TWI278524B - Fabrication of ductile intermetallic sputtering targets - Google Patents

Fabrication of ductile intermetallic sputtering targets Download PDF

Info

Publication number
TWI278524B
TWI278524B TW092115426A TW92115426A TWI278524B TW I278524 B TWI278524 B TW I278524B TW 092115426 A TW092115426 A TW 092115426A TW 92115426 A TW92115426 A TW 92115426A TW I278524 B TWI278524 B TW I278524B
Authority
TW
Taiwan
Prior art keywords
atom
powder
target
representative
raw material
Prior art date
Application number
TW092115426A
Other languages
Chinese (zh)
Other versions
TW200404908A (en
Inventor
Michael Sandlin
Bernd Kunkel
Willy Zhang
Original Assignee
Heraeus Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Inc filed Critical Heraeus Inc
Publication of TW200404908A publication Critical patent/TW200404908A/en
Application granted granted Critical
Publication of TWI278524B publication Critical patent/TWI278524B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/162Machining, working after consolidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Sputtering targets are produced which have an intermetallic stoichiometry which makes them ductile enough for maching and sputtering. The targets are produced from elemental or alloy powders or alloys, at least one of which is of very fine particle size, e.g., -400 mesh. The elemental or alloy powders are blended, canned, subjected to hot isostatic pressing at low temperatures and high pressures, formed into a billet, and machined to form the target.

Description

1278524 玖、發明說明: 【發明所屬之技術領域】 I係針對以元素攙漏及熱等靜壓製造具延展性介金 屬性濺射標靶之方法。 【先前技術】 陰極賤射方法廣泛用於沈積薄膜材料在要求之基板上。 ”之Λ*射系、统包括產生電子&離子束之電漿源、,包括將 被原子化材料之標㈣_材料沈積在其上之基板。此方 法^本上包括以電子或離子束在使標乾材料賤射或侵蚀離 開標靶之角度撞擊標靶材料。濺射標靶材料以薄膜或層沈 積在基板上。 用在賤射方法中之標#材料已由純金屬發展成更複雜之 合金。複合3至6種元素之化合物及㈣之介金屬性合金如 制、N⑷、RuA卜c〇Ah㈣及川灿在濺射工業中為常 見的。合金添加物如 Cr、B、Zr、Ta、Hf、pt、si〇2、η 〇 等等為常常加到B2(即·、CgA1、RuA丨、..·)及其他介2金3 屬性合金中以改變如沈積膜晶粒大小或表面能之特徵。 大部分介金屬性合金本質上為硬且脆的,且其中部分合 金=熱傳導性小於金屬。因A,這些介金屬性合金一旦經 壓男(c〇nS〇lldated)成固態形#時面臨與成為標乾之機械加 工性能及陰極賤射時工作延展性相關之挑戰。這些材料^ 現在機械加工時極有限之抗機械衝擊力及在賤射日;極有限 之抗熱衝擊性。 ’限 【發明内容】 85798-950602.doc 1278524 且本發明係關於一種新穎之製造濺射標靶之方法,此標靶 /、有介金屬性之化學計量,可提供其足夠之延展性作機械 力工及成射。此方法採用將構成介金屬性合金的指定物種 進仃疋素攙混,及在高壓下低溫熱等靜壓(HIp)壓實以防止 並控制標靶材料中介金屬相之形成。標靶不含些微介金屬 ,又事實在應用中不是問題,因為陰極濺鍍為一種原子接 著原子/儿知之方法,其中不同之原子物種在基板上再結合 以开/成平衡及所欲之介金屬相。本發明之另一目的為減少 柃靶材料之成本,因為在Ηιρ壓實前介金屬性粉末之製造不 是必須之步驟。典型上,合金粉末係使用燒結或氣體原子 化万法製造,此等方法易具有非常高之相關連之分批進行 之成本。本發明之這些與其他目的由下面之詳細述敘將變 得明顯。 【實施方式】 &圖1顯示製造本發明標靶之方法流程圖。第一步驟為1〇 選擇像A1、Ti、Ru、州、灿等之原料粉末。這裏必須指出 勺是為了法、質化之要求,至少一種參與之粉末必須為極 細之粉末(如_400網目)。例如,在所有X-A1-Y中,A1粉末具 有30彳政米之粒子大小,此處X可代表如Ru、Ti、Co及Ni之 元素且 Y可代表如 Cr、B、Zr、Ta、Hf、pt、Si〇2、τ“〇3 之 元素此等特定合金組合物為典型上與如B2、Ll2、D019 、lig等 < 晶體結構相關者。理論上,愈細之粉末對加工愈 好,但超細之A1粉末因為其具爆炸性之本性非常不容易處 理。因此典型上對所有含鋁材料選擇30微米平均粒子大小 85798-950602.doc 1278524 之A1粉末。相同之考慮應用到NiNb中之Ni粉末。 20《攙混對整個過程亦為重要的,因為最終產物之均勻 性視此步驟合定。實際上,可應用㈣攙混方法達到Μ 、句勻f如V-攙混、土爾布拉(Turbular)攙混、球狀磨粉 機攙混及/或球磨機研磨攙混(溼或乾),所有的均為技藝界 所熟知。 若而要,攙混粉末可隨後在3〇壓縮,且隨後在HIp壓緊前 在40裝罐。 μ 在攙混過程後之步驟4〇中,粉末在HIp加工前裝罐。例如 以韌末充滿容器,在加熱下抽真空以確定移除存在之任 何水氣或陷在其中之氣體,之後密封。雖然容器之幾何形 狀不以任何万式限制,容器可具有與最終材料組態相關之 接近最終形狀幾何形狀。 如上面所述,50之低溫/高壓熱等靜壓(HIP)為此方法之必 要硝刀。低溫可緩和元素粒子間之脆化介金屬性反應區域 之形成,而高壓確保粉末組合物之完全密實化。如在此所 敘述,應用2〇0至1000。(:範圍之溫度及5 “丨至⑼“丨範圍之 壓力作等靜壓。在設計溫度及壓力下之維持時間之範圍為 〇·5至12小時。在HIP壓實後,固體塊可在6〇機械加工成最 終要求之尺寸,可使用包括線EDM、鋸、水刀、車床、研 磨機等等技藝界熟知之種種技術。值得注意的是其他粉末 壓實技術如熱壓及冷壓亦可獨立或結合Hlp加工應用,視要 求之結果而定。在機械加工後,清潔產品並在7〇作最後檢 查0 85798-950602.doc 1278524 下表描寫使用在此敘述之本發明製造之一些合金,圖2a 至2h描寫與這些合金相關之微結構並展示在個別元素相間 最小化之介金屬性反應區域。 表:觀察合金之概要 材料 典型之化學組成 Al-Ni-B 60原子%八1-30原子%沖-10原子% Cr Ru-Al 50原子% 1111-50原子% A1 Co-Al 50原子% Co-50原子% A1 Ti-Al 50原子%11-50原子%A1 Ni-Al 50原子%犯-50原子%八1 Ni-Nb 50原子% Ni-50原子%Nb 在表及圖2a-2f中,圖2a-2b描寫Al-Ni-B合金之概觀及細 部,圖2c-2d描寫Ni-Nb合金之概觀及細部,圖2e-2f描寫 Ru-Al合金之概觀及細部,圖2g描寫Co-Al合金之微結構, 而圖2h描寫Ti-Al合金之微結構。 儘管本發明已參照幾個較佳具體實施例,預期種種改變 及修正對熟諳此藝者在閱讀在此包含之詳細敘述後將變得 明顯。因此預期下面之申請專利範圍將表達作為包括所有 這類改變及修正落在本發明之精神及範圍内。 【圖式簡單說明】 參照附圖,其中: 圖1為在此敘述本發明之方法流程圖;及 圖2a至2h顯示一些表中代表合金之微結構。 85798-950602.doc1278524 玖, invention description: [Technical field to which the invention pertains] I is a method for producing a ductile intermetallic property sputtering target by elemental leakage and hot isostatic pressing. [Prior Art] The cathode sputtering method is widely used for depositing a thin film material on a desired substrate. The "system" includes a plasma source that produces an electron & ion beam, and includes a substrate on which the element (4) of the atomized material is deposited. The method includes electron or ion beam. The target material is struck at the angle of the target dry material or eroded away from the target. The sputtering target material is deposited on the substrate as a film or layer. The material used in the sputtering method has been developed from pure metal to more Complex alloys. Compounds of 3 to 6 elements and (4) Metal-based alloys such as N, 4, RuA, c, Ah (4) and Chuan Can are common in the sputtering industry. Alloy additives such as Cr, B, Zr, Ta, Hf, pt, si〇2, η 〇, etc. are often added to B2 (ie, CgA1, RuA丨, ..) and other 2 gold 3 attribute alloys to change the grain size of the deposited film or Characteristics of surface energy. Most intermetallic alloys are hard and brittle in nature, and some of them have a lower thermal conductivity than metals. Because of A, these intermetallic alloys become solid after being crushed (c〇nS〇lldated) When the shape # is faced with the mechanical processing performance of the standard dry and the working delay of the cathode shot Sexually relevant challenges. These materials are now extremely limited in mechanical resistance to mechanical impact and in the day of shooting; very limited thermal shock resistance. 'Limited content】 85798-950602.doc 1278524 and the present invention relates to A novel method of making a sputtering target, which has a metallurgical stoichiometry that provides sufficient ductility for mechanical work and shot formation. This method uses a design that will constitute a metal-containing alloy. The species is mixed with sputum and low temperature hot isostatic pressing (HIp) compaction under high pressure to prevent and control the formation of the intervening metal phase of the target material. The target does not contain some micro-metal, but the fact is not in the application. The problem is that cathode sputtering is a method of atomic and atomic/known, in which different atomic species are recombined on the substrate to open/balance and the desired intermetallic phase. Another object of the invention is to reduce the target material. The cost is because the production of the metal powder before the compaction is not a necessary step. Typically, the alloy powder is produced by sintering or gas atomization, and these methods are very easy to have. These and other objects of the present invention will become apparent from the following detailed description. [Embodiment] & Figure 1 shows a flow chart of a method of manufacturing a target of the present invention. For raw materials such as A1, Ti, Ru, 州, 灿, etc., it is necessary to point out that the spoon is for the requirements of the method and the quality, and at least one of the participating powders must be a very fine powder (such as _400 mesh). In all X-A1-Y, the A1 powder has a particle size of 30 彳, where X can represent elements such as Ru, Ti, Co, and Ni and Y can represent, for example, Cr, B, Zr, Ta, Hf The specific alloy compositions of pt, Si 〇 2, τ "〇3" are typically associated with crystal structures such as B2, L12, D019, lig, etc. In theory, the finer the powder, the better the processing, but the ultra-fine A1 powder is very difficult to handle because of its explosive nature. Thus, a powder of 30 microns average particle size 85798-950602.doc 1278524 is typically selected for all aluminum containing materials. The same considerations apply to Ni powder in NiNb. 20 “The mixing is also important for the entire process, as the uniformity of the final product is determined by this step. In fact, it can be applied to (4) 搀 mixing method to achieve Μ, sentence uniform f such as V-搀 mixed, Turbular 搀 mixing, spherical mill 搀 mixing and / or ball mill grinding 湿 mixed (wet or dry) All are well known in the art world. If desired, the mash powder can then be compressed at 3 Torr and then canned at 40 before the HIp is compressed. μ In step 4 of the mixing process, the powder is filled before the HIp process. For example, the container is filled with a toughness, and a vacuum is applied under heating to determine to remove any moisture present or gas trapped therein, followed by sealing. Although the geometry of the container is not limited in any way, the container may have a near final shape geometry associated with the final material configuration. As mentioned above, 50 low temperature/high pressure hot isostatic pressing (HIP) is necessary for this method. The low temperature can alleviate the formation of the embrittled intermetallic reaction zone between the elemental particles, while the high pressure ensures complete densification of the powder composition. As described herein, applications 2 to 0 to 1000 are applied. (: range temperature and 5 "丨 to (9)" 丨 range pressure for isostatic pressing. The maintenance time at design temperature and pressure ranges from 〇·5 to 12 hours. After HIP compaction, the solid block can be 6〇 Machining into the final required size, can use a variety of techniques well known in the art including wire EDM, saws, water jets, lathes, grinders, etc. It is worth noting that other powder compaction techniques such as hot pressing and cold pressing are also Can be used independently or in combination with Hlp processing, depending on the desired result. After machining, the product is cleaned and finalized at 7 0 0 85798-950602.doc 1278524 The following table describes some of the alloys made using the invention described herein. Figures 2a through 2h depict the microstructures associated with these alloys and show the intermetallic reaction regions that are minimized between individual elements. Table: Observing the alloy's summary material Typical chemical composition Al-Ni-B 60 atomic percent VIII 1- 30 atom% rush-10 atom% Cr Ru-Al 50 atom% 1111-50 atom% A1 Co-Al 50 atom% Co-50 atom% A1 Ti-Al 50 atom% 11-50 atom% A1 Ni-Al 50 atom % committed -50 atom% eight 1 Ni-Nb 50 atom Ni-50 atom% Nb is shown in the table and in Figures 2a-2f, Figures 2a-2b depict the overview and details of the Al-Ni-B alloy, and Figures 2c-2d depict the overview and details of the Ni-Nb alloy, Figure 2e-2f depicts An overview and detail of the Ru-Al alloy, Figure 2g depicts the microstructure of the Co-Al alloy, and Figure 2h depicts the microstructure of the Ti-Al alloy. Although the invention has been described with reference to a few preferred embodiments, various changes and modifications are contemplated. It will be apparent to those skilled in the art that the following detailed description of the invention is intended to be construed as the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Referring to the drawings, wherein: Figure 1 is a flow chart illustrating the method of the present invention; and Figures 2a through 2h show the microstructures representative of alloys in some tables. 85798-950602.doc

Claims (1)

拾、申請專利範園: 1 · 一種製造具介金屬性化學之延展性濺射標靶之方法,其 包括下列步驟: 選擇原料元素粉末,其中至少一種所選擇之粉末具有小 於或等於-400網目之粒子大小; 攙混所選擇之粉末; 將經摻混之粉末裝罐; 在200°C至1 000°C範圍間之溫度(其中溫度係經選擇以緩 和所選擇粉末粒子間之介金屬性反應區域之形成)及5ksi Φ 至6〇ksi範圍間之壓力下,以〇·5小時至12小時範圍間之時 間熱等靜壓經裝罐之粉末; 形成條塊;及 機械加工條塊以形成標靶。 2. 如申請專利範圍第1項之方法,其中選擇粉末以形成式 X_ANY之合金組合物,其中A1為鋁,X為Ru、^丨、c〇气 Ni,而 Y為 Cr、B、Zr、Ta、Hf或 Pt。 3. 如申請專利範圍第2項之方法,其中所得合金組合物係與 選自由B2、Lh、DO〗9及U〇組成之群之晶體結構相關。 4. 如申請專利範圍第2項之方法,其中μ粉末具有約微 之平均粒子大小。 W 5·如申請專利範圍第1項之方法,其中該標靶含5〇原 1^_50原子%八1。 " 〇/〇 其中該標靶含5〇原予% 6.如申凊專利範園第1項之方法 匸〇-50原子% Α1。 85798-950602.doc 1278524 7·如申请專利範圍第1項之方法,其中該標靶含50原子% Ti-5〇 原子% A1。 8·如申凊專利範圍第1項之方法,其中該標靶含AMO原子% N卜1〇原子%〇。 9.如申請專利範圍第1項之方法,其中該標靶含5〇原子%Ni-50 原子% A1。 1 0·如申請專利範圍第1項之方法,其中該標靶含5〇原子% Ni-50 原子%Nb。 η·如申請專利範圍第2項之方法,進一步包含選擇Si02粉末 或丁丨2〇3粉末,其中γ為以〇2或丁丨2〇3。 85798-950602.doc 2- 12 7 @Μι5426號專利申請案 中文圖式替換頁(95年6月) 拾壹、圖式:Picking up, applying for a patent garden: 1 · A method of manufacturing a ductile sputtering target having a mesometallic chemistry, comprising the steps of: selecting a raw material element powder, wherein at least one selected powder has a mesh of less than or equal to -400 The particle size; the selected powder; the blended powder; the temperature between 200 ° C and 1 000 ° C (where the temperature is selected to mitigate the intermetallicity between the selected powder particles) The formation of the reaction zone) and the pressure between the range of 5 ksi Φ to 6 〇 ksi, hot isostatic pressing of the canned powder at a time ranging from 5 hours to 12 hours; forming a bar; and machining the bar to Form a target. 2. The method of claim 1, wherein the powder is selected to form an alloy composition of the formula X_ANY, wherein A1 is aluminum, X is Ru, ^丨, c〇Ni, and Y is Cr, B, Zr, Ta, Hf or Pt. 3. The method of claim 2, wherein the alloy composition obtained is related to a crystal structure selected from the group consisting of B2, Lh, DO9 and U〇. 4. The method of claim 2, wherein the μ powder has an average particle size of about micro. W5. The method of claim 1, wherein the target comprises 5 〇 original 1^_50 atom% 八1. " 〇 / 〇 where the target contains 5 〇 original % 6. For example, the method of claim 1 of the patent patent garden 匸〇-50 atom% Α1. The method of claim 1, wherein the target contains 50 atom% Ti-5〇 atom% A1. 8. The method of claim 1, wherein the target comprises AMO atom% Nb1 atom%% 〇. 9. The method of claim 1, wherein the target contains 5 atom% Ni-50 atom% A1. The method of claim 1, wherein the target contains 5 atom% of Ni-50 atom% of Nb. η· The method of claim 2, further comprising selecting a SiO 2 powder or a Ding 丨 2 〇 3 powder, wherein γ is 〇 2 or 丨 2 〇 3 . 85798-950602.doc 2- 12 7 @Μι5426 Patent Application Chinese Graphic Replacement Page (June 95) Pickup, Pattern: 原料選擇 元素粉末Raw material selection Element powder 10 攙混 當需要時壓實 裝罐 7d MO 低溫高壓 機械加工 成最終產品I10 搀 Mixing Compacting when needed Packing 7d MO Low temperature and high pressure Machining into final product I 最終QA 清潔及檢查Final QA cleaning and inspection 圖1.延展性介金屬性濺射標靶之方法流程圖 85798 1278524 幫偷IT5426號專利申請案 中文圖式替換頁(95年6月) 丹^修(&正替換頁 圖2a· Α1-30原子%Ni-10原子%〇1:之微結構’概觀Figure 1. Flow chart of a method for ductile metal-plated sputtering targets 85796 1278524 Chinese version of the patent application for stealing IT5426 (June 95) Dan ^ repair (& replacement page 2a· Α1- 30 atom% Ni-10 atom% 〇1: microstructure] overview 圖2b. A1-30原子%犯-1〇原子%Cr之微結構’細部Figure 2b. A1-30 atomic % commits the microstructure of -1 atomic %Cr 85798 1278524 柒、 指定代表圖: (一) 本案指定代表圖為:第(1 )圖。 (二) 本代表圖之元件代表符號簡單說明: ..10原料選擇元素粉末 20 攙混 30當需要時壓實 40 裝罐 50 HIP低溫高壓' 60 機械加工成最終產品 70 最終QA清潔及檢查 捌、 本案若有化學式時,請揭示最能顯示發明特徵的化學式: 85798-950602.doc85798 1278524 柒, designated representative map: (1) The representative representative of the case is: figure (1). (2) The representative symbol of the representative figure is a simple description: ..10 raw material selection element powder 20 搀 mixing 30 when needed compaction 40 canning 50 HIP low temperature high pressure ' 60 mechanical processing into final product 70 final QA cleaning and inspection 捌If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: 85798-950602.doc
TW092115426A 2002-06-07 2003-06-06 Fabrication of ductile intermetallic sputtering targets TWI278524B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US38643302P 2002-06-07 2002-06-07

Publications (2)

Publication Number Publication Date
TW200404908A TW200404908A (en) 2004-04-01
TWI278524B true TWI278524B (en) 2007-04-11

Family

ID=29736164

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092115426A TWI278524B (en) 2002-06-07 2003-06-06 Fabrication of ductile intermetallic sputtering targets

Country Status (7)

Country Link
US (1) US20040062675A1 (en)
EP (1) EP1511879A1 (en)
JP (1) JP2005529239A (en)
CN (1) CN1685078A (en)
AU (1) AU2003243332A1 (en)
TW (1) TWI278524B (en)
WO (1) WO2003104522A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070189916A1 (en) * 2002-07-23 2007-08-16 Heraeus Incorporated Sputtering targets and methods for fabricating sputtering targets having multiple materials
ES2627415T3 (en) * 2003-03-28 2017-07-28 Vitro, S.A.B. De C.V. Substrates coated with mixtures of titanium and aluminum materials
DE102005049328B4 (en) * 2005-10-12 2007-07-26 W.C. Heraeus Gmbh Material mixture, sputtering target, process for its preparation and use of the material mixture
WO2007062089A1 (en) * 2005-11-22 2007-05-31 Bodycote Imt, Inc. Fabrication of ruthenium and ruthenium alloy sputtering targets with low oxygen content
US20080170959A1 (en) * 2007-01-11 2008-07-17 Heraeus Incorporated Full density Co-W magnetic sputter targets
JP2010095770A (en) * 2008-10-17 2010-04-30 Hitachi Metals Ltd Ti-Al-BASED ALLOY TARGET AND METHOD FOR PRODUCING THE SAME
CN102343437B (en) * 2011-11-11 2014-03-26 宁波江丰电子材料有限公司 Method for manufacturing tungsten target material
CN103014633B (en) * 2012-12-12 2015-08-05 何霞文 A kind of preparation technology of the metal works with composite ceramic film
KR101414352B1 (en) 2013-05-27 2014-07-02 한국생산기술연구원 Metal coating for replacing brazing paste and method of joining metal thereby
CN104419846B (en) * 2013-09-11 2017-09-12 安泰科技股份有限公司 Mallory sharton alloy target and preparation method thereof
CN115094390A (en) * 2014-09-30 2022-09-23 捷客斯金属株式会社 Master alloy for sputtering target and method for producing sputtering target
CN111136265B (en) * 2020-03-07 2022-02-18 北京安泰六九新材料科技有限公司 Titanium-silicon alloy target and manufacturing method thereof
CN111299613A (en) * 2020-03-27 2020-06-19 宁波江丰电子材料股份有限公司 Machining method of titanium-aluminum alloy target material, product and application thereof
CN115652266A (en) * 2022-10-21 2023-01-31 中国科学院金属研究所 Machinable CoCrAlY target alloy and preparation method thereof

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135286A (en) * 1977-12-22 1979-01-23 United Technologies Corporation Sputtering target fabrication method
US4460541A (en) * 1980-01-16 1984-07-17 Reynolds Metals Company Aluminum powder metallurgy
US4500364A (en) * 1982-04-23 1985-02-19 Exxon Research & Engineering Co. Method of forming a protective aluminum-silicon coating composition for metal substrates
EP0183016B1 (en) * 1984-10-03 1989-09-20 Sumitomo Electric Industries Limited Material for a semiconductor device and process for its manufacture
AT388752B (en) * 1986-04-30 1989-08-25 Plansee Metallwerk METHOD FOR PRODUCING A TARGET FOR CATHODE SPRAYING
JPS63274763A (en) * 1987-04-30 1988-11-11 Sumitomo Metal Mining Co Ltd Alloy target for magneto-optical recording
US5094288A (en) * 1990-11-21 1992-03-10 Silicon Casting, Inc. Method of making an essentially void-free, cast silicon and aluminum product
JPH0539566A (en) * 1991-02-19 1993-02-19 Mitsubishi Materials Corp Sputtering target and its production
JPH0625782A (en) * 1991-04-12 1994-02-01 Hitachi Ltd High ductility aluminum sintered alloy and its manufacture as well as its application
US5417827A (en) * 1991-11-29 1995-05-23 Ppg Industries, Inc. Cathode targets of silicon and transition metal
JPH05214523A (en) * 1992-02-05 1993-08-24 Toshiba Corp Sputtering target and its manufacture
US5342571A (en) * 1992-02-19 1994-08-30 Tosoh Smd, Inc. Method for producing sputtering target for deposition of titanium, aluminum and nitrogen coatings, sputtering target made thereby, and method of sputtering with said targets
US5427736A (en) * 1994-04-05 1995-06-27 General Electric Company Method of making metal alloy foils
US5836506A (en) * 1995-04-21 1998-11-17 Sony Corporation Sputter target/backing plate assembly and method of making same
US5863398A (en) * 1996-10-11 1999-01-26 Johnson Matthey Electonics, Inc. Hot pressed and sintered sputtering target assemblies and method for making same
US5766380A (en) * 1996-11-05 1998-06-16 Sony Corporation Method for fabricating randomly oriented aluminum alloy sputtering targets with fine grains and fine precipitates
US5963778A (en) * 1997-02-13 1999-10-05 Tosoh Smd, Inc. Method for producing near net shape planar sputtering targets and an intermediate therefor
DE69808664T2 (en) * 1997-07-15 2003-07-24 Tosoh Smd, Inc. FIRE-RESISTANT METAL-SILICIDE ALLOY SPUTTER-TARGETS, USE AND MANUFACTURE
JP2989169B2 (en) * 1997-08-08 1999-12-13 日立金属株式会社 Ni-Al intermetallic compound target, method for producing the same, and magnetic recording medium
US6010583A (en) * 1997-09-09 2000-01-04 Sony Corporation Method of making unreacted metal/aluminum sputter target
US6581669B2 (en) * 1998-03-10 2003-06-24 W.C. Heraeus Gmbh & Co., Kg Sputtering target for depositing silicon layers in their nitride or oxide form and a process for its preparation
CA2265098A1 (en) * 1998-03-12 1999-09-12 Abdelouahab Ziani Method for producing aluminum alloy powder compacts
US6332906B1 (en) * 1998-03-24 2001-12-25 California Consolidated Technology, Inc. Aluminum-silicon alloy formed from a metal powder
US20020014406A1 (en) * 1998-05-21 2002-02-07 Hiroshi Takashima Aluminum target material for sputtering and method for producing same
US6183686B1 (en) * 1998-08-04 2001-02-06 Tosoh Smd, Inc. Sputter target assembly having a metal-matrix-composite backing plate and methods of making same
US6153313A (en) * 1998-10-06 2000-11-28 General Electric Company Nickel aluminide coating and coating systems formed therewith
EP1146979B1 (en) * 1998-12-28 2009-05-06 Ultraclad Corporation Method of producing a silicon/aluminium sputtering target
US6165413A (en) * 1999-07-08 2000-12-26 Praxair S.T. Technology, Inc. Method of making high density sputtering targets
US6042777A (en) * 1999-08-03 2000-03-28 Sony Corporation Manufacturing of high density intermetallic sputter targets
US6797137B2 (en) * 2001-04-11 2004-09-28 Heraeus, Inc. Mechanically alloyed precious metal magnetic sputtering targets fabricated using rapidly solidfied alloy powders and elemental Pt metal
US6475263B1 (en) * 2001-04-11 2002-11-05 Crucible Materials Corp. Silicon aluminum alloy of prealloyed powder and method of manufacture
DE10140589A1 (en) * 2001-08-18 2003-02-27 Heraeus Gmbh W C Sputtering target made of a silicon alloy and method for producing a sputtering target
JP2003089864A (en) * 2001-09-18 2003-03-28 Mitsui Mining & Smelting Co Ltd Aluminum alloy thin film, wiring circuit having the same thin film, and target material depositing the thin film

Also Published As

Publication number Publication date
AU2003243332A1 (en) 2003-12-22
TW200404908A (en) 2004-04-01
JP2005529239A (en) 2005-09-29
US20040062675A1 (en) 2004-04-01
WO2003104522A1 (en) 2003-12-18
CN1685078A (en) 2005-10-19
EP1511879A1 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
Liu et al. Formation of transition layer and its effect on mechanical properties of AlCoCrFeNi high-entropy alloy/Al composites
TWI278524B (en) Fabrication of ductile intermetallic sputtering targets
JP6381142B2 (en) Touch screen device
JP6276327B2 (en) Targets containing molybdenum
US11247268B2 (en) Methods of making metal matrix composite and alloy articles
TWI299364B (en) Fabrication of b/c/n/o doped sputtering targets
US20210246544A1 (en) Process for producing and using a w-ni sputtering target
JP5376952B2 (en) Method for manufacturing molybdenum-titanium sputtering plate and target
JP2004532931A (en) Pt-Co based sputtering target
CN105264103A (en) New process of manufacturing cemented carbide and a product obtained thereof
WO2008089188A1 (en) High density refractory metals & alloys sputtering targets
CN116041051B (en) Granulating powder applied to 3DP printing and printing forming method thereof
CN105562680B (en) The method that a kind of high-entropy alloy powder and hot pressed sintering prepare high-entropy alloy coating
Xiong et al. (Ti, W) C–Ni cermets by laser engineered net shaping
JP5988140B2 (en) Manufacturing method of MoTi target material and MoTi target material
JP2005096071A (en) Cutting tool insert and its manufacturing method
US20100140084A1 (en) Method for production of aluminum containing targets
JP6202787B2 (en) Molybdenum heat-resistant alloy, friction stir welding tool, and manufacturing method
Chang et al. Spark plasma coating of tungsten-coated SiC particles
JP2019183201A (en) Sintered body and rotation tool
JP2000129389A (en) Molybdenum sintered compact and its manufacture
JP2017160539A (en) Molybdenum heat-resistant alloy, tool for friction stirring joining, and method for producing the same
JP2023048855A (en) Hard sintered body, method for producing hard sintered body, cutting tool, wear-resistant tool and high-temperature member
JP2017166071A (en) Molybdenum heat-resistant alloy, tool for friction stirring joining, and method for producing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees