質流控制器之測試,打開閥門 310、330,且由泵380抽真空(步驟71〇)。接著關閉闕門 310,且取出資料用於初始狀態(步驟72〇)。如上文所論 述,隨著質流控制器120基於一特定設定點之流動,接著 可在第一時間間隔期間收集資料(步驟〇)。 在第一時間間隔結束(步驟730)後,可打開閥門3ι〇並關 閉閥門330(步驟740)。在特定狀況下,由於在打開閥門31〇 之前打開閥門330可為有利的,因此壓力在整個第一時間 間隔期間會維持於體積360中。在第一時間間隔結束(步驟 730)後,接著可使用Eq· 2與£屮3及預先判定之體積刊❹之 測定(步驟770)來計算流量屬性(步驟78〇)。或者,可由使 用者手動輸入體積360(步驟79〇),並接著可計算流量屬性 (步驟780)。接著可將計算出之流量與質流控制器之設 定點比較來判定質流控制器12〇之準確度。 另外,一旦判定了質流控制器閥門與閥門之間的體積 360,則可使用腔室305之已知體積與體積36〇進行流量測 定。此對於高流量體積而言可為有用的,其中一大的測定 體積為吾人所要。 圖8說明一種結合利用體積360及腔室305來進行質流控 制裔120之流量測定或核對的方法。閥門37〇可由一控制系 103147.doc -20. 1278606 統關閉,此指示將進行質流控制器12〇之流量測定或驗 證。為進行質流控制器之測試,打開閥門31〇、33〇,且由 泵380抽真空(步驟81〇)。接著關閉閥門33〇,且取出資料用 於初始狀態(步驟820)。如上文所論述,隨著質流控制器 120基於某一設定點之流動,接著可在第一時間間隔期間 收集資料(步驟830)。 在第一時間間隔結束(步驟830)後,可接著打開閥門 330(步驟840),且接著可使用恥2與恥3、預先判定之體 積360之測定(_步驟87〇)及腔室3〇5之已知體積來計算流量屬 性(步驟880)。或者,可由使用者手動輸入體積36〇(步驟 890),並接著計算流量屬性(步驟88〇)。接著可將該流量與 質流控制器12G之設定點比較來判^ f流控制器12〇之準確 度。 然而,在許多狀況下,上升率計算中所引入之誤差可變 得顯著。更特定言之’當流動速率上升時,在路徑中包含 體積360或諸如閥門35〇之其它流體元件之線的長度可相對 於^至305之已知體積内的壓力變化速率而改變體積中 之壓力變化速率。體積36〇中壓力變化速率之改變取決於 體積360之幾何形狀、質流控制器120之流動速率,並取決 於流職體棒302之氣體的特性,且因此可使得流動速率 之計异與質流控制器120之相稱核對變得困難。當處於高 於200 seem之流動速率時,此等效應可變得尤其明顯。因 此’當測定壓力及壓力變化或計算體積及流動速率時,需 要一種方法來·消除或補償此等效應。 103147.doc -21- 1278606 在所揭示之該等系缺;5今·梦+ a 、及4 4方法的特定實施例中,可結 合一體積使用一阻塞孔以不管嗲 吕Θ阻塞孔上游處之體積的幾 何形狀或壓力來精確判定一流動 /爪動迷率。另外,利用使用該 阻塞孔所判定之誤差胃占可媒 左點T仔出並擬合出一誤差曲線。隨 後,無需使用阻塞孔可計瞀屮治旦 α _ ^ 〜〗邛开出々丨L里,且可基於所得出及擬 合出之誤差曲線調整流量。 圖9描繪一可與一處理腔室並行併入氣體流中之硬體配 置的實施例,該處理腔室可通過流體短路或測定器件上游 處之流量之卩且塞來實質補償上游壓力相依性。如上文中關 於圖3所描述的,上升率系統(R〇R)3〇〇可併入通過氣體棒 302至處理腔室130之氣體流中。在圖9中描繪之特殊實施 例中,一阻塞孔322連結於r〇r 300與閥門350之間,緊靠 ROR 300。阻塞孔322可用於減少體積360之幾何形狀對於 左力測疋之影響並改良ROR 300之可用性及準確度。 通過使用一術語名稱為”流體短路,,之技術,阻塞孔322 可減少ROR 300對於體積360之幾何形狀的敏感性。此技術 縮窄了流體路徑以使得體積360中之壓力大於阻塞孔322上 游處之壓力。雖然許多壓力梯度可用於減少體積36〇之幾 何形狀的效應,但為了理想功效,阻塞孔322應生成一壓 力梯度以使得體積360中之壓力為阻塞孔322上游處之壓力 的至少兩倍。此可引起阻塞孔322上游之壓力在一恆定流 動速率期間保持大體上恆定。在一實施例中,阻塞孔322 可為一多位置閥門,其可根據質流控制器120之流動速率 定位,以在體積360與ROR 300之間生成合適的壓力梯度。 103147.doc -22- 1278606 在另一實施例中,阻塞孔322可為三通閥門,其具有如 此項技術中所已知之打開、關閉及阻塞位置。氣體棒3〇2 與處理腔室130通常可與處於關閉位置之阻塞孔322 一起運 作。當阻塞孔322處於打開位置時,如關於圖5至8所描述 的’ ROR 300可與氣體棒302及處理腔室13〇 一起運作。然 而,藉由將阻塞孔322置於阻塞位置中,可在體積36〇與 ROR 300之間生成一壓力梯度,其允許獨立於上游壓力或 體積來判定ROR 300中之流動速率。由於可獨立於體積36〇 判定ROR 30Q中之流動速率,因此無需進行用於判定體積 360之幾何形狀的測定。 舉例而言,相對於圖5而言,不需要步驟54〇_57〇及 590。在使用阻塞孔322之此狀況下,閥門37〇可由一控制 系統關閉,此指示將進行質流控制器之測試或驗證。為開 始測試,打開閥門310、330,且由泵38〇抽真空(步驟 51〇)。接著關閉閥門330,可將阻塞孔322設定為阻塞位置 且可取出資料用於初始狀態(步驟52〇)。 ⑶基於-特定設定㈣動,接著可在第—時„隔= 收集資料(步驟530)。使用諸如麼力感應器32〇之此項技術 中已知的感應ϋ可對時間、壓力及溫度監控—特料段。 在某些實施例中,彳由—壓力或時間檢查點來判定該時段 :長度。舉例而言,當腔室3〇5之體積内的壓力達到一特 定托時’可結束第-時間間隔。雖然第一時間間隔結束時 所處之壓力可取決於測定之流量而極大改變,但是此壓力 U在10托契.1000托之間。亦可在一預定的時間量後結束 103147.doc -23- 1278606 該第一時間間隔,該預定的時間量通 多於60秒。 不 在》亥弟-時間間隔結束(步驟53〇)後,接著可使用以2 與^. 3來計算流量屬性(步驟5如),而無需考慮體積360。 因此,不需要第二時間間隔,且可僅藉由使用阻塞孔322 而消除步驟540-570及590。 A習此項技術者將瞭解··藉由使用阻塞孔M2,可同樣 …:至8中描繪之方法達成類似之步驟縮減,且可在單一 瞬態階段期間利用腔室3G5之體積來判定 質流控制器12〇。另外,岸睁解.可^看 手尤驗口立 Γ應曙解·可不考慮阻塞孔322之建 構(例如三位置閱門或多位置闕門)達成此相同之步驟縮 減。 雖然可調節阻塞孔322以用於任何流動速率,但在一特 殊實施例中,阻塞孔322可為三位置閱門,其中調節該阻 塞孔以用於生成一壓力梯度,其中對於5〇〇咖或更大之 流動速率而言,體積360中之壓力大於阻塞孔322上游處之 壓力的兩倍。 那麼對於低於500 sccm之流動速率而言,可在數學上補 償由體積360引入之誤差。為了在數學上補償誤差,對體 積則之-特殊幾何形狀,可得出—用於作為包括流動速 率、幾何形狀及氣體類塑的主變數之函數之誤差項的方 程。該方程可給出由體積360之特定幾何形狀所 差的曲線的形狀。 舉例而言,對一體積360類似於圖1〇中所描繪之體積(其 103147.doc -24- 1278606 中體積360為一恆定直徑之管道)的狀況,可為一流量修正 項得出一方程。更具體言之,可發展出一展示體積36〇中 之平均壓力與所測定之腔室305中之平均壓力間的關係的 方程。此方程如下給出:The uncertainty of the measurement is reduced by using a larger volume t during the initial transient measurement. In a particular embodiment, the valve 37〇 can be closed by a control system that does not test or verify the inlet and outlet flow controller. To begin the test, the valves 310, 330' are opened and a vacuum is applied by the pump 38 (step $1〇). The valve 330' is then closed and the initial status information can be retrieved (step 520). The mass flow controllers 1-20 are based on a particular set point flow, and then the data for the first time interval can be collected (step 530). Using an induction sensor such as an external force sensor, it is possible to monitor the day (4), M force and temperature - for a specific period of time. In some embodiments, a pressure or time checkpoint may be used to determine the length of the time period. For example, when the pressure within the volume reaches a particular load, the first time interval can be ended. Although the pressure at the end of the first time interval may vary drastically depending on the measured flow rate, this pressure is typically between ι Torr and 1000 Torr. The first time interval may also be ended after a predetermined amount of time, which is typically at least 10 seconds but no more than 60 seconds. After the end of the first time interval (step 530), the trick 3 10 can then be closed (step 540) and the data for the second time interval is collected (step 55A). This data may include pressure, temperature, and time during the first time interval, and the length of the second time interval may be determined using the same criteria as discussed with respect to the first day interval between the above. After the end of the second time interval (step 550), the volume 360 and flow properties can then be calculated using Eq. 2 and Eq. 3 (steps 57, 58). Alternatively, volume 360 can be entered (step 590) and the flow attribute can then be calculated using the input volume (step 580). The flow rate can then be compared to the original set point of the mass flow controller 120 to determine the accuracy of the mass flow controller 12. Those skilled in the art will appreciate that a variety of steps, measurements, and calculations can be performed and executed in a number of ways, including by a control system embedded in the r〇r system 300, or by incorporating a mass flow controller. 120, gas bar 302 and processing chamber 130 are used to control and execute the control system. Similarly, Figure 6 is a flow diagram of a method for determining flow and verifying a mass flow controller 12 that can facilitate medium flow (20 SCCm to 200 sccm), wherein a larger volume is used during the initial transient phase. The chamber 3〇5 is not necessarily useful. 103147.doc -18- 1278606 In the implementation of the shot, the shot 1 370 can be controlled by a control system, which will perform the flow measurement or verification of the mass flow controller 12〇. For the test of the mass flow controller, the valves 310, 330 are opened and the vacuum is taken from the 38 〇. Valve 310 is then closed and the data can be retrieved for initial use (step 620). The slave stream controller 12 is based on the flow of a particular set point, and then the data can be collected during the first time interval (step 63A). Time, pressure and temperature can be monitored for a specific period of time using an inductor known in the art, such as pressure sensor 320. As discussed above with respect to Figure 5, the length of the time period can be determined by a pressure or time checkpoint. After the end of the first time interval (step 63A), valve 330 can then be closed, valve 310 opened (step 64A), and data collected during the second time interval (step 550). During this first time interval, this data may include pressure, temperature, and time, and the length of the second time interval may be determined using the same criteria as discussed with respect to the first time interval above. After the end of the second time interval (step 65A), the volume 360 and flow properties can then be calculated using Eq. 2 and ^3 (steps 67, 68). Alternatively, volume 360 may be entered (step 690), and then the input volume metered flow attribute may be used (step 680). The flow rate can then be compared to the original set point of the mass flow controller 12 to determine the accuracy of the mass flow controller 12. Once the volume 36 阀门 between the valves 350, 370 and 31 判定 is determined, the volume measurement can be performed using only the volume 360. In many assemblies, the volume 36〇 is J (&gt;\20 cc) 'so it is easier to determine the pressure change for a particular flow rate, typically reducing the measurement time for a given flow rate to 1/5 . 103147.doc -19- 1278606 Figure 7 illustrates a method of utilizing volume 360 to determine flow properties or collate mass flow controller 120. This method is particularly effective for flow rates less than 2 〇 sccm and allows for a much shorter measurement interval. Valve 37〇 can be closed by a control system that will perform flow measurement or verification of the mass flow controller 12〇. To perform the test of the mass flow controller, the valves 310, 330 are opened and the pump 380 is evacuated (step 71). The trick 310 is then closed and the data is retrieved for initial use (step 72). As discussed above, as the mass flow controller 120 is based on the flow of a particular set point, the data can then be collected during the first time interval (step 〇). After the end of the first time interval (step 730), the valve 3ι can be opened and the valve 330 closed (step 740). Under certain conditions, it may be advantageous to open the valve 330 prior to opening the valve 31, so that the pressure will remain in the volume 360 throughout the first time interval. After the end of the first time interval (step 730), the flow attributes can then be calculated using Eq·2 and £3 and the pre-determined volume publication (step 770) (step 78). Alternatively, volume 360 can be manually entered by the user (step 79A) and then the flow attribute can be calculated (step 780). The calculated flow rate can then be compared to the set point of the mass flow controller to determine the accuracy of the mass flow controller 12. Additionally, once the volume 360 between the mass flow controller valve and the valve is determined, flow measurement can be performed using the known volume and volume 36 of the chamber 305. This can be useful for high flow volumes where a large assay volume is desirable. Figure 8 illustrates a method of combining flow volume 360 and chamber 305 for flow measurement or verification of mass flow control 120. Valve 37〇 can be closed by a control system 103147.doc -20. 1278606, which will perform flow measurement or verification of the mass flow controller 12〇. For testing of the mass flow controller, valves 31, 33 are opened and vacuum is applied by pump 380 (step 81). The valve 33 is then closed and the data is retrieved for use in the initial state (step 820). As discussed above, as the mass flow controller 120 is based on the flow of a set point, the data may then be collected during the first time interval (step 830). After the end of the first time interval (step 830), valve 330 can then be opened (step 840), and then shame 2 and shame 3, pre-determined volume 360 determination (_step 87 〇) and chamber 3 可 can be used. A known volume of 5 is used to calculate the flow attribute (step 880). Alternatively, the volume 36 手动 can be manually entered by the user (step 890) and then the flow attribute is calculated (step 88 〇). The flow rate can then be compared to the set point of the mass flow controller 12G to determine the accuracy of the flow controller 12. However, in many cases, the error introduced in the rise rate calculation can be significant. More specifically, 'when the flow rate increases, the length of the line containing volume 360 or other fluid elements such as valve 35〇 in the path can be varied in volume relative to the rate of change of pressure within a known volume of 305 to 305. The rate of pressure change. The change in rate of change in volume 36 取决于 depends on the geometry of the volume 360, the flow rate of the mass flow controller 120, and on the characteristics of the gas flowing through the body rod 302, and thus allows the flow rate to be measured differently and qualitatively. The commensurate check of the flow controller 120 becomes difficult. These effects can become especially noticeable at flow rates above 200 seem. Therefore, when measuring pressure and pressure changes or calculating volume and flow rate, a method is needed to eliminate or compensate for these effects. 103147.doc -21- 1278606 In a particular embodiment of the disclosed method; 5, the dream + a, and the 4 4 method, a blocked hole can be used in combination with a volume to block the upstream of the hole The volumetric geometry or pressure to accurately determine a flow/claw rate. In addition, the error determined by using the blocked hole is taken up by the left point T and an error curve is fitted. Subsequently, it is not necessary to use a blocked hole to calculate the flow rate of the αL, and the flow rate can be adjusted based on the resulting and predicted error curves. Figure 9 depicts an embodiment of a hardware configuration that can be incorporated into a gas stream in parallel with a processing chamber that can substantially compensate for upstream pressure dependence by fluid shorting or by measuring the flow at the upstream of the device and plugging . As described above with respect to Figure 3, the rate of rise system (R〇R) 3〇〇 can be incorporated into the gas stream passing through the gas rod 302 to the processing chamber 130. In the particular embodiment depicted in Figure 9, a blocking aperture 322 is coupled between r〇r 300 and valve 350, abutting ROR 300. The occlusion hole 322 can be used to reduce the effect of the geometry of the volume 360 on the left force measurement and to improve the usability and accuracy of the ROR 300. By using a term "fluid short circuit," the technique of blocking the aperture 322 can reduce the sensitivity of the ROR 300 to the geometry of the volume 360. This technique narrows the fluid path such that the pressure in the volume 360 is greater than the upstream of the blocking aperture 322. Pressure. Although many pressure gradients can be used to reduce the effect of a volumetric geometry of 36 ,, for the desired effect, the venting orifice 322 should generate a pressure gradient such that the pressure in the volume 360 is at least the pressure upstream of the venting orifice 322. This may cause the pressure upstream of the blocking aperture 322 to remain substantially constant during a constant flow rate. In one embodiment, the blocking aperture 322 may be a multi-position valve that may be based on the flow rate of the mass flow controller 120 Positioning to generate a suitable pressure gradient between volume 360 and ROR 300. 103147.doc -22- 1278606 In another embodiment, the occlusion hole 322 can be a three-way valve having the opening known in the art. , closing and blocking the position. The gas bar 3〇2 and the processing chamber 130 can generally operate with the blocking hole 322 in the closed position. When the blocking hole 322 is When the position is opened, the 'ROR 300 can operate with the gas bar 302 and the processing chamber 13A as described with respect to Figures 5 through 8. However, by placing the blocking hole 322 in the blocking position, it can be in a volume of 36 〇 A pressure gradient is generated between the RORs 300 that allows the flow rate in the ROR 300 to be determined independently of the upstream pressure or volume. Since the flow rate in the ROR 30Q can be determined independently of the volume 36, there is no need to make a determination for volume 360. Determination of the geometry. For example, steps 54 〇 _ 57 〇 and 590 are not required with respect to Figure 5. In this condition using the occlusion hole 322, the valve 37 〇 can be closed by a control system, this indication will proceed Testing or verification of the mass flow controller. To begin the test, the valves 310, 330 are opened and the pump 38 is evacuated (step 51). Then the valve 330 is closed, the blocking hole 322 can be set to the blocking position and the data can be taken out. Used for the initial state (step 52〇). (3) Based on the -specific setting (four), then the data can be collected at the first time - interval = (step 530). Time, pressure and temperature monitoring - special sections can be used using an induction enthalpy known in the art, such as a force sensor 32 。. In some embodiments, the time period is determined by a pressure or time checkpoint: length. For example, the first time interval may be ended when the pressure within the volume of the chamber 3〇5 reaches a specific support. Although the pressure at the end of the first time interval may vary greatly depending on the measured flow rate, this pressure U is between 10 Torr and 1000 Torr. The first time interval may also be ended after a predetermined amount of time 103147.doc -23- 1278606, the predetermined amount of time being more than 60 seconds. After the end of the time interval (step 53〇), the flow attribute can be calculated using 2 and ^. 3 (step 5), without considering the volume 360. Therefore, a second time interval is not required, and steps 540-570 and 590 can be eliminated only by using the blocking hole 322. A skilled person will understand that by using the blocking hole M2, a similar step reduction can be achieved by the method described in the following:: to 8, and the volume of the chamber 3G5 can be used to determine the quality during a single transient phase. The flow controller 12 is closed. In addition, the shore can be solved. You can see the hand and check the mouth. You should not consider the construction of the blocking hole 322 (for example, three-position door or multi-position door) to achieve the same step reduction. Although the occlusion hole 322 can be adjusted for any flow rate, in a particular embodiment, the occlusion hole 322 can be a three position readout, wherein the occlusion hole is adjusted for generating a pressure gradient, wherein Or greater flow rate, the pressure in volume 360 is greater than twice the pressure upstream of blocking orifice 322. Then for a flow rate below 500 sccm, the error introduced by volume 360 can be mathematically compensated. In order to mathematically compensate for the error, the volume-specific geometry can be derived as a formula for the error term as a function of the main variable of the flow rate, geometry and gas-like shape. This equation gives the shape of the curve that is deviated by the particular geometry of volume 360. For example, for a volume 360 similar to the volume depicted in Figure 1 (the volume of 360147 is a constant diameter pipe in 103147.doc -24 - 1278606), an equation can be derived for a flow correction term. . More specifically, an equation showing the relationship between the average pressure in the volume 36 与 and the average pressure in the chamber 305 measured can be developed. This equation is given as follows:

Eq. (4) ^vg=l/3(Pl-P2)+i&gt;2 以上方程可與其它方程結合使用以得出一將給出使用Eq. (2)所測定之流量與期望的真實流量間之差值的流量修正Eq. (4) ^vg=l/3(Pl-P2)+i&gt;2 The above equation can be used in combination with other equations to arrive at a flow rate that is determined using Eq. (2) and the expected real flow rate. Flow correction

項’期望的真實流量併有關於體積36〇中之期望的平均壓 力之額外資訊_ : 動量方程 〇= 一生+ &quot; + dx 2x2 2z2 Eq. (4·1) 對於圓柱形幾何形狀:Item 'expected real flow and additional information about the expected average pressure in volume 36 _ : Momentum equation 〇 = lifetime + &quot; + dx 2x2 2z2 Eq. (4·1) For cylindrical geometry:

RdR dR u dx Eq. (4.2) 由於壓力梯度獨立於R,因此可將Eq· 4.2積分以給出 u{R)-ldpRl u dx 4RdR dR u dx Eq. (4.2) Since the pressure gradient is independent of R, Eq·4.2 can be integrated to give u{R)-ldpRl u dx 4

+ A\ogR + B+ A\ogR + B

Eq. (4.3) 邊界條件u(0)=有窮=&gt; A=0 μ(α)=0=&gt;Β = - — ^L· \ dx ) A μ u{R) 1 dp 4u dx (a2 - R2)Eq. (4.3) Boundary conditions u(0) = finite = &gt; A = 0 μ(α) = 0 = &gt; Β = - - ^L· \ dx ) A μ u{R) 1 dp 4u dx ( A2 - R2)

Eq. (4.4) 103147.doc -25 1278606 2\\μ{κ)^θ dp R: 2\)rdrde ^ 8// 0 0 ώ = i4 p SMRf dx (注意 X 為半徑) Eq. (4_5) pdp = m = dx [π R )Eq. (4.4) 103147.doc -25 1278606 2\\μ{κ)^θ dp R: 2\)rdrde ^ 8// 0 0 ώ = i4 p SMRf dx (note that X is the radius) Eq. (4_5) Pdp = m = dx [π R )

μ avgμ avg

i pdp = i m --- RT 4办假設T為常數 Λ ο π Ri pdp = i m --- RT 4 assumes that T is a constant Λ ο π R

ρΊ P \ΊP P

rn L π R 4Rn L π R 4

P l - rn L πP l - rn L π

RR

2 . 16 uRT2 . 16 uRT

Pq — 土Pq - soil

LL

Eq. (5.1)Eq. (5.1)

p dL 2 avgp dL 2 avg

Eq. (5.2) P avg L 1Eq. (5.2) P avg L 1

J dL 一般而言對於一二次函數: P = αχ2 + bJ dL is generally a quadratic function: P = αχ2 + b

其中當 x = 0 P = P。時;c = i P = PL 103147.doc -26- 1278606 P — all + PQ 5 a — L2 P = ^^x2+P〇Where x = 0 P = P. Time; c = i P = PL 103147.doc -26- 1278606 P — all + PQ 5 a — L2 P = ^^x2+P〇

Eq.(5.4)Eq. (5.4)

PdxPdx

P avgP avg

Eq. (5.5)Eq. (5.5)

P dx Pl^ Po 2 τ2 X +Ρ〇 dx Pl-Ρ。 { L ) 1 L J 'X3 + P〇x/L^P dx Pl^ Po 2 τ2 X +Ρ〇 dx Pl-Ρ. { L ) 1 L J 'X3 + P〇x/L^

LL

avg (P^Po) (l3) l L2 J l3J P〇LAvg (P^Po) (l3) l L2 J l3J P〇L

L P avg = L ~ Po) + 2L P avg = L ~ Po) + 2

P avg P^^PlP avg P^^Pl

Eq. (5.6) P〇Eq. (5.6) P〇

Pa ^+pl πPa ^+pl π

R 2 • \6jjRT T 2 L+p] + -R 2 • \6jjRT T 2 L+p] + -

PlPl

Eg. (5.7)Eg. (5.7)

nRnR

Eq. (5.8) πEq. (5.8) π

R 若Pl為時間之函數 則在一實施例中,若P = 0,則PfPi+At 103147.doc -27- 1278606 4(’)=譬(⑼十⑷中+臺A Eq. (6.1) 通常,當m項接近零時,誤差變得較小。對於一給定之質 ;,L誤差可由於氣體黏度的增加而增加,於是整個體積包 括兩部分··體積360與腔室305。 RT'R If P1 is a function of time, then in an embodiment, if P = 0, then PfPi+At 103147.doc -27- 1278606 4(')=譬((9) 十(4) + A A Eq. (6.1) Usually When the m term approaches zero, the error becomes smaller. For a given quality; the L error can be increased due to the increase in gas viscosity, so the entire volume includes two parts · volume 360 and chamber 305. RT'

RTRT

At +At +

At 若假設溫度相同,則:At If the temperature is assumed to be the same, then:

Eq. (6.3) 通常ΔΡ(〇ν =^(0,以使得 m〇Eq. (6.3) Usually ΔΡ(〇ν =^(0, so that m〇

RAtTRAtT

Eq. (6.4) 接著可藉由將兩式相減估算出所計算之質流中的誤差。 1 m〇Eq. (6.4) The error in the calculated mass flow can then be estimated by subtracting the two equations. 1 m〇

RAtT iApM^ApJdv]RAtT iApM^ApJdv]

Eq. (7.1) 為了簡潔,可自Eq· 7」取代平均壓力之變化,若吾人假設 當t = 0且P = 0時開始AP(t)f,則(生」广 rheEq. (7.1) For the sake of brevity, the change in mean pressure can be replaced by Eq. 7". If we assume that AP(t)f starts when t = 0 and P = 0, then (sheng) wide rhe

RT 见一 dt 2RT see a dt 2

At V,At V,

Eq. (7.2)Eq. (7.2)

Eq· 7.2看來表現良好。當可變體積Vv—〇,屯時, 103147.doc -28- 1278606 A 4 0,me-&gt; 0 ΜEq· 7.2 seems to perform well. When the variable volume Vv—〇, 103, 103147.doc -28- 1278606 A 4 0,me-&gt; 0 Μ

Eq. (7.3)Eq. (7.3)

R 為簡化,若VT=Vv+Vf則 m (AFt)R is simplified, if VT=Vv+Vf then m (AFt)

M RTL㈣▼M RTL (four) ▼

RTRT

L πL π

R ^)fVr RTAtR ^)fVr RTAt

Eq. (7.4) Eq. (7.5)Eq. (7.4) Eq. (7.5)

Eq.6.1之導數將產生: d ρανβ A avgThe derivative of Eq.6.1 will produce: d ρανβ A avg

+ -At dt dp if) ^ avg 一 2 f \ A2t + i , • dt 3 1 (MHAtfy) 3+ -At dt dp if) ^ avg a 2 f \ A2t + i , • dt 3 1 (MHAtfy) 3

Eq. (8.1) meEq. (8.1) me

Eq. (8.2) 103147.doc -29- 1278606Eq. (8.2) 103147.doc -29- 1278606

/ f \ \ V A 2 A2t — Λ — 3 \ V '♦+v)^f+㈤2} ^ ηκ ) J 3 J/ f \ \ V A 2 A2t — Λ — 3 \ V '♦+v)^f+(5)2} ^ ηκ ) J 3 J

Eq. (9) 2 其中 Vv =(m3),i? = 8.3149(^^),Γ⑻, L(m), R(m)5 t(s)5 m(—\ \ sscm^lAUW1 \s) s • 八項為腔室305内之壓力導數。接著藉由將Eq. 9之結果 加至Eq· 2可給出期望之流量。Eq. (9) 2 where Vv = (m3), i? = 8.3149(^^), Γ(8), L(m), R(m)5 t(s)5 m(—\ \ sscm^lAUW1 \s) s • Eight items are the pressure derivatives in chamber 305. The desired flow rate is then given by adding the result of Eq. 9 to Eq·2.

16L . ~ΓΤ 變數;Γ if等同於一流體路徑之幾何形狀項,且其由Η表 不’氣體黏度為由G表示之氣體相依項(gas dependent term)。可將Eq· 9重寫成:16L . ~ΓΤ variable; Γ if is equivalent to the geometric shape term of a fluid path, and it is represented by the gas viscosity as the gas dependent term represented by G. Can rewrite Eq·9 to:

不幸地,用你、、ώ 0、 ;机1測定之大多數幾何形狀將不會如序 來得出用:幾何形狀一樣簡單、然而,可使用相同之开 形狀之合適的方程。如圖… 成何形狀可為將閥門310正好引入腔室: 103147.doc &gt;30- 1278606 上游處。 在此狀況下,由以下方程11給出在管道(體積36〇)中之平 均壓力。Unfortunately, most of the geometries measured with you, ώ 0, and 1 will not be used in order: the geometry is as simple as it is, however, the appropriate equation for the same open shape can be used. As shown in the figure, the shape of the valve 310 can be just introduced into the chamber: 103147.doc &gt;30-1278606 upstream. In this case, the average pressure in the pipe (volume 36 〇) is given by the following equation 11.

Pavg- 1/3(P1-P3)+P3 其中 P3=Pv+P2,且Pv為通過閥門3之壓力下降值。如為Eq 9 發展出之方程,相同技術可用於發展出一描繪此特殊幾何 形狀之替代方程,且以下給出該方程··Pavg- 1/3(P1-P3)+P3 where P3=Pv+P2, and Pv is the pressure drop value through valve 3. For the equation developed by Eq 9, the same technique can be used to develop an alternative equation that depicts this particular geometry, and the equation is given below.

maMa

RT 2 +一λRT 2 + λ

Eq. (11) vv πEq. (11) vv π

R 其中A:為正好處於閥門330上游處之壓力導數R where A: is the pressure derivative just upstream of valve 330

一旦已得出一用於體積3 60之一特殊幾何形狀的方程, 接著可藉由使用ROR 3 00根據經驗觀察體積36〇之一特殊實 例對超過500 seem之流量所誘發之實際誤差,以在阻塞孔 322處於打開位置之同時對質流控制器12〇計算在一系列流 里汉定下的流動速率’此計算與在阻塞孔322處於阻塞位 置之同時計算在相同系列之流量設定下的流動速率相對。 藉由比較在此等流量設定之每一者之下所計算出的該等兩 個机動速率’可判定對應於高於5〇〇 sccm之流動速率之誤 差曲線的一組點。可接著將由所得出之方程(例如Eq. 10) 103147.doc 1278606 描述的曲線擬合在500 seem以上出現之以經驗判定的誤差 點,以產生一誤差方程,其描述一表示由體積36〇之幾何 形狀在所有流量下所誘發之誤差的曲線。 另外,在許多狀況下,由體積36〇對2〇〇 sccm或更少流 ϊ所誘發之誤差在統計上不顯著。因此,在此等流動速率 所觀察到之實際流量亦可用於建立由方程描述之誤差曲線 可擬合之點。 虽將方私所描述之曲線擬合以經驗判定之曲線時,可計 异出描述體積幾何形狀之一特殊實例之誤差曲線的誤差方 私中之變數,該等變數包括幾何形狀項(H)。可接著將此 =差曲線應用於將來由R0R 3〇〇所進行或所計算的測定及 ⑼L動速率,以杈正由體積36〇誘發之誤差,從而允許質流 控制器120之流動速率的更加精確之計算。應瞭解:此誤 差曲線可用於;^正當阻塞孔322處於打開位置時由體積36〇 :所有流動速率下所引入之誤差,從而允許在單一瞬態階 奴J間利用腔至305之體積以更加精確地判定流動速率並 驗證質流控制器120。 圖12描綠-使用R〇R 3〇〇及如上文中詳細描述之描述誤 差曲線的方程計算流動速率之方法的實施例。在此狀況 下,閥門370可由一控制系統關μ,此指示將進行質流控 制器之測試或驗證。為開始測試,打開閥門31〇、330,且 由系380抽真空(步驟121〇)。接著關閉閥門别,且取出資 ::於初始狀態(步驟1220)。隨著質流控制㈣基於某: L動接著可在第一時間間隔期間收集資料(步 103147.doc -32 - 1278606Once an equation for a particular geometry of volume 3 60 has been derived, the actual error induced by a flow of more than 500 seem can be obtained by empirically observing a particular instance of volume 36 by using ROR 3 00. The flow rate is calculated for the mass flow controller 12 in a series of flows while the blocking hole 322 is in the open position. This calculation calculates the flow rate at the same series of flow settings while the blocking hole 322 is in the blocking position. relatively. A set of points corresponding to an error curve above the flow rate of 5 〇〇 sccm can be determined by comparing the two maneuver rates calculated under each of the flow settings. The curve described by the resulting equation (e.g., Eq. 10) 103147.doc 1278606 can then be fitted to an empirically determined error point appearing above 500 seem to produce an error equation, which depicts a representation by volume 36. A curve of the error induced by the geometry at all flow rates. In addition, in many cases, the error induced by volume 36 〇 versus 2 〇〇 sccm or less is statistically insignificant. Therefore, the actual flow observed at these flow rates can also be used to establish the point at which the error curve described by the equation fits. Although the curve described by Fang and Fang is fitted to the empirically determined curve, the variables in the error square of the error curve describing a particular example of the volume geometry may be calculated, and the variables include the geometric shape item (H). . This = difference curve can then be applied to the future measurements and (9) L motion rates performed or calculated by R0R 3 , to correct the error induced by the volume 36 ,, thereby allowing the flow rate of the mass flow controller 120 to be more Accurate calculations. It should be understood that this error curve can be used; ^ when the blocking hole 322 is in the open position by the volume 36 〇: the error introduced at all flow rates, thereby allowing the volume to be utilized between the single transient stage slaves to 305 to be more The flow rate is accurately determined and the mass flow controller 120 is verified. Figure 12 depicts an embodiment of a method for calculating the flow rate using R 〇 R 3 〇〇 and the equation describing the error curve as described in detail above. In this condition, valve 370 can be closed by a control system that will test or verify the mass flow controller. To begin the test, valves 31, 330 are opened and a vacuum is applied by line 380 (step 121). The valve is then closed and the capital is removed from the initial state (step 1220). With the flow control (4) based on a certain: L move can then collect data during the first time interval (step 103147.doc -32 - 1278606

驟1230)。使用諸如壓力感應器320之此項技術中已知的感 應器可對時間、壓力及溫度監控一特定時段。在某些實施 例中’可由一壓力或時間檢查點來判定該時段之長度。舉 例而言’當體積内之壓力達到一特定托時,可結束第一時 間間隔。雖然第一時間間隔結束時所處之壓力可取決於測 定之流量而極大改變,但是此壓力通常在1〇托與1〇〇〇托之 間。亦可在一預定之時間量後結束該第一時間間隔,該預 定之時間量通常為至少1〇秒,但不多於6〇秒。 在該第一時_間間隔結束(步驟1230)後,接著可使用Eq· 2 Eq· 3來计异流1屬性(步驟1240),而無需考慮體積 360。如上文所描述,可接著藉由使用一預先判定之誤差 方程,為由體積360引入之誤差校正此定流量屬性(步驟 1250)。因此,不需要第二時間間隔,且可在阻塞孔μ。處 於打開位i時在任㈣量設定下言十#出一精確之流動速 率 〇 另外,在大多數狀況下,亦可修改此等方程,以當判定 在使用ROR 300計算流動速率時引入 : Ή八之决差時考慮流過氣 體棒302之氣體。此可通過使用氣體黏度項(如以中示 之G)來完成,基於流過氣體棒3〇2或r〇r 3〇〇之氣體來判 定該氣體黏度項之值。舉例而言,氣體項⑹對於氮氣可 為一值,且對於氟化氣體類型可為另一 一 且 寻寺。藉由使 用取決於氣體之G的一不同值,所得 吓侍之块是曲線不僅可校 正對體積360之形狀計算出之流量, * 方T权正對流過氣體 棒3 02之氣體黏度計算出的流量。 103147.doc •33 - 1278606 普通熟習此項技術者將瞭解可以大量方式控制及執行各 種步驟、測定及計算,該等方式包括:藉由-嵌於R0R系 統300内之控制系統,或藉由結合質流控制器12〇、氣體棒 302及處理腔室130使用之控制系統來控制並執行。 亦應瞭解··將基於阻塞孔322之調節及最優化來判定用 於擬合由方程描繪之曲線的以經驗判定之點。舉例而言, 若將阻塞孔322調節用於生成一壓力梯度,其中對於 seem或更大之流動速率而言,體積36〇中之壓力大於阻塞 孔322上游處之壓力的兩倍,以經驗判定之點可處於 seem或更高之流動速率。 應注意,並非相對於圖5至8及12描述之所有步驟皆為必 需,可不需要一步驟,且除了所描述之該等步驟外可使用 其它步驟’包括額外測定、額外時間間隔等。另外,描述 該等方法之每一元件的次序不必為使用纟之次序。在閱讀 本既明書之後,普通熟習此項技術者將可判定對一特殊實 施例而言哪種步驟之排列將最為合適的。 在前述之說明書中,已參考具體實施例描述了本發明。 然而,普通熟習此項技術者瞭解:在不脫離如以下申請專 利=圍中陳述之本發明之範脅的前提下,可作出各種修正 及變化。因此,應將本說明書及圖式看作說明性意 限制性意義’且所有該等修正意欲包括於本發明之 内。 已關於具體實施例在上文中描述了益處、其它優點及對 :問題之解決方法。然而,不應將該等益處、優點、對於 103 U7.doc •34- 1278606 問題之解決方法及可弓丨起任何益處、優點或解決方法出現 或變得更加明顯的任何組件解釋為任何或全部申請專利範 圍之關鍵的、必需的或基本的特徵或組件。 【圖式簡單說明】 圖1包括一用於藉由使用處理腔室來驗證質流控制器之 習知先前技術系統的說明。 圖2包括當在流量核對過程中利用一處理腔室時為達成 對於某些典型流動速率的壓力變化所需之時間的圖表。 圖3包括一用於質流控制器之驗證之系統的一實施例的 方塊圖。 圖4包括利用所描繪之方法的一實施例的作為時間之函 數之壓力的圖表。 圖5至8包括描繪用以執行流量核對或驗證質流控制器之 操作的方法的各種實施例的流程圖。 圖9包括一用於質流控制器之驗證之系統的一實施例的 方塊圖。 圖10包括一路徑的幾何形狀之一實施例的方塊圖,該路 徑為一質流控制器與一如圖9中描繪之系統間之路徑。 圖11包括一路徑的幾何形狀之一實施例的方塊圖,該路 徑為質流控制器與一如圖9中描繪之系統間之路徑。 圖12包括描繪一使用圖9中描繪之系統來執行流量核對 或驗證質流控制器之操作的方法的一實施例之流程圖。 【主要元件符號說明】 110 氣體供應裝置 103147.doc -35 - 1278606 120 質流控制器 130 處理腔室 300 上升率系統 302 氣體棒 305 腔室 320 壓力感應器 322 阻塞孔 310, 330, 350, 370 閥門 360 , 體積 380 泵 103147.doc -36-Step 1230). Time, pressure and temperature can be monitored for a specific period of time using an inductor known in the art, such as pressure sensor 320. In some embodiments, the length of the time period can be determined by a pressure or time checkpoint. For example, the first time interval may be ended when the pressure within the volume reaches a particular load. Although the pressure at the end of the first time interval may vary greatly depending on the measured flow rate, this pressure is typically between 1 Torr and 1 Torr. The first time interval may also be terminated after a predetermined amount of time, which is typically at least 1 second, but no more than 6 seconds. After the end of the first time interval (step 1230), Eq·2 Eq·3 can then be used to account for the different stream 1 attribute (step 1240) without regard to volume 360. As described above, this constant flow attribute can then be corrected for the error introduced by volume 360 by using a pre-determined error equation (step 1250). Therefore, a second time interval is not required and the hole μ can be blocked. When in the open position i, the flow rate is set at any (four) amount setting. In addition, in most cases, the equations may be modified to be introduced when determining the flow rate using the ROR 300: The gas flowing through the gas rod 302 is considered in the determination of the difference. This can be done by using the gas viscosity term (as indicated by G in the middle), and the value of the gas viscosity term is determined based on the gas flowing through the gas bar 3〇2 or r〇r 3〇〇. For example, the gas term (6) can be one value for nitrogen and the other for the type of fluorinated gas. By using a different value depending on the G of the gas, the resulting block of scars is that the curve not only corrects the calculated flow for the shape of the volume 360, * the square T weight is calculated for the gas viscosity of the gas bar 312. flow. 103147.doc •33 - 1278606 Those of ordinary skill in the art will appreciate that a variety of steps, measurements, and calculations can be performed and executed in a number of ways, including by means of a control system embedded in the ROR system 300, or by combining The mass flow controller 12, the gas bar 302, and the processing chamber 130 are controlled and executed using a control system. It should also be understood that the point of empirical determination for fitting the curve depicted by the equation will be determined based on the adjustment and optimization of the occlusion hole 322. For example, if the blocking hole 322 is adjusted to generate a pressure gradient, where the pressure in the volume 36 大于 is greater than twice the pressure upstream of the blocking hole 322 for a seek or greater flow rate, empirically determined The point can be at a flow rate of seem or higher. It should be noted that not all of the steps described with respect to Figures 5 through 8 and 12 are necessary, a single step may not be required, and other steps may be used in addition to those described, including additional measurements, additional time intervals, and the like. In addition, the order in which each of the elements of the methods are described is not necessarily in the order of use. After reading this specification, those skilled in the art will be able to determine which arrangement of steps will be most appropriate for a particular embodiment. In the foregoing specification, the invention has been described with reference to the specific embodiments. However, it will be apparent to those skilled in the art that various modifications and changes can be made without departing from the scope of the invention as set forth in the following claims. Accordingly, the specification and drawings are to be regarded as a Benefits, other advantages, and solutions to the problems have been described above with regard to specific embodiments. However, these benefits, advantages, solutions to the problems of 103 U7.doc • 34-1278606, and any components that may appear or become more apparent to any benefit, advantage, or solution should not be construed as any or all. A key, required or essential feature or component of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 includes an illustration of a prior art system for verifying a mass flow controller by using a processing chamber. Figure 2 includes a graph of the time required to achieve pressure changes for certain typical flow rates when utilizing a processing chamber during flow collation. Figure 3 includes a block diagram of an embodiment of a system for verification of a mass flow controller. Figure 4 includes a graph of the pressure as a function of time using an embodiment of the depicted method. Figures 5 through 8 include flow diagrams depicting various embodiments of a method to perform flow verification or verify operation of a mass flow controller. Figure 9 includes a block diagram of an embodiment of a system for verification of a mass flow controller. Figure 10 includes a block diagram of one embodiment of the geometry of a path, the path between a mass flow controller and a system as depicted in Figure 9. Figure 11 includes a block diagram of one embodiment of a geometry of a path between the mass flow controller and a system as depicted in Figure 9. Figure 12 includes a flow chart depicting an embodiment of a method for performing flow verification or verifying operation of a mass flow controller using the system depicted in Figure 9. [Main component symbol description] 110 gas supply device 103147.doc -35 - 1278606 120 mass flow controller 130 processing chamber 300 ascending rate system 302 gas bar 305 chamber 320 pressure sensor 322 blocking hole 310, 330, 350, 370 Valve 360, volume 380 pump 103147.doc -36-

Claims (1)

1278606 十、申請專利範圍: 1. 一種測定一通過一流量控制器之流量的方法,其包含: ' 在一第一時間間隔期間收集關於第一體積之第一資 料; 在一第二時間間隔期間收集關於第二體積之第二資 料; 判定該第一體積;及 計算該流量。 • 2.如請求項1之方法,其中判定該第一體積包含計算該第 一體積。 3. 如請求項2之方法,其中該第一體積基於該第一資料及 該第二資料來計算。 4. 如請求項3之方法,其中該第一資料包括歷經第一時間 間隔之壓力變化,且該第二資料包括歷經第二時間間隔 之壓力變化。 5. 如請求項4之方法,其中收集第二資料在收集第一資料 鲁 之前執行。 6. 如請求項4之方法,其中收集第一資料在收集第二資料 之前執行。 7. 如請求項1之方法,其中判定該第一體積包含接收一輸 入0 8. 如請求項7之方法,其中該第一資料包括歷經第一時間 間隔之壓力該變化,且該第二資料包括歷經第二時間間 隔之壓力變化。 103147.doc 1278606 9.如請求項8之方法’其中收 一 之前執行。 ’、弟一贫料在收集第-資科 方法…收集第-資料在收集第 前執行 η.種挪定一通過一流量控制器之流量的方法, 在1-時間間隔_收體 料;及 币體II 資料 其包含 資 基於該第一資料計算兮 π Τ异4s,其中該 判定的或作為輸入接收。 體積為預先 12·如咕求項u之方法,其中該第 判定: 積猎由以下步驟預先 在一第一時間 料; 間隔期間收集關於該第—體積之第1 料在:第二時間間隔期間收集關於一第二體積之第二資 基於該第-資料及該第二資料計 13. —種測定一诵讲所、备 在一第;貝流控制器之流量的方法,其包含: 料及〜1間隔期間收集關於-第-體積之第一資 為預先 基於該第—資料計算 判定的或作為輪入接收。 14 ·如請求項13之方、、木 體積 在一第一時 • 忐,其中猎由以下步驟預先判定該第 資 間間隔期間收集關於該第一體積之第 103147.doc 1278606 料; 在一弟二時間間隔期間料;及 收集關於該第二體積之第二資 基於該第一資料或該第二資料計算該第二體積。 15 · —種用於測定一通過_、、六玲 該系統在該流量控制器之流量的系統,其中 該系統包含: 下私處連結至該流量控制器’1278606 X. Patent application scope: 1. A method for determining a flow rate through a flow controller, comprising: 'collecting first data about a first volume during a first time interval; during a second time interval Collecting a second data about the second volume; determining the first volume; and calculating the flow rate. 2. The method of claim 1, wherein determining the first volume comprises calculating the first volume. 3. The method of claim 2, wherein the first volume is calculated based on the first data and the second data. 4. The method of claim 3, wherein the first data comprises a pressure change over a first time interval and the second data comprises a pressure change over a second time interval. 5. The method of claim 4, wherein the second data collection is performed prior to collecting the first data. 6. The method of claim 4, wherein collecting the first data is performed prior to collecting the second data. 7. The method of claim 1, wherein the determining that the first volume comprises receiving an input 0. 8. The method of claim 7, wherein the first data comprises a change in pressure over a first time interval, and the second data Includes pressure changes over the second time interval. 103147.doc 1278606 9. The method of claim 8 wherein the execution is performed prior to receipt. ', the younger brother is in the collection of the first-investigation method... collecting the first-data before the collection of the first implementation of the η. kind of a method of flow through a flow controller, at 1-time interval _ receiving material; The coin II data contains the calculation based on the first data 兮π 4 4s, where the decision is received or received as an input. The volume is a method of 12 in advance, wherein the first determination: the accumulation is performed by the following steps in a first time period; the first material of the first volume is collected during the interval: during the second time interval Collecting a second volume based on the first data and the second data meter 13. A method for measuring a flow rate of the first stream; a flow controller of the second stream controller, comprising: The first resource for collecting the -first volume during the interval is determined based on the calculation of the first data in advance or as a round-robin reception. 14 · As in the case of claim 13, the wood volume is at the first time • 猎, where the hunting is determined by the following steps to collect the first volume of the first volume during the interval between the collections of the 103147.doc 1278606; And storing the second volume for the second volume based on the first data or the second data. 15 - a system for determining the flow of the system through the flow controller, _, and Liu Ling, wherein the system includes: a private node connected to the flow controller 器 在该腔-至之上游處連沾 哽%至該腔室之第一閥門; 在該腔室之下游處遠钍 — 、、、°至該脸室之第二閥門;及 在該第一閥門之上、、故+ 上私處連結至該腔室之壓力感應 16.如請求項15之系統,其中 糸、、先可刼作以用於 在-第-時間間隔期間收集關於一料;及 體積之第一資The first valve of the chamber is immersed in the chamber to the upstream of the chamber; the second valve at the downstream of the chamber is located at -, ,, ° to the chamber; and at the first Pressure sensing on the valve above, and thus in the private part of the chamber. 16. The system of claim 15 wherein 糸, 先, can be used first to collect the relevant material during the -first time interval; Volume first 在一第二時間間隔期 料 間收集關於一第二體積之第二資 體積對應於該第一閥門 且該第二體積對應於該 賁料包括在該第一時間 二資料包括在該第二時 17·如請求項16之系統,其中該第一 與該流量控制器之間的該體積, 第一體積及該腔室之一體積。 18·如請求項17之系統,其中該第一 間隔期間壓力之該變化,且該第 間間隔期間壓力之該變化。 19.如請求項18之系 統,其中收集第 二資料在收集第一資料 103147.doc 1278606 之前執行。 2〇.如請求項18之系統,1 φ队在# ’、收集弟一資料在收集第二資料 之别執行。 v 21·如請求項18之系統,其中 M w糸、、先可進一步操作以用於: 判定該第一體積·,及 計算該流量。 22·如請求項u之系統,复申 八τ 4糸統精由基於該第一資料及 該第二資料之計算來判定該第一體積。 、 23·如請求項21之系統,其中該系統藉由接收-輸入來判定 該第一體積。 24. 一種測定一通過一質流控制器之流量的方法,1包含: 在一第一時間間隔期間收集關於-第-體積之第一資 料; 、 、 計算一第一流量;及 基於一誤差曲線調整該第一流量。 25. 如明求項24之方法’其進一步包含判定該誤差曲線。 26. 如請求項25之方法,其中判定該誤差曲線包含將一得出 之誤差曲線擬合—組誤差點,該組誤差點包括—組已判 定之誤差點。 27. 如明求項25之方法,其中每一所判定之誤差點藉由以下 步驟判定: 在第一设定點處於一第二時間間隔期間收集關於該 第一體積之第二資料,其中-阻塞孔處於-打開位置 基於該第二資料計算一第二流量; , 103147.doc 1278606 在該第一設定點處於一第三時間間隔期間收集關於該 第一體積之第三資料,其中該阻塞孔處於一阻塞位置; 基於該第三資料計算一第三流量;及 比較該第二流量與該第三流量。 28.如請求項27之方法,其中該阻塞孔可操作以用於在處於 該阻塞位置時生成一壓力梯度,其中該阻塞孔之上游處 的壓力約為該阻塞孔之下游處之壓力的兩倍。 29·如請求項28之方法,其中該阻塞孔可操作以用於當該第 一設定點為至少500 seem時生成該壓力梯度。 30·如請求項28之方法,其中該組所判定之誤差點的每一點 表示當該第一設定點為至少500 seem時之誤差。 31·如請求項30之方法,其中該組誤差點包括一組所觀察之 誤差點。 32. 如晴求項26之方法,其中每一所觀察之誤差點藉由以下 步驟判定: 在一第二設定點處於一第四時間間隔期間收集關於該 第一體積之第四資料,·及 基於該第四資料計算一第四流量。 33. 如請求項32之方法,其中該組所觀察之誤差點的每一點 表示¥忒弟一叹疋點為2〇〇 sccm或更少時之誤差。 如明长項26之方法’其中判定該誤差曲線進一步包含基 於氣體類型調整該誤差曲線。 35\一種用於測定一通過一質流控制器之流量的系統,其中 °亥系統在该質流控制器之下游處連結至該質流控制器, 103147.doc !2786〇6 該系統包含: 一腔室; 在&quot;亥腔至之上游處連結至該腔室之第一閥門; 在忒腔至之下游處連結至該腔室之壓力感應器;及 :在該壓力感應器之上游處連結至該腔室之阻塞孔。 •如明求項35之系統,其中該系統可操作以用於: 在第一時間間隔期間收集關於一第一體積之第一資 料;及 、 、 計算一第一流量。 ”月求項36之系統’其中該阻塞孔可操作以用於生成一 壓力梯度’其中該阻塞孔之上游處的壓力約為該阻塞孔 之下游處之該壓力的兩倍。 A如請求項37之系統,其中計算該第—流量進—步包含基 於一誤差曲線調整該第一流量。 土 •如π求項38之系統’其中該系統可進一步操作以用於判 定該誤差曲線。 後如請求項39之系統,其中判定該誤差曲線包含將一得出 之誤差曲線擬合一組誤差點’該組誤差點包括一組已判 疋之秩差點。 •如請求項40之系統,其中該系統可操作以用於藉由 步驟判定每一所判定之誤差點: -在:第―!定點處於一第二時間間隔期間收集關於該 弟體積之第一貧料,其中該阻塞孔處於一 灯開位置; 基於該第二資料計算一第二流量; 103147.doc 1278606 在該第一設定點處於一第三時間㈤隔期間收集關於該 第一體積之第二負料,其中該阻塞孔處於一阻塞位置; 基於該第三資料計算一第三流量;及 比較該第二流量與該第三流量。 2·如凊求項40之系統,其中該組所判定之誤差點的每一點 表示當該第一設定點為至少500 sccm時之誤差。 43·如請求項42之系統,其中該組誤差點包括一組所觀察之 誤差點。 •如明求項43_之系統,其中該系統可操作以用於藉由以下 步驟判定每一所觀察之誤差點: 在一第二設定點處於一第四時間間隔期間收集關於該 第一體積之第四資料;及 基於該第四資料計算一第四流量。 45·如請求項44之系統,其中該組被觀察之誤差點的每一點 表示當該第二設定點為200 seem或更少時之誤差。 46·如請求項45之系統,其中判定該誤差曲線進一步包含基 於氣體類型調整該誤差曲線。 47.如印求項37之系統,其中該第一資料在該阻塞孔處於該 阻塞位置時收集。 48·如請求項47之系統,其中該阻塞孔為一個三通閥門,其 可操作以用於當該第一流量高於5〇〇 sccrn時生成該壓力 梯度。 49_ 一種測定一通過一質流控制器之流量的方法,其包含: 在一第一時間間隔期間收集關於一第一體積之第一資 103147.doc 1278606 _ 料,其中該第一資料在一阻塞孔處於一阻塞位置時收 • 集,且該阻塞孔可操作以用於當處於該阻塞位置時生成 壓力梯度,其中該阻塞孔之上游處的壓力約為該阻塞 孔之下游處之該壓力的兩倍;及 計算一第一流量。 50_如明求項49之方法,其中該阻塞孔為一個三通閥門,其 可操作以用於當該第一流量高於500 seem時生成該壓力 梯度。Collecting a second volume corresponding to a second volume during a second time interval corresponding to the first valve and the second volume corresponding to the data included in the first time two data included in the second time 17. The system of claim 16, wherein the volume between the first and the flow controller, the first volume, and a volume of the chamber. 18. The system of claim 17, wherein the change in pressure during the first interval and the change in pressure during the inter-interval. 19. The system of claim 18, wherein the second data collection is performed prior to collecting the first data 103147.doc 1278606. 2〇. As in the system of claim 18, the 1 φ team is at # ’, and the collection of the second data is performed in the collection of the second data. v 21. The system of claim 18, wherein M w , , is further operable to: determine the first volume, and calculate the flow. 22. If the system of claim u is reclaimed, the first volume is determined based on the calculation of the first data and the second data. 23. The system of claim 21, wherein the system determines the first volume by receiving-inputting. 24. A method of determining a flow rate through a mass flow controller, 1 comprising: collecting a first data relating to a - volume during a first time interval; calculating a first flow rate; and based on an error curve Adjust the first flow rate. 25. The method of claim 24, further comprising determining the error curve. 26. The method of claim 25, wherein determining the error curve comprises fitting a derived error curve to a set of error points, the set of error points comprising a set of error points that have been determined. 27. The method of claim 25, wherein each of the determined error points is determined by: collecting a second data about the first volume during a second time interval at the first set point, wherein - And occluding a second flow rate based on the second data; 103147.doc 1278606 collecting a third data about the first volume during the third set time at the first set point, wherein the blocked hole In a blocking position; calculating a third flow rate based on the third data; and comparing the second flow rate with the third flow rate. 28. The method of claim 27, wherein the blocking aperture is operable to generate a pressure gradient when in the blocking position, wherein the pressure upstream of the blocking aperture is about two of the pressure downstream of the blocking aperture Times. The method of claim 28, wherein the blocking aperture is operable to generate the pressure gradient when the first set point is at least 500 seem. 30. The method of claim 28, wherein each point of the error point determined by the group represents an error when the first set point is at least 500 seem. 31. The method of claim 30, wherein the set of error points comprises a set of observed error points. 32. The method of claim 26, wherein each observed error point is determined by: collecting a fourth data about the first volume during a fourth time interval at a second set point, and A fourth flow rate is calculated based on the fourth data. 33. The method of claim 32, wherein each point of the error point observed by the group represents an error when the sigh point is 2 〇〇 sccm or less. The method of claim 26 wherein determining the error curve further comprises adjusting the error curve based on the type of gas. 35\ A system for determining a flow rate through a mass flow controller, wherein the °H system is coupled to the mass flow controller downstream of the mass flow controller, 103147.doc !2786〇6 The system comprises: a chamber; a first valve coupled to the chamber upstream of the chamber; a pressure sensor coupled to the chamber downstream of the chamber; and: upstream of the pressure sensor Connected to the blocking hole of the chamber. The system of claim 35, wherein the system is operative to: collect a first data relating to a first volume during a first time interval; and, calculate a first flow rate. The system of monthly claim 36 wherein the blocking aperture is operable to generate a pressure gradient 'where the pressure upstream of the blocking aperture is about twice the pressure downstream of the blocking aperture. A. The system of 37, wherein calculating the first flow rate step comprises adjusting the first flow rate based on an error curve. The system of claim XX is wherein the system is further operable to determine the error curve. The system of claim 39, wherein determining the error curve comprises fitting a derived error curve to a set of error points, the set of error points comprising a set of rank differences that have been determined. • The system of claim 40, wherein The system is operable to determine, by the step, each of the determined error points: - collecting a first lean material for the volume of the brother during a second time interval, wherein the blocked hole is in a light An open position; calculating a second flow based on the second data; 103147.doc 1278606 collecting a second negative for the first volume during the third set (five) interval at the first set point, The blocking hole is in a blocking position; calculating a third flow rate based on the third data; and comparing the second flow rate with the third flow rate. 2. The system of claim 40, wherein the error point determined by the group Each point represents an error when the first set point is at least 500 sccm. 43. The system of claim 42, wherein the set of error points comprises a set of observed error points. , wherein the system is operative to determine each observed error point by: collecting a fourth data about the first volume during a fourth time interval at a second set point; and based on the The fourth data is calculated as a fourth flow. 45. The system of claim 44, wherein each point of the set of observed error points represents an error when the second set point is 200 seem or less. The system of claim 45, wherein determining the error curve further comprises adjusting the error curve based on a gas type. 47. The system of claim 37, wherein the first data is collected when the blocked hole is in the blocked position. The system of claim 47, wherein the blocking aperture is a three-way valve operable to generate the pressure gradient when the first flow rate is above 5 〇〇 sccrn. 49_ A measurement is performed by a mass flow controller a method of flow, comprising: collecting a first resource 103147.doc 1278606 for a first volume during a first time interval, wherein the first data is collected when a blocked hole is in a blocking position, and The blocking aperture is operable to generate a pressure gradient when in the blocked position, wherein the pressure upstream of the blocking aperture is approximately twice the pressure downstream of the blocking aperture; and calculating a first flow rate. The method of claim 49, wherein the blocking hole is a three-way valve operable to generate the pressure gradient when the first flow rate is above 500 seem. 103147.doc103147.doc
TW094123260A 2004-07-09 2005-07-08 Method and system for flow measurement and validation of a mass flow controller TWI278606B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/887,591 US7412986B2 (en) 2004-07-09 2004-07-09 Method and system for flow measurement and validation of a mass flow controller
US10/946,031 US7424895B2 (en) 2004-07-09 2004-09-21 Method and system for flow measurement and validation of a mass flow controller

Publications (2)

Publication Number Publication Date
TW200613700A TW200613700A (en) 2006-05-01
TWI278606B true TWI278606B (en) 2007-04-11

Family

ID=35839722

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094123260A TWI278606B (en) 2004-07-09 2005-07-08 Method and system for flow measurement and validation of a mass flow controller

Country Status (4)

Country Link
EP (1) EP1797489A4 (en)
JP (1) JP2008506116A (en)
TW (1) TWI278606B (en)
WO (1) WO2006017116A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7474968B2 (en) * 2005-03-25 2009-01-06 Mks Instruments, Inc. Critical flow based mass flow verifier
US7757554B2 (en) 2005-03-25 2010-07-20 Mks Instruments, Inc. High accuracy mass flow verifier with multiple inlets
TWI416619B (en) * 2006-11-17 2013-11-21 Lam Res Corp Methods for performing actual flow verification
WO2009084422A1 (en) * 2007-12-27 2009-07-09 Horiba Stec, Co., Ltd. Flow rate ratio controlling apparatus
US7891228B2 (en) 2008-11-18 2011-02-22 Mks Instruments, Inc. Dual-mode mass flow verification and mass flow delivery system and method
JP5442413B2 (en) * 2009-12-03 2014-03-12 ルネサスエレクトロニクス株式会社 Semiconductor manufacturing apparatus and flow rate control apparatus
GB201108854D0 (en) * 2011-05-26 2011-07-06 Spp Process Technology Systems Uk Ltd Mass flow controller monitoring
US10031005B2 (en) 2012-09-25 2018-07-24 Mks Instruments, Inc. Method and apparatus for self verification of pressure-based mass flow controllers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3363461A (en) * 1965-05-26 1968-01-16 Peerless Paint & Varnish Corp Method for measuring flow
US4146051A (en) * 1976-01-10 1979-03-27 Lucas Industries Limited Fluid flow control system
EP0547617B1 (en) * 1991-12-18 1996-07-10 Pierre Delajoud Mass flow meter and method
US5684245A (en) * 1995-11-17 1997-11-04 Mks Instruments, Inc. Apparatus for mass flow measurement of a gas
US6119710A (en) * 1999-05-26 2000-09-19 Cyber Instrument Technologies Llc Method for wide range gas flow system with real time flow measurement and correction
US6539968B1 (en) * 2000-09-20 2003-04-01 Fugasity Corporation Fluid flow controller and method of operation
WO2002033361A2 (en) * 2000-10-13 2002-04-25 Mks Instruments, Inc. Apparatus and method for maintaining a constant pressure drop across a gas metering unit

Also Published As

Publication number Publication date
EP1797489A4 (en) 2008-07-30
TW200613700A (en) 2006-05-01
JP2008506116A (en) 2008-02-28
WO2006017116A2 (en) 2006-02-16
WO2006017116A3 (en) 2007-03-01
EP1797489A2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
TWI278606B (en) Method and system for flow measurement and validation of a mass flow controller
US7412986B2 (en) Method and system for flow measurement and validation of a mass flow controller
US11519773B2 (en) Methods, systems, and apparatus for mass flow verification based on choked flow
JP5090448B2 (en) Mass flow verifier based on critical flow
KR101840047B1 (en) Method and apparatus for in situ testing of gas flow controllers
TWI642910B (en) Flow control device, flow correction method for flow control device, flow measurement device, and flow measurement method using flow measurement device
JP5174032B2 (en) Controller gain scheduling for mass flow controllers
US7905095B2 (en) System for refrigerant charging with constant volume tank
JP2011515660A (en) High accuracy mass flow verifier with multiple inlets
CN104704434A (en) Method and apparatus for self verification of pressure based mass flow controllers
KR20160132404A (en) System for and method of monitoring flow through mass flow controllers in real time
JP6426475B2 (en) System and method for improving the accuracy of damping rate measurement for real time correction in a mass flow controller or mass flow meter by minimizing thermal induced errors in ROD measurements using a thermal model
TW201314402A (en) Gas flow rate verification system and gas flow rate verification unit
US10031004B2 (en) Methods and apparatus for wide range mass flow verification
KR20150042127A (en) Methods and systems for estimation of propellant transfer in an ion propulsion system
CN110382103A (en) Liquid material gasifying feedway and control program
KR102545164B1 (en) Methods, systems, and apparatus for mass flow verification based on rate of pressure decay
CN111426009B (en) Control method of air conditioning system, air conditioning system and computer storage medium
CN109084445A (en) A kind of initial opening method of adjustment, device and the air conditioner of electric expansion valve
KR20170108086A (en) System and method for integrity testing of flexible containers
CN110234965B (en) Flow rate measuring method and flow rate measuring device
JP2021523356A (en) System and dynamic capacitance method for surface characterization of porous solid and powder materials using fluidized gas
CN111819406B (en) Refrigerant leak detection system and method
TW202033935A (en) Flow rate calculation system, recording medium, flow rate calculation method, and flow rate calculation device
KR101839463B1 (en) Pvt mass gauging apparatus and method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees