TWI273643B - Solid organometallic compound-filled container and filling method thereof - Google Patents

Solid organometallic compound-filled container and filling method thereof Download PDF

Info

Publication number
TWI273643B
TWI273643B TW093119937A TW93119937A TWI273643B TW I273643 B TWI273643 B TW I273643B TW 093119937 A TW093119937 A TW 093119937A TW 93119937 A TW93119937 A TW 93119937A TW I273643 B TWI273643 B TW I273643B
Authority
TW
Taiwan
Prior art keywords
container
carrier gas
organometallic compound
solid organometallic
filling
Prior art date
Application number
TW093119937A
Other languages
Chinese (zh)
Other versions
TW200507074A (en
Inventor
Shizuo Tomiyasu
Kohichi Tokudome
Kenichi Haga
Original Assignee
Tosoh Finechem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp filed Critical Tosoh Finechem Corp
Publication of TW200507074A publication Critical patent/TW200507074A/en
Application granted granted Critical
Publication of TWI273643B publication Critical patent/TWI273643B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Basic Packing Technique (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Supply Of Fluid Materials To The Packaging Location (AREA)

Abstract

This invention provides a novel packing container that can stably supply a solid organometallic compound to a vapor-phase epitaxial growth system, such as the MOCVD system etc., at a constant concentration for a long period. The packing container for solid organometallic compound has a carrier gas inlet (2) and a carrier gas outlet (3). The inside of the packing container is divided into a plurality of vertical spaces and a carrier gas introduced through the carrier gas inlet (2) is discharged from the carrier gas outlet (3) after flowing through each vertical space.

Description

1273643 ⑴ 九、發明說明 【發明所屬之技術領域】 本發明是關於固體有機金屬化合物用塡充容器及其塡 充方法,更詳細地說,是關於能夠長期間以一定濃度穩定 地對汽相外延生長用裝置供給由化合物半導體等電子工業 用材料製造時所使用的 Metal organic Chemical Vapoi* Deposition (有機金屬化學汽相澱積:以下簡稱「m〇cvd 」)法等形成的汽相外延生長用材料的固體有機金屬化合 物的塡充容器及固體有機金屬化合物的塡充方法。 【先前技術】 有機金屬化合物,是廣範圍地被做爲電子工業用材料 製造時的原料來使用。 使用有機金屬化合物爲原料的電子工業用材料的製造 方法’近年來大多是使用M0CVr)法等形成的汽相外延生 長。例如:化合物半導體的薄膜是利用Μ 0 C V D法來製造 ,此時,是使用三甲基鋁、三甲基鎵、三甲基銦等的有機 金屬化合物爲原料。 以MOCVD法使用這些有機金屬化合物時於該有機金 屬化合物的使用條件是爲固體時,通常,是採用對如第 15所示具有運載氣體導入口(2a)及運載氣體排出口( 3a)的塡充容器A塡充有機金屬化合物,將氫氣等運載氣 體由運載氣體導入口(2a)導入容器內,然後從運載氣體 排出□( 3 a )取出有機金屬化合物已飽和在運載氣體中的 1273643 (2) 氣體對MOCVD裝置進行供給的方法。 此時,該有機金屬化合物在上述供給中所使用的溫度 下是爲固體的狀況時,於塡充容器A內在有機金屬化合 物中因會形成有運載氣體並未充分與有機金屬化合物接觸 就通過的流道等使運載氣體和有機金屬化合物的接觸狀態 難以維持成均勻的接觸狀態,因此就會有要藉由運載氣體 長期間以一定濃度穩定地從塡充容器A中對MOCVD裝置 供給固體有機金屬化合物是爲困難的問題。此外,於上述 使用運載氣體的方法所形成的固體有機金屬化合物的供給 中’當逐漸對塡充容器A增加固體有機金屬化合物的塡 充量時,對MOCVD裝置能夠穩定供給的固體有機金屬化 合物的量比率相對於所塡充的固體有機金屬化合物的量是 爲減少’結果會使固體有機金屬化合物殘留在塡充容器的 殘留量變多產生無法有效使用固體有機金屬化合物的問題 〇 爲解決這些問題,對於要將固體有機金屬化合物塡充 至塡充容器A時的方法已有種種提案。例如於專利文獻I 、專利文獻2、專利文獻3、專利文獻4及專利文獻5等 中就提案有是將固體有機金屬化合物與塡充材一起塡充至 塡充容器的方法。另外,例如於專利文獻6中已提案有是 Μ固體有機金屬化合物包覆在惰性載體上然後塡充至塡充 容器Α的方法。 P余此外’於上述問題點的解決方法中,對於要塡充固 體有機金屬化合物的塡充容器本身的構造也有種種提案。 - 6 - 1273643 (3) 例如於專利文獻7中,已提案有如第]6圖所示的塡充容 _ 該塡充容器B是於運載氣體導入口設有可使氣體成 均生的擴散器(2 0 a ),以形成爲對固體有機金屬化合 物是可均勻流通運載氣體的構造。 此外’例如於專利文獻8中,已提案有如第1 7圖所 ” 不的塡充容器C’該塡充容器C是具有具透氣性的固體有 : 機金屬化合物配置室(2〗a )。 【專利文獻1】日本特公平5 · 3 9 9丨5號公報 泰 【專利文獻2】日本特公平6 — 20051號公報 【專利文獻3】日本特開平7 · 5 8 〇 2 3號公報 【專利文獻4】日本特開平8-250440號公報 【專利文獻5】日本特開平8-299778號公報 【專利文獻6】日本特許2 6 5】5 3 〇號公報 【專利文獻7】日本特公平2-;i24796號公報 【專利文獻8】日本特開平1〇_22354〇號公報 【發明內容】 【發明欲解決之課題】 然而’習知的塡充容器A,如第]5圖所示是於單一 的容器具備有運載氣體導入口(2a)及運載氣體排出口( — ^ )’構成爲從運載氣體排出口下部起形成有於塡充容器 內部至塡充容器Α底部爲止的流道(8 a )是具有下部開口 · 部(7a )的傾斜內管道的構造。經本發明者檢討後的結果 ’發現於使用第]5圖構造的塡充容器a時,於使用運載 1273643 (4) 氣體的方法中在對MOCVD裝置進行固體有機金屬化合物 的供給時,隨著運載氣體所造成的有機金屬化合物供給期 間變長慢慢地運載氣體中的有機金屬化合物的供給量有會 降低的現象產生。特別是在增加固體有機金屬化合物的塡 充量或增加運載氣體流量時對於固體有機金屬化合物的供 給穩性效果會明顯降低。如此一來5就塡充容器 A而言 在要長期間穩定地對MOCVD裝置進行供給時是無法獲得 足夠的效果。 此外,對於第1 5圖以外的種種提案的塡充容器,於 使用運載氣體的方法中若要長期間穩定地對MOCVD裝置 進行固體有機金屬化合物的供給時尙顯不足,或有塡充容 器外觀形狀會明顯變大等的問題點。 如此,習知的固體有機金屬化合物用塡充容器是有種 種的問題點,因此就期望能對固體有機金屬化合物的供給 穩定性或塡充容器外觀形狀不會明顯變大等進行改善。 本發明是爲解決上述問題點而爲的發明,其是關於能 夠長期間以一定濃度穩定地對Μ Ο C V D裝置等汽相外延生 長用裝置供給固體有機金屬化合物的新式塡充容器及對該 塡充容器塡充固體有機金屬化合物的方法。 【用以解決課題之手段】 爲解決上述問題點,經本發明者檢討後的結果,使塡 充容器的內部構造形成爲是具有以下所示特徵的新式構造 日寸 > 與習知的ί貝充谷器相比是可不必使其外觀形狀明顯變 1273643 (5) 大就能夠對以一定濃度穩定地對MOCVD裝置等汽相外延 生長用裝置執行固體有機金屬化合物的供給,再加上又發 現能夠提昇固體有機金屬化合物穩定供給的期間,以致完 成了本發明。 即’本發明所關於的固體有機金屬化合物塡充容器, 其是具有運載氣體導入口及運載氣體排出口的固體有機金 屬化合物用塡充容器,其特徵爲是具有:可將塡充容器內 部區隔成複數縱型空間,使從運載氣體導入口導入的運載 氣體流通在各縱型空間,然後從運載氣體排出口排出的構 造。 此外更具體性地說,本發明所關於的固體有機金屬化 合物用塡充容器,其特徵爲是具備有以下的(a )〜(c ) 要件。 疋於固體有機金屬化合物用塡充容器中,其特徵爲: U)其構造是形成爲至少是以1片以上的隔板來縱 向區隔塡充容器的內部,使塡充容器的內部至少是被區隔 成2個以上空間。 (b) 是於隔板所區隔形成的塡充容器內部的空間, 具有:備有運載氣體導入口的空間;及,備有運載氣體排 出口的空間。 (c) 是於塡充容器的內部的空間,具有隔板,該隔 板具有可使運載氣體從流氣體導入口通到塡充容器內的各 空間然後朝運載氣體排出口進行流通的開口部。 再加上,又於本發明的固體有機金屬化合物用塡充容 1273643 (6) 器中,於隔板所區隔形成的塡充容器內部的空間,具有@ 體有機金屬化合物塡充用的塡充口。 另外,本發明的固體有機金屬化合物用塡充容器,胃 於固體有機金屬化合物是可使用三甲基銦。 又加上本發明是所關於的固體有機金屬化合物的塡$ 方法,其特徵爲是對上述本發明的固體有機金屬化合物 塡充容器進行固體有機金屬化合物的塡充。 根據本發明時,因是於固體有機金屬化合物用塡充容 器中,在塡充容器內以隔板縱向區隔成複數空間,形成爲 可使運載氣體流通在各空間的構造,所以與習知的塡充容 器相比可不必變大其外觀形狀就能夠長期間穩定地對 MOCVD裝置等汽相外延生長用裝置供給固體有機金屬化 合物。 【實施方式】 【發明之最佳實施形態】 本發明的塡充容器,其內部空間是被區隔成複數的縱 型空間’只要是爲可使運載氣體流通在各縱型空間的構造 即可,對其構造並無特別限定。 於以下使用圖面對本發明的固體有機金屬化合物用塡 充容器及其塡充方法進行更詳細的說明。 ##明的固體有機金屬化合物用塡充容器的一例是如 第]圖至第4圖所示。如第〗圖至第4圖所示本發明的固 體有彳幾金屬化合物用塡充容器,其所具有的構造是形成爲 -10- 1273643 (7) 至少是以1片以上的隔板(】)縱向區隔塡充容器的內部 ’使其至少是被區隔成2個以上的空間。利用隔板(1) 形成空間的區隔方式,例如有第1圖至第4圖所示的空間 區隔構造。 塡充容器的外觀形狀,例如:除了可形成爲第I圖至 第4圖所不的圓柱狀容器以外,也可形成爲是三角柱、四 角柱、五角柱、六角柱等角柱狀的容器等。 再加上本發明的固體有機金屬化合物用塡充容器,是 爲具有:可通到隔板(1 )所區隔形成在塡充容器內部的 1個空間的運載氣體導入口 ( 2 ),及,可通到其餘的1 個空間的運載氣體排出口( 3 )的構造,例如有第〗圖至 第4圖所示的構造。藉由運載氣體導入口(2)使運載氣 體導入至塡充有固體有機金屬化合物的塡充容器內,使運 載氣體流通在塡充容器內部,接著藉由運載氣體排出口( 3 )取出運載氣體中有機金屬化合物已飽和的氣體然後供 給至M OCVD裝置。該運載氣體導入口(2)及運載氣體 排出口( 3 )在塡充容器上的設置位置是根據利用隔板(1 )形成空間的區隔方式或塡充容器的使用形態等來決定, 例如是形成爲在塡充容器的上部具有運載氣體導入口( 2 )及運載氣體排出口( 3 )的構造,或者,又例如是形成 爲在桃充谷益的側囬具有運載氣體導入口( 2 )及運載氣 體排出口( 3 )的構造。 針對本發明的塡充容器的內部的隔板(I ),如第] 圖至第4圖所示,其特徵是該隔板(1 )具備有可使運載 -11 - 1273643 (8) 氣體從運載氣體導入口(2)通到塡充容器內的各空間然 後朝運載氣體排出口( 3 )進行流通的開口部(4 )。 具備有該開口部(4 )的隔板(1 )的例子,例如有第 5圖至第6圖構造的隔板。 這些開口部(4 )的位置’只要是爲可使運載氣體通 過塡充有固體有機金屬化合物的空間從運載氣體導入□( 2 )充分流通往運載氣體排出口( 3 ),可使此時所塡充白勺 固體有機金屬化合物是與運載氣體成充分接觸,不會妨礙 有機金屬化合物的供給的位置即可並無特別的限定,但在 特別是爲要使所塡充的固體有機金屬化合物是與運載氣體 能夠效果性地飽和接觸時,針對運載氣體流通用的開口部 (4 ):在將開口部(4 )設置在隔板(1 )的下部時,開 口部(4)以設置在塡充容器的內部底面起至容器內部_ 度的1/3以下的位置上爲佳,更佳是設置在塡充容器的@ 部底面起至容器內部高度的】/5以下的位置上,最佳是_ 置在塡充容器的內部底面起至容器內部高度的1 /1 〇以卞 的ill置上;在將開口部(4 )設置在隔板(1 )的上部時, 開口部(4 )以設置在塡充容器的內部底面起至容器內部 高度的2 / 3以上的位置上爲佳,更佳是設置在塡充容器的 內部底面起至容器內部高度的4/5以上的位置上,最佳趣 設置在塡充容器的內部底面起至容器內部高度的9/ 1 〇以 上的位置上。 本發明的塡充容器,是利用上述構造,使運載氣體流 通在所區隔的各空間,然後從運載氣體排出口( 3 )排出 ,12- 1273643 (9) 於本發明的_充容器中’具備有上述開口部(4)的 隔板(1 )的例子’當隔板(1 )是爲1片的例子時,例如 可形成爲如第1圖所示的構造,此外,當隔板(1 )是爲 2片的例子時,例如第2圖所示構造,當隔板(1 )是爲3 片以上的例子時’例如可形成爲如第3圖或第4圖所示的 構造。 又加上,視隔板(1 )所要具備的開口部(4 )的位置 而定,有時爲了使運載氣體能夠從運載氣體導入口(2) 通過開口部(4 ),流通在整個空間,然後流通往運載氣 體排出口(3),是可形成爲對運載氣體導入口(2)及運 載氣體.排出口( 3 )分別設有流道(5 )的構造。具有在運 載氣體導入口(2)及運載氣體排出口(3)分別設有流道 (5 )的構造的塡充容器例子,例如可形成爲如第7圖、 第8圖所示的構造。 上述流道(5 ),例如可使用第9圖所示的管狀流道 ,或可使用如第1 0圖或第1 1圖所示在以隔板(])區隔 形成的構造下部具有流道下部開口部(6 )的流道等。上 述流道(5 ) ’也可以形成爲是這些管狀構造及在以隔板 (1 )區隔形成的構造下部具有流道下部開口部(6 )的流 道所組合形成的構造。 該流道(5 )的流道下部開口部(6 )的位置,以設置 在塡充容器的內部底面起至容器內部高度的1 / 3以下的位 置上爲佳’更佳是設置在塡充容器的內部底面起至容器內 -13- 1273643 (10) 部高度的1 /5以下的位置上,最佳是設置在塡充容器的內 部底面起至容器內部高度的1 /1 〇以下的位置上。 於此,根據第1圖對本發明塡充容器的運載氣體的流 通形態進行說明。首先,運載氣體是從運載氣體導入口( 2)導入,流通在具有運載氣體導入口(2)的空間。其次 5運載氣體是通過開口部(4 )流通在各空間,接著,從 運載氣體排出口( 3 )排出然後被供給往MOCVD裝置。 另,雖是根據第1圖對運載氣體的流通形態進行了說明, 但如第2圖至第4圖所示,當塡充容器內是被區隔成3個 以上的空間時,運載氣體是利用各隔板(1 )所設置的開 口部(4 )進行流通。 該流通形態,如第7圖所示,於在運載氣體導入口( 2 )及運載氣體排出口( 3 )分別設有流道(5 )的構造中 ,運載氣體是從運載氣體導入口(2)導入,流通於流道 (5)後,流通在具有運載氣體導入口(2)的空間內。其 次,運載氣體是通過開口部(4 )流通在各空間,接著, 流通於運載氣體排出口( 3 )所設置的流道(5 ),從運載 氣體排出口( 3 )排出然後被供給往Μ Ο C V D裝置。 在對本發明的塡充容器塡充固體有機金屬化合物,做 爲要對MOCVD裝置供給固體有機金屬化合物的供給使用 時,是對塡充容器內部的空間塡充固體有機金屬化合物。 針對本發明的固體有機金屬化合物用塡充容器,要將 固體有機金屬化合物塡充在該塡充容器內的方法,是可依 舊使用至今爲止所知的方法,例如有將固體有機金屬化合 -14- 1273643 (11) 物藉由昇華使其導入塡充在塡充容器內的方法,或,例如 有將有機金屬化合物做爲運載氣體中的飽和蒸氣導入塡充 在_充容器內的方法,又,例如有將有機金屬化合物加熱 成融點以上使其成爲液狀後導入在塡充容器內的方法。 此外,於本發明的固體有機金屬化合物用塡充容器中 ,也可在利用隔板(1 )區隔形成的塡充容器內部的空間 設有固體有機金屬化合物塡充用的塡充口(9)。藉由設 有該塡充口 (9),使固體有機金屬化合物得以固體原狀 來進行投入。於本發明中,塡充容器的塡充口,例如第1 圖至第4圖所示是可設置在塡充容器的上部。此外,因是 形成爲可將運載氣體導入口(2)及/或運載氣體排出口( 3 )從塡充容器上拆開的構造,所以就可形成爲運載氣體 導入口(2)及/或運載氣體排出口(3)和塡充口( 9)是 得以兼用的構造。被拆開的運載氣體導入口( 2 )及/或運 載氣體排出口(3)和塡充容器,是中介著連接零件(26 )進行再次接合以做爲使用。該構造的例子,例如第! 2 圖所示’是在運載氣體導入口(2)和塡充容器之間.,設 有做爲塡充口是可拆開的連接零件(26),中介著該連接 零件(2 6 )進行再次接合以做爲使用。 另’上述的塡充口是因應固體有機金屬化合物的塡充 方法,於塡充容器上具備或不具備均可。 另’於本發明的塡充容器中,例如第1圖至第4圖所 示,可於運載氣體導入口( 2 )及運載氣體排出口( 3 )具 備有能夠開閉的閥(22 ),當於運載氣體流通時是打開閥 - 15- 1273643 (12) (2 2 )來使用,此外,在不供給有機金屬化合物時,通常 是將閥成關閉狀態以避免固體有機金屬化合物受到外部污 染,或防止固體有機金屬化合物朝塡充容器外部昇華蒸發 〇 如上述,本發明的塡充容器,是形成爲:塡充容器內 部是由隔板(1 )區隔成複數的空間,由運載氣體導入口 (2)導入的運載氣體是將塡充在各容器空間固體有機金 屬化合物的裡面於全部空間,從這些空間的上部朝空間的 下部通過然後流通往運載氣體排出口( 3 )的構造。如上 述因是將容器內部以隔板(1 )區隔成複數的空間使各空 間的剖面積變小以致運載氣體和固體有機金屬化合物的接 觸得以充分進行,所以不會形成有如習知技術所述的流道 能夠使運載氣體和固體有機金屬化合物的接觸維持成均勻 ’可藉由運載氣體長期間以一定濃度穩定地從塡充容器將 固體有機金屬化合物供給至MOCVD裝置。 對於可塡充在本發明塡充容器內來使用的固體有機金 屬化合物,理所當然地可以是爲至今爲止所知的塡充容器 所使用的固體有機金屬化合物,除此之外的固體有機金屬 化合物,其於使用運載氣體的供給使用溫度、壓力下,對 運載氣體是爲可滿足所期望供給的飽和蒸氣壓並且在供給 條件下是爲固體則爲可適用。這些固體有機金屬化合物的 代表例,例如有:烷基金屬化合物、茂金屬化合物、yS -二酮配位化合物、加合化合物,具體而言例如有:三甲基 銦、乙烷氯化銦、三苯基鋁、三苯基鉍、ten-丁基鋰等的 -16- 1273643 (13) 烷基金屬化合物;環戊二烯銦' 雙環戊二烯鎂、雙環 烯鐘、二茂鐵等的茂金屬化合物;鋇乙醯丙酮鹽配位 物、緦乙醯丙酮鹽配位化合物、銅乙醯丙酮鹽配位化 、鈣乙醯丙酮鹽配位化合物、二三甲基乙醯甲醯酸鋇 化合物、二三甲基乙醯甲醯酸緦配位化合物、二三甲 醯甲醯酸銅配位化合物、二三甲基乙醯甲醯酸釔配位 物、二三甲基乙醯甲醯酸鈣配位化合物等的^ -二酮 化合物;及,三甲基銦·三甲胂加合物、三甲基銦· 基磷加合物、二三甲基乙醯甲醯酸鋇· 1,1 〇-菲咯啉 物等的加合化合物等。 此外,本發明塡充容器使用時的壓力,是可依舊 至今爲止所知的塡充容器所使用的條件,只要是能夠 間穩定地使固體有機金屬化合物供給至Μ Ο C V D裝置 件即可並無特別的限定,加壓、常壓、減壓均可使用 通常是使用常壓附近至減壓範圍的條件。 再加上,對於本發明塡充容器使用時的溫度,也 依舊應用至今爲止所知的塡充容器所使用的條件,其 用的條件是:通常使用的固體有機金屬化合物對運載 是可獲得滿足所期望供給的飽和蒸氣壓並且在供給條 是爲固體。 於本發明的塡充容器中,對於運載氣體也可使用 爲止所知的塡充容器所使用的全部的運載氣體,例如 用氮氣、氬氣、氦氣等惰性氣體或氫氣等。 另外,於本發明的塡充容器中,也可使用至今爲 戊二 化合 合物 配位 基乙 化合 配位 三甲 加合 使用 長期 的條 ,但 是可 可適 ^ pm m m 件下 至今 可使 止所 -17- 1273643 (14) 知的塡充容器中與固體有機金屬化合物一起塡充使用的已 知塡充祠。該塡充材其材質,例如可採用不銹鋼、玻璃、 陶瓷氟素樹月曰等,以採用不錄鋼爲佳。此外,塡充材的 形狀,,可使用圓型、角型 '圓筒狀、彈簧狀、球狀等的 各種形狀,例如做爲這些例子的有蒸餾用各種塡料,例如 迪克松塡料、Helipack、Fenske等塡料。另外,也可使用 纖維狀的塡充材。 追些塡充材’於本發明的塡充容器中,也可用至今爲 止所知的方法塡充至塡充容器中與固體有機金屬化合物一 起使用。 另’本發明的塡充容器,並不限於固體有機金屬化合 物使用’也可轉用成具有其他蒸氣壓的固體無機化合物、 固體有機化合物或固體金屬等一般性的固體物質的塡充容 器°如此取代固體有機金屬化合物採用其他的固體物質在 使用S載氣體要取出做爲已飽和於運載氣體中的氣體時所 用的塡充容器也可使用本發明的塡充容器。 以下根據實施例對本發明進行詳細說明。 (實施例1 ) 對第7圖所示的塡充容器使用三甲基銦做爲固體有機 金屬化合物然後進行固體有機金屬化合物的供給穩定性試 驗。 供給穩定性試驗是用以下方法進行試驗。 於氮氣環境氣下,如第7圖所示,對外徑爲7 6.0 ni m -18- 1273643 (15) 的SUS製塡充容器從塡充口( 9)塡充三甲基銦4〇〇g和 不銹鋼製塡充材6 4 7 g。 其次,對運載氣體排出口( 3 )連接三甲基銦收集用 的以乾冰酒精成冷卻的收集器。運載氣體排出口( 3 )和 收集器連接用的配管是有加溫,以避免三甲基銦析出在該 配管內。將塡有三甲基銦和塡充材的塡充容器放入2 5 t 的恆溫槽,以供給穩定性試驗的裝置系統內的壓力是爲大 氣壓附近的條件下,從塡充容器運載氣體導入口(2)每 分鐘流入5 0 Oc c的氮氣,對每8小時收集在以乾冰酒精成 冷卻的收集器中的三甲基銦重量進行了測定。同時也對含 有三甲基銦蒸氣的運載氣體汽相的氣體濃度,用超音波式 氣體濃度計(商品名工匕° V y :卜一 γ只只7 >公司製造 )進行了測定。 其結果如第13圖所示。第13圖所示圖表的縱軸是表 示每1小時的三甲基銦供給量,橫軸是表示所供給的三甲 基銦的使用比率(重量% )。 供給穩定性的試驗結果,使用本發明的塡充容器時, 三甲基銦供給速度至使用比率的6 2 % (重量% )爲止是成 穩定。 如此,使用第7圖的塡充容器,是能夠以一定的濃度 穩定地執行固體有機金屬化合物的供給,再加上’於可獲 得穩定供給速度的條件下又能夠增加固體有機金屬化合物 的使用比率。其結果,使用本發明的塡充容器’是能夠提 昇固體有機金屬化合物穩定進行供給的期間。 -19- (17) 1273643 部的一實施形態透視圖,(B )圖爲其剖面圖。 第6圖,(A)圖爲表示本發明塡充容器的隔板及開口 部的一實施形態透視圖’(B )圖爲其剖面圖。 第7圖:(A)圖爲表不本發明塡充容器的一實施形 態模式剖面圖’ (B )圖爲其平面圖,(c )圖爲其透視 圖。 第8圖:(A)圖爲表示本發明塡充容器的一實施形 態模式剖面圖,(B )圖爲其平面圖,(C )圖爲其透視 圖。 第9圖:(A)圖爲表示本發明流道的一實施形態透 視圖,(B )圖爲其剖面圖。 '第10圖,(A)圖爲表示本發明塡充容器中隔板兼 用流道的構造的連絡流道一實施形態透視圖,(B )圖爲 其剖面圖。 第11圖,(A)圖爲表示本發明塡充容器中隔板兼 用流道的構造的連絡流道一實施形態透視圖,(B )圖爲 其剖面圖。 第12圖,(A)圖爲表示本發明塡充容器中運載氣 體導入口和塡充口爲兼用構造的狀況下具有連接零件的塡 充容器一實施形態模式剖面圖,(B )圖爲其平面圖,( C )圖爲其透視圖。 第1 3圖爲表示本實施例1的三甲基銦供給穩定性的 試驗結果圖表(所供給的三甲基銦的使用比率和每1小時 的二甲基銦供給量的關係表示圖)。 -21 - 1273643 (18) 第1 4圖爲表示比較例1的三甲基銦供給穩定性的試 驗結果圖表(所供給的三甲基銦的使用比率和每1小時的 三甲基銦供給量的關係表示圖)。 第]5圖爲表示習知塡充容器A的模式剖面圖。 第1 6圖爲表示習知塡充容器B的模式剖面圖。 第1 7圖爲表示習知塡充容器C的模式剖面圖。 【主要元件符號說明】 1 :隔板 2:運載氣體導入口 3 :運載氣體排出口 4 :開口部 5 :流道 6 :流道下部開口部 9 :塡充口 22 :閥 2 6 :連接零件 2a:運載氣體導入口 3 a :運載氣體排出口 7 a :下部開口部 8a :流道 9a :塡充口 2 0 a :擴散器 2 1 a :固體有機金屬化合物配置室 -22- 1273643 (19) 22a :閥 23a :柱型容器 2 4 a :過濾材[Technical Field] The present invention relates to a filling container for a solid organometallic compound and a charging method thereof, and more particularly to a vapor phase epitaxy capable of stably flowing at a certain concentration for a long period of time. The material for vapor phase epitaxy which is formed by a metal organic chemical Vapoi* Deposition (hereinafter referred to as "m〇cvd") method used in the production of a material for an electronic industry such as a compound semiconductor. A filling method of a solid organometallic compound and a method of filling a solid organometallic compound. [Prior Art] Organometallic compounds are widely used as raw materials for the production of materials for the electronics industry. A method for producing an electronic industrial material using an organometallic compound as a raw material has been developed by a vapor phase epitaxy using a MOCVr method or the like in recent years. For example, a film of a compound semiconductor is produced by a Μ 0 C V D method, and in this case, an organometallic compound such as trimethylaluminum, trimethylgallium or trimethylindium is used as a raw material. When these organometallic compounds are used in the MOCVD method, when the use conditions of the organometallic compound are solid, generally, the crucible having the carrier gas introduction port (2a) and the carrier gas discharge port (3a) as shown in the fifteenth embodiment is used. The filling container A is filled with an organometallic compound, and a carrier gas such as hydrogen is introduced into the container from the carrier gas introduction port (2a), and then the organic metal compound is taken out from the carrier gas discharge □ ( 3 a ) to be saturated in the carrier gas of 1273643 (2 A method of supplying a gas to an MOCVD apparatus. In this case, when the organometallic compound is in a solid state at the temperature used for the above-mentioned supply, the organic metal compound is formed in the retort container A because the carrier gas is not sufficiently contacted with the organometallic compound. The flow path or the like makes it difficult to maintain the contact state of the carrier gas and the organometallic compound in a uniform contact state, and therefore it is necessary to stably supply the solid organic metal from the charging container A to the MOCVD device at a certain concentration by the carrier gas for a long period of time. Compounds are a difficult problem. Further, in the supply of the solid organometallic compound formed by the above method using a carrier gas, when the charge amount of the solid organometallic compound is gradually increased in the retort container A, the solid organometallic compound which can be stably supplied to the MOCVD apparatus is The problem is that the amount ratio is reduced relative to the amount of the solid organometallic compound to be charged, and as a result, the residual amount of the solid organometallic compound remaining in the charging container is increased to cause the problem that the solid organometallic compound cannot be effectively used. There have been various proposals for a method of filling a solid organometallic compound into a refill vessel A. For example, Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5 propose a method of charging a solid organometallic compound together with a ruthenium to a retort container. Further, for example, Patent Document 6 proposes a method in which a solid organometallic compound is coated on an inert carrier and then charged to a retort container. In addition, in the solution to the above problem, there are various proposals for the structure of the retort container itself to be filled with the solid organometallic compound. - 6 - 1273643 (3) For example, in Patent Document 7, a crucible filled as shown in Fig. 6 has been proposed. The refill container B is provided with a diffuser for making the gas uniform at the carrier gas introduction port. (20 a) is formed into a structure in which a solid organometallic compound is uniformly permeable to a carrier gas. Further, for example, Patent Document 8 proposes a filling container C' as shown in Fig. 17. The filling container C is a solid having a gas permeable property: an organic metal compound arranging chamber (2). [Patent Document 1] Japanese Patent Publication No. 5 - 3 9 9 丨 5 (Taiwan Patent Publication No. 2) Japanese Patent Publication No. 6-20051 [Patent Document 3] Japanese Patent Laid-Open No. 7 · 5 8 〇 2 No. 3 [Patent [Patent Document 5] Japanese Patent Laid-Open No. Hei 8-299778 (Patent Document 5) Japanese Patent Application No. Hei. No. Hei. [Patent Document 8] Japanese Patent Laid-Open Publication No. Hei No. Hei No. Hei. No. Hei. No. 2-22354 No. [Invention] [The subject of the invention] However, the conventional container A is as shown in Fig. 5 The container is provided with a carrier gas introduction port (2a) and a carrier gas discharge port (-^)' configured to form a flow path from the inside of the charge gas discharge port to the bottom of the charge container to the bottom of the charge container (8a). ) is within the inclination with the lower opening · part (7a) The structure of the track. The result of the review by the inventors' was found in the case of using the charge container a constructed in Fig. 5, when the solid organometallic compound was supplied to the MOCVD apparatus in the method of carrying the 1273643 (4) gas. As the supply period of the organometallic compound caused by the carrier gas becomes longer, the supply amount of the organometallic compound in the carrier gas is gradually lowered, particularly in increasing the charge amount of the solid organometallic compound or increasing the carrying amount. In the gas flow rate, the supply stability effect to the solid organometallic compound is remarkably lowered. Thus, in the case of the sump container A, it is not possible to obtain a sufficient effect when the MOCVD apparatus is stably supplied for a long period of time. In the method of using a carrier gas, in the method of using a carrier gas, it is necessary to stably supply the solid organometallic compound to the MOCVD apparatus for a long period of time, or the appearance of the container may be apparent. The problem of getting bigger, etc. Thus, the conventional solid organometallic compound has various kinds of filling containers. In order to solve the above problems, it is desirable to be able to improve the supply stability of the solid organometallic compound or the appearance of the filling container. A new type of filling container for supplying a solid organometallic compound to a vapor phase epitaxial growth apparatus such as a CVD Ο CVD apparatus at a constant concentration, and a method of charging a solid organometallic compound to the retort container. [Means for solving the problem] In order to solve the above problems, the internal structure of the retort container is formed to have a new structural diaper with the following characteristics as a result of the review by the inventors of the present invention. The shape of the solid organometallic compound can be stably supplied to a vapor phase epitaxial growth apparatus such as an MOCVD apparatus at a certain concentration, and it is found that the solid metal organic compound can be stably supplied. The invention has been completed. That is, the solid organometallic compound filling container according to the present invention is a filling container for a solid organometallic compound having a carrier gas introduction port and a carrier gas discharge port, and is characterized in that: the inner region of the container can be filled A structure in which a carrier gas introduced from a carrier gas introduction port flows through each vertical space and is discharged from a carrier gas discharge port by a plurality of vertical spaces. More specifically, the solid organometallic compound according to the present invention is a retort container characterized by having the following (a) to (c) requirements. The utility model relates to a filling container for a solid organometallic compound, which is characterized in that: U) the structure is formed such that at least one or more separators vertically partition the inside of the filling container, so that the interior of the filling container is at least It is divided into two or more spaces. (b) is a space inside the filling container formed by the partition, and has a space in which the carrier gas introduction port is provided; and a space in which the gas discharge port is provided. (c) is a space inside the retort container, and has a partition having an opening through which the carrier gas can pass from the flow gas introduction port to each space in the sump container and then circulate toward the carrier gas discharge port. . In addition, in the solid organometallic compound of the present invention, the space inside the retort container formed by the partition is filled with 塡 127 364 364 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 mouth. Further, the solid organometallic compound of the present invention is used as a filling container, and trimethylindium can be used as the solid organometallic compound in the stomach. Further, the present invention relates to a solid organometallic compound according to the present invention, which is characterized in that the solid organometallic compound in the above-described solid organometallic compound-filled vessel is subjected to a solid organometallic compound. According to the present invention, since it is used in a filling container for a solid organometallic compound, the separator is longitudinally partitioned into a plurality of spaces in the filling container, and a structure in which the carrier gas can flow in each space is formed. In the case of the vapor-filled container, it is possible to stably supply the solid organometallic compound to the vapor phase epitaxial growth apparatus such as an MOCVD apparatus without having to have a large outer shape. [Embodiment] According to a preferred embodiment of the present invention, the internal space of the sputum container of the present invention is divided into a plurality of vertical spaces as long as the carrier gas can be circulated in each vertical space. There is no particular limitation on the structure thereof. The use of the retort container for a solid organometallic compound of the present invention and its charging method will be described in more detail below using the drawings. An example of a container for a solid organometallic compound used in ##明 is as shown in Figs. 4 to 4. The solid-filled metal compound-filling container of the present invention as shown in the first to fourth figures has a structure of -10- 1273643 (7) at least one or more separators ( The longitudinal partitioning of the interior of the container is such that it is at least divided into two or more spaces. The partitioning method for forming a space by the partition plate (1) has, for example, a space partitioning structure shown in Figs. 1 to 4 . The outer shape of the filling container may be, for example, a cylindrical container which may be formed in the first to fourth figures, or a cylindrical column such as a triangular column, a quadrangular column, a pentagonal column or a hexagonal column. Further, the filling container for a solid organometallic compound of the present invention has a carrier gas introduction port (2) which is formed in a space which is formed in the interior of the charging container by the partition plate (1), and The configuration of the carrier gas discharge port (3) that can pass to the remaining one space, for example, the configuration shown in the first to fourth figures. The carrier gas is introduced into the charging container filled with the solid organometallic compound by the carrier gas introduction port (2), the carrier gas is circulated inside the charging container, and then the carrier gas is taken out by the carrier gas discharge port (3). The gas in which the organometallic compound has been saturated is then supplied to the M OCVD apparatus. The position at which the carrier gas introduction port (2) and the carrier gas discharge port (3) are placed on the sump container is determined according to the method of forming the space by the partition plate (1) or the use form of the sump container, for example, It is formed to have a carrier gas introduction port ( 2 ) and a carrier gas discharge port ( 3 ) in the upper portion of the charging container, or, for example, is formed to have a carrier gas introduction port in the side of the peach filling valley ( 2 And the structure of the carrier gas discharge port (3). The separator (I) for the inside of the retort container of the present invention is as shown in Figs. 4 to 4, characterized in that the separator (1) is provided with a gas capable of carrying -11 - 1273643 (8) from The carrier gas introduction port (2) is opened to each of the spaces in the charging container and then flows toward the carrier gas discharge port (3) to open the opening portion (4). An example of the separator (1) having the opening (4) is, for example, a separator having the structure of Figs. 5 to 6 . The position ' of the opening portion (4) can be sufficiently flowed from the carrier gas □( 2 ) to the carrier gas discharge port ( 3 ) in order to allow the carrier gas to pass through the space in which the solid organometallic compound is filled. The solid organometallic compound to be filled is not particularly limited as long as it is in sufficient contact with the carrier gas and does not interfere with the supply of the organometallic compound, but in particular, the solid organometallic compound to be charged is The opening portion (4) common to the carrier gas flow when the carrier gas is in effective contact with the carrier gas: when the opening portion (4) is provided at the lower portion of the partition plate (1), the opening portion (4) is disposed at the 塡It is preferable that the inner bottom surface of the filling container is at least 1/3 of the inside of the container, and more preferably at the bottom of the @ portion of the filling container to a height of /5 or less of the inner height of the container. Yes _ placed on the inner bottom surface of the sump container up to 1 / 1 of the height of the inside of the container 置 置 ill; when the opening (4) is placed in the upper part of the partition (1), the opening (4) To be placed inside the container It is preferable to set it to a position of 2 / 3 or more of the inner height of the container, and it is more preferable to set it on the inner bottom surface of the filling container to a position of 4/5 or more of the inner height of the container, and the most interesting setting is in the filling container. The inner bottom surface is up to 9/1 inch above the height of the container. In the sump container of the present invention, the carrier gas is circulated in the respective spaces which are partitioned, and then discharged from the carrier gas discharge port (3), 12-1273643 (9) in the _filler of the present invention. In the example of the separator (1) having the opening (4), when the separator (1) is one sheet, for example, the structure shown in Fig. 1 may be formed, and in addition, when the separator ( 1) When it is an example of two sheets, for example, the structure shown in Fig. 2, when the separator (1) is an example of three or more sheets, the structure shown in Fig. 3 or Fig. 4 can be formed, for example. In addition, depending on the position of the opening (4) to be provided in the partition plate (1), the carrier gas may flow through the opening (4) from the carrier gas introduction port (2) and may flow through the entire space. Then, the flow to the carrier gas discharge port (3) is such that a flow path (5) is provided for the carrier gas introduction port (2) and the carrier gas discharge port (3), respectively. An example of a retort container having a structure in which a flow path (5) is provided in each of the carrier gas introduction port (2) and the carrier gas discharge port (3) can be formed, for example, as shown in Figs. 7 and 8. For the above-mentioned flow path (5), for example, the tubular flow path shown in Fig. 9 may be used, or a flow having a partition formed by a partition (]) as shown in Fig. 10 or Fig. 1 1 may be used. A flow path or the like of the lower opening portion (6) of the track. The above-described flow path (5)' may be formed in a combination of these tubular structures and a flow path having a flow passage lower opening portion (6) in a lower portion of the structure formed by the partition plate (1). The position of the flow passage lower opening portion (6) of the flow passage (5) is preferably set at a position below the inner bottom surface of the filling container to a height of 1/3 or less of the inner height of the container. The inner bottom surface of the container is located at a position below 1/5 of the height of the 13-1373643 (10) part of the container, preferably at a position below the inner bottom surface of the filling container to a height of 1 / 1 inch below the inner height of the container. on. Here, the flow pattern of the carrier gas of the retort container of the present invention will be described based on Fig. 1 . First, the carrier gas is introduced from the carrier gas introduction port (2) and flows through the space having the carrier gas introduction port (2). Next, the carrier gas is circulated through the openings (4) in the respective spaces, and then discharged from the carrier gas discharge port (3) and then supplied to the MOCVD apparatus. Further, although the flow pattern of the carrier gas has been described based on Fig. 1, as shown in Figs. 2 to 4, when the inside of the container is divided into three or more spaces, the carrier gas is The flow is performed by the opening (4) provided in each of the partition plates (1). In the flow pattern, as shown in Fig. 7, in the structure in which the carrier gas inlet (2) and the carrier gas discharge port (3) are respectively provided with the flow path (5), the carrier gas is from the carrier gas introduction port (2). After being introduced into the flow path (5), it is introduced into the space having the carrier gas introduction port (2). Next, the carrier gas flows through the openings (4) in the respective spaces, and then flows through the flow path (5) provided in the carrier gas discharge port (3), is discharged from the carrier gas discharge port (3), and is supplied to the space. CVD CVD device. The solid organometallic compound is filled in the retort container of the present invention, and when it is used for supplying a solid organometallic compound to the MOCVD apparatus, the space inside the retort container is filled with the solid organometallic compound. In the method for filling a solid organometallic compound in the retort container with respect to the solid organometallic compound of the present invention, the method known so far can be used, for example, the solid organometallic compound is compounded-14 - 1273643 (11) A method in which a substance is introduced into a filling container by sublimation, or, for example, a method in which an organometallic compound is introduced into a filling container as a saturated vapor in a carrier gas, and For example, there is a method in which an organometallic compound is heated to a melting point or higher to be liquid, and then introduced into a retort container. Further, in the retort container for a solid organometallic compound of the present invention, a sump (1) for filling a solid organometallic compound may be provided in a space inside the retort container formed by partitioning the separator (1). . By providing the filling port (9), the solid organometallic compound is supplied in a solid state. In the present invention, the filling port of the filling container, for example, as shown in Figs. 1 to 4, may be provided at the upper portion of the filling container. Further, since it is formed such that the carrier gas introduction port (2) and/or the carrier gas discharge port (3) can be detached from the sump container, it can be formed as a carrier gas introduction port (2) and/or The carrier gas discharge port (3) and the charge port (9) are structures that can be used in combination. The disassembled carrier gas introduction port (2) and/or the carrier gas discharge port (3) and the sump container are interposed by the connection member (26) for use. An example of this construction, for example, the first! 2 is shown between the carrier gas inlet (2) and the filling container. It is provided with a detachable connecting part (26) as a filling port, interposed by the connecting part (26). Rejoin for use. Further, the above-mentioned sputum filling port may be provided on the sump container in accordance with the method of filling the solid organometallic compound. Further, in the retort container of the present invention, for example, as shown in Figs. 1 to 4, a valve (22) capable of opening and closing can be provided in the carrier gas introduction port (2) and the carrier gas discharge port (3). When the carrier gas is circulated, the valve is opened - 15- 1273643 (12) (2 2 ). In addition, when the organometallic compound is not supplied, the valve is usually closed to avoid external contamination of the solid organometallic compound, or The solid organometallic compound is prevented from being sublimated and evaporated to the outside of the crucible container. As described above, the crucible container of the present invention is formed such that the inside of the crucible container is partitioned into a plurality of spaces by the partition plate (1), and the carrier gas introduction port is provided. (2) The introduced carrier gas is a structure in which the inside of the solid organometallic compound in each container space is filled in the entire space, and the upper portion of the space passes through the lower portion of the space and then flows to the carrier gas discharge port (3). As described above, since the inside of the container is partitioned into a plurality of spaces by the partition plate (1), the sectional area of each space is made small so that the contact between the carrier gas and the solid organometallic compound is sufficiently performed, so that it is not formed as in the prior art. The flow path enables the contact of the carrier gas and the solid organometallic compound to be uniform. The solid organometallic compound can be stably supplied from the charging vessel to the MOCVD apparatus at a certain concentration during the long period of the carrier gas. The solid organometallic compound which can be used in the retort container of the present invention may of course be a solid organometallic compound used in a retort container known hitherto, and other solid organometallic compounds, It is applicable to the carrier gas at a supply temperature and pressure at which the carrier gas is used to satisfy the desired supply of saturated vapor pressure and is solid under the supply conditions. Representative examples of such solid organometallic compounds include, for example, an alkyl metal compound, a metallocene compound, a yS-diketone complex compound, and an addition compound, and specific examples thereof include trimethyl indium and ethane indium chloride. -16- 1273643 (13) alkyl metal compound such as triphenyl aluminum, triphenyl sulfonium, ten-butyl lithium, etc.; cyclopentadiene indium 'dicyclopentadienyl magnesium, bicycloalkenyl clock, ferrocene, etc. Metallocene compound; acetophenone acetone salt complex, acetophenone acetone salt coordination compound, copper acetonide acetone salt coordination, calcium acetonide salt complex compound, bistrimethyl acetamidine ruthenium phthalate Compound, bis-trimethyl acetamidine ruthenium ruthenium coordination compound, copper ruthenium phthalate complex, bistrimethyl ethane ruthenium ruthenium ruthenium complex, ditrimethyl ethane guanidine a di-ketone compound such as a calcium acid complex; and, a trimethyl indium·trimethylammonium adduct, a trimethyl indium-phosphorus adduct, and a ditrimethylammonium ruthenium phthalate An addition compound such as fluorene-phenanthroline or the like. Further, the pressure at the time of use of the retort container of the present invention is a condition which can be used in the retort container which has been known so far, and it is possible to stably supply the solid organometallic compound to the CVD CVD device. In particular, the conditions of pressurization, normal pressure, and reduced pressure can be generally used in the vicinity of the normal pressure to the reduced pressure range. Further, as for the temperature at the time of use of the retort container of the present invention, the conditions used in the retort container known hitherto are also applied, and the conditions for use of the commonly used solid organometallic compound are satisfactory for carrying. The saturated vapor pressure that is desired to be supplied is solid in the supply strip. In the retort container of the present invention, all of the carrier gas used in the retort container known to the carrier gas may be used, for example, an inert gas such as nitrogen, argon or helium or hydrogen gas. In addition, in the retort container of the present invention, it is also possible to use a long-term strip using the glutamic acid compound ligand-based acetylation-coordination trimethyl adduct, but the cocoa can be used until now. 17- 1273643 (14) A known enthalpy of use in a known filling container together with a solid organometallic compound. The material of the crucible is, for example, stainless steel, glass, ceramic fluorinated tree, or the like, and it is preferable to use non-recording steel. Further, as the shape of the enamel material, various shapes such as a round shape, an angular shape, a cylindrical shape, a spring shape, and a spherical shape can be used. For example, various kinds of materials for distillation such as Dickson's dip, Helipack, Fenske, etc. Alternatively, a fibrous enamel filler can be used. In the case of the retort container of the present invention, it can be used in a retort container together with a solid organometallic compound by a method known to date. Further, the "filling container of the present invention is not limited to the use of a solid organometallic compound" and can be used as a filling container of a general solid substance such as a solid inorganic compound having a different vapor pressure, a solid organic compound or a solid metal. Substituting Solid Organometallic Compounds Other solid materials can also be used in the retort container of the present invention in the case of using a S carrier gas to be taken out as a gas which is saturated with a carrier gas. The invention will be described in detail below based on examples. (Example 1) Using the trimethylindium as a solid organometallic compound in the retort container shown in Fig. 7, a solid organometallic compound supply stability test was carried out. The supply stability test was carried out by the following method. Under a nitrogen atmosphere, as shown in Fig. 7, a SUS 塡 filling container with an outer diameter of 7 6.0 ni m -18-1273643 (15) is filled with trimethyl indium 4 〇〇g from the enthalpy (9). And stainless steel enamel filling 6 4 7 g. Next, the carrier gas discharge port (3) is connected to a collector for the collection of trimethyl indium to be cooled with dry ice alcohol. The carrier gas discharge port (3) and the pipe for connecting the collector are heated to prevent the precipitation of trimethylindium in the pipe. The filling container filled with trimethyl indium and ruthenium was placed in a 25 t constant temperature bath to supply the gas inlet port from the sump container under the condition that the pressure in the device system for the stability test was near atmospheric pressure. (2) Nitrogen inflow of 50 Oc c per minute was measured for the weight of trimethylindium collected in a collector cooled with dry ice alcohol every 8 hours. At the same time, the gas concentration of the carrier gas vapor phase containing trimethylindium vapor was measured by an ultrasonic gas concentration meter (trade name: VV y : Buyi γ only 7 > company). The result is shown in Fig. 13. The vertical axis of the graph shown in Fig. 13 indicates the supply amount of trimethyl indium per hour, and the horizontal axis indicates the use ratio (% by weight) of the supplied trimethyl indium. As a result of the test for the supply stability, when the retort container of the present invention was used, the supply rate of trimethylindium was stabilized to 62% by weight of the use ratio. By using the retort container of Fig. 7, the supply of the solid organometallic compound can be stably performed at a constant concentration, and the use ratio of the solid organometallic compound can be increased under the condition that a stable supply rate can be obtained. . As a result, the use of the retort container of the present invention is a period in which the solid organometallic compound can be stably supplied. -19- (17) A perspective view of an embodiment of 1273643, and (B) is a cross-sectional view thereof. Fig. 6(A) is a perspective view, partly in section, showing a partition plate and an opening portion of the retort container of the present invention. Fig. 7: (A) is a cross-sectional view showing an embodiment of the present invention. Fig. 2(B) is a plan view thereof, and (c) is a perspective view thereof. Fig. 8 is a cross-sectional view showing an embodiment of the present invention, wherein (B) is a plan view and (C) is a perspective view thereof. Fig. 9 is a perspective view showing an embodiment of the flow path of the present invention, and (B) is a cross-sectional view thereof. Fig. 10 is a perspective view showing an embodiment of a connecting flow path showing a structure of a separator-use flow path in the retort container of the present invention, and (B) is a cross-sectional view thereof. Fig. 11(A) is a perspective view showing an embodiment of a connecting flow path showing a structure of a separator-use flow path in the retort container of the present invention, and (B) is a cross-sectional view thereof. FIG. 12 is a cross-sectional view showing an embodiment of a charging container having a connecting member in a state in which the carrier gas introduction port and the charging port of the present invention are in a combined structure, and FIG. The plan view, (C) is a perspective view of it. Fig. 1 is a graph showing the results of a test for the stability of trimethyl indium supply in the first embodiment (a graph showing the relationship between the ratio of use of trimethylindium supplied and the amount of dimethyl indium supplied per hour). -21 - 1273643 (18) Fig. 14 is a graph showing the results of the test for the stability of trimethyl indium supply of Comparative Example 1 (the ratio of use of trimethylindium supplied and the supply amount of trimethyl indium per hour) Relationship diagram). Fig. 5 is a schematic cross-sectional view showing a conventional container A. Fig. 16 is a schematic cross-sectional view showing a conventional retort container B. Fig. 17 is a schematic cross-sectional view showing a conventional retort container C. [Description of main component symbols] 1 : Separator 2: Carrier gas inlet port 3: Carrier gas discharge port 4: Opening portion 5: Flow path 6: Flow path lower opening portion 9: Filling port 22: Valve 2 6 : Connecting parts 2a: carrier gas introduction port 3 a : carrier gas discharge port 7 a : lower opening portion 8a : flow path 9a : 塡 filling port 2 0 a : diffuser 2 1 a : solid organometallic compound arranging chamber -22 - 1273643 (19 22a: valve 23a: cylindrical container 2 4 a : filter material

-23 --twenty three -

Claims (1)

(1) 1273643 十、申請專利範圍 1·-種固體有機金屬化合物用塡 載氣體導入口及運載氣體排出口的固 塡充容器,其特徵爲是具有:可將塡 數縱型空間,使從運載氣體導入口導 各縱型空間,然後從運載氣體排出口 2. —種固體有機金屬化合物用塡 (a)其是爲至少以1片以上的隔板 的內部,使塡充容器的內部至少是被 的構造;(b )是於隔板所區隔形成 間,具有:備有運載氣體導入口的空 體排出口的空間;(c )是於塡充容 有隔板’該隔板具有可使運載氣體從 充容器內的各空間然後朝運載氣體排 部。 3 ·如申請專利範圍第2項所記載 物用塡尤谷器,其中,針對上述開口 在隔板的下部時,是設置在塡充容器 內部局度的1 / 3以下的位置,當將開 邰時’是設置在塡充容器的內部底面 2/3以上的位置。 4 ·如申請專利範圍第2項或第3 金屬化合物用塡充容器,其中,是於 充容器內部的空間具有固體有機金屬 充容器,其是具有運 體有機金屬化合物用 充容器內部區隔成複 入的運載氣體流通在 排出的構造。 充容器,其特徵爲: 來縱向區隔塡充容器 區隔成2個以上空間 的塡充容器內部的空 間;及,備有運載氣 器的內部的空間,具 流氣體導入口通到塡 出口進行流通的開口 的固體有機金屬化合 部,當將開口部配置 的內部底面起至容器 口部配置在隔板的上 起至容器內部高度的 項所記載的固體有機 隔板所區隔形成的塡 化合物塡充用的塡充 - 24- 1273643 (2) □。 5 ·如申請專利範圍第2項或第3項所記載的固體有機 金屬化合物用塡充容器’其中,固體有機金屬化合物是爲 三甲基銦。 6 ·如申請專利範圍第4項所記載的固體有機金屬化合 - 物用塡充容器,其中,固體有機金屬化合物是爲三甲基銦 · c 7 .〜種固體有機金屬化合物的塡充方法,其特徵爲是 鲁 對如申請專利範圍第〗項至第6項任一項所記載的固體有 機金屬化合物用塡充容器進行固體有機金屬化合物的塡充 - 25-(1) 1273643 X. Patent application scope 1 - A solid-filled container for a solid organometallic compound with a helium-loaded gas introduction port and a carrier gas discharge port, characterized in that it has a vertical space for the number of turns Carrying the gas introduction port to guide each vertical space, and then from the carrier gas discharge port 2. The solid organometallic compound is used for the inside of the separator (a) which is at least one or more separators, so that the interior of the container is at least (b) is a space formed between the partitions and has a space provided with an empty body discharge port for carrying a gas introduction port; (c) is filled with a partition plate which has a partition plate The carrier gas can be directed from the spaces within the container to the carrier gas. 3. In the case of the above-mentioned opening in the lower part of the partition, the above-mentioned opening is placed at a position below 1 / 3 of the inside of the sump, and will be opened. The time ' is set at a position 2/3 or more of the inner bottom surface of the retort container. 4) The filling container of the second or third metal compound as claimed in the patent scope, wherein the space inside the filling container has a solid organometallic filling container, which is formed by the interior of the filling body of the organic metal compound. The refilled carrier gas circulates in the discharged configuration. The filling container is characterized in that: the space inside the filling container in which the vertical storage compartment is divided into two or more spaces; and the space inside the carrier gas is provided, and the gas inlet port is connected to the outlet The solid organometallic compounding portion of the opening through which the opening is formed is formed by partitioning the inner bottom surface of the opening portion from the solid organic separator described in the item in which the container mouth portion is disposed above the separator to the inner height of the container. Charge for compound filling - 24- 1273643 (2) □. 5. The filling container for solid organometallic compounds as described in claim 2 or 3, wherein the solid organometallic compound is trimethylindium. 6. The solid organometallic compound-filling container according to the fourth aspect of the invention, wherein the solid organometallic compound is a method for filling a trimethylindium c. It is characterized in that the solid organometallic compound is filled with a solid organometallic compound as described in any one of claims 1-6 to 6
TW093119937A 2003-07-08 2004-07-01 Solid organometallic compound-filled container and filling method thereof TWI273643B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271742A JP4571787B2 (en) 2003-07-08 2003-07-08 Filling container for solid organometallic compound and filling method thereof

Publications (2)

Publication Number Publication Date
TW200507074A TW200507074A (en) 2005-02-16
TWI273643B true TWI273643B (en) 2007-02-11

Family

ID=34209507

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093119937A TWI273643B (en) 2003-07-08 2004-07-01 Solid organometallic compound-filled container and filling method thereof

Country Status (4)

Country Link
JP (1) JP4571787B2 (en)
KR (1) KR101029894B1 (en)
CN (1) CN100394551C (en)
TW (1) TWI273643B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3483919A1 (en) 2008-12-04 2019-05-15 Veeco Instruments Inc. Chemical vapor deposition flow inlet elements and methods
EP3922751A1 (en) * 2009-11-02 2021-12-15 Sigma-Aldrich Co. LLC Solid precursor delivery assemblies and related methods
JP6324609B1 (en) 2017-06-21 2018-05-16 日本エア・リキード株式会社 Solid material container and solid material product in which the solid material container is filled with solid material
KR102027179B1 (en) 2018-05-08 2019-10-02 주식회사 레이크머티리얼즈 Apparatus for supplying organometallic compound
KR102208303B1 (en) 2019-09-25 2021-01-28 주식회사 레이크머티리얼즈 Apparatus for supplying organometallic compound
CN114059038B (en) * 2020-08-07 2024-02-09 吕宝源 Solid metal organic compound transformation method and transformation system thereof
CN112458434B (en) * 2021-01-29 2021-06-01 江苏南大光电材料股份有限公司 Packaging container for solid precursor and application of packaging container in vapor deposition process
KR102407768B1 (en) * 2021-07-01 2022-06-10 주식회사 레이크머티리얼즈 Apparatus for supplying organometallic compound
CN116103636A (en) * 2023-04-12 2023-05-12 上海星原驰半导体有限公司 Solid-phase precursor output device and vapor deposition system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464314A (en) * 1987-09-04 1989-03-10 Mitsubishi Electric Corp Sublimator
JPH0269389A (en) * 1988-08-31 1990-03-08 Toyo Stauffer Chem Co Formation of saturated vapor of solid organometallic compound in vapor growth method
JPH05343339A (en) * 1992-06-05 1993-12-24 Japan Energy Corp Organometal evaporative container
KR960010901A (en) * 1994-09-30 1996-04-20 김광호 Bubble Organic Device for Solid Organic Compound
JP2964313B2 (en) * 1995-03-09 1999-10-18 信越化学工業株式会社 Solid organometallic compound supply apparatus and method for producing the same
JPH08279497A (en) * 1995-04-07 1996-10-22 Hitachi Ltd Semiconductor and production system thereof
JPH09246194A (en) * 1996-03-05 1997-09-19 Sony Corp Container of organic metal compound material and its composite container, and organic metal chemical gas phase growing device
JPH10223540A (en) * 1997-02-03 1998-08-21 Sony Corp Organic metal chemical vapor deposition apparatus
ATE298013T1 (en) * 1999-08-20 2005-07-15 Morton Int Inc BUBBLE DEVICE WITH TWO FRITS
JP3909792B2 (en) * 1999-08-20 2007-04-25 パイオニア株式会社 Raw material supply apparatus and raw material supply method in chemical vapor deposition
JP3932874B2 (en) 2001-11-27 2007-06-20 三菱マテリアル株式会社 Ruthenium compound for metal organic chemical vapor deposition and ruthenium-containing thin film obtained by the compound

Also Published As

Publication number Publication date
KR20050006046A (en) 2005-01-15
JP2005033045A (en) 2005-02-03
CN100394551C (en) 2008-06-11
CN1577745A (en) 2005-02-09
TW200507074A (en) 2005-02-16
KR101029894B1 (en) 2011-04-18
JP4571787B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP5645985B2 (en) Bubbler for constant supply of solid compound vapor
US10895010B2 (en) Solid precursor-based delivery of fluid utilizing controlled solids morphology
US9598766B2 (en) Vessel with filter
TWI273643B (en) Solid organometallic compound-filled container and filling method thereof
TWI583627B (en) High purity tungsten hexachloride and method for making same
EP2418300B1 (en) Delivery device and method of use thereof
CN101426953A (en) Apparatus and methods for chemical vapor deposition
WO2006132237A1 (en) Manufacturing device for zeolite membrane
WO2015164029A1 (en) Solid vaporizer
TW201925047A (en) Solid material container and solid material product in which said solid material container is filled with a solid material
CN113366142A (en) Solid gasification supply system of metal halide for forming thin film
TWI273144B (en) Container for loading solid organic metal compound and method for loading the same
US11371135B2 (en) System and process for chemical vapor deposition
JP3909022B2 (en) Filling container for solid organometallic compounds
KR101169652B1 (en) NOVEL COMPOUNDS, METHOD OF PRODUCTION THESE NOVEL COMPOUNDS, MATERIALS FOR Al RELATED FILMS, METHODS OF Al RELATED FILMS AND Al RELATED FILMS
JP2002220669A (en) Vaporization vessel for liquid raw material
KR20070015955A (en) Bubbler for constant vapor delivery of a solid chemical
JPH0620951A (en) Vessel for vaporizing organic metal

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees