TWI275173B - Antistatic flip-chip type LED - Google Patents

Antistatic flip-chip type LED Download PDF

Info

Publication number
TWI275173B
TWI275173B TW94130113A TW94130113A TWI275173B TW I275173 B TWI275173 B TW I275173B TW 94130113 A TW94130113 A TW 94130113A TW 94130113 A TW94130113 A TW 94130113A TW I275173 B TWI275173 B TW I275173B
Authority
TW
Taiwan
Prior art keywords
type
well
doped region
highly doped
emitting diode
Prior art date
Application number
TW94130113A
Other languages
Chinese (zh)
Other versions
TW200711093A (en
Inventor
Liann-Be Chang
Yuan-Hsiao Chang
Shin-Yi Jang
Original Assignee
Univ Chang Gung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chang Gung filed Critical Univ Chang Gung
Priority to TW94130113A priority Critical patent/TWI275173B/en
Application granted granted Critical
Publication of TWI275173B publication Critical patent/TWI275173B/en
Publication of TW200711093A publication Critical patent/TW200711093A/en

Links

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

The present invention provides an antistatic flip-chip type LED, in which a silicon-controlled rectifier (SCR) structure is fabricated directly on the silicon substrate, and the LED unit is mounted on the SCR structure in a flip-chip way. Thus, the SCR structure releases the static current, thereby achieving the effect of preventing static charge.

Description

1275173 九、發明說明·· 【發明所屬之技術領域】 種可防止靜電破壞之 本發明係有關一種發光二極體,特別是指一 覆晶式發光二極體。 【先前技術】 發光二極體(Lighting Emitting Diodes,· LED)是-種由半導體 材料構成,_半導體中的電子與制結合而發Μ子,產生不同頻 ,之光譜的發光元件,由於發光三爾絲具有良好的色純度、無采、 壽命長及省電轉色,因此在照明及顯示料光源等顧上逐漸受到 重視。 發光二極體的封裝接合方式主要有兩種,一為打線(Μ油如㈣ , 為後曰曰(fllp chlp)方式;其中打線方式所使用之導線會 阻播到光路,覆晶方式射魏絲點,進赌升元件的光量,又因 為覆晶結魏直婦由雜献凸職散赌構直接_,使得發光 -極體可得顺麵電氣雛,並可讀提昇元件的散触果,更可 適用於大面積高功率之魏:極體產品,例如,藍色、齡等短波長 的發光二極體。 =_能力一二 ===左容右易 陷 b由光—極體基本上為異質蟲晶結構,容易產生晶格缺 程序或傕用卜 a人 〜π"……爪付友右,所以在製造 覆晶結構之笋光二;::靜電放電作用而導致元件損毀,因此,對於 盈待解決的“it!1 ’要如何避免靜電破壞的問題也成為目前 【發明内容】 1275173 鑒於以上的問題,本發明的主要目的在於提供一種抗靜電之覆晶 式發光二極體,乃_雜整流賭構來提高發光二極體料之抗靜 電效果,藉以大體上解決先前技術存在之缺失。 几 g 树灣賊之錄電之覆料發光二極 體疋由石夕基板、石夕控整流器結構與發光二極體單元所構成,石夕控整 流㈣構設置於雜板上,發光二極體單元則以覆晶方錢設树控 整流器結構上’當靜較電龍超過雜整魅結構之赠電壓,石夕 控整流ϋ結構可被導通並將靜電放電之電流排放出去,以達到靜電防 護的效果。 為使對本發_目的、構造龍及其功能有進—步的 合圖式詳細說明如下: 解餘配 【實施方式】 請參照第1Α圖與第1Β圖所示,分別為本發明之實施例所提供之 抗靜電之覆晶式發光二極體與雜整流縣構之示意圖;抗靜電之覆 晶式發光二極體主要包括石夕基板1〇〇、石夕控整流器結構ιι〇與發光二二 體單元120 ’其藉由在石夕基板議上先製作石夕控整流器結構11〇,然後 以覆晶方式將發光二極體單元12〇安裝於石夕控整流器結構山上,使 得發光二極體單元12〇可透過雜整流器結構UG釋放靜電放電之電 流’來達到靜電防護的效果。 其中,本實施例之發光二極體單元120是藉由成長n型半導體層 122、主動層(Active Layer) 123、p型半導體層124、p型接觸層郎 以及η型接觸層126於透光基板121上所製成,透明基板12丨可為齡 1275173 寶石基板(Sapphire)、、碳化矽(SiC)基板、三氧化二鋁(Al2〇3)基板、 氮化鎵(GaN)基板、氮化鋁(A1N)基板,η型半導體層122則設置於透光 基板121上,主動層123與η型接觸層126設置於η型半導體層122 上’ Ρ型半導體層124設置於主動層123上,ρ型接觸層125設置於ρ 型半導體層124上’且ρ型接觸層125與η型接觸層126分別與正電 壓源與負電壓源連接,以供導入順向電壓,使ρ型半導體層124之電 洞與η型半導體122層之電子可於主動層結合而發光。此發光二極體 單元120是以覆晶方式使用錫球凸塊(s〇ider bump) 127反貼接合於 石夕控整流器結構110上,且錫球凸塊127的形狀並不予以限定,其可 以是圓形、方形或是任何需要應用的形狀。 至於矽控整流器結構110是由第一 ρ型高摻雜區(p+)112、第一 n 型面摻雜區(η+)111、η型井(n-well)113與ρ型井(p-weH)ii4所構 成,P型井114與η型井113彼此相接,而第一 ρ型高摻雜區H2與第 一 η型高摻雜區in則分別設置於η型井113與ρ型井Η4上,用以 當作石夕控整流器結構110之陽極與陰極,並電性連接至發光二極體單 元120。當靜電放電電壓高於矽控整流器結構η〇之切換電壓,則矽控 整流器結構110會被導通,並使靜電放電的電流經由第一 ρ型高摻雜 區112、η型井113、ρ型井114、第一 η型高摻雜區1Π,然後釋放出 去。 本實施例可透過對於矽控整流器結構110作適當設計,調整矽控 整結構11〇的切換電壓’當靜電放電電壓高於石夕控整流器結構η〇 1275173 之切換電壓,靜電放電的電流會導财控整流ϋ結構110,發揮靜電防 護的功能,反之,靜電放電的電流則會導人發光二極體12G而發光。 以下舉出數個不同型態之矽控整流器結構作為實施參考。如第2 圖所不,本發明之第二實施例,矽控整流器結構210是由第一 ρ型高 換雜區(ρ+)212、第一 η型高摻雜區(η+)2η、ρ型井奶⑴214、^ 型井(n-well)213、第^型高摻雜區(ρ+)2ΐ5與第二η型高摻雜區 (η+)216所構成,第二ρ型高摻雜區(ρ+)215與第二η型高摻雜區 (η+)216分別作為陽極與陰極,並電性連結至發光二極體單元ι2〇。 如第3圖所示,本發明之第三實施例,矽控整流器結構31〇是由 第一 Ρ型高摻雜區(ρ+)3ΐ2、第一 η型高摻雜區(η+)311、ρ型井 (ρ-well)314、n型井(n-weii)3i3以及第三ρ型高摻雜區(ρ+)315所構 成,而第一 Ρ型高摻雜區312與第一 η型高摻雜區311分別作為陽極 與陰極,並電性連結至發光二極體單元120。 如第4圖所示,本發明之第四實施例,矽控整流器結構41〇是由 第一 ρ型高摻雜區(ρ+)412、第一 η型高摻雜區(η+)411、ρ型井 (p-well)414、n型井(n-weii)413以及第三η型高摻雜區(η+)415所構 成,第一 Ρ型高摻雜區412與第一 η型高摻雜區411分別作為陽極與 陰極,並電性連結至發光二極體單元120。 如第5圖所示,本發明之第五實施例,矽控整流器結構51〇是由 第一 Ρ型高摻雜區(p+)512、第一 η型高摻雜區(η·〇511、ρ型井 (p-well)514、η 型井(n-well)513、第三 Ρ 型高摻雜區(ρ+)515、第二 1275173 P型高摻雜區(p+)516與第二n型高摻雜區(n+)517所構成,第二口型 高摻雜區(p+)516與第二n型高摻雜區(n+)517分別作為陽極與陰極, 並電性連結至發光二極體單元12〇。 如第6圖所示,本發明之第六實施例,矽控整流器結構61〇是由 第-P型高摻雜區(p+)612、第-n型高摻雜區(n+)6u、p型井 (P-well)614、η型井(n-we⑴613、第三n型高播雜區⑽6i5、第二 P型高摻雜區(p+)616與第二n型高摻雜區(n+)617所構成,第二㈣ 高摻雜區(P+)616鄉二n型高摻雜區⑽阳分別作為陽極與陰極, 並電性連結至發光二極體單元12〇。 综上所述’根據本發明所提供之覆晶式發光二極體,藉由石夕控整 流器結構可幫助覆晶式發光二極體單元產生靜電防護,使得發光二極 體單元可耐較高霞⑽伏特,甚至達5_伏特以上),避免 元件產生損壞’並且,可藉由使用不關態的雜整流器,來決定預 設的切換電壓值,以達到更完整的防護設計。 雖然本發日⑽前述之實_揭露如上,然錢_以限定本發 明。在不脫離本發明之精神和範_,所為之更動翻飾,均屬 明之,利紐範圍。_本發明所界定之保護侧請參考所附之 專利範圍。 【圖式簡單說明】 ϋ圖與第=_分麟本㈣之第_實蝴所提供之抗靜電之覆 曰曰式务光二極體與矽控整流器結構之示意圖; ,2圖係本發明之第二實施例所提供之德整流器結構之示意圖; 弟3圖係本發明之第三實施例所提供之雜整流器結構之示音圖; 第4圖係本發明之第四實施例所提供之雜整流器結構之示^圖; 12 1275173 ;及 第5圖係本發明之第五實施例所提供之矽控整流器結構之示意圖 第6圖係本發明之第六實施例所提供之矽控整流器結構之示意圖 【主要元件符號說明】 100 碎基板1275173 IX. INSTRUCTIONS OF THE INVENTION · TECHNICAL FIELD OF THE INVENTION The present invention relates to a light-emitting diode, and more particularly to a flip-chip light-emitting diode. [Prior Art] Light-emitting diodes (LEDs) are made up of semiconductor materials, and the electrons in the semiconductor are combined with the system to generate dice, which produce different frequency spectrums of the light-emitting elements. With good color purity, no mining, long life and power saving, it has received increasing attention in lighting and display materials. There are two main types of package bonding methods for light-emitting diodes. One is wire bonding (such as oil (4), which is fllp chlp); the wire used in the wire-bonding method will block the light path, and the flip-chip method will shoot Wei. The point of silk, the amount of light into the gambling component, and because of the overlying crystal, the Wei Jing woman is directly confessed by the confession, so that the radiant-polar body can get the smooth electrical chick, and the tangible fruit of the lifting component can be read. It can be applied to large-area and high-power Wei: polar products, for example, short-wavelength light-emitting diodes such as blue and age. =_capability one or two === left-right right trapping b-light-polar body Basically, it is a heterogeneous worm crystal structure, which is prone to crystal lattice deficiency or 傕 傕 a 人 〜 〜 ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右Therefore, the problem of how to avoid electrostatic damage to "it!1" which is solved by the problem is also the present invention. [Invention] 1275173 In view of the above problems, the main object of the present invention is to provide an antistatic flip chip type light emitting diode. , is the _ hybrid rectification gambling to improve the light dipole The antistatic effect of the material can largely solve the lack of prior art. The gluing diode of the recording of a few g of Shuwan thief is composed of Shixi substrate, Shixi controlled rectifier structure and LED unit. , Shi Xi control rectification (four) structure is set on the miscellaneous board, the light-emitting diode unit is set to control the rectifier structure on the surface of the crystal, and the voltage is more than the electric dragon. The structure can be turned on and discharge the current of the electrostatic discharge to achieve the effect of static electricity protection. In order to make the combination of the present invention, the construction dragon and its function, the following is a detailed description of the following: Please refer to FIG. 1 and FIG. 1 respectively, which are schematic diagrams of antistatic flip-chip light-emitting diodes and hybrid rectification county structures provided by embodiments of the present invention; antistatic flip-chip light-emitting diodes; The body mainly includes the Shixi substrate 1〇〇, the stone-controlled rectifier structure ιι〇 and the light-emitting diode unit 120'. By making the stone-controlled rectifier structure 11〇 on the Shixi substrate, and then flipping the crystal Luminous two The body unit 12〇 is mounted on the rocky structure of the stone-controlled rectifier, so that the light-emitting diode unit 12〇 can discharge the current of the electrostatic discharge through the hybrid rectifier structure UG to achieve the effect of electrostatic protection. The light-emitting diode of the embodiment The unit 120 is formed on the transparent substrate 121 by growing the n-type semiconductor layer 122, the active layer 123, the p-type semiconductor layer 124, the p-type contact layer lang, and the n-type contact layer 126. The transparent substrate 12 is formed.丨 can be 1275173 gem substrate (Sapphire), tantalum carbide (SiC) substrate, aluminum oxide (Al2〇3) substrate, gallium nitride (GaN) substrate, aluminum nitride (A1N) substrate, n-type semiconductor layer 122 is disposed on the transparent substrate 121, and the active layer 123 and the n-type contact layer 126 are disposed on the n-type semiconductor layer 122. The germanium-type semiconductor layer 124 is disposed on the active layer 123, and the p-type contact layer 125 is disposed on the p-type semiconductor. On the layer 124, the p-type contact layer 125 and the n-type contact layer 126 are respectively connected to a positive voltage source and a negative voltage source for introducing a forward voltage, so that the hole of the p-type semiconductor layer 124 and the n-type semiconductor layer 122 The electrons can be combined to emit light in the active layer. The light-emitting diode unit 120 is flip-chip bonded to the stone-controlled rectifier structure 110 by using a solder bump 127, and the shape of the solder ball bump 127 is not limited. It can be round, square or any shape that needs to be applied. The gated rectifier structure 110 is composed of a first p-type highly doped region (p+) 112, a first n-type doped region (η+) 111, an n-well 113 (n-well) 113, and a p-type well (p). -weH) ii4, the P-type well 114 and the n-type well 113 are connected to each other, and the first p-type highly doped region H2 and the first n-type highly doped region in are respectively disposed in the n-type well 113 and ρ The well 4 is used as an anode and a cathode of the rock-controlled rectifier structure 110, and is electrically connected to the light-emitting diode unit 120. When the electrostatic discharge voltage is higher than the switching voltage of the 矽 control rectifier structure η〇, the 整流 control rectifier structure 110 is turned on, and the electrostatic discharge current is passed through the first p-type highly doped region 112, the n-type well 113, and the p-type The well 114, the first n-type highly doped region is 1 Π, and then released. In this embodiment, the switching voltage of the 矽 control structure 11 矽 can be adjusted by appropriately designing the 矽 control rectifier structure 110. When the electrostatic discharge voltage is higher than the switching voltage of the 夕 〇 〇 1275173 structure, the current of the electrostatic discharge is guided. The financial control rectifier structure 110 functions as a static electricity protection. Conversely, the current of the electrostatic discharge leads to the light-emitting diode 12G to emit light. Several different types of controlled rectifier structures are listed below as implementation references. As shown in FIG. 2, in the second embodiment of the present invention, the 矽-controlled rectifier structure 210 is composed of a first p-type high-allocation region (ρ+) 212 and a first n-type highly doped region (η+) 2η. ρ type well milk (1) 214, ^ type well (n-well) 213, ^ type high doped region (ρ + ) 2 ΐ 5 and second n type high doped region (η +) 216, the second ρ type high The doped region (ρ+) 215 and the second n-type highly doped region (n+) 216 serve as an anode and a cathode, respectively, and are electrically connected to the light emitting diode unit ι2〇. As shown in FIG. 3, in the third embodiment of the present invention, the 矽-controlled rectifier structure 31 〇 is composed of a first Ρ type highly doped region (ρ+) 3 ΐ 2, a first n-type highly doped region (η+) 311 a p-type well (ρ-well) 314, an n-type well (n-weii) 3i3, and a third p-type highly doped region (ρ+) 315, and the first doped high doped region 312 and the first The n-type highly doped regions 311 serve as an anode and a cathode, respectively, and are electrically connected to the light emitting diode unit 120. As shown in FIG. 4, in the fourth embodiment of the present invention, the 矽-controlled rectifier structure 41 〇 is composed of a first p-type highly doped region (ρ+) 412 and a first n-type highly doped region (η+) 411. a p-well (p-well) 414, an n-well (n-weii) 413, and a third n-type highly doped region (n+) 415, the first doped high doped region 412 and the first n The high doped regions 411 serve as an anode and a cathode, respectively, and are electrically connected to the light emitting diode unit 120. As shown in FIG. 5, in the fifth embodiment of the present invention, the 矽-controlled rectifier structure 51 〇 is composed of a first Ρ-type highly doped region (p+) 512 and a first n-type highly doped region (η·〇 511, P-well 514, n-well 513, third 高-type highly doped region (ρ+) 515, second 1275173 P-type highly doped region (p+) 516 and second The n-type highly doped region (n+) 517 is formed, and the second-port type high-doped region (p+) 516 and the second n-type highly doped region (n+) 517 serve as an anode and a cathode, respectively, and are electrically connected to the light-emitting layer. The diode unit 12A. As shown in Fig. 6, in the sixth embodiment of the present invention, the step-controlled rectifier structure 61 is made of a high-doped region (p+) 612 and a -n-type high-doped region. Zone (n+) 6u, p-well 614, η-well (n-we(1) 613, third n-type high-order impurity zone (10) 6i5, second P-type highly doped zone (p+) 616 and second n The high-doped region (n+) 617 is formed, and the second (four) highly doped region (P+) 616 and the n-type high-doped region (10) are respectively used as an anode and a cathode, and are electrically connected to the light-emitting diode unit 12, respectively.综. In summary, the flip-chip light-emitting diode provided by the present invention is controlled by a stone-controlled rectifier The structure can help the flip-chip LED unit to generate static electricity protection, so that the LED unit can withstand higher (10) volts, even above 5 volts, to avoid damage to the components' and can be used without State-of-the-art rectifiers to determine the preset switching voltage value for a more complete protection design. Although the foregoing disclosure (10) is as described above, it is intended to limit the present invention without departing from the spirit and scope of the present invention. _, for the more versatile, are all in the Ming, Li New range. _ The protection side defined by the invention, please refer to the attached patent scope. [Simple diagram of the diagram] ϋ diagram and the first = _ _ Lin Ben (four) _ The schematic diagram of the structure of the antistatic electrostatic light-emitting diode and the controlled rectifier provided by the real butterfly; 2 is a schematic diagram of the structure of the rectifier provided by the second embodiment of the present invention; FIG. 4 is a view showing a structure of a hybrid rectifier according to a fourth embodiment of the present invention; 12 1275173; and FIG. 5 is a diagram of the present invention. Provided by the fifth embodiment FIG. 6 is a schematic diagram showing the structure of a controlled rectifier according to a sixth embodiment of the present invention. [Description of main components] 100 broken substrate

110、210、310、410、510、610 矽控整流器結構 111、211、311、411、511、611 第一 η型高摻雜區 112、212、312、412、512、612 第一 ρ型高摻雜區 113、213、313、413、513、613 η型井 114、214、314、414、514、614 Ρ型井 120 發光二極體單元 121 透明基板 122 η型半導體層 123 主動層 124 ρ型半導體層 125 ρ型接觸層 126 η型接觸層 127 錫球凸塊 215、516、616 第二ρ型高摻雜區 216、517、617 第二η型高摻雜區 315、515 第三ρ型高掺雜區 415、615 第三η型南推雜區 13110, 210, 310, 410, 510, 610 整流 control rectifier structure 111, 211, 311, 411, 511, 611 first n-type highly doped regions 112, 212, 312, 412, 512, 612 first p-type high Doped region 113, 213, 313, 413, 513, 613 n-well 114, 214, 314, 414, 514, 614 Ρ well 120 illuminating diode unit 121 transparent substrate 122 n-type semiconductor layer 123 active layer 124 ρ Type semiconductor layer 125 p-type contact layer 126 n-type contact layer 127 solder ball bumps 215, 516, 616 second p-type highly doped regions 216, 517, 617 second n-type highly doped regions 315, 515 third ρ Highly doped region 415, 615 third n-type south doped region 13

Claims (1)

1275173 十、申請專利範圍: 1· 一種抗靜電之覆晶式發光二極體,包含: 一碎基板; 一矽控整流器(Silicon Controlled Rectifier, SCR)結構,設置 於該矽基板上;及 一發光二極體單元,以覆晶方式設置於該矽控整流器上。 2·如申請範圍第1項所述之抗靜電之覆晶式發光二極體,其中該發光二極 體單元係包含: 一透光基板; 一 η型半導體層,設置於該透光基板上; 一Ρ型半導體層,對應設置於該η型半導體層上方; 一 η型接觸層,設置於該η型半導體層上,且電性連接至該;ε夕控整 流器結構;及 一 Ρ型接觸層,設置於該ρ型半導體層上,且電性連接至該;ε夕控整 流器結構。 3·如申請範圍第2項所述之抗靜電之覆晶式發光二極體,其中該發光二極 體單元更包括一主動層,設置於該η型半導體層與該ρ型半導體層之間。 4·如申明範圍第2項所述之抗靜電之覆晶式發光二極體,其中該透明基板 係選自藍寶石基板(Sapphire)、破化石夕(SiC)基板、三氧化二铭(ai2q3) 基板、氮化鎵(GaN)基板、氮化鋁(A1N)基板之群組組合。 5·如申θ月範圍第1項所述之抗靜電之覆晶式發光二極體,其中該石夕控整流 器結構係包含一第一 Ρ型高摻雜區(Ρ+)、一第一 η型高摻雜區(η+)、一 14 日修(異)正正本 1275173 P 型井(p-wel 1)與一 n 型井(n-wel 1)。 6_如申請範圍第1項所述之抗靜電之覆晶式發光二極體,其中該矽控整流 器結構係包含一第一 P型高摻雜區(P+)、一第一 η型高摻雜區(n+)、一 P型井(p-well)、一 n型井(n_well)以及一第二p型高摻雜區(奸)與一 第二η型高摻雜區(n+)分別作為陽極與陰極。 7·如申請範圍第1項所述之抗靜電之覆晶式發光二極體,其中該矽控整流 器結構係包含一第一 P型高摻雜區(P+)、一第一 η型高摻雜區(n+)、一 P型井(p-well)、一 n型井(n—well)以及一第三p型高摻雜區(p+)。 8·如申請範圍第1項所述之抗靜電之覆晶式發光二極體,其中該矽控整流 器結構係包含一第一 P型高摻雜區(p+)、一第一 η型高摻雜區(n+)、一 P型井(p-well)、一 n型井(n_weli)以及一第三η型高摻雜區(n+)。 9·如申請範圍第1項所述之抗靜電之覆晶式發光二極體,其中該矽控整流 器結構係包含一第一 P型高摻雜區(P+)、一第一 η型高摻雜區(n+)、一 P型井(p-well)、一 n型井(n_wen)、一第三p型高摻雜區(p+)以及一 第一P型咼摻雜區(p+)與一第二η型高摻雜區(n+)分別作為陽極與陰極。 10.如申請範圍第1項所述之抗靜電之覆晶式發光二極體,其中該矽控整流 器結構係包含一第一 P型高摻雜區(P+)、一第一 η型高摻雜區(n+)、一 Ρ型井(p-well)、一η型井(n-well)、一第三η型高摻雜區(η+)以及一 第二Ρ型高摻雜區(ρ+)與一第二η型高摻雜區(η+)分別作為陽極與陰 才亟0 15 1275173 七、指定代表囷: (一) 本案指定代表圖為:第(1A )圖。 (二) 本代表圖之元件符號簡單說明: 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 100 矽基板 110 矽控整流器結構 120 發光二極體單元 121 透明基板 122 η型半導體層 123 主動層 124 Ρ型半導體層 125 ρ型接觸層 126 η型接觸層 127 錫球凸塊1275173 X. Patent application scope: 1. An antistatic flip chip type light emitting diode comprising: a broken substrate; a Silicon Controlled Rectifier (SCR) structure disposed on the germanium substrate; and a light emitting The diode unit is disposed on the step-controlled rectifier in a flip chip manner. The antistatic flip chip type light emitting diode according to the above aspect, wherein the light emitting diode unit comprises: a light transmissive substrate; an n-type semiconductor layer disposed on the light transmissive substrate a 半导体-type semiconductor layer correspondingly disposed above the n-type semiconductor layer; an n-type contact layer disposed on the n-type semiconductor layer and electrically connected to the ε-controlled rectifier structure; and a Ρ-type contact a layer disposed on the p-type semiconductor layer and electrically connected to the ε-controlled rectifier structure. 3. The antistatic flip chip type light emitting diode according to claim 2, wherein the light emitting diode unit further comprises an active layer disposed between the n-type semiconductor layer and the p-type semiconductor layer . 4. The antistatic flip chip type light emitting diode according to the second aspect of the invention, wherein the transparent substrate is selected from the group consisting of a sapphire substrate, a SiC substrate, and a third oxide (ai2q3). A combination of a substrate, a gallium nitride (GaN) substrate, and an aluminum nitride (A1N) substrate. 5. The antistatic flip chip type light emitting diode according to claim 1, wherein the stone-controlled rectifier structure comprises a first germanium type highly doped region (Ρ+), a first Η-type highly doped region (η+), a 14-day repair (different) positive orthographic 1275173 P-type well (p-wel 1) and an n-type well (n-wel 1). 6* The antistatic flip chip type light emitting diode according to claim 1, wherein the gated rectifier structure comprises a first P-type highly doped region (P+) and a first n-type high doping. a hetero-region (n+), a p-well (p-well), an n-well (n_well), and a second p-type highly doped region (n+) and a second n-type highly doped region (n+) respectively As the anode and cathode. 7. The antistatic flip chip type light emitting diode according to claim 1, wherein the gated rectifier structure comprises a first P-type highly doped region (P+) and a first n-type high doping. A hetero region (n+), a p-well (p-well), an n-well (n-well), and a third p-type highly doped region (p+). 8. The antistatic flip chip type light emitting diode according to claim 1, wherein the gated rectifier structure comprises a first P-type highly doped region (p+) and a first n-type high doping. A hetero region (n+), a p-well (p-well), an n-type well (n_weli), and a third n-type highly doped region (n+). 9. The antistatic flip chip type light emitting diode according to claim 1, wherein the gated rectifier structure comprises a first P-type highly doped region (P+) and a first n-type high doping. a hetero region (n+), a p-well (p-well), an n-type well (n_wen), a third p-type highly doped region (p+), and a first P-type germanium-doped region (p+) A second n-type highly doped region (n+) serves as an anode and a cathode, respectively. 10. The antistatic flip chip type light emitting diode according to claim 1, wherein the gated rectifier structure comprises a first P-type highly doped region (P+) and a first n-type high doping. a hetero region (n+), a p-well, an n-well, a third n-type highly doped region (η+), and a second doped high doped region ( ρ+) and a second n-type highly doped region (η+) are respectively used as the anode and the cathode. 150 15 1275173 VII. Designated representative 囷: (1) The representative figure of the case is: (1A). (2) A brief description of the symbol of the representative figure: 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: 100 矽 substrate 110 矽 control rectifier structure 120 illuminating diode unit 121 transparent substrate 122 η type Semiconductor layer 123 active layer 124 Ρ type semiconductor layer 125 p type contact layer 126 n type contact layer 127 solder ball bump
TW94130113A 2005-09-02 2005-09-02 Antistatic flip-chip type LED TWI275173B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94130113A TWI275173B (en) 2005-09-02 2005-09-02 Antistatic flip-chip type LED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94130113A TWI275173B (en) 2005-09-02 2005-09-02 Antistatic flip-chip type LED

Publications (2)

Publication Number Publication Date
TWI275173B true TWI275173B (en) 2007-03-01
TW200711093A TW200711093A (en) 2007-03-16

Family

ID=38624298

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94130113A TWI275173B (en) 2005-09-02 2005-09-02 Antistatic flip-chip type LED

Country Status (1)

Country Link
TW (1) TWI275173B (en)

Also Published As

Publication number Publication date
TW200711093A (en) 2007-03-16

Similar Documents

Publication Publication Date Title
TWI303872B (en) High power light emitting device assembly with esd preotection ability and the method of manufacturing the same
US20110018013A1 (en) Thin-film flip-chip series connected leds
KR101580739B1 (en) Light emitting device
CN102231421B (en) Light-emitting diode package structure manufacturing method
TW201318213A (en) Light emitting device
CN107146840A (en) A kind of flip LED chips array structure and preparation method thereof
WO2010003386A2 (en) Light-emitting device and packaging structure thereof
CN103219352A (en) LED (Light Emitting Diode) combined chip in array structure and manufacturing method thereof
JP2013034010A (en) Vertical light-emitting device
US10205057B2 (en) Flip-chip light emitting diode and fabrication method
KR20110039639A (en) Sub-mount for light emitting diode
TW201131829A (en) Thermally-enhanced hybrid LED package components
JP2007027357A (en) Semiconductor light emitting device and substrate
RU2494498C2 (en) Semiconductor light-emitting device
KR20120017443A (en) Extension of contact pads to the die edge with electrical isolation
CN105226177B (en) The eutectic electrode structure and flip LED chips of flip LED chips
TWI275173B (en) Antistatic flip-chip type LED
KR20070082338A (en) Led having vertical structure and the method of manufacturing the same
CN107464864B (en) Light emitting diode and preparation method thereof
CN203787469U (en) Light-emitting structure
KR20120035637A (en) Light emitting device
US9257622B2 (en) Light-emitting structure
CN103794703B (en) Light emitting diode and manufacturing method thereof
CN217361628U (en) Antistatic LED chip
CN217387195U (en) Flip-chip type MICROLED chip structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees