1271320 、 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種單石化流體嘴射裝置及其製造万 法,特別係有關於一種改善製程良率及穩定度並簡化製箨 的流體喷射裝置及其製造方法。 【先前技術】 、 習知之流體喷射裝置可分為喷孔片貼合及單石化製择 φ 兩種,其中喷孔片貼合的方式,係利用半導體製程形成加 熱元件及鈍化保護層後,再利用感光性厚膜光阻在加熱元 件上進行流體腔及流體通道的製作,之後再以接合劑進行 金屬噴孔片對位貼合於厚膜光阻上,而完成噴射晶片的結 構製作;在單石化流體喷射裝置,其流體腔主要甴基材與 結構層組成,而結構層又由多層不同時間點所形成的薄膜 • 所組成。目前流體噴射裝置大多運用於喷墨頭、燃料喷射 、 器、生物科技之藥劑注射、微全分析系統(μ-TAS)與無光罩 鲁線路系統等乾圍’其中喷墨頭更是大量的使用熱趨氣泡式 、 設計。 , 第1圖顯示一種習知美國專利號碼6,1〇2,530的單石化 的流體喷射裝置1,始於一矽基底1〇,且在矽基底1()上形 成一結構層12,在矽基底1〇和結構層12之間形成一流體 腔14 ’用以谷納流體26,而在結構層12上設有一第一加 熱器20、以及一第二加熱器22,第一加熱器2〇用以在流 體腔14内產生一第一氣泡30,第二加熱器22用以在流體 腔14内產生一第一氣泡32,以將流體腔14内之流體% 0535-A21444TWF(N2);A05553;YUNGCHIEH 6 1271320 射出。 習知之單石化流體嘖壯 材料可為金、白金、鎳戋3衣置的結構層為一金屬層,其 係使用習知之非等向性鎳合金;流體通道的製作方式 道;而流體腔的製作方式 式儀刻晶片以形成流體通 利用半導體製程沉 絲層烟的技術,其為 利用氮化石夕及氧化石夕薄膜於曰^片上作為犧牲層,再 經過犧牲層移除後 夜選擇比不同的特性,在 故卞士妖乂非寺向性蝕刻於晶月上形成。 '、、)叩,由衣一般的氧化矽薄 溫,且需要利用氫氟酸w 相當的南 ^ ^ ^ ^ ώ' 進仃缚腠的蝕刻及去除,這樣的製 程在穩定度上有1一定的·幻χ ^ 么 # /、疋的限4而較無法達到理想的最佳化 以’ ^㉔穩定性及操翻歸而言,高分子村料大 ^可用常見的—些有機溶料可移除,因此猜高分子材 料做為%牲層的製程便成為另一種成本低、製程穩定的選 擇。. 在早石化概體喷射裝置的結構層為一金屬層,常用微 電鑄或電鍍製程來製作,在電鍍製程之前必須先在犧牲層 上製作出電鑄起始導電層,傳統上主要的方法是利用濺鍍 或電子束蒸鍍技術的方式沉積一層厚度較薄的金屬薄膜以 作為電鐘起始層(under bump metallurgy; UBM)。在結構層 完成後,必須把犧牲層及流體腔内的電鍍起始層完全移 除,始可避免犧牲層及電鑛起始層的殘留,而造成電鍍起 始層與填裝之流體產生化學反應。而在製作電鍍起始層以 及移除犧牲層和電鍍起始層時常會發生許多的問題。例如 0535-A21444TWF(N2);A05553;YUNGCHIEH 7 1271320 製作電鍍起始層時,因濺鍍或蒸鍍的高溫製程而導致犧牲 層材料變質而無法完全移除;移除犧牲層和電鍍起始層 時,嚴重的電鍍起始層底切,將造成金屬結構層剝落及電 鍍起始層移除不完全等。 基於上述缺點,因此有需要一種單石化流體喷射裝置 • 及其製造方法。 【發明内容】 $ 有鑑於此,本發明之主要目的係提供一種單石化流體 喷射裝置及製造方法,在電鍍起始層下方設置一保護層, 在形成電鍍起始層的高溫製程時,可保護犧牲層不會產生 變質,且可改善移除犧牲層及電鍍起始層時的製程穩定 度。藉甴形成一保護層於犧牲層結構上,可改善移除電鍍 起始層及犧牲層時的底切及移除不完全的現象,籍以提升 - 製程良率。 • 為達成發明之上述目的,本發明提供一單石化流體噴 Φ 射裝置的製造方法,包括:提供一基底,且上述基底具有 - 一第一表面及一第二表面;形成一圖案化犧牲層於上述基 /底之上述第一表面上;形成一圖案化保護層於上述圖案化 犧牲層上;形成一電鍍起始層於上述基底之上述第一表面 上,且覆蓋該圖案化保護層;形成一圖案化光阻層於上述 電鍍起始層上;形成一金屬結構層於暴露之上述電鍍起始 層上.,且上述金屬結構層與上述圖案化光阻層相鄰;移除 上述圖案化光阻層與上述亂案化光阻層下方的上述電鍍起 始層及上述圖案化保護層,以形成一喷孔。上述單石化流 0535-A21444TWF(N2);A05553;YUNGCHIEH . 8 1271320 、 體噴射裝置的製造方法,更包括由蝕刻上述基底之上述第 . 二表面,形成一流體通道於上述基底中,以露出上述圖案 化犧牲層,接著,進一步包括移除上述圖案化犧牲層,以 形成體腔,且此流體腔與上述喷孔及上述流體通道連 • 通形成一抗化性金屬薄膜於上述金屬結構層上。其中上 述單石化流體噴射裝置的製造方法中的保護層具有抗化性 、 及隔絕熱的能力,此保護層可隔離電鍍起始層與喷液間的 • 搔觸’故本發明可不需移除電鍍起始層.,、因此,可避免移 除電鍍起始層所造成底切效應而導致金屬結構層剝落,且 此保瘦層亦可吸收或阻絕在濺鍍或蒸鍍時的高溫製程所產 生的熱,以保瘦犧牲層不會因高溫而變質,以利後續移除 犧牲層步驟時,此犧牲層不會因變質而造成殘留。 本發明係又提供一單石化流體噴射裝置,包括:一基 / 底,具,一第一衣面,且上述基底之中具有一流體通道; ,一保護層,形成於上述基底之上述第一表面上;一電鍍起 • 始層,形成於上述保護層上方;一金屬結構層,形成於上 -述電鍍起始層上,此金屬結構層與上述基底之上述第一表 、 面間幵》成一流體腔,且上述保護層與上述金屬結構層之中 具有一喷孔,與上述流體腔連通。上述之單石化流體噴射 裝置,更包括一抗化性金屬薄膜,形成於該金屬結構層上, 且该抗化性金屬薄艇從該金屬結構層上表面延伸至該喷孔 内。其中上述之單石化流體喷射裝置中的保護層具有抗化 性及隔絕熱的能力,此保護層可隔離電鍍起始層與噴液間 的接觸’故本發明可不需移除電鍍起始層,因此,可避免 0535-A21444TWF(N2);A05553;YUNGCH!EH 9 !271320 -麟始層所造成的底切效應,㈣致金屬結構層剝 .'洛,且此保護層亦可吸收或阻絕在濺鍍或蒸鍍時的高溫製 產生的熱,以保護犧牲層不會因高溫而變質,以利後 、、’、私除犧牲層步驟時,此犧牲層不會因變質而造成殘留。 【實施方式】 以下利用製程剖面圖,以更詳細地說明本發明較佳實 •施例,流體喷射裝置及其製造方法。f 2a圖至2n圖及第 :圖顯示較佳實施例之製程中間階段剖面圖,在本發明各 只施例中’相同的符號表示相同的元件。 I#請參考第2&圖,其顯示第一實施例中,形成—流體噴 2裝置100a的起始步驟.首先,提俣一例如矽之基底2〇〇, —一第一表面301與一第二表面302。在基底200之 罘一表面301上設置一驅動電路2〇1以及一加熱元件 ,=2。加熱元件2〇2較佳者為由一電阻層所構成之氣泡產生 _ 态’其中驅動電路201以及加熱元件202係由半導體製程 所形成。 、 請參考第2b圖及第2c圖,其顯示形成一厚度為 10〜40um的犧牲層204於基底200之第一表面301上,且 犧牲層204覆蓋驅動電路201以及加熱元件202。犧牲層 204 係由化學氣相沉積法(chemical Vapor Deposition; CVD) 所形成之多晶矽(Poly-Si)或磷矽玻璃,或者以旋轉塗佈法 形成的高分子聚合物等。接著,利用微影製程形成一圖案 化光阻層205於犧牲層204上,定義出流體喷射裝置之大 0535-A21444TWF(N2);A05553;YUNGCHlEH 10 1271320 ‘小及形狀。利用上述圖案北光阻層205作為蝕刻罩幕,同 .時以包含有機溶劑之蝕刻方式將部份犧牲層204濕蝕刻移 除,以留下一圖案化犧牲層2〇4a於基底2〇〇之第一表面 .301上。也可利用乾蝕刻方式取代上述濕蝕刻。然後,施 以氧電漿或光阻剝除液剝除圖案化光阻層2〇5。以留下圖 案化之犧牲層204a於基底2〇α之第一表面3〇1上。圖案化 之犧牲層204a決定了流體腔之位置及大小形狀,且圖案化 φ 之犧牲層204a覆蓋於加熱元件202之上。 睛务考第2d圖,其顯示形成一保護層2〇6於基底2〇〇 之第一表面301上,且覆蓋驅動電路2〇1以及圖案化犧牲 層204a。保護層206係由化學氣相沉積法(CVD)所形成, 致者以旋轉塗佈法形成的高分子聚合物。上述保護層2〇6 的材質可包括氮化矽、氧化矽、多晶矽或高分子聚合物, -其中高分子聚合物可以是光阻,在接下來的蒸鍍及濺鍍製 ‘ 杜中,可吸收那些製程時的咼溫_,使得光阻本身固化,以 Φ 具有良好的‘化性’上速光阻例如是廠商brewer .SCIENCEINC.所製作的PSKTM2000光阻。保護層2〇6之 -厚度範圍較佳為3000〜4000A,其中此保護層206最佳厚度 約為3500 A 〇 請參考第2e圖,其顯示利用微影製程形成一圖案化光 阻207於保瘦層206上,利用此圖案化光阻2q7作為钱刻 罩幕,同時以包含有機溶劑之蝕刻方式將部分保護層2〇6 濕蝕刻移除,以留下一圖案化保護層206a於上述圖案化犧 牲層204a上’如第2f圖所顯:示,也可利用乾敲刻方式取 0535-A21444TWF(N2);A05553;YUNGCHIEH 11 1271320 代上述濕蝕刻。然後,施以氧電漿 化光阻層207。以留下圖案化之保光阻剝除液剝除圖案 犧牲層204a上。上述圖案化保護2〇6a於上述圖案化 性質及隔絕熱的能力。 〃 6a具有良好之抗化 接著,請參考第2g圖,其顯示步 ^ 於基底200之該第一表面301上,且電鍍起始層208 圖案化保護層2G6a。此電鍍起始層^蓋驅動電路201及 的方式形成。電鍍起始層2〇8材質可^ y利用蒸鍍或濺鍍 起始層208較佳厚度範圍介於鈦或金。此電鍍 請參考2h圖,其顯示利用微影制⑶/ 209於電鍍起始層208上。接下一圖案化光阻 示形成一金屬結構層210於暴露之^^ ?第21圖,其顯 金屬結構層208之形成方法可利用·,鍍,始層208上。 其材質可包括錄、金、銅、銀、路7或無電鑛法形成… 鋅合金或合金等金屬,且金屬結f °金、鍚錯合金、 阻層209相鄰,其厚度相近於圖 1 210與該圖案化光 實施例中,金屬結構層21G之較佳声^阻層之厚度,較佳 請參考第2j圖,其顯示形成—^ 4〇Um 中,可使用例如乾錢濕式餘㈣ 構層 與該圖案化光阻層209下方的電鍍走已目木化先阻209 所减示.。接著再移除部分圖案化料層2_ = 案化犧牲層204a為止,以形成一噴別〇11 ^ ^出圖 - ^ ^ 札211,如第21圖所顯 不。圖案化光阻209為形成金屬結構層21〇之母模,幻頁 置及大小形狀決定了金屬結構層21〇以及喷孔2ii、之位置 0535-A21444TWF(N2);A05553;YUNGCHIEH 12 1271320 _ 及大小形狀。 - 明I考第2m圖,其顯示形成一流體通道212 200中。|久巷低 ^ 一万法了為習知的微影製程/非等向性蝕刻方式例 、$乾式蝕刻法或濕式蝕刻法,由基底2⑻之第二表面3〇2 • &擇^地蝕刻基底200,以形成一流體通道212於基底2〇〇 中’直到露出圖案化犧牲層2〇4a為止。 丄砑麥考第2n圖,其顯示利用非等向性蝕刻法例如濕式 _ 蝕剑法,移除圖案化犧牲層204a,以形成一流體腔214, ^机體腔214與喷孔2Π及流體通道212連通。以形成本 發明第一實施例之流體噴射裝置1〇〇a。其中上述之圖案化 -06a可隔離上述電鐘起始層2〇g與噴液間的接觸, 以避免此電鍍起始層208與噴液產生化學變化。因此,在 秒 <示一地‘牲層204a後,不需移除此電鍍起始層2〇g,故 ' 可避免移除電鍍起始層208時,在電鍍起始層208與上述 • 基底200之第一表面301接觸部位產生底切的現象。進而, 籲增強金屬結構層210的結構完整性。而且,上述圖案化保 , 護層2〇6a可吸收上述形成電鍍起始層208的高溫製程,所 產生的熱’以避免上述圖案化犧牲層204a產生變質(例如 cross-link等),因此,可改善移除此圖案化犧牲層2〇4a時, 所造成圖案化犧牲層204a殘留的問題。 如上所述之流體喷射裝置l〇〇a,包括:一基底200, 具有一第一表面301,且基底200之中具有一流體通道 212 ; —保護層206a,形成於基底200之第一表面301上; 一電鏡起始看208 ’形成於上述保護層206a上;一.金屬 0535-A21444TWF{N2);A05553;YUNGCHIEH 13 1271320 結構層210,形成於電鍍起始層208及保護層206a上,金 屬結構層210與基底200之第一表面301間形成一流體腔 • 214,且電鍍起始層208及保護層206a與金屬結構層210 之中具有一喷孔211,與流體腔214連通。 第3圖.為本發明第二實施例之流體喷射裝置100b剖面 _ 圖,其顯示形成一抗化性金屬薄膜216於該金屬結構層210 上,且此抗化性金屬薄膜216從該金屬結構層210上表面 $ 延伸至該喷孔211内。抗化性金屬薄膜216的較佳厚度為 lum,其材質可包含金或其合金。較佳實施例中,抗化性 金屬薄膜216之形成方法可利甩無電鍍法,其厚度較佳為 lum。其中元件與第2a圖至2n圖所示相同之部分,則可 參考前面的相關敘述,在此不作重複敘述。 在本發明第一及第二實施例之單石化流體噴射裝置 - 100a與100 b中,主要差異在於單石化流體噴射裝置100b ^ 將一抗化性金屬薄膜216,形成於金屬結構層210上,且 φ 抗化性金屬薄膜216從金屬結構層210上表面延伸至噴孔 • 211内。此抗化性金屬薄膜216具有可防止金屬結構層210 、 表面氧化之功能。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作此許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定為岸。 0535-A21444TWF(N2);A05553;YUNGCHIEH 14 1271320 【圖式簡單說明】 第1圖為一種習知的單石化流體喷射裝置剖面圖。 第2a〜2n圖為本發明之單石化流體喷射裝置第一實施 例之一系列製程剖面圖。 第3圖為本發明之單石化流體喷射裝置第二實施例之 剖面圖。 【主要元件符號說明】 1〜單石化流體喷射裝置; 10〜秒基底; 12〜結構層, 14〜流體腔; 20〜第一加熱器; 22〜第二加熱器; 26〜流體通道; 30〜第一氣泡; 32〜第二氣泡; 100a〜單石化流體喷射裝置; 100b〜單石化流體喷射裝置; 200〜基底, 201〜驅動電路; 202〜加熱器; 204〜犧牲層; 204a〜圖案化犧牲層; 205〜圖案化光阻層; 0535-A21444TWF(N2);A05553;YUNGCH!EH 15 1271320 206〜保護層; 206a〜圖案化保護層; 207〜圖案化光阻層; 208〜電鍍起始層; 209〜圖案化光阻層; 210〜金屬結構層; 211〜喷孔; 212〜流體通道; 216〜流體腔; 214〜抗化金屬薄膜; 301〜第一表面; 302〜第二表面。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single petrochemical fluid nozzle device and a method for manufacturing the same, and more particularly to a fluid for improving process yield and stability and simplifying the process. Injection device and method of manufacturing the same. [Prior Art] The conventional fluid ejection device can be divided into two types: a nozzle sheet bonding and a single petrochemical selection φ. The method of bonding the orifice sheet is to form a heating element and a passivation protective layer by using a semiconductor process, and then The photosensitive cavity and the fluid channel are formed on the heating element by using the photosensitive thick film photoresist, and then the metal orifice plate is aligned with the thick film photoresist by the bonding agent to complete the structure of the sprayed wafer; In a single petrochemical fluid ejecting device, the fluid chamber is mainly composed of a base material and a structural layer, and the structural layer is composed of a plurality of thin films formed at different time points. At present, most of the fluid ejection devices are used in inkjet heads, fuel injection devices, biopharmaceutical injections, micro-analysis systems (μ-TAS) and non-masked Lu line systems. Use a hot bubble type, design. Figure 1 shows a conventional petrochemical fluid ejection device 1 of the prior art U.S. Patent No. 6,1,2,530, starting from a substrate 1 and forming a structural layer 12 on the crucible substrate 1 (on the crucible substrate). A fluid chamber 14' is formed between the 〇 and the structural layer 12 for the glutamate fluid 26, and a first heater 20 and a second heater 22 are disposed on the structural layer 12, and the first heater 2 is used for A first bubble 30 is generated in the fluid chamber 14, and the second heater 22 is used to generate a first bubble 32 in the fluid chamber 14 to transfer the fluid in the fluid chamber 14% 0535-A21444TWF(N2); A05553; YUNGCHIEH 6 1271320 Shooting. The conventional single petrochemical fluid sturdy material may be a metal layer of gold, platinum, and nickel enamel, which is a metal layer using a conventional anisotropic nickel alloy; a fluid channel is fabricated; and a fluid chamber is used. The method of engraving a wafer to form a fluid through the use of a semi-conductor layer of a semiconductor process is to use a nitride layer and a oxidized stone film as a sacrificial layer on the ruthenium film, and then remove the sacrificial layer to remove the night after the difference. The characteristics of the priests are formed on the crystal moon. ',,) 叩, the yttrium oxide is generally thin, and it needs to be etched and removed by using the hydrofluoric acid w equivalent of the south ^ ^ ^ ^ ώ ' 仃 仃 , , , , , , , , , , , , , , , , , , , , , , , , , · χ χ ^ 么 # /, 疋 limit 4 and less than ideal to achieve the ideal ^ ^ 24 stability and control, the polymer village material ^ can be used common - some organic solvent can be moved In addition, the process of guessing polymer materials as a %-element is another option that is low in cost and stable in process. The structural layer of the early petrochemical spraying device is a metal layer, which is usually fabricated by micro-electroforming or electroplating process. Before electroplating, the electroforming starting conductive layer must be fabricated on the sacrificial layer. The traditional main method A thin film of thin metal is deposited by sputtering or electron beam evaporation as the underlying layer of the electric bell (UBM). After the structural layer is completed, the sacrificial layer and the plating initiation layer in the fluid chamber must be completely removed, thereby avoiding the residue of the sacrificial layer and the initial layer of the electric ore, and causing chemical chemistry between the plating initiation layer and the filling fluid. reaction. Many problems often occur when making the plating starting layer and removing the sacrificial layer and the plating starting layer. For example, 0535-A21444TWF(N2); A05553; YUNGCHIEH 7 1271320 When making the plating starting layer, the sacrificial layer material is deteriorated due to the high temperature process of sputtering or evaporation, and cannot be completely removed; the sacrificial layer and the plating starting layer are removed. When the severe plating initial layer is undercut, the metal structure layer peeling off and the plating initial layer removal are incomplete. Based on the above disadvantages, there is a need for a single petrochemical fluid ejection device and its method of manufacture. SUMMARY OF THE INVENTION In view of this, the main object of the present invention is to provide a single petrochemical fluid ejecting apparatus and a manufacturing method thereof, wherein a protective layer is disposed under the plating initiation layer to protect the high temperature process of forming the plating initiation layer. The sacrificial layer does not deteriorate, and the process stability when the sacrificial layer and the plating starting layer are removed can be improved. By forming a protective layer on the sacrificial layer structure, the undercut and the incomplete removal when the plating starting layer and the sacrificial layer are removed can be improved, thereby improving the process yield. In order to achieve the above object of the invention, the present invention provides a method of fabricating a single petrochemical fluid jet galvanic device comprising: providing a substrate having a first surface and a second surface; forming a patterned sacrificial layer On the first surface of the base/bottom; forming a patterned protective layer on the patterned sacrificial layer; forming an electroplating starting layer on the first surface of the substrate, and covering the patterned protective layer; Forming a patterned photoresist layer on the plating initiation layer; forming a metal structure layer on the exposed plating initiation layer; and the metal structure layer is adjacent to the patterned photoresist layer; removing the pattern The photoresist layer and the plating initiation layer and the patterned protective layer under the randomized photoresist layer are formed to form an orifice. The above-mentioned single petrochemical stream 0535-A21444TWF (N2); A05553; YUNGCHIEH. 8 1271320, a method for manufacturing a body jet device, further comprising etching a surface of the second surface of the substrate to form a fluid passage in the substrate to expose the above Patterning the sacrificial layer, and further comprising removing the patterned sacrificial layer to form a body cavity, and the fluid cavity is connected to the nozzle hole and the fluid channel to form a chemical resistant metal film on the metal structure layer. The protective layer in the manufacturing method of the above single petrochemical fluid spraying device has the chemical resistance and the ability to block heat, and the protective layer can isolate the contact between the plating initial layer and the liquid jet. Therefore, the present invention can be removed. The plating initiation layer, and therefore, can avoid the undercut effect caused by the removal of the plating initiation layer and cause the metal structure layer to peel off, and the thin layer can also absorb or block the high temperature process during sputtering or evaporation. The generated heat is such that the sacrificial sacrificial layer does not deteriorate due to high temperature, so that the sacrificial layer does not remain deteriorated due to deterioration when the sacrificial layer step is subsequently removed. The present invention further provides a single petrochemical fluid ejecting apparatus comprising: a base/bottom, a first garment surface, and a fluid passage therein; wherein a protective layer is formed on the first surface of the substrate On the surface; an electroplating starting layer is formed above the protective layer; a metal structural layer is formed on the electroplating starting layer, and the first surface and the surface of the metal structural layer and the substrate are Forming a fluid chamber, and the protective layer and the metal structure layer have an injection hole therein, and communicate with the fluid chamber. The single petrochemical fluid ejecting apparatus described above further comprises a chemical resistant metal film formed on the metal structural layer, and the chemical resistant metal thin boat extends from the upper surface of the metal structural layer into the nozzle hole. The protective layer in the single petrochemical fluid spraying device described above has the ability of chemical resistance and heat insulation, and the protective layer can isolate the contact between the plating initial layer and the liquid spray. Therefore, the present invention can eliminate the need to remove the plating starting layer. Therefore, it can avoid the undercut effect caused by 0535-A21444TWF(N2); A05553; YUNGCH!EH 9 !271320 - the initial layer, (4) the metal structure layer peeling. 'Lo, and this protective layer can also absorb or block The heat generated by the high temperature during sputtering or vapor deposition protects the sacrificial layer from deterioration due to high temperature, so that the sacrificial layer does not remain deteriorated when the sacrificial layer step is removed. [Embodiment] Hereinafter, a preferred embodiment of the present invention, a fluid ejecting apparatus and a method of manufacturing the same will be described in detail using a process sectional view. The f 2a to 2n and the first drawings show cross-sectional views of the intermediate stages of the preferred embodiment, and the same reference numerals are used to denote the same elements in the respective embodiments of the present invention. I# Please refer to the 2& figure, which shows the initial step of forming the fluid-jet 2 device 100a in the first embodiment. First, a substrate 2 such as a crucible, a first surface 301 and a Second surface 302. A driving circuit 2〇1 and a heating element =2 are disposed on the first surface 301 of the substrate 200. Preferably, the heating element 2 〇 2 is a bubble formed by a resistive layer, wherein the driving circuit 201 and the heating element 202 are formed by a semiconductor process. Referring to FIGS. 2b and 2c, a sacrificial layer 204 having a thickness of 10 to 40 um is formed on the first surface 301 of the substrate 200, and the sacrificial layer 204 covers the driving circuit 201 and the heating element 202. The sacrificial layer 204 is a polycrystalline silicon (Poly-Si) or a phosphoric acid glass formed by chemical vapor deposition (CVD), or a high molecular polymer formed by a spin coating method. Next, a patterned photoresist layer 205 is formed on the sacrificial layer 204 by a lithography process to define a large size of the fluid ejection device 0535-A21444TWF(N2); A05553; YUNGCHlEH 10 1271320 ‘small and shaped. The patterned north photoresist layer 205 is used as an etch mask, and a portion of the sacrificial layer 204 is wet etched away by etching in an organic solvent to leave a patterned sacrificial layer 2 〇 4a on the substrate 2 The first surface is .301. Dry etching can also be used instead of the above wet etching. Then, the patterned photoresist layer 2〇5 is stripped by applying an oxygen plasma or a photoresist stripping solution. The patterned sacrificial layer 204a is left on the first surface 3〇1 of the substrate 2〇α. The patterned sacrificial layer 204a determines the location and size of the fluid cavity, and the sacrificial layer 204a of patterned φ overlies the heating element 202. Figure 2d shows a protective layer 2〇6 formed on the first surface 301 of the substrate 2〇〇 and covering the driving circuit 2〇1 and the patterned sacrificial layer 204a. The protective layer 206 is formed by chemical vapor deposition (CVD), and is a high molecular polymer formed by a spin coating method. The material of the protective layer 2〇6 may include tantalum nitride, hafnium oxide, polycrystalline germanium or high molecular polymer, wherein the high molecular polymer may be photoresist, and in the subsequent evaporation and sputtering process, Absorbing the temperature 那些 of those processes, so that the photoresist itself cures, Φ has a good 'chemical' upper speed resist, such as the PSKTM2000 photoresist produced by the manufacturer brewer.SCIENCEINC. The thickness of the protective layer 2〇6 is preferably 3000~4000A, wherein the protective layer 206 has an optimum thickness of about 3500 A. Please refer to FIG. 2e, which shows that the patterned photoresist 207 is formed by the lithography process. On the layer 206, the patterned photoresist 2q7 is used as a mask, and a portion of the protective layer 2〇6 is wet-etched by etching in an organic solvent-containing manner to leave a patterned protective layer 206a patterned thereon. As shown in FIG. 2f, the sacrificial layer 204a can also be used to obtain the above-mentioned wet etching by dry-knocking method: 0535-A21444TWF (N2); A05553; YUNGCHIEH 11 1271320. Then, an oxygen plasma photoresist layer 207 is applied. The pattern is sacrificed on the sacrificial layer 204a by leaving a patterned photoresist stripping solution. The above patterning protects 2〇6a from the above-described patterning properties and the ability to insulate heat. 〃 6a has good resistance. Next, please refer to Fig. 2g, which shows step on the first surface 301 of the substrate 200, and the plating initiation layer 208 patterns the protective layer 2G6a. This plating start layer is formed by the cover driving circuit 201 and . The plating initiation layer 2〇8 material can be vaporized or sputtered. The starting layer 208 preferably has a thickness ranging from titanium or gold. This plating is referred to the 2h diagram, which shows the use of lithography (3) / 209 on the plating initiation layer 208. Next, a patterned photoresist is formed to expose a metal structure layer 210 to the exposed portion. The method of forming the metal structure layer 208 can be performed by plating on the starting layer 208. The material may include recording, gold, copper, silver, road 7 or electroless ore forming... zinc alloy or alloy metal, and the metal junction f ° gold, wrong alloy, resist layer 209 adjacent, the thickness is similar to Figure 1 In the embodiment of the patterning light 210, the thickness of the preferred acoustic layer of the metal structure layer 21G is preferably referred to in FIG. 2j, which is shown to form -^4〇Um, for example, dry money wet type can be used. (4) The structuring layer and the electroplating under the patterned photoresist layer 209 have been reduced. Then, a part of the patterned material layer 2_ = the sacrificial layer 204a is removed to form a spray pattern 11 ^ ^ map - ^ ^ 211, as shown in Fig. 21. The patterned photoresist 209 is a master mold for forming the metal structure layer 21, and the phantom layout and size determine the metal structure layer 21 and the nozzle hole 2ii, the position 0535-A21444TWF (N2); A05553; YUNGCHIEH 12 1271320 _ and Size and shape. - Figure 2m, which is shown forming a fluid channel 212 200. |久巷低^ Ten thousand methods for the conventional lithography process / non-isotropic etching method, dry etching or wet etching, from the second surface of the substrate 2 (8) 3 〇 2 • & select ^ The substrate 200 is etched to form a fluid channel 212 in the substrate 2' until the patterned sacrificial layer 2A4a is exposed. The buckwheat test 2n figure shows that the patterned sacrificial layer 204a is removed by an anisotropic etching method such as a wet etch method to form a fluid chamber 214, the body cavity 214 and the orifice 2 and the fluid passage 212 connected. The fluid ejection device 1A of the first embodiment of the present invention is formed. The patterning -06a described above can isolate the contact between the starting layer 2〇g of the electric clock and the spray to avoid chemical changes between the plating starting layer 208 and the spray. Therefore, after the second <showing a 'battery layer 204a, it is not necessary to remove the plating starting layer 2〇g, so 'avoiding the removal of the plating starting layer 208, in the plating starting layer 208 and the above The contact portion of the first surface 301 of the substrate 200 creates an undercut phenomenon. Further, the structural integrity of the metal structure layer 210 is called upon. Moreover, the patterned protective layer 2 〇 6a can absorb the high-temperature process for forming the plating start layer 208, and the generated heat 'to prevent the patterned sacrificial layer 204a from being deteriorated (for example, cross-link, etc.). The problem of leaving the patterned sacrificial layer 204a remaining when the patterned sacrificial layer 2〇4a is removed can be improved. The fluid ejecting apparatus 10a as described above includes a substrate 200 having a first surface 301 and a fluid channel 212 therein; a protective layer 206a formed on the first surface 301 of the substrate 200 An electron mirror starting 208' is formed on the protective layer 206a; a metal 0535-A21444TWF{N2); A05553; a YUNGCHIEH 13 1271320 structural layer 210 formed on the plating starting layer 208 and the protective layer 206a, metal A fluid chamber 214 is formed between the structural layer 210 and the first surface 301 of the substrate 200, and the plating initiation layer 208 and the protective layer 206a and the metal structure layer 210 have an injection hole 211 therein, which is in communication with the fluid chamber 214. Fig. 3 is a cross-sectional view of a fluid ejecting apparatus 100b according to a second embodiment of the present invention, showing a chemical resistant metal film 216 formed on the metal structural layer 210, and the chemical resistant metal film 216 is formed from the metal structure. The upper surface of layer 210 extends into the orifice 211. The preferred thickness of the chemical resistant metal film 216 is lum, and the material thereof may comprise gold or an alloy thereof. In the preferred embodiment, the method for forming the chemical resistant metal film 216 can be advantageously electroless, and the thickness thereof is preferably lum. Where the components are the same as those shown in Figures 2a to 2n, reference may be made to the related description above, and the description thereof will not be repeated. In the single petrochemical fluid ejecting apparatus - 100a and 100b of the first and second embodiments of the present invention, the main difference is that the mono petrified fluid ejecting apparatus 100b forms a chemical resistant metal film 216 on the metal structural layer 210, And the φ-resistant metal film 216 extends from the upper surface of the metal structure layer 210 to the nozzle hole 211. This chemical-resistant metal film 216 has a function of preventing oxidation of the metal structure layer 210 and the surface. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and it is to be understood that the present invention may be modified and retouched without departing from the spirit and scope of the invention. The scope of protection of the invention is defined as the shore as defined in the appended claims. 0535-A21444TWF(N2); A05553; YUNGCHIEH 14 1271320 [Simplified Schematic] FIG. 1 is a cross-sectional view of a conventional single petrochemical fluid ejecting apparatus. 2a to 2n are cross-sectional views showing a series of processes of the first embodiment of the single petrochemical fluid ejecting apparatus of the present invention. Figure 3 is a cross-sectional view showing a second embodiment of the single petrochemical fluid ejecting apparatus of the present invention. [Main component symbol description] 1 ~ single petrochemical fluid ejection device; 10 ~ second substrate; 12 ~ structural layer, 14 ~ fluid cavity; 20 ~ first heater; 22 ~ second heater; 26 ~ fluid channel; 30 ~ First bubble; 32~ second bubble; 100a~ single petrochemical fluid ejection device; 100b~mono petrochemical fluid ejection device; 200~ substrate, 201~ drive circuit; 202~ heater; 204~ sacrificial layer; 204a~ patterning sacrifice 205~ patterned photoresist layer; 0535-A21444TWF(N2); A05553; YUNGCH!EH 15 1271320 206~ protective layer; 206a~ patterned protective layer; 207~ patterned photoresist layer; 208~ electroplating starting layer 209 ~ patterned photoresist layer; 210 ~ metal structure layer; 211 ~ orifice; 212 ~ fluid channel; 216 ~ fluid cavity; 214 ~ resistant metal film; 301 ~ first surface; 302 ~ second surface.
0535-A21444TWF(N2);A05553;YUNGCHIEH 160535-A21444TWF(N2); A05553; YUNGCHIEH 16