TWI275238B - Rotor position/speed estimating method for micro permanent magnet synchronous motors - Google Patents

Rotor position/speed estimating method for micro permanent magnet synchronous motors Download PDF

Info

Publication number
TWI275238B
TWI275238B TW95100036A TW95100036A TWI275238B TW I275238 B TWI275238 B TW I275238B TW 95100036 A TW95100036 A TW 95100036A TW 95100036 A TW95100036 A TW 95100036A TW I275238 B TWI275238 B TW I275238B
Authority
TW
Taiwan
Prior art keywords
current
speed
motor
estimation
angle
Prior art date
Application number
TW95100036A
Other languages
Chinese (zh)
Other versions
TW200727572A (en
Inventor
Tian-Hua Liu
Yih-Hua Chang
Chia-Chin Wu
Original Assignee
Tian-Hua Liu
Yih-Hua Chang
Chia-Chin Wu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tian-Hua Liu, Yih-Hua Chang, Chia-Chin Wu filed Critical Tian-Hua Liu
Priority to TW95100036A priority Critical patent/TWI275238B/en
Application granted granted Critical
Publication of TWI275238B publication Critical patent/TWI275238B/en
Publication of TW200727572A publication Critical patent/TW200727572A/en

Links

Abstract

This invention proposes a rotor position/speed estimation technique for micro permanent magnet synchronous motors. When the motor is operating in the mid and low speed, the stator current is discontinuous. The back emf of the motor can be detected while the stator current reaches zero. On the other hand, when the motor is operating in the high speed range, the stator current is continuous. Then, by detecting the phase voltage and phase current, the back emf of the motor can be computed. The rotor position can be derived from the back emf. The rotor speed can be computed according to the rotor position with the difference operating. Finally, a closed-loop adjustable speed control can be achieved. The closed-loop drive system has an adjustable speed range from 600 r/min to 36000 r/min.

Description

1275238 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種無轉軸角度偵測元件之馬達驅動系統;尤其適用 於微型永磁同步馬達轉軸角/速度之估測裝置。 【先前技術】 已知方式運用量測馬達的非激磁相之感應電壓來得到反電勢零交 越點。例如中華民國專利公報第588505號中彼露之一無感測器之無刷 直流馬達控制系統’係將一電壓比較裝置及取樣觸發信號與偵測之浮 接相電壓經一簡單的電路進行波形處理後,得到一反電勢零交越點的 脈波^號,再利用此一信號估測出轉軸的角度。但是,上述第588505 號專利的缺點是估測所得轉軸角度位置解析度不高,易產生較大估測 誤差。 【發明内容】 本發明所欲解決之技術問題: 微型永磁同步馬達的控制必卩禱㈣/速度碰,以便決定定 子$流的大小及輸入的時機,並達成換相及閉迴路速度控制。因此, 通常利用-個轉軸肖度制元件來制馬達的雜肖度及計算轉轴速 度:-般使用光遮斷n,合—鍊在轉軸上的開槽碟片,或使用霍 件,合-個裝在轉軸上的永久磁鐵。也可以使用編碼器(麵如) =分解器(resolver)檢知轉轴角度。然而,這些附加的檢知裝置不但會 冒加系統的成本及佔空間,且易受絲的雜訊干擾而降低其可靠度。曰 本發明主要目的即是提供—微型永磁同步馬賴轉鋪度估測之 ^控制裝置。係以三相反電勢與轉軸角度的關係,估測出轉轴角度。 的^達低速運轉時,咖定子電流不連續的零電流瞬間進行各相電壓 、隹」,、,反之’在馬達高速運轉時,定子電流連續的_導通瞬間, 相^激磁相電壓及激磁相電流的侧,並透過簡單的計算,合成三 電勢估測值,再利雌標轉換與三角函數關係式獲得轉軸角度的 1275238 估測值,最後將所估測的轉軸角度回授,並完成閉迴路驅動系統的研 製。 本發明解決問題之技術手段: 本發明為解決習知技術之問題所採用之技術手段係以一微型永磁 同步馬達電流變化特性,進行反電勢的估測。分別於中、低轉速,定 子電流不連續時,利用電流為零的瞬間進行偵測;高轉速,定子電流 連續狀態時,則偵測相電壓及相電流的訊號,將資料由界面裝置回授 至轉軸角度估測器中合成三相反電勢,經由三相反電勢對應轉軸角度1275238 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 [Prior Art] A known method uses an induced voltage of a non-excited phase of a motor to obtain a back-embride zero crossing point. For example, in the Republic of China Patent No. 588505, one of the sensorless brushless DC motor control systems is a waveform that compares a voltage comparison device and a sampling trigger signal with the detected floating phase voltage through a simple circuit. After processing, a pulse wave number of a zero-crossing point of the back EMF is obtained, and then the signal is used to estimate the angle of the rotating shaft. However, the disadvantage of the above-mentioned Patent No. 588505 is that the estimated angular position of the obtained shaft is not high, and it is easy to generate a large estimation error. SUMMARY OF THE INVENTION The technical problem to be solved by the present invention is that the control of the miniature permanent magnet synchronous motor must be prayed (four)/speed bump to determine the size of the stream and the timing of the input, and to achieve commutation and closed loop speed control. Therefore, it is common to use a shaft-sharp component to make the motor's misunderstanding and calculate the shaft speed: generally use light to block n, the -chain slotted disc on the shaft, or use the Huo, - A permanent magnet mounted on the shaft. It is also possible to detect the angle of the shaft using an encoder (face) = resolver. However, these additional detection devices not only increase the cost and space of the system, but also are susceptible to noise interference from the wires and reduce their reliability. The main object of the present invention is to provide a control device for mini-permanent magnet synchronous Marais translation. The angle of the shaft is estimated by the relationship between the three opposite potentials and the angle of the shaft. When the motor is running at a low speed, the zero current of the coffee stator current is instantaneously subjected to the voltage of each phase, ,", and vice versa. When the motor is running at a high speed, the stator current is continuous, the conduction phase, the phase excitation voltage and the excitation phase On the side of the current, and through simple calculation, the estimated three potentials are synthesized, and the relationship between the female standard conversion and the trigonometric function is obtained to obtain the estimated value of the shaft angle of 1275238. Finally, the estimated angle of the shaft is feedback and closed. Development of a loop drive system. The technical means for solving the problem of the present invention: The technical means adopted by the present invention for solving the problems of the prior art is to estimate the back EMF by a current variation characteristic of a miniature permanent magnet synchronous motor. When the stator current is discontinuous at medium and low speeds, the current is detected at zero moment; when the high speed and stator current are continuous, the phase voltage and phase current signals are detected, and the data is fed back by the interface device. Synthesize three opposite potentials in the shaft angle estimator, corresponding to the shaft angle via three opposite potentials

位置的函數關係’估測出轉轴角度訊號夫,轉轴角度么經過差分運算得 到馬達的轉速也。 本發明所採用的具體方法及控制流程,將藉由以下之實施例及所附 圖式作進一步之說明。 ' 【實施方式】 首先參閱第一圖所示,係本發明的無轉軸角度偵測元件閉迴路控速 驅動系統的方塊圖。由霍爾效應電流偵測器偵測馬達三相電流訊號Z, ,以及侧馬達三相對地電壓訊號u%〜。類^流^;電壓 訊號透過類比/數位轉換器轉換成數位訊號,透過界面裝置回授至微電 腦,將回授的電流/電壓訊號利用反電動勢估測器估算出微型^磁同步 馬達反電動勢。馬達的角度估測方式,皆透過轉軸角度估測器中座^ 轉換,三角函數簡易的數學運算,估算出轉軸从。轉輛角鉍經過^ 分運算得到馬達的轉速也,設定的轉速命令<和估測得到^轉&相 減到轉速誤差Δ%,然後經由速度控制器運算得到馬達所需的電漭合八 广。接著電流命令r配合估測角度丈,計算出各相電流命令 經由數位/類比轉換器將電流命令再與回授的實際三相電法气^ · 及卜起送入電流波寬調變控制器,產生馬達的三相波寬調1L變觸 π、V、V及m最後’將此觸發訊號送ϋ 變頻器,產生所需的電壓及電流驅動馬達m =換^ 馬達閉迴職動祕。 “、、♦仙凡件的 7 ^275238 微型永磁同步馬達反電動勢的估測原理如下: 微型永步馬達#步讀切賴式來驅動控制, 一般為兩相導 =:相截止’亦即-次僅有兩個開關導通,剩餘四個開關均為截止, 導^ =如第二圖所示’利用波寬調變技術提供上臂功率開關做 =動轉糊麟雜相料,如^三騎示,以完 磁、畐ft磁同步馬達’由於無槽式的定子結構,提供較大磁場空間, 較二且m义大的氣隙中’定子側的線圈繞組也因氣隙空間產生 ==小,值,細值通常約為傳統交流馬達的咖i 5〇歐姆以上:達其線亂繞組㈣感只有幾微亨利,電阻為 續現象H 時間常數小於幾微秒,造成定子線圈電流不連 it調勢估義分域寬_止時(方法 1 在馬達中、低、亲、軍L ί兩種不同的估測方法。其中方法α主要是 用功率開_止瞬造成電流不連續現象,利 為換相導通。其中楹々^ A W守、/、戳止,下臂開關則作 導播。A , 、式疋義為Ο相上臂導通’ &相下臂導诵泠π知了 '通。當《相上臂開關截止時 年目下^通及〇相不 三相電星,以中性點雷減才二寺政稱如弟四圖所示。馬逹之 ⑴、(2)、⑺。依^ R考點,其龍方程式可絲如下公式 參考電位,轉出^圖所7^ ’將接地點°參考電位取代原中性點” =出新電壓絲式如下公式(4)、(5 dt a · · · · .......................... ............................公式(1)The functional relationship of the position estimates the angle of the shaft, and the angle of the shaft is obtained by differential operation to obtain the speed of the motor. The specific method and control flow employed in the present invention will be further illustrated by the following examples and the accompanying drawings. [Embodiment] Referring first to the first figure, a block diagram of a closed loop speed control driving system of the non-rotation angle detecting element of the present invention is shown. The motor three-phase current signal Z, and the side motor three relative ground voltage signal u%~ are detected by the Hall effect current detector. The voltage signal is converted into a digital signal by an analog/digital converter, and is fed back to the micro-computer through the interface device, and the feedback current/voltage signal is used to estimate the back electromotive force of the micro-magnet synchronous motor using the back electromotive force estimator. The angle estimation method of the motor is estimated by the simple conversion of the rotation angle estimator and the simple mathematical operation of the trigonometric function to estimate the rotation axis. The rotation angle of the rotor is calculated by the operation of the motor, and the set speed command < and the estimated torque is subtracted to the speed error Δ%, and then the motor is required to calculate the electric motor required by the speed controller. Baguang. Then, the current command r cooperates with the estimated angle to calculate the phase current command to send the current command and the feedback of the actual three-phase electric method gas through the digital/analog converter to the current wave width modulation controller. The three-phase wave width of the motor is generated and the 1L is changed to π, V, V, and m. Finally, the trigger signal is sent to the inverter to generate the required voltage and current to drive the motor m = change ^ the motor is closed. ",, ♦ Xianfan's 7 ^ 275238 miniature permanent magnet synchronous motor back electromotive force estimation principle is as follows: Micro Yongbu motor # step read and cut to drive control, generally two-phase conduction =: phase cut off 'that is - Only two switches are turned on, and the remaining four switches are all off. The control ^ = as shown in the second figure, 'Using the wave width modulation technology to provide the upper arm power switch to do the work, such as ^ three Riding the display, to complete the magnetic, 畐ft magnetic synchronous motor's due to the slotless stator structure, providing a large magnetic field space, the second and the m air gap in the 'stator side coil winding is also due to the air gap space = = small, value, fine value is usually about 5 〇 ohms of the traditional AC motor: up to its wire chaotic winding (four) sense only a few micro Henry, the resistance is continuous phenomenon H time constant is less than a few microseconds, causing the stator coil current is not Even it adjusts the sub-domain width _ stop time (method 1 in the motor, low, pro, military L ί two different estimation methods. Among them, the method α is mainly used to open the power to stop the current discontinuity phenomenon , Lee is commutating conduction. Among them, 楹々^ AW 守, /, poke, lower arm open Then, it is used as a guide. A, , and 疋 Ο Ο 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 。 。 。 。 。 。 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当The neutral point is reduced by the two temples, as shown in the fourth picture of the brothers. Ma Xizhi (1), (2), (7). According to the R test point, the dragon equation can be referenced to the potential as follows: 'Replace the grounding point ° reference potential instead of the original neutral point' = the new voltage wire type is as follows (4), (5 dt a · · · · ................. ......... ............................Formula 1)

Vbn=h^ + L^k + e dt b............................... ............................(2) W + ii+e dt c................................ ............................ (3) 1275238 · Va〇 — —VDiode = + L —- + e +V dt a no................. vb〇 =vm〇s =^ar-L^i + e +v dt b ..................... Vco ~ Vno ec............ ea+eb+ec=0............. 式中、V⑺為a、έe相對地參考電塵 ,ia、h、ic '為 Cl、b 。才^定子電流,6q、心為βέf相反電勢,广為定子線圈電阻,// 為=子圈電感’ H成為^小e相定子電流變化量,汾為日矛 間交化里’ Vm為飛輪二極電壓’ v_為功率開關電麼,^為中性梦 對地電壓。由上述推導出的新電壓方程式公綱,⑸,⑹及假設馬達Vbn=h^ + L^k + e dt b..................................... .....................(2) W + ii+e dt c................... ........................................... (3) 1275238 · Va〇— VDiode = + L —- + e +V dt a no................. vb〇=vm〇s =^ar-L^i + e +v dt b . .................... Vco ~ Vno ec............ ea+eb+ec=0....... In the formula, V(7) is a, έe is relatively referenced to electric dust, and ia, h, ic ' is Cl, b. Only ^ stator current, 6q, the heart is the opposite potential of βέf, widely the stator coil resistance, // is = sub-ring inductance 'H becomes ^ small e-phase stator current variation, 汾 is the inter-day spear in the intersection of 'Vm for the flywheel The two-pole voltage 'v_ is the power switch, ^ is the neutral dream to ground voltage. The new voltage equations derived from the above, (5), (6) and hypothetical motors

捕在—相平衡下,反電勢和為零時,如公式⑺,經整理彳&可得下 反電勢方程式: J e = v — i r — T __Li, ····_·公式(8) _····公式(9) ···•公式(10) α α〇 α dt ^3 co^V〇ffset eb =vb〇 +iar + L^f-~v -v dt 3 offset · 2 'Vc〇 offset V〇ffs^ et V Diode ....................(11) 其 經整理後,得到簡易的反電勢方程式如下: 式中心#,,為反電勢偏移電壓,因微型永磁無刷馬達結 電流於脈波調變截止時,因電阻值遠大於電感值,電機時A性,J 易造成電流不連續現象,當定子電流為零時定子電流與其二㊆數小, 零,如第五圖所示,並將上述代入反電勢方程式公式(8f 率皆為 ea = Va〇 ^co ^offset ·····.·••公式(12) 9 ^275238 eb ~~ Vbo c〇 ~Voffset .........................................................公式(13) 2 e^^vc〇-voffset..................................................................公式(14) 由上述反電勢方程式說明,微型永磁同步馬達在低速運轉時反電勢 的估測,需偵測三相定子對地參考電壓V%、h,並透過簡易的計 异即可獲得。上述討論皆以模式1為準則,將其方法推廣至六步方波 切換模式的六個狀態,並整理模式1至模式ό,電流不連續狀態之反電 勢方程式,如下表一所示: 表-電流不連續狀態之模式丨至模式6,三相反電勢方程式 切換 模式1T/ τΒ I±tcUnder the trapping-phase equilibrium, when the back EMF is zero, as in equation (7), the back EMF equation can be obtained by 彳 & J e = v — ir — T __Li, ······Formula (8) _····Formula (9) ···•Formula (10) α α〇α dt ^3 co^V〇ffset eb =vb〇+iar + L^f-~v -v dt 3 offset · 2 ' Vc〇offset V〇ffs^ et V Diode ....................(11) After finishing, the simple back EMF equation is obtained as follows: For the back EMF offset voltage, because the micro-permanent brushless motor junction current is cut off at the pulse wave, because the resistance value is much larger than the inductance value, the motor is A-type, J is easy to cause current discontinuity, when the stator current is The zero-time stator current is smaller than its two-seven, zero, as shown in the fifth figure, and the above formula is substituted into the back-potential equation (8f rates are all ea = Va〇^co ^offset ········•• (12) 9 ^275238 eb ~~ Vbo c〇~Voffset .................................... .....................Formula (13) 2 e^^vc〇-voffset................. .................................................formula (14) from the above-mentioned anti-potential side It is stated that the estimation of the back EMF of the micro permanent magnet synchronous motor at low speed operation needs to detect the three-phase stator ground reference voltages V% and h, and can be obtained through simple calculation. The above discussion is based on mode 1. The criterion is to extend the method to the six states of the six-step square-wave switching mode, and to align the mode 1 to mode ό, the back-potential equation of the current discontinuity state, as shown in Table 1 below: Table - Mode of current discontinuity 丨To mode 6, three opposite potential equation switching mode 1T / τΒ I±tc

模式3 V 7V 模式4 ------— 相反電勢 --Vco^Voffset '^Vbo^V offset eb ^ ^相反電勢 〇相反電勢 ^ 1 2 = ~^Vco^V Offset b〇^ offset s------ 2 ΐ~ ec =Vco ^^Vbo~Voffset Ό Ύ co ao Voffset 2 offset co ^offset 2 = -ZVco~V offset 模式5 b〇 V offset eb ^^bo-voffset ec =Vc〇--^b〇^〇Mode 3 V 7V Mode 4 ------ - Contrast potential - Vco^Voffset '^Vbo^V offset eb ^ ^ Contrast potential 〇 opposite potential ^ 1 2 = ~^Vco^V Offset b〇^ offset s- ----- 2 ΐ~ ec =Vco ^^Vbo~Voffset Ό a co ao Voffset 2 offset co ^offset 2 = -ZVco~V offset Mode 5 b〇V offset eb ^^bo-voffset ec =Vc〇- -^b〇^〇

offset ea =vao--v 模式6Offset ea =vao--v mode 6

π TV 2 ao offset A = vc〇 Ί 一兄π TV 2 ao offset A = vc〇 Ί a brother

誇壯^去B主要^馬達南速運轉且加載時’ ^子電流變化特性為連 、、=、恶’利用功〜關導通瞬間’偵測浮接相的對地電麼 二,第三圖所示的模式i說明,其中模式i定義為_上臂導通, 下臂導通及e相不¥通。當α相上臂開關導通時,其等效電路,如 1275238 第六圖戶斤示。將接地點。參考電位取代原中性點”參考電位 新電壓方輕式如公私15)、(16)、(17)所示: 導出Exaggerated ^ go to B main ^ motor south speed operation and load ^ ^ sub-current change characteristics for Lian,, =, evil 'utilization work ~ off conduction instant 'detecting the floating phase of the ground to the second, the third picture Mode i is shown, where mode i is defined as _ upper arm conduction, lower arm conduction, and e phase not. When the α-phase upper arm switch is turned on, its equivalent circuit, such as 1275238, is shown in Figure 6. Ground the point. The reference potential replaces the original neutral point "reference potential. The new voltage is as light as public and private 15), (16), (17):

ΚΆ+1^ + 6α+'。............. U .....................公式(15) v =—卜_L^ + eb+v a dt -....................................公式(16) 〜。一 η〇 ....................................公式(17) 式中ν也為直流匯流排電壓由上述推導出的新電壓方程式公式 (15),(16),(17)及公式⑺三相平衡下的反電勢總和,經整理後可得下 # 列反電勢方程式: 于 .r dia 1 1 ea=^a〇-la^L^^3Vc〇^3VdC....................................公式(18) r dia 1 1 eb=vbo+iar^L---vco--Vdc................................... 2 1 p, -v--V 1 ....... c 3 c〇 3 ·· ...............................................(20) 微型永磁同步馬達在高速運轉且加載時,因内迴路的電流調制關 係,形成電流連續現象’故定子電流與電流變化率將影響反電勢的估 測’但由於微型永磁同步馬達定子線圈電感為幾微亨利,高速運轉時, 電流變化率不大,故電感與電流變化率的乘積對反電勢的估測影響不 大’因此忽略該項的考慮,假設功率開關電壓很小,則 〇 ’將上述反電勢方程式公式(18),(19),(20),整理後,得到簡易的反 電勢方程式如公式(21),(22),(23)所示: =乂rΚΆ+1^ + 6α+'. ............. U .....................Formula (15) v = - Bu _L^ + eb+va Dt -....................................Formula (16) ~. Η〇..............................Formula (17) where ν is also a DC confluence The discharge voltage is derived from the new voltage equations (15), (16), (17) and (7) the sum of the back EMFs under the three-phase equilibrium. After finishing, the #列列篇名 equation can be obtained: 于.r dia 1 1 ea=^a〇-la^L^^3Vc〇^3VdC................................. ...formula (18) r dia 1 1 eb=vbo+iar^L---vco--Vdc......................... .......... 2 1 p, -v--V 1 ....... c 3 c〇3 ·· ................ ...............................(20) Micro permanent magnet synchronous motor is operated at high speed and loaded due to internal circuit The current modulation relationship forms a continuous current phenomenon, so the stator current and current rate will affect the estimation of the back EMF. However, since the stator inductance of the micro permanent magnet synchronous motor is a few micro-henry, the current change rate is not large at high speed. The product of the inductance and the rate of change of current has little effect on the estimation of the back EMF. Therefore, considering this consideration, assuming that the power switching voltage is small, 〇' will be the above formula of the back EMF equation (18), (19), (20 ), after finishing, get a simple equation of back EMF as shown in equations (21), (22), (23): =乂r

公式(21) eaFormula (21) ea

公式(22) 1275238Formula (22) 1275238

COCO

V dc.................. .…·公式(23) 的估t丨上t電勢絲式朗,微财磁同步馬達在高速運轉時反電勢 的估而則,第^非激磁相定子對地參考電V dc.................. ..... Equation (23) Estimated t丨 on the t-potential wire type, the micro-constant magnetic synchronous motor at high speed operation Estimated, the second non-excited phase stator to ground reference

L,而直流匯流排雷懕v 4 ^ ^ ^/;,L 述討論皆轉式i°上 狀離,並敕採、」、將/、方法推廣至六步方波切換模式的六個 二戶$式1至模式6,電流連續狀態之反電勢方程式,如下表L, and the DC bus 懕 懕 v 4 ^ ^ ^ /;, L is discussed in the transition of i ° on the off, and 敕 mining, ", / / method to six six-step square wave switching mode of the six two households $1 to mode 6, the inverse equation of the current continuous state, as shown in the following table

上述所估測之二減電勢信號心,W其座標系統為定子三相 運射,採_反電勢方程式中包含直流成分¥偏移值, -σ异上方便及有效地消除方程式中的直流成份,本文將藉由座標 12 I275238 、將’、由a z? c車由轉換為靜止座標的“一々轴座標,本 β轴同轴’而α車由則贫a d 文中疋義’輛與 神則洛後々軸90度。其轉換公式如下: V 1 一! 1 Ί V Α 一 0 ^ V3 eb 2 Y Λ_ .公式(24)The estimated two-reduction potential signal core of the above-mentioned, the coordinate system of the stator is a three-phase carrier of the stator, and the DC-element equation contains the DC component offset value, and the -σ difference is convenient and effective to eliminate the DC component in the equation. This article will use the coordinate 12 I275238, the 'one axis coordinate converted from the az? c car to the stationary coordinate, the beta axis coaxial' and the alpha car is poor. The rear 々 axis is 90 degrees. The conversion formula is as follows: V 1 A! 1 Ί V Α A 0 ^ V3 eb 2 Y Λ _ . Equation (24)

eP 取反 θ = tan~l β ....................................................公式(25) 控制=::度軟:::二轉轴购㈣閉- ώ e .............. ...................................................公式(26) >Λ 式中θ6為估測所得之電機角,也為估測所得之轉轴角速度 迷公^的推導結果可知,本文所提出的角度估測法則,直接偵測定子 則電壓及電流’透過簡單的計算,不需額外增加硬體,即可完成反電 勢及轉軸角度位置的估測,不論高低速運轉皆能使用。 轉軸角度估測流程如下: 由上述表一及表二所整理之三相反電勢方程式,可將此估測法則歸 納為微處理機計算轉軸角度之流程圖,如第七圖所示。首先由電流控 制迴路中的三相定子電流輸入做電流取樣判斷,根據切換模式來判 每個切換模式中每次只有一相上臂導通,另一相下臂導通,剩下 〜相不做切換,分別將此狀態定義為,上臂導通為X相,且流經該相線 圈電流為匕;下臂導通為少相,流經該相線圈電流為另一相不導通 為/相。轉軸角度估測依照上臂導通相之電流&來做電流連續判斷與 否’當電流不連續時,相當於X相電流為零,此時只需量測三相定子線 13 1275238eP inverts θ = tan~l β ........................................ ...........Formula (25) Control =:: degree soft ::: two revolving shaft purchase (four) closed - ώ e .............. ................................................formula( 26) > θ where θ6 is the estimated motor angle, and also the derived result of the estimated angular velocity of the shaft. It is known that the angle estimation rule proposed in this paper directly detects the voltage and current of the stator. 'With simple calculations, the back EMF and the angular position of the shaft can be estimated without additional hardware. It can be used both at high and low speeds. The axis estimation process is as follows: From the three opposite potential equations compiled in Tables 1 and 2 above, the estimation rule can be summarized as a flow chart for the microprocessor to calculate the angle of the shaft, as shown in the seventh figure. Firstly, the current sampling is judged by the three-phase stator current input in the current control loop. According to the switching mode, only one phase upper arm is turned on in each switching mode, and the other phase lower arm is turned on, and the remaining phase is not switched. This state is defined as the upper arm conducting to the X phase, and the current flowing through the phase coil is 匕; the lower arm is conducting as a phase, and the current flowing through the phase is non-conducting to / phase. The angle of the shaft is estimated according to the current & of the upper arm conducting phase. The current is continuously judged or not. When the current is discontinuous, the X-phase current is equivalent to zero. At this time, only the three-phase stator line is measured. 13 1275238

圈對直流匯流排接地點的電壓〜,v,v>,依據中、低速反電勢估測 法則,估測上臂導通相反電勢g,下臂導通相反電勢&及未導通相反 電勢q ’將上述反電勢合成為三相反電勢心,α,&。當電流連續時, 相當於X相電流不為零,此時只需量測未導通相的線圈對直流匯流排接 地點的電壓v/°及上臂導通相線圈電流4即可,而匯流排電壓V办操作在 額疋電壓,不需特別量測,依據高速反電勢估測法則,估測上臂導通 相反電勢Q,下臂導通相反電勢々及未導通相反電勢4,不論是中、 低速或高速反電勢估測法則,最後都合成三相反電勢心,Q,心,並透 k庋I轉換來消除直流成份。由於三相反電勢與轉軸角度位置具有函 數關係,經由反正切函數及反正切函數的修正補償,可獲得較高解析 度的電機角作為角度位置的估測。 實驗結果: :1貝丨示用於斂型永磁同步馬達驅動系統,若干實驗結果說明 :第八圖為轉速10000轉/分下,β相定子電流之量測圖。第九圖 4^0000 , β 〇 , + m二古’二相反電勢估測值,反電勢電壓大小接近2·8伏特。第十-二…、、10000轉/分下,利用座標轉換將三相反電勢〜、、 :並以〜為橫軸,為縱軸的反電勢變化率之估測圖。第十 轉/分下,估測得到的轉轴角度與實際的馬達轉ς 之角度誤差,亨Γ值圖Λ轉速娜00轉/分下,轉軸角度估測值與實際值 暫離電機角。第十四圖為轉速_轉/分下, =以圖轉速3_ 下,暫態速度響 牛頓-米貞載之^^圖4轉速则轉/分下,加人額定貞載0.275毫 加入額定負载tfifl應第t七圖為轉速30000轉/分下, 為轉速10000魅/\ ^牛頁米負載之编速度響應量測圖。第十八£1 局轉逑10000轉/分下,正反轉暫熊 乐卞八圖 速麵轉/分下,正反轉轉轴角度圖速第十九圖為轉 升,第二十圖增、1用前移換相角度,則轉速無法再提 為一弱磁控制,未前移換相角度之«速度響應= 14 1275238 ί 速弱磁控制’前移換相角度之暫態速度響應量測 於不;角二二曰加至36_轉/分。第二十二圖為高轉弱磁控制, 於不冋角度_制實随速與败轉速比值關係圖。 【圖式簡單說明】 圖係本發明微型永磁同步馬達轉細/速度估測方塊圖。 第二圖係胃知微型永磁同步馬達辨魏器(變懸)之示音圖。 第二圖係習知脈波寬度調變及換相模式之順序圖。 〜 第四圖係本發明功率轉換紅臂開關截止與下臂_ &導通之 等效電路。 第五圖係本發明電流與相電壓之關係圖。 第六圖係縣發明功率轉換紅相關Γ/導通與下 通 之等效電路。 第七圖係本發賴型永_步馬達_肢侧流程圖。 第八圖係本發明轉速10_轉/分下,^相定子電流之量測圖。 第九圖係本發明轉速1G_轉/分τ,α相對地電壓之量測圖。 第十圖係本發明轉速10_轉/分下,三滅電勢估測值。 第十-圖係本發明轉速1〇_轉/分下,以〜為橫轴、為縱轴的反電 勢變化率之估測圖。 第十二圖係本發哺速Η)_轉/分下,估測得到的娜驗與實際的 馬達轉轴角度關係圖。 第十三圖係本發_速誦0轉/分下,_驗估黯轉際值之角 度誤差。 、、/ ,十四圖係本發明轉速_轉/分下,暫態速度響應之量測圖。 弟十五圖係本發明轉速3GGGG轉/分下,暫態速度響應之量測圖。 第十六圖縣發_速画轉/分下,加人額定負载之縣速度響應 量測圖。 第十七圖係本發明轉速3_0轉/分下,加入額定負載之穩 響應量測圖。 ^ 第十八_本發_速1G_轉/分下,正反轉㈣速度響應之量 1275238 測圖。 第十九=本發日聯速誦_分下,正反轉航位置之估 第二十圖係本發明高速翻控制,未前移換相肢之㈣速度響應量 測圖。 第一十一®係纟發明高速獅洲,前移換相角度之暫態速度響應量 測圖。 第一十二圖係本發明高轉弱磁控制,於不同角度前移對應實際轉速與 額定轉速比值關係圖。The voltage of the loop to the DC bus grounding point ~, v, v > according to the middle and low speed back EMF estimation rule, estimating the upper arm conducting opposite potential g, the lower arm conducting the opposite potential & and the non-conducting opposite potential q ' The back EMF is synthesized into three opposite potential hearts, α, & When the current is continuous, the X-phase current is not zero. At this time, it is only necessary to measure the voltage v/° of the coil of the non-conducting phase to the grounding point of the DC bus and the current of the upper arm conducting phase coil 4, and the bus voltage The V operation operates at the frontal voltage and does not require special measurement. According to the high-speed back EMF estimation rule, it is estimated that the upper arm conducts the opposite potential Q, the lower arm conducts the opposite potential 々 and the non-conducted opposite potential 4, whether it is medium or low speed or high speed. The back EMF estimation rule finally synthesizes three opposite potentials, Q, and, and through k庋I conversion to eliminate DC components. Since the three opposite potentials have a function relationship with the angular position of the rotating shaft, a higher resolution motor angle can be obtained as an estimate of the angular position via the correction of the inverse tangent function and the inverse tangent function. Experimental results: : 1 shellfish is used to drive the permanent magnet synchronous motor drive system. Several experimental results are shown. The eighth figure shows the measurement of the beta phase stator current at 10,000 rpm. The ninth figure shows the estimated value of the opposite potential of 4^0000, β 〇 , + m 二古', and the magnitude of the back EMF is close to 2·8 volts. Tenth-two..., 10000 rpm, using the coordinate conversion to calculate the back-potential change rate of the vertical axis by the three opposite potentials ~, , and with the horizontal axis of ~. At the 10th turn/min, the estimated angle of the shaft and the actual motor turn are the angle error. The value of the Γ Γ Λ 娜 00 00 rpm, the estimated angle of the shaft and the actual value are temporarily off the motor angle. The fourteenth figure is the speed _ turn / minute down, = the figure speed 3_, the transient speed rang the Newton-meter 贞 ^ ^ Figure 4 speed is turned / min, the added rated load 0.275 millimeters to the rated load Tfifl should be the t seven figure for the speed of 30000 rev / min, for the speed of 10000 charm / \ ^ cattle page meter load speed response measurement map. The 18th £1, the turn of the 10,000 rpm, the positive reversal of the temporary bear music, the eight map speed surface turn / sub-down, the positive and negative reversal angle map speed, the nineteenth picture is the rise, the twentieth Increase, 1 forward shift phase angle, the speed can not be raised as a weak magnetic control, the speed response of the forward shift phase is not moved forward phase shift speed «speed response = 14 1275238 ί speed weak magnetic control' forward shift phase response The measurement is not; the angle is increased to 36_rev/min. The twenty-second picture shows the high-rotation weak-magnetism control, and the relationship between the actual speed and the speed-to-speed ratio. BRIEF DESCRIPTION OF THE DRAWINGS The figure is a block diagram of the micro-permanent magnet synchronous motor rotation/speed estimation of the present invention. The second picture is the sound map of the micro-permanent magnet synchronous motor discriminator (overhang). The second figure is a sequence diagram of the conventional pulse width modulation and commutation mode. ~ The fourth figure is the equivalent circuit of the power conversion red arm switch cutoff and the lower arm _ & conduction. The fifth graph is a graph showing the relationship between the current and the phase voltage of the present invention. The sixth figure shows the equivalent circuit of the invention of power conversion red correlation Γ / conduction and downlink. The seventh picture is the flow chart of the _ _ step motor _ limb side. The eighth figure is a measurement diagram of the stator current of the phase of the invention at a speed of 10 rpm. The ninth figure is a measurement diagram of the rotational speed of 1G_rev/min τ, α relative to ground according to the present invention. The tenth figure is the estimated value of the three-extinguishing potential under the rotation speed of 10_rev/min according to the present invention. The tenth-figure is an estimation chart of the rate of change of the back electromotive force with the rotation speed of 1 〇 _ rpm in the present invention and the horizontal axis as the vertical axis. The twelfth figure is the relationship between the estimated Na and the actual motor shaft angle. The thirteenth figure is the angular error of the value of the transition value of the _ speed 诵 0 rpm. , , / , and fourteen pictures are the measurement charts of the transient speed response of the present invention under the speed _ turn / minute. The fifteenth figure is a measurement chart of the transient speed response of the present invention at a rotational speed of 3GGGG rpm. The sixteenth map of the county _ speed painting turn / sub-under, plus the rated load of the county speed response measurement map. The seventeenth figure is a steady response measurement chart of the rated load at a speed of 3_0 rpm. ^ The eighteenth_本发_速1G_转/分下, positive and negative (four) speed response amount 1275238 mapping. Nineteenth = this is the date of the joint speed _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The Eleventh® system invented the high-speed Lions, the transient velocity response map of the forward commutation angle. The twelfth figure shows the high-rotation weak-magnetism control of the present invention, and the forward-shifting at different angles corresponds to the relationship between the actual rotational speed and the rated rotational speed ratio.

1616

Claims (1)

1275238 拾、申請專利範圍: L 一種微型永磁同步馬達轉軸角/速度估測方法,係以一反電勢估測訊號轉 換為轉軸角度訊號取代一轉軸偵測元件的訊號,提供馬達轉軸角/速度之 精確估測。 2·根據申請專利範圍第1項之微型永磁同步馬達轉軸角/速度估測方法,該 馬達利用波寬調變技術配合兩種不同電流狀態下估測馬達三相反電勢。 3·根據申請專利範圍第2項之方法,其二種不同電流狀態係由功率轉換器 提供上臂功率開關導通與截止兩種狀態所造成之電流連續與不連續之特 性。 4. 根據申請專利範圍第3項之方法,使用兩種不同的電流狀態估測三相反 電勢’可分為方法A及方法B兩種不同的估測模式;方法A為波寬調 變截止時之估測方法;方法B為波寬調變導通時估測方法。 5. 根據申請專利範圍第4項之方法,該馬達的方法A反電勢估測原理為低 速運轉時’其電流不連續狀態下,利用電流零瞬間偵測三相對地電壓, 故可假設其電流及電流變化為零,獲得合成之三相反電勢。 6. 根據申請專利範圍第4項之方法,該馬達的方法B反電勢估測原理為高 速運轉時,其電流連續狀態下,利用電流不為零瞬間偵測非激磁相對地 電壓及激磁相導通電流,故可假設其直流匯流排電壓為已知,獲得合成 之三相反電勢。 又 口 7·根據申請專利範圍第5項或第6項之方法,利用六步方波切換模式的六 個狀態,估測微型永磁同步馬達三相反電勢,可獲得三相反電勢對應/⑼ 度電機角的訊號。 8·根據申請專利範圍第7項之三相反電勢訊號,透過簡易座標轉換及三角 函數汁异’取得一估測轉軸角度及速度的訊號。 9·根據申請專利範圍第8項之提供馬達轉軸角/速度之精確估測,將一轉軸 角度/速度資料回授,以完成閉迴路控制及四象限控制,並改善控速範 圍,則藉由高速弱磁的法則,調變激磁電流導通角度,提高控^範圍。 171275238 Pickup, patent application scope: L A miniature permanent magnet synchronous motor shaft angle/speed estimation method, which uses a back EMF estimation signal to convert the shaft angle signal to replace the signal of a shaft detecting component, and provides the motor shaft angle/speed. Accurate estimation. 2. According to the micro-permanent magnet synchronous motor shaft angle/speed estimation method of claim 1 of the patent scope, the motor uses the wave width modulation technology to estimate the opposite potential of the motor in two different current states. 3. According to the method of claim 2, the two different current states are provided by the power converter to provide continuous and discontinuous current characteristics caused by the on and off states of the upper arm power switch. 4. According to the method of the third paragraph of the patent application, using two different current states to estimate the three opposite potentials can be divided into two different estimation modes: method A and method B; method A is the wave width modulation cutoff time. The estimation method; the method B is an estimation method when the wave width modulation is turned on. 5. According to the method of claim 4, the method A of the motor's back EMF estimation principle is that when the current is discontinuous, the current is zero and the relative ground voltage is detected instantaneously, so the current can be assumed. And the current change is zero, and the resultant three opposite potential is obtained. 6. According to the method of claim 4, the method B of the motor is based on the principle of estimating the back EMF. When the current is continuous, the current is not zero, and the non-excited relative ground voltage and the excitation phase are detected. The current can be assumed to be known as the DC busbar voltage, and the resultant three opposite potentials are obtained. Further, according to the method of claim 5 or 6, the six states of the six-step square wave switching mode are used to estimate the three opposite potentials of the micro permanent magnet synchronous motor, and three opposite potential corresponding/(9) degrees can be obtained. The signal of the motor angle. 8. According to the opposite potential signal of the seventh paragraph of the patent application, the signal of the angle and speed of the shaft is obtained through the simple coordinate conversion and the trigonometric function. 9. According to the accurate estimation of the motor shaft angle/speed provided in item 8 of the patent application scope, feedback of a shaft angle/speed data to complete closed loop control and four quadrant control, and improve the speed control range by The law of high-speed weak magnetic field, the excitation current conduction angle is modulated, and the control range is improved. 17
TW95100036A 2006-01-02 2006-01-02 Rotor position/speed estimating method for micro permanent magnet synchronous motors TWI275238B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95100036A TWI275238B (en) 2006-01-02 2006-01-02 Rotor position/speed estimating method for micro permanent magnet synchronous motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95100036A TWI275238B (en) 2006-01-02 2006-01-02 Rotor position/speed estimating method for micro permanent magnet synchronous motors

Publications (2)

Publication Number Publication Date
TWI275238B true TWI275238B (en) 2007-03-01
TW200727572A TW200727572A (en) 2007-07-16

Family

ID=38624320

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95100036A TWI275238B (en) 2006-01-02 2006-01-02 Rotor position/speed estimating method for micro permanent magnet synchronous motors

Country Status (1)

Country Link
TW (1) TWI275238B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551007B (en) * 2015-03-13 2016-09-21 光寶電子(廣州)有限公司 Servo motor system and operating method thereof
TWI586078B (en) * 2016-09-06 2017-06-01 The stator structure of the motor
CN113064069A (en) * 2018-12-06 2021-07-02 浙江大学台州研究院 Angle and torque measuring device for high-current brake equipment
CN113064071A (en) * 2018-12-06 2021-07-02 浙江大学台州研究院 Angle and torque measurement system for high-current brake equipment
US11616462B1 (en) 2021-12-21 2023-03-28 Industrial Technology Research Institute Motor parameter estimation device and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481887B (en) * 2010-10-21 2015-04-21 Univ Nat Taipei Technology Energy saving burn-in test method and apparatus for use with three-phase inverter
TWI484748B (en) * 2013-08-27 2015-05-11 Ind Tech Res Inst Apparatus and method for electric motor rotor angle estimation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551007B (en) * 2015-03-13 2016-09-21 光寶電子(廣州)有限公司 Servo motor system and operating method thereof
TWI586078B (en) * 2016-09-06 2017-06-01 The stator structure of the motor
CN113064069A (en) * 2018-12-06 2021-07-02 浙江大学台州研究院 Angle and torque measuring device for high-current brake equipment
CN113064071A (en) * 2018-12-06 2021-07-02 浙江大学台州研究院 Angle and torque measurement system for high-current brake equipment
CN113064068A (en) * 2018-12-06 2021-07-02 浙江大学台州研究院 Angle and torque measurement system for high-voltage large-current brake equipment
CN113064070A (en) * 2018-12-06 2021-07-02 浙江大学台州研究院 Angle and torque measuring device for high-voltage large-current brake equipment
CN113064069B (en) * 2018-12-06 2022-05-17 浙江大学台州研究院 Angle and torque measuring device for high-current brake equipment
CN113064070B (en) * 2018-12-06 2022-05-17 浙江大学台州研究院 Angle and torque measuring device for high-voltage large-current brake equipment
CN113064068B (en) * 2018-12-06 2022-05-17 浙江大学台州研究院 Angle and torque measurement system for high-voltage large-current brake equipment
CN113064071B (en) * 2018-12-06 2022-05-17 浙江大学台州研究院 Angle and torque measurement system for high-current brake equipment
US11616462B1 (en) 2021-12-21 2023-03-28 Industrial Technology Research Institute Motor parameter estimation device and method

Also Published As

Publication number Publication date
TW200727572A (en) 2007-07-16

Similar Documents

Publication Publication Date Title
TWI275238B (en) Rotor position/speed estimating method for micro permanent magnet synchronous motors
JP5853097B2 (en) Three-phase synchronous motor drive device, integrated three-phase synchronous motor, positioning device and pump device
Ogasawara et al. An approach to position sensorless drive for brushless DC motors
JP5697745B2 (en) Synchronous motor drive system
CN102577084B (en) The slow speed operation of the Brushless DC motor driven by gating pulse width modulation
CN110622410B (en) Brushless direct current motor control method, control device and electric tool
WO2009049501A1 (en) A motor control method and device by using space vector pulse width modulation
WO2001045247A1 (en) Detection of rotor angle in a permanent magnet synchronous motor at zero speed
JP2000350489A (en) Position sensorless motor controller
KR20130106505A (en) Sensorless control method and apparatus thereof
JPS6240085A (en) Brushless motor
CN103391041A (en) Angle estimation controlling system and angle estimation method
CN101232266A (en) Apparatus and method for controlling direct current brushless motor
US6369535B1 (en) Method and apparatus for current shaping in electronically commutated motors
JP2009077503A (en) Motor controller and controller for air conditioner
Attar et al. Control of Brushless DC motors using sensorless Back-EMF integration method
CN206820680U (en) A kind of zero cross detection circuit of DC brushless motor
KR20160065291A (en) Motor driving module
JP6348779B2 (en) Synchronous motor drive system
CN106803728B (en) Zero-crossing detection circuit of direct-current brushless motor
CN109510525A (en) A kind of permanent magnet synchronous motor original state detection method
Matsushita et al. Sine-wave drive for PM motor controlling phase difference between voltage and current by detecting inverter bus current
Li et al. A new sensorless control method for brushless permanent magnet DC motors
JP6495528B1 (en) Method of driving motor
JP6805197B2 (en) Integrated circuit for motor control

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees