1274177 玖、發明說明: 【發明所屬之技術領域】 本發明涉及一種分光鏡的膜層結構,分光鏡及光學鏡片,尤指一種 非偏振化分光鏡的膜層結構。 【先前技術】 按’分光鏡(Beam Splitter)係用來反射或透射光線,依照光譜 特性的不同,分光鏡可分爲中性分光鏡及雙色分光鏡,中性分光鏡可 以將一束光分成光譜成份相同的兩束光;雙色分光鏡則可以將光譜的 其中一部份反射而其他部份透射。依照光線的偏振性,分光鏡還可以 設計爲偏振分光鏡,可將光束分成一束爲其電場垂直於入射平面的s 偏振光,另一束爲其電場平行於入射平面的p偏振光。理想的中性分 光鏡之主要雜是反射率與透神@波長及肖度不a而5丨起的改變很 小及偏振性小,但由於多層膜之材料總具有色散及吸收等性質,且若 入射角不爲零度時’則不同偏振性的光線之反射率與透射率會不一 樣,當入射角越大,Rs (S偏光之反射率)熟(P偏光之反射率)、Ts (S偏光之透射率)#Tp (p偏光之透神)之差財會越大,故需要 對光學膜層進行特別設計使得該分光鏡成爲一非偏振化的分光鏡。 習知分光鏡之膜層設計係採用了交替型的周期結構,並由高、低折 射率材料堆疊而成,如第一圖所示,膜層8之結構爲⑽m,其直接設 置於基板Ns上’其中1!表示高折射率膜層,L表示低折射率膜層,m爲 整數,#用λ°表示人射光之中心波長時,高折射率顧Η與低折射率 膜層L均設置爲具有轉於μ的光學厚度(辭厚度等於折射率乘 1274177 以厚度)。惟’該族層8之s偏振光與p偏振光之反射波之相位差僅能 局限於G度’要ft計成90度是_達刺,且㈣減s偏振光與p 偏振光之分離量過大,如第二騎示之簡躲構之綠_反射率_相 位分佈的特性曲線。 可見’有必要對習知膜層結構做出改進,以提高分光鏡之非偏振化 的特性。 【發明内容】 本發明之目的在於提供—種分光鏡的膜層結構 ,可以使得該分光鏡 在相位上的設計及應収爲寬廣,而且S偏振光與p偏振光之分離量 也會達到很小。 依據本發a月之上述目的,本發日月提供—種分光鏡的膜層_,該膜 層係由同、低折射率材料堆疊而成,膜層結構爲㈤聊(阳,其中 H表示由高折射率材料製成的賴,其折射率是在2_ 5〜4之間;L表示 由低折射特料製成_層,其折射枝在丨.4〜丨· ?之間;及η爲整 數將該膜層結構進行優化後,可以得到相位差9〇度且p偏光之反射 率與S偏光之反射率之分離量小的分光鏡,膜層結構伽後的數據爲: 高折射補層之折鱗爲3.86,低折射率之折射補Μ,η等 於4 〇 上述由高折射率材料製成的琪層H與由低折射率材料製成的膜層l 均具有約等於的光學厚度,其中λ。表示人射光之中心波長。 狂述膜層結構進行優化之後,高折射率膜層Η之總厚度小於 1274177 80nm,低折射率膜層L之總厚度小於15〇〇咖。 上述高折射率膜層採用的是吸收性材料。 與本發明之先前技術相比較,本發明的膜層結構爲㈣㈣ (LH)n,其高折射率膜層之折射率採用3.86,低折射率膜層之折射率採 用1. 45 η等於4 ’通過該膜層設計可以得到相位差9〇度且办(p偏 光之反射率)及& (S偏光之反料)分離量小的分絲,即本發明分 光鏡克服了 S知分:¾鏡之膜層結構對反射波之相位設計局限性大的缺 點’藉此提南產品性能。 【實施方式】 本發明分光鏡係應用於DVD、CD等光電産品中,其膜層設計可以使 得該分光鏡在她上的設計及更爲寬廣,且不會因為溫飄有明顯 變化,藉此提高光電產品之性能。 請參第三圖所示,本發明分光鏡之膜層丨係採用了對稱膜系,膜層 結構爲(HL)nHLH (LH)n,其直接設置於-基板化上,該膜層丄具有一對 稱中心層HLH,其巾Η表示由高折射率材料製成賊層,其折射率是在 2· 5〜4之間,且材料爲吸收性材料;L表示由低折射率材料製成的膜層, 其折射率是在1·4〜1. 7之間;η爲整數,當用;u表示人射光之中心波 長時,高折射率膜層Η與低折射率膜層L均設置爲具有約等於λ()/4的 光學厚度(光學厚度等於折射率乘以厚度)。 現以S偏振光與P偏振光之反射波之相位差可達到g〇度爲例對本 發明膜層結構之設計理論做出詳細說明。 1274177 根據相位差△ = 0 s- 0 p tan —:BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film layer structure of a spectroscope, a spectroscope and an optical lens, and more particularly to a film structure of a non-polarization spectroscope. [Prior Art] According to the 'Beam Splitter', which is used to reflect or transmit light, the spectroscope can be divided into a neutral spectroscope and a two-color spectroscope according to the spectral characteristics. The neutral spectroscope can split a beam of light into a beam splitter. Two beams of the same spectral composition; a two-color beam splitter reflects one part of the spectrum and transmits the other part. Depending on the polarization of the light, the beam splitter can also be designed as a polarizing beam splitter that splits the beam into s-polarized light whose electric field is perpendicular to the plane of incidence, and p-polarized light whose electric field is parallel to the plane of incidence. The main impurity of the ideal neutral spectroscope is that the reflectivity and the transmissivity of the @ wavelength and the opacity are small and the polarization is small, but the material of the multilayer film always has the properties of dispersion and absorption, and If the incident angle is not zero, then the reflectance and transmittance of light of different polarizations will be different. When the incident angle is larger, Rs (S-polarized reflectance) is familiar (P-polarized reflectance), Ts (S The difference in transmittance of polarized light)#Tp (p-polarized light) is larger, so the optical film layer needs to be specially designed so that the beam splitter becomes a non-polarized beam splitter. The film design of the conventional beam splitter adopts an alternating periodic structure and is formed by stacking high and low refractive index materials. As shown in the first figure, the structure of the film layer 8 is (10) m, which is directly disposed on the substrate Ns. Where '1' represents a high refractive index film layer, L denotes a low refractive index film layer, m is an integer, # when λ° represents the center wavelength of human light, both high refractive index and low refractive index film layer L are set To have an optical thickness that is transferred to μ (the thickness is equal to the refractive index multiplied by 1,274,177 in thickness). However, the phase difference between the s-polarized light of the family layer 8 and the reflected wave of the p-polarized light can only be limited to the G degree. The ft is 90 degrees, which is _ thorn, and (4) the separation of s-polarized light and p-polarized light. The amount is too large, such as the characteristic curve of the green_reflectivity_phase distribution of the second riding. It can be seen that it is necessary to improve the conventional film structure to improve the non-polarization characteristics of the beam splitter. SUMMARY OF THE INVENTION The object of the present invention is to provide a film structure of a spectroscope, which can make the design and acceptance of the spectroscope in a wide range, and the separation of S-polarized light and p-polarized light can also be very high. small. According to the above purpose of the present month, the present invention provides a film layer of the spectroscope, which is formed by stacking the same and low refractive index materials, and the film structure is (5) chat (yang, where H represents a Lay made of a high refractive index material having a refractive index of between 2 and 5 to 4; L means a layer made of a low refractive special material having a refractive branch between 丨.4 and 丨·?; After optimizing the film structure for an integer, a beam splitter with a phase difference of 9 且 degrees and a small separation of the reflectance of the p-polarized light and the reflectance of the S-polarized light can be obtained, and the data of the film layer structure is: high refractive complement The layer has a scale of 3.86, a refractive index of low refractive index, and η is equal to 4 〇. The above-mentioned layer H made of a high refractive index material and the film layer 1 made of a low refractive index material each have an optical thickness approximately equal to Where λ represents the center wavelength of the human light. After the optimization of the film structure, the total thickness of the high refractive index film layer is less than 1274177 80 nm, and the total thickness of the low refractive index film layer L is less than 15 〇〇. The refractive index film layer is made of an absorbent material. Compared with the prior art of the present invention, The film structure of the present invention is (4) (4) (LH)n, the refractive index of the high refractive index film layer is 3.86, and the refractive index of the low refractive index film layer is 1.45 η is equal to 4 '. The phase difference can be obtained by the film layer design. 9 minutes and (p-polarized reflectance) and & (S-polarized reversal) small separation wire, that is, the spectroscope of the present invention overcomes the S-score: 3⁄4 mirror layer structure to reflected wave The disadvantage of large phase design limitation is that the performance of the product is improved. [Embodiment] The spectroscope of the present invention is applied to optoelectronic products such as DVD and CD, and the film layer design can make the spectroscope design on her and more. It is wide and does not change significantly due to temperature fluctuations, thereby improving the performance of photovoltaic products. As shown in the third figure, the film layer of the spectroscope of the present invention adopts a symmetric film system, and the film structure is (HL). nHLH (LH)n, which is directly disposed on the substrate, the film layer has a symmetrical central layer HLH, and the frame represents a thief layer made of a high refractive index material, and its refractive index is at 2·5~ Between 4 and the material is an absorbent material; L represents a film made of a low refractive index material , the refractive index is between 1. 4 and 1. 7; η is an integer, when used; u represents the center wavelength of the human light, the high refractive index film layer Η and the low refractive index film layer L are both set to have An optical thickness equal to λ()/4 (optical thickness is equal to the refractive index multiplied by the thickness). Now the phase difference between the reflected wave of the S-polarized light and the P-polarized light can reach g〇 as an example to design the film structure of the present invention. Make a detailed description. 1274177 According to the phase difference △ = 0 s- 0 p tan —:
Ns sin2 θ0 1 +tan —tan— cosι90sin2 θ0 -2 2 得出下列公式: Δ = 2tan' A sin2 θ0 cos ^Ns sin2 (1) 上述0s表示S偏振光之反射波相位變化,0p表示p偏振光之反射 波相位變化,Ns表示基板折射率,0。表示光線入射角。 將Δ = ;τ/2,0f45。代入公式(丨)可得到,當Ns=1512 _ Νι=γ=:|,將其代入下列公式(2)至⑸ 係數P、透射率T及反射率R。 Λ ηΟΒ — C Ρ =-- ηΟΒ + C (2) Γ 一 27〇 ηΟΒ + C (3) ρ 一 C ;7〇5 — Ci「/7〇5 — C 1 [ηΟΒ + C^ ^ηΟΒ + C ^ (4) T_ 4^0Re(Ky) _ + C)(t/〇5 + C) (5) 但因目前並沒有折射率爲1· 0693的材料,故在設計膜層結構時 需要依靠數層高、低折射特料進行匹配而得到相同的透射係數r 1274177 反射係數P、透射率T及反射率R,而在多層膜的設計過程中,將會使 用到下列膜矩陣: (6) E(zO) H(zO)Ns sin2 θ0 1 +tan —tan— cosι90sin2 θ0 -2 2 The following formula is obtained: Δ = 2tan' A sin2 θ0 cos ^Ns sin2 (1) The above 0s represents the phase change of the reflected wave of S-polarized light, and 0p represents the p-polarized light. The phase of the reflected wave changes, and Ns represents the refractive index of the substrate, 0. Indicates the angle of incidence of the light. Let Δ = ;τ/2,0f45. Substituting the formula (丨) can be obtained, and when Ns=1512 _ Νι=γ=:|, it is substituted into the following formulas (2) to (5) coefficient P, transmittance T, and reflectance R. Λ ηΟΒ — C Ρ =-- ηΟΒ + C (2) Γ a 27〇ηΟΒ + C (3) ρ a C ;7〇5 — Ci “/7〇5 — C 1 [ηΟΒ + C^ ^ηΟΒ + C ^ (4) T_ 4^0Re(Ky) _ + C)(t/〇5 + C) (5) However, since there is no material with a refractive index of 1.0693, it is necessary to rely on the number when designing the structure of the film. The layer height and low refractive specific materials are matched to obtain the same transmission coefficient r 1274177 reflection coefficient P, transmittance T and reflectance R. In the design process of the multilayer film, the following film matrix will be used: (6) E (zO) H(zO)
M 其中Μ=Π场· = χ [ cos々7如今. M z^sin^ cos<^ 2^r ^ = -Njdjcos^ ;M where Μ=Π场· = χ [ cos々7now. M z^sin^ cos<^ 2^r ^ = -Njdjcos^ ;
BB
c]=ni cos<^' ή^'][ι ] 7=1 irjsinSj cos 夺 上述Mi表示第j層薄膜的特徵矩陣,心、义及山分別表示第〕·層 薄膜的相厚度、折射率及膜厚。c]=ni cos<^' ή^'][ι ] 7=1 irjsinSj cos The above Mi represents the characteristic matrix of the j-th film, and the heart, the meaning and the mountain respectively represent the phase thickness and refractive index of the film. And film thickness.
通過以上公式計算的數值均爲理論值,在實際應用中,因材料成份 比例等特性的影響,理論健往難以被直接使用,而需要根據該理論 值對膜層層數及其厚度進行優化才能夠得到相位差9〇度且Rp (p偏光 之反射率)及Rs (S偏光之反射率)分離量小的分光鏡,如第四圖所示, 與第二圖巾所示之習知曲線_峰,在第四®巾所示之_ Rs之分 離量可以_最小。在本實施射,高折射率材料之折射率(Μ採^ 3·86,高折射率膜層之總厚度小於8〇nm ;低折射率材料之折射率(队) 採用1.45,低折射率膜層之總厚度小於15〇〇nm :整數^等於*,即言 折射率膜層共有十層,而低折射率膜層共有九層。 綜上所述,本發明確已符合發明專利之要件,爰依法提出專利申 請。惟,以上·者鶴本個之難實施方式,舉凡熟習本案技術 1274177 之人士援依本發明之精神所作之等效修飾或變化,皆涵蓋於後附之申 請專利範圍内。 【圖式簡單說明】 第一圖係膜層結構爲(HL)m的分光鏡。 第二圖係習知膜層結構爲(HL)m之波長_反射率_相位分佈的特性曲線。 第三圖係本發明分光鏡的膜層結構。 第四圖係本發明膜層結構爲(HL)n HLH (LH)n之波長·反射率-相位分佈 的特性曲線。 【主要元件符號說明】 膜層 1、8 基板 Ns 高折射率膜層 Η 低折射率膜層 L S偏振光之反射率Rs S偏振光之反射相位 Phase Rs P偏振光之反射率RP P偏振光之反射相位 Phase Rp P偏振光與S偏振光之反射相位差 Phase RP-RsThe numerical values calculated by the above formula are theoretical values. In practical applications, due to the influence of the composition ratio of materials, the theoretical dynamism is difficult to be directly used, and it is necessary to optimize the number of layers and the thickness thereof according to the theoretical value. It is possible to obtain a beam splitter with a phase difference of 9 且 and a small amount of Rp (p-polarized reflectance) and Rs (s-polarized reflectance), as shown in the fourth figure, and a conventional curve shown in the second figure. _ peak, the amount of separation of _ Rs shown in the fourth ® towel can be _ minimum. In this embodiment, the refractive index of the high refractive index material (the total thickness of the high refractive index film layer is less than 8 〇 nm; the refractive index of the low refractive index material (team) is 1.45, the low refractive index film The total thickness of the layer is less than 15 〇〇 nm: the integer ^ is equal to *, that is, the refractive index film layer has ten layers, and the low refractive index film layer has nine layers. In summary, the present invention has indeed met the requirements of the invention patent. 。 Patent application is filed according to law. However, the equivalent modifications or changes made by those who are familiar with the technology of the present invention in accordance with the spirit of the present invention are covered by the appended patent application. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a (HL)m beam splitter. The second figure is a characteristic curve of the wavelength (reflection_phase distribution) of (HL)m. The figure is the film structure of the spectroscope of the present invention. The fourth figure is the characteristic curve of the wavelength (reflection-phase distribution) of (HL)n HLH (LH)n in the film structure of the present invention. 1,8 substrate Ns high refractive index film layer Η low refractive index film layer L S polarized light reflectance Rs S polarized light reflected phase Phase Rs P polarized light reflectance RP P polarized light reflected phase Phase Rp P polarized light and S polarized light reflected phase difference Phase RP-Rs