九、發明說明: 【發明所屬之技術領域】 本發明係有_—種光電感測裝置,_猶關於一種低 雜訊薄型光電感測裝置。 【先前技術】 I年I 1^著1子產業的日新月愈與各類電子產品生命週期 縮減及電子產品_向小型化、輕薄化及整合多功能化 /展而各頰個人行動電子裝置也普遍都配有多媒體光電 置k3外—些安全監視系統、醫療制設備及其他和 …、系統等對於光電感職置都有強列需求。 目前-般的光電感測裝置係貼附於_或塑膠封裝之晶片承 ^上’藉由打_合方式連接該光電_裝置之電轉塾 列::體内的内⑽㈣輪祕板上之電__。該光電感 ^置通常係個卿行組裝且外加密封—翻上蓋如玻璃、塑膠 ===明基材於摘裝上’以暴露該光電感職置之光電轉 该光電感職置通常係於_料體基底之上表面形成—光 =,元件,該光電轉換元件可使入射於該元件上之電磁輕射能 。里、小轉換成為電荷量的多寡,並進而轉化成為電屢、電流信 換此外尚可包括一周圍控制電路係可用以解石馬該光電轉 、兀Μ之光電轉換像素位置與控制該光電感測裝置的輸出、 輸入電路信號及電性連接端。 1257710 當積體電路it件縮小和整合更多、更複雜的功能需求時,所 面臨更多輸出、輸人的外接電極脚數、更高的操作頻率、及所伴 隨產生更加複誠散熱和f軒擾制題,對光械測裝置的品 質將造成重大的影響。-般光電感職置的雜訊來源,除了光電 感測衣置本身產生的散彈雜訊(Sh〇t n〇ise)和熱雜訊⑽㊀服丄 n〇lse)外’還包括有光電感測裝置中周圍電路產生的雜訊、其他 電路產生的雜訊干擾及操作醉所產生_訊電磁干鮮皆會嚴 重影響光f Μ裝置的信賴魏比,並進而縮小缺電感測裝 置之工作動態範圍及降低該光電感測裝置的品質。 第1圖係為闡示傳統光電感測裝置及其封裝之示意圖,如第i 圖所緣示’-傳統陶曼封们00係、提供一凹槽101於—陶究基底 103和-導電内引腳102於其封裝内;一光電感測晶粒1〇4係_ 導電黏著膜105貼附於該凹槽m内;及使用一金屬線1〇7標準 打線接合製程,電性連接該光電感測晶粒刚之電轉塾⑽至 内引腳102上。 第2圖係為闡示另-傳統光電感測裝置及其封裝。如第2圖 中’-歸封裝110至要包含有一内引腳112和外弓丨腳122,且該 引腳電性連接至引腳架117;及—塑膠基1113上之—凹槽110; -光電感測晶粒1G4係藉由-導電黏著膜115貼附於凹槽⑴之 引腳架117 ;及使用-金屬、線1〇7用打線接合製程,電性連接該光 黾感測晶粒104之電極鲜墊1〇6至内引腳Η?上。 !25771〇 另一揭露於美國專利第6268231號之低成本電荷耦合裝置封 衣,名為「低成本電荷耦合裝置封裝」於1999年1〇月4日公佈 、口予Keith Ε· Wetzel先生,如繪示第3圖。一電荷耦合裝置(CCD) 于衣310其主要結構包括有一塑膠基底結構312 ; 一塑膠環繞架 314,一軟性電路板318 ;及一玻璃蓋316用以形成一密封空間, 便於该内含―綠感測裝置於該m域。該玻璃蓋則係使 用來保護貼附於密封空間内軟性電路板318上的光電感測晶粒 311且藉由金屬接合線329電性連接該軟性電路板318上之導電 電極端至光電感測晶粒311之電極銲墊。 第4圖係為闡示另一揭露於我國專利第 TWM249376公開號, 名為「低雜訊影像感測器」之示意圖,如第4圖鱗示,其主要 、、、。構包含-光電影像感測晶片晶粒42〇、一透光片伽、一透光紅 外線濾光片432及-薄膜基板其中該薄膜基板侧係包括有 一介電層415、一金屬線路層416和一外接電性接合端417,用以 接合邊光電感測晶粒420之電極連接端凸塊424和一窗口 用 以設置該光電感測晶粒420;及-覆蓋該光電感測晶粒·之一背 面電磁屏蔽金屬層440,用以避免外部電雜訊干擾,達成降低雜 訊的功效。尚可再包含-覆蓋於該_基板上表面之另—電 磁屏蔽金屬層470,利用達成降低雜訊的功效。 % 上述傳統光诚測裝置之主要缺岐該光錢職置本身不 具有電磁屏蔽的功效,或者需要_進行額外電磁屏蔽層的封裂 l25771〇 製造流程,如此對該光電感測裝置或模組的體積和重量便很難進 -少地縮小,而且也會造成整體製造成本及生產時_增加。另 外,-般光電感測裝置在組裝完成後段透光片封裝 製裎前、即會 面臨该光電制裝置因為儲存環境不良或儲存時間過長,可能導 致該產品往後生產良率及可靠性等問題。同時,該光電感測裝置 都需要事先從全晶圓中切割、分離成爲單獨之光電感測晶粒之 後’才⑥再進行個別封綠合製程,然而在晶圓糊、分裂時, 各易產生錢粒,Μ卿微粒具有污染及該料感測裝置 之光予轉換區域的危險,進而損傷或毀壞該光電感測裝置,並影 響該整體光電感測裝置的品質和封裝良率。 【發明内容】 本”月係提供角午決上述光電感測裝置之相關問題,並且揭露 —H便宜之低雜訊光電感職置,可使該光電感測裝置更適 合組域為便宜之光電感顧組繼配置在行動電話、個人數位 。里衣置個人電腦、攝影機、數位照相機、電腦掃描器、讀條 〜安王皿視系統、醫療檢測器材······等各類應用產品上。 〜本發明目的係提供—種低雜訊_光電感難置,該裝置具 t肢裝’能以全晶圓或至少—個光電感測裝置之部分晶圓, °日守大量生產製造以簡化生產製程流程及降低生產成本。 本發明另-目的係包括於該光電_裝置絲之中形成 肷电磁屏蔽層,豆中哕帝 區域或個心/ 賊該整縣電轉換元件 … h轉換讀(除需預留光_窗口之區域外),可利 1257710 用以降低該光電感測裝置之電磁雜訊干擾。該光電感測裝置中之 電磁屏蔽層,尚可電性連接到内篏於光電感測裝置背面或其他電 路基板之另一導電接地層,以形成該光電感測裝置之一完整電磁 遮蔽所(除上述所預留光線開窗口之區域外)。 本發明又一目的係提供設置至少有一凹槽之透明基材,且可藉 由一些接合技術,如陽極接合(anodic bonding)、共晶接合 (eutectic bonding)、黏著接合(adhesive bonding)、局部接合 (localized bonding)、低温接合等方式或其中任一組合方式直接 接合該透明基材與光電感測裝置基底,而該透明基材之凹槽係為 可選擇對應於該光電感測基底之電極銲墊和晶片切割區。該透明 基材下表面除可設置至少有—凹槽外,其下表面亦可包括形成一 平面、球面、非球©、kinGfC)rm面或其中任—組合面以形成為一 可具有折射或繞射之光學面,以·提昇光學功效。亦可選擇於 該上、下表面’附加形成至少一層光學薄膜層,用以提供埘紅外 線)且/或低頻遽光之功能’如此便不需要額外再搭配另一光學濾 光片或一透明上蓋於光電感測裝置上。 本發明又-目的係可藉由研磨技術,如化學機械研磨、高選 擇性電漿侧、抛光研磨絲顺辨方式,可獅㈣透明基 面直接磨_翻基材磨至該透材之凹槽底部,减 置之外部電極連接端。恭路出來,作為該光電感測裝 本發明之另一目的係提供一種薄型光電感測裝置,該薄型光電 1257710 感測裝置包括-作為光電轉聽、—可作為外部電極連接端 ^電鱗墊或貫穿該光電㈣基底之外部電極接合榫、一環繞光 電轉航件區之顯電路,該銳與光電概元件區和光電:測 基底之電極銲墊且/錢合榫具有電性連接,尚可作為光電信號之 輪出、輸人、錢放大與光換元件晝素地址之解碼之用。u 本發明之又-目的係為提供—種光電❹懷置製造方法,該 方法係糊直接接錢術取代傳統需要另行插人—接合樹脂底座 於光電感職置中。除外,並可直接研_透材及光電感測 基底’以使該光電感測裝置之電極連接端能暴露出來(例如:光電 感測裝置之電極銲墊、接合榫)和導絲板之預設祕,藉由封裝 連接技術相互電性連接,例如可利用異方向性、等方向性導紐 黏膠層、底層凸塊金屬化⑽)、錢縣凸塊、打線、球拇陣 列、覆晶,其他金屬化電極連接法或上述之一些接合方式(如陽極 接合(咖die bonding)、共晶接合(她仙b〇nding)、黏著接 合(adhesive bonding)、局部接合(1⑽Uzed ^咖)、低溫接 合等方式或其中任-組合方式)...等封裝連接技術,使該光電感測 衣置月b更適合利用於現在輕、薄、短小的電子裝置。 本發明之較佳具體實施例巾,係為湘設置至少有―凹槽之透 明基材,直接接合貼瞻在光電躺基底之上表面,並且對準覆 盎於该光電感測基底之光電轉換區上,藉以使光電影像輻射能 量,可穿賴透材到達絲電元件轉換區域上。祕透明基 材係可直接細於光電感測基底的±表面,而不需要額外利用另 1257710 一座體’以支撐該透明基材及保護該光電感測裝置。 本發明之又一目的係為可配置一預先設計厚度之支撐層藉以 控制該透明基材舆光電感測裝置之相對距離以提昇光電影像成像 之品質。另外,亦可選擇於該光電感測基底,支撐層,透明基材 之相鄰表面預設形成至少有一個凹起部或凸起部,以幫助提供嗲 光電感測基底、支撐層及透明基材中之相鄰表面,能精密對準及 緊密結合。 本發明之再—目的係為提供—種可伸縮之支撐層藉,其中包 含有一磁性體和導電線圈結構體,且分別固定於支撐層之上、下 雨端,尚可利用該磁性體與導電線圈結構體所外加的電流大小, 相互感應所產生的姆磁力,_帶_切層之導電線圈結構 體及磁性體作姆伸縮鑛,及配合接合技術連帶㈣該透明基 材舆光電感職置之相對距離,以提昇光電影像成像之品質。土 本發明之另-具體實關,係可_—透騎料填充介貝於光電 轉換區上表面及透材下表面的空穴。該透賢料可選擇盘^ 明基材之反射係數互相匹配的透明材料,來達到減少該光電感測 基底與透贿制的電磁輻祕賴失,魏綠树轉換 呈現之光電影像圖形品質。 、 於本發明之又-較佳實施例係為提供―電性連接之架構、該 力木構可紐連接絲域聽置上表面的 部電極接合榫至光電_控繼_ <表面 弘往知,该光電感測控制模 1257710 。且可间度l S包括-些光電感測相關控制功能區塊,例如系統微 處理控制n,數位信號處理器,系統時序控制料⑽〇,記憶 體緩衝⑽肖邊控制元件...等區塊或包括上述功能之光電感測控 制系統的整合性封裝模組。 本毛明之結構亦適合用全晶圓或含至少一個光電感測晶粒之 扎Ba圓之生產製造流程上,可大量、同時生產製造該光電感測 裝置,較前述_傳統個別生產找感測裝置之成本更為低。尚 可廷擇性其他光學透鏡系統與該光電感測裝置結合,隨後再將含鲁 有電性連接端及光學透齡統之光電感_置_分開,再分別 利用-些封裝連線技術、界面接合技術或導電材料,來電性連接 該含有電性連接端之找感測裝置至其他光電感測控制模組之電 極端’其中該光電感測控麵組尚可包括以堆疊或平面方式電性 連接-個或複數個光電感_邊控制積體電路元件於該電路基板 上0 【實施方式】 鲁 茲為使貴審查委員對本發明之特徵、結構、方法及所達成之 功效有進-步讀酿認識,以下較佳實_舰配合本發 明之詳細說明,說明如後。 本發明之-實施_光電❹樣置係包括含光電元件轉 換區之光電制基絲-至少設置有1槽之透明紐,直錢 由接合技術相互接合’且使該透明基材之凹槽係為對應光電感測 基底之電極。另外,該找❹樣置之外部祕連接端係可 11 1257710 藉由自該透明基材之上表面研薄至凹槽底部,使其内之電極鮮墊 暴露出錢藉由另-自該光電感測基底之下表面研薄和_等步 驟,使内篏於該光電感測基底中之電極检塞暴露出來,以作祕 部電性連接端。而光電感測輕射能量係可經由該透明基材到達該 光电兀件轉換n ’細轉換感應成為光電影像。其巾,該光電感 測基底之電極銲墊’尚可電性連接至其他具有光電感測相關功能 區塊之光電感測控賴組。而該光電感測功能區塊係可包括系統 微控制器’數位信號處理單元,系統時序控制電路⑽C),記憶鲁 體緩衝區和周邊控制電路’或具有包括前述功能之整合型光電感 測控制系統難。料,尚可關定或可調難距方式,配 置-光學透鏡系統於該光電感難置上,細增_光電感測裝 置之品質及效能。 立凊蒼閱第5圖係為綠示具有複數個光電感測裝置之全晶圓示 意圖’其中該光電感測裝置晶圓係由單晶發晶棒切割成單一光電 感測晶圓片.再_半導體製造技術於其上製造完成—複數I # 光电感測裝置’其中包含有—光電感測晶粒151和—晶粒切割區 152,二作為該晶圓15〇切割分裂成為個別之光電感測晶粒⑸。 ▲請參閱第6圖係為第5中之光電感測晶粒放大示意圖,其令 乂光包感測曰曰粒151係包括有一光電元件轉換區155, 一圍繞光電 凡件轉換區155之電磁屏蔽層156和一周圍控制電路157及—位 於光電感測基底上表面之電極銲塾159或其内篏之複數個外接電 12 1257710 性接合栓塞166,其中該上表面電極銲墊或其内篏之複數個接合检 塞,係可作為連接至其他光電感測控制模組之電性連接終端。 請參閱弟7A至第7D圖係為闡示第6圖中沿aa,線方白接人 栓塞166和電磁屏蔽層156之製造步驟的剖面圖。根據第7八圖, 於該光電感測晶粒基底151之上表面16〇,利用電聚姓刻,漫钱刻 或雷射穿孔等技術形成複數個壕溝161,其中該壕溝可利用半導 體步驟用以完成該接合栓塞166和電磁屏蔽層156(尚可省略沈積 絕緣膜)。在本發明之實施例中,該规感測亦可形紐其他含藍 寶石層之半導體基底上,半導體覆蓋絕緣層⑽)或在塑膠或玻: 基底上使用。 如第7B及第7C圖所闡示,尚可包括形成一氧化膜162或另 -附加氮化石夕膜163等絕緣膜於該壕溝161之内壁,以作為隔離 該複數個壕溝161。之後,該壕溝161可填充—導電材料於其内, 藉以形成接合栓塞166和電磁屏蔽層156,如第7D圖所示。在本 發明之較佳實施例中,該導電材料係可為鈦、氮化鈦、銘、銅、 水、錄、錫、錯、銀、鎢、金、采合金、銀膠、錫錯、導電高分 子、其他導電性物質或上述之組合物、化合物或金屬合金等= 材料填充於該深壕軸。之後,可細b學機械磨_,濕飯刻⑨ 电水倒糊或其巾組合方式,自絲電感底之下表面研薄和 钱刻’凡成各外接電極接合棒168和電磁屏蔽層156。 般’製造完成該内篏於光電感測裝置中的接合栓塞168是 1257710 非常有彈性的’形成該接合栓塞166之步驟可先於或後於光電感 測裝置中的層間介電絕緣層(ILD),金屬層,接孔層,複石夕晶, 或光電轉換元件155等形成步驟之前或之後。 請麥閱第8A圖係為第6圖光電感測晶粒中沿a - A,方向之剖 面圖。於® 7D步驟之後續製程中,該光電轉換元件區域155係形 成於光1制晶粒151之上表面⑽,且通常位於光電感測晶粒 151中間區域。另外電磁屏蔽層156和一周圍光電轉換元件控 制電路157係配置於,具有大量二維矩陣單元光電轉換元件(未標 不)之周區域’通常具有光電轉換元件地址解碼及電信處理功 能’及内篏光電感測基底之複數個外接電性接合检塞166,係可作 為連接至其他光電感測控制歡之電性連接端。 每一光電職元件單元射包含有—感光二極體且/或至少 -電晶體’作域大轉變電荷及轉換相縣f密度之輻射量。此 外,該周圍電路157亦可包括—光電轉換元件電荷信號的驅動電 路,-類比/數位(A/D)轉換電路作為轉變該電荷信號至數位作號 及-數位信號處理單元電路’作域理控制光電感測裝置之輸^ 出、輸入信號。再則,尚可於光電轉換元件155及周圍電路157 雜域之上,形成-層間介電質層m,如第δβ圖鱗示 該層間介電㈣170係可包括紐連歸m,域轉、人= 17(未繪示於第8B圖中)。此外,内 孟霉層 η 此夕卜&可於層間介電層170上,包括 形成-保護層180,其令該保護層 ~擇_二氧切、氮化石夕 1257710 〆’、他透明材料所形成’其中該保護層⑽尚可預留電極鲜塾之 開口⑻作為光魏測裝置紐連接之用,另外亦可形成另一彩 色濾光層和微透鏡陣列層於該保護層180上(未緣示於第8C圖/ 中)’用以完成-光電感測裝置,如第%圖所緣示。 請參閱第_係鱗示可與光電感測裝置晶圓相互對應之透 明基底之示意圖’其中該透底係可形成-複數個可與該 光電感測裝置晶粒分別對應之個別透明晶粒區域謝。第犯圖係 為第9A中之透明晶粒區域洲放大示意圖,其中該個別透㈣粒 區域2G1至少設置有一凹槽2〇2,可選擇與該光電感測聚置晶粒 151之電極轉159和晶粒切割區152相互對應;及—光電感測透 明區域203 ’可與光電感測裝置晶粒上之光電轉換元件155對應。 此外亦可包含-翻接合區域謝,可絲電感測裝置晶粒接合。 請參閱第勝10D係為闡示該光電感測裝置晶圓15〇和 基底200接合步驟之示意圖。如f 1〇A圖中所示,其中該透明基 底200之上、下表面’亦可選擇附加形成至少一層光學薄膜層(未 標示於第10A圖),用以提供IR(紅外線)且/或低頻渡光之功能。 尚可選擇藉由形成-黏著層21G,其係介於該光電感概置晶圓 150和5亥透明基底200間,雜著層21〇可選擇覆蓋於透明接合區 域204及光電感測透明區域203(未標示於第1〇A圖),用以直接接 合該透明基底200與光電感測裝置晶圓150,其中該接合步驟係可 選擇以全晶圓和含至少一個光電感測裝置之部分晶圓,同時大量 15 1257710 生產製造以簡化生產製程流程及降低生產成本。於接合完成後, 即可把該光電❹存放置於非料室中,光電感測裝 置半製品在後續裝造程序前,也不致於會因為儲存時間過長或儲 存環境不良,導致該焊接墊腐蝕或該光電感測裝置污染等問題’ 亚且造成日後封裝連線接觸不良或產品可靠性等問題。換言之, 本發明之光電感測裝置成本會較由習知技術製造之光電感測裝置 為低。此外’亦可藉由其他接合技術,如陽極接合(_仙 bonding)、共晶接合(eutecticb〇nding)、其他黏著接合μ φ bonding)、局部接合⑴仙㈣bQnding)、低温接合等方式或其 中任-組合方式’藉以直接接合該透明基底與光電感測裝置 晶圓⑽,完成㈣述—樣的功效。再則,絲電感測裝置晶圓 150和該翻基底2⑼之相鄰雨表面亦可選擇_形成—凸起部 2。11寿凹起。卩212。该凸起部211和凹起部212係可藉由爛等製 程所形成,亦可利用其他壓模或轉印製程技術所形成,用以增進 该光電感測裝置晶圓150和該透明基底200之精密對準對位之 · 用,也是本發明的精神之一。 "第⑽和10C圖崎示係為透過選擇使用f知之背面 術如化學機械研磨、高選擇性電漿侧及醜刻等步驟, 電制裝置晶圓150下表面190直接磨薄該基底,並將為該接人 :=暴露出來,作為該光娜則裝置之電性連接之外部電: ° 8°此外’該内篏電磁屏蔽層156亦可經上述之研磨和蝕 16 1257710 刻等技術、用以使該内篏電磁屏蔽層156暴露出來,便於和其他 電路基板之接地端電性相連,用鱗低該光電感·置之雜訊。 此外’亦可透過選擇使用上述之研磨、侧等步驟,可自該透明 基底200之上表面23〇直接磨薄至該透明基底凹槽2〇2之底部 208,並將該光電感測裝置晶粒之電極銲塾159矛口晶粒切割區152 暴露出來。隨後,即可利用切割技術把該光電感測裝置晶圓150 切割成分開獨立的低雜訊薄型光電感測晶粒151,如第⑽圖所緣 示0 請芩閱第11A〜11D圖,係為本發之另一具體實施例之一種低 雜訊薄型光電_褒置。其主要構造與第撤〜·實施例大致相 同。惟本貫施例中第11A所示,該光電感測裝置晶圓25〇,係只藉 由位於該光電感測裝置晶圓25Q之上表面的電極録墊259,作為該 光電感測裝置之外部電性連接端,並沒有設置另—内篏接合栓塞 166 ’以形成一外部電極接合榫168作為該光電感測裝置之電性連 接端。 請麥閱第12A〜12D圖,係為本發之再一具體實施例之一種薄 型^感測裝置。其主要構造與第11A〜11D實施例大致相同。惟 本貫施例中第12A所示,該光電感測裝置晶圓湖,係只藉由位於 忒光%感測I置晶圓35〇之上表面的電極銲墊35g,作為該光電感 測裝置之外部電性連接端,並沒有設置另一内篏接合栓塞⑽和 内肷4屏蔽層156’以形成一外部電極接合棒168作為該光電感 17 1257710 測裝置之電性連接端及降低該光電感測裝置之雜訊。 請參閱第13A〜13C圖’係為本發明之又一具體實施例,尚可 於。亥透明基底之下表面232 ’形成具有-平面,球面鏡,非球 面鏡,Kin0f0rm面或上述各光學繞射或折射面之其中之任一組合 光學組合面’增進光電元件轉換區所呈現之光電影像圖形品質。 (非球面鏡、Kinoform等未I會示於第13A〜13c圖)。 請參閱第14A圖,本發明之各實施例中,亦可選擇性的插入 一預設高度支撐層268介於該光電感測裝置晶粒和該透明基底間 形成-預設於272,配合上述該透明基底2⑼之下表面挪之光 學面’以增進該光電感測裝置晶圓上之光電轉換元件155效率(只 選擇其r結構代表·)。射該續層亦可預設形成包括有 -内篏導電線圈結構體228及-磁性體226,而該支撐層删内之 導電線圈結構體娜及磁性體226,尚可利用—黏著層21{)分別固 定於支撐層268之上、下雨端(上述接合技術之―)及配合該支 撐層删之内篏導電線圈結構體228所外加的電流大小與磁性體 226,來感應產生的相對的磁力作用,用以帶動該支撐層咖之導 電線圈結構體228及磁性體226作相對伸縮移動。此外,尚可藉 由前述之任-接合技術分難合該支撐層⑽之上、下雨端㈣ 光電感測裝置晶圓基底⑽和該翻基底.進耐成帶動該光 電感測裝置晶圓基細和該透明基底咖移動彼此間之 置,而不用麵傳統複雜的外加機械性的伸縮結構,來達成調整 1257710 焦距(變焦)之功用,如第14B圖所示。 一凊參閱第15 __ ’本發明之各實施例亦可選擇藉由填充 透明材料介於該光電感測裝1晶®基底150和該透明基底 間!!之Γ預設空穴272内。該透明材料270係可為石夕環氧樹脂, ^膠貝’ π分子材料,聚賴胺’液晶,娜,或其他氣體。更 =的’該透明材料272尚可選擇與該透明基底2〇〇和該光電感 列衣置S曰粒上之保護層⑽相互匹配之折射率材料,降低各材料 間因為不同折射率所造成的光電轉換效率的損失,以增進該光電籲 感測裝置晶粒之光電轉換元件155的光度。 “請參閱第16Α〜16C示意圖,係為本發明各實施例中,除了可 猎由上述之接合技術’直接接合該光電感測裝置晶圓基底150和 該透明基底外,尚可再_上述接合技術其中之—或其組合 ▲方式’以全晶圓或含至少-個光電感職置之部分晶圓方式,於 亥透月基底200之上表面230接合另一光學透鏡系統28〇 (如第 16Α〜16C所示係為藉由另一黏著層21〇之方式)。其中該光學透鏡籲 系統測係可至少包括有一平面,球面鏡,非球面鏡,Km〇f〇rffl 面或上述各絲繞射麟射面之其巾之任—組合光學組合面,尚 可包括插人-支撐層於光學透鏡线巾,使其具有固定焦距和調 整焦距_、)d以增_光電❹晶歡光電轉換元 件155的感光度。隨後,即可切割技術把該光電感測裝置晶 圓基底150切割成-結合光學透鏡之分開獨立的低雜訊薄光電感 19 1257710 測晶粒374,如帛161)圖所緣示。 月二閱第17A 17D示意圖,係為本發明於該透明基底上 又置另5光车透鏡系统之局部剖面示意圖。如圖所示,本發明之 另光本透鏡系、、先之結構,係為藉由沈積至少_層光阻層371於 該透明基底之上表面230,如第17A圖所示。尚可藉由後續曝 光、儀刻、清洗等步驟,形成步階形狀之光阻結構圖案372,如第 Θ斤示此外,尚可藉由後續光阻回溫控制,使該步階形狀之IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a photo-sensing device, and a low-noise thin photo-sensing device. [Prior Art] In the past year, I 1^1 has a sub-industry, and the life cycle of various electronic products has been reduced, and electronic products have become smaller, thinner, and more integrated. It is also generally equipped with multimedia optoelectronics k3 outside - some security monitoring systems, medical equipment and other ..., systems, etc. have strong demand for optical inductors. At present, the general photo-sensing device is attached to the _ or plastic-packaged wafer carrier. The electro-transformation column of the electro-optical device is connected by means of a splicing method: the inner (10) (four) wheel of the body __. The photoconductor is usually assembled and sealed with a lid—such as a glass, plastic===bright substrate on the excavation' to expose the photoconductor to the photoconductor. The upper surface of the substrate is formed with a light = element, and the photoelectric conversion element can cause electromagnetic light energy incident on the element. The inner and the small conversions become the amount of charge, and then converted into electric and current signals. In addition, a peripheral control circuit can be used to solve the problem of photoelectric conversion pixel position and control of the photo-electricity. The output of the measuring device, the input circuit signal and the electrical connection terminal. 1257710 When the integrated circuit is used to reduce and integrate more and more complex functional requirements, it faces more output, the number of external electrodes to be input, higher operating frequency, and the accompanying generation of more reliable heat dissipation and f Xuan Xun's title will have a major impact on the quality of optical and mechanical testing equipment. - The source of noise in the general-inductive position, in addition to the photo-inductive clothing itself, the spurious noise (Sh〇tn〇ise) and the thermal noise (10) one service 〇n〇lse) The noise generated by the surrounding circuits in the device, the noise interference generated by other circuits, and the drunk of operation are all generated. The electromagnetic dryness will seriously affect the reliability of the optical device, and further reduce the working dynamic range of the missing inductance device. And reducing the quality of the photo-sensing device. 1 is a schematic diagram illustrating a conventional photo-sensing device and its package, as shown in the figure i--the traditional ceramic seal 00 series, providing a groove 101 in the ceramic substrate 103 and - conductive The pin 102 is in its package; a photo-sensing die 1 〇 4 system _ conductive adhesive film 105 is attached to the groove m; and a metal wire 1 〇 7 standard wire bonding process is used to electrically connect the photoelectric The thyristor is turned on (10) to the inner pin 102. Figure 2 is a diagram illustrating another conventional photo-sensing device and its package. As shown in Figure 2, the package is 110 to include an inner pin 112 and an outer leg 122, and the pin is electrically connected to the lead frame 117; and - the groove 110 on the plastic base 1113; - The photo-sensing die 1G4 is attached to the lead frame 117 of the recess (1) by the conductive adhesive film 115; and the wire-bonding process is electrically connected using the metal and the wire 1〇7, and the optical sensing crystal is electrically connected The electrode of the pellet 104 is freshly padded from 1 to 6 to the inner pin. Another low-cost charge-coupled device package disclosed in U.S. Patent No. 6,286,231, entitled "Low-cost Charge Coupler Package" was published on January 4, 1999, and was given to Mr. Keith Ε Wetzel. Figure 3 is shown. A charge coupled device (CCD) is mainly composed of a plastic base structure 312; a plastic surround frame 314, a flexible circuit board 318; and a glass cover 316 for forming a sealed space for facilitating the inclusion of "green" The sensing device is in the m domain. The glass cover is used to protect the photo-sensing die 311 attached to the flexible circuit board 318 in the sealed space and electrically connected to the conductive electrode end of the flexible circuit board 318 by metal bonding wires 329 to the photo-sensing Electrode pads of the die 311. Fig. 4 is a schematic diagram showing another "Low Noise Image Sensor" disclosed in the publication No. TWM249376 of the Chinese Patent No. TWM249376, which is shown in Fig. 4, mainly, . The structure includes a photoelectric image sensing die 42 〇, a light transmissive gamma, a transparent infrared ray filter 432, and a film substrate, wherein the film substrate side includes a dielectric layer 415, a metal wiring layer 416, and An external electrical connection end 417 is configured to engage the electrode connection end bump 424 of the edge photo-sensing die 420 and a window for arranging the photo-sensing die 420; and - covering the photo-sensing die A back electromagnetic shielding metal layer 440 is used to avoid external electrical noise interference and achieve the effect of reducing noise. Further, an additional electromagnetic shielding metal layer 470 covering the upper surface of the substrate can be further used to achieve the effect of reducing noise. % The above-mentioned traditional optical inspection device is mainly lacking in the effectiveness of the electromagnetic shielding device itself, or the need to _ the additional electromagnetic shielding layer to seal the l25771〇 manufacturing process, so the optical sensing device or module The volume and weight are difficult to advance - less shrinking, and also cause an overall increase in manufacturing costs and production time. In addition, the general photo-electrical inductance measuring device may face the poor production environment or long storage time before the assembly of the transparent film package is completed, which may lead to the production yield and reliability of the product. problem. At the same time, the photo-sensing device needs to be cut and separated from the whole wafer in advance to become a separate photo-sensing die, and then the individual green-sealing process is performed. However, in the wafer paste and splitting, each is easy to produce. The money particles and the enamel particles have the danger of contamination and the light of the material sensing device to the conversion region, thereby damaging or destroying the photo-sensing device and affecting the quality and packaging yield of the overall photo-sensing device. SUMMARY OF THE INVENTION This month provides the related problems of the above-mentioned photo-sensing device, and discloses that the low-noise photo-sensing device of H is cheaper, which makes the photo-sensing device more suitable for the group of cheap photoelectric The sensory group is configured in mobile phones and personal digital devices. The clothes are equipped with personal computers, cameras, digital cameras, computer scanners, reading strips, Anwang dish system, medical testing equipment, etc. The purpose of the present invention is to provide a low noise _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In order to simplify the production process and reduce the production cost. The present invention further aims to form a 肷 electromagnetic shielding layer in the photoelectric _ device wire, the bean 区域 区域 区域 或 或 或 或 或 或 或 个 个 个 整 整 整 整 整 整 整 整 整 h Reading (except for the area where the light_window is reserved), the benefit 1257710 is used to reduce the electromagnetic noise interference of the photo-sensing device. The electromagnetic shielding layer in the photo-sensing device can be electrically connected to the inner cymbal. Photoinductor Detecting another conductive ground layer on the back of the device or other circuit substrate to form a complete electromagnetic shielding of the photo-sensing device (except for the area in which the predetermined light is opened). Another object of the present invention is to provide at least a transparent substrate having a recess, and by some bonding techniques such as anodic bonding, eutectic bonding, adhesive bonding, localized bonding, low temperature bonding, etc. Or a combination of the transparent substrate and the photo-sensing device substrate directly connected to the substrate, and the transparent substrate has a groove selected to correspond to the electrode pad and the wafer cutting region of the photo-sensing substrate. The lower surface of the material may be provided with at least a groove, and the lower surface thereof may further comprise a flat surface, a spherical surface, an aspherical, a kinGfC) rm surface or a combination surface thereof to form a refractive or diffractive surface. The optical surface enhances the optical effect. Optionally, at least one layer of optical film is additionally formed on the upper and lower surfaces to provide infrared light and/or low frequency. The function 'so does not need to be additionally matched with another optical filter or a transparent cover on the photo-sensing device. The invention is again - the object can be achieved by grinding techniques such as chemical mechanical polishing, highly selective plasma side Polishing and grinding the wire in a singular manner, the lion (four) transparent base surface is directly ground _ flipped the substrate to the bottom of the groove of the through-material, and the external electrode connection end is reduced. Christine came out as the optical inductance measuring device Another object is to provide a thin photo-sensing device comprising - as a photoelectric transceiving, as an external electrode connecting end, an electric scale pad or an external electrode joint enthalpy running through the optoelectronic (four) substrate, A display circuit surrounding the photoelectric transfer device area, the sharp and photoelectric element region and the photoelectric: the electrode pad of the test substrate and / the money combination are electrically connected, and can also be used as a photoelectric signal to turn, lose, and money Amplification and decoding of the optical component's pixel address. u The purpose of the present invention is to provide a method for manufacturing a photoelectric enamel, which is a method in which the direct squeezing method replaces the conventional one and needs to be inserted separately - the bonding resin base is used in the photoconductor position. Except, and can directly research _ through the material and photo-sensing substrate 'to make the electrode connection end of the photo-sensing device can be exposed (for example: electrode pad of the photo-sensing device, bonding 榫) and the pre-wire guide The secret is electrically connected to each other by encapsulation and connection technology, for example, anisotropic, isotropic viscous adhesive layer, underlying bump metallization (10), Qianxian bump, wire bonding, ball thumb array, flip chip Other metallization electrode connection methods or some of the above bonding methods (such as anodic bonding, eutectic bonding, adhesive bonding, local bonding (1), low temperature) The package connection technology, such as bonding or the like, or the like, is such that the photo-inductive garments are more suitable for use in today's light, thin, and short electronic devices. A preferred embodiment of the present invention is a transparent substrate having at least a "groove", which is directly bonded to the surface of the substrate and aligned with the photoelectric conversion substrate. In the area, the photoelectric image is irradiated with energy, and the material can be penetrated to reach the conversion region of the wire element. The secret transparent substrate can be directly thinner than the ± surface of the photo-sensing substrate without the need to additionally utilize another 1257710 body to support the transparent substrate and protect the photo-sensing device. Another object of the present invention is to configure a pre-designed thickness of the support layer to control the relative distance of the transparent substrate photo-sensing device to improve the quality of the photoelectric image. In addition, the photo-sensing substrate, the support layer, and the adjacent surface of the transparent substrate may be preset to form at least one recess or protrusion to help provide the photo-sensing substrate, the support layer and the transparent substrate. Adjacent surfaces in the material can be precisely aligned and tightly bonded. A further object of the present invention is to provide a retractable support layer comprising a magnetic body and a conductive coil structure, respectively fixed on the support layer and at the rainy end, and the magnetic body and the conductive body can still be utilized. The magnitude of the current applied by the coil structure, the magnetic force generated by mutual induction, the conductive coil structure of the strip-cut layer and the magnetic body of the telescopic ore, and the bonding technology (4) the transparent substrate The relative distance to improve the quality of photoelectric image imaging. The other specific embodiment of the present invention is that the cavity can be filled with holes on the upper surface of the photoelectric conversion region and the lower surface of the through-material. The transparent material can select a transparent material whose matching coefficient of the substrate is matched, so as to reduce the electromagnetic radiation loss of the photo-sensing substrate and the bribery system, and the photoelectric image quality of the Wei-green tree transformation. Further preferred embodiments of the present invention provide an "electrically connected structure" in which the electrode is connected to the upper surface of the wire to the surface of the electrode to the photo-electron_control. Know that the optical inductance measurement control module 1257710. And the interval l S includes some photo-sensing related control function blocks, such as system micro-processing control n, digital signal processor, system timing control material (10), memory buffer (10), side-side control element, etc. A block or integrated package module comprising a photo-sensing control system of the above functions. The structure of the present invention is also suitable for the production process of a full wafer or a Ba round containing at least one photo-sensing die, and the photo-sensing device can be manufactured in a large amount and at the same time, compared with the aforementioned _traditional individual production sensing The cost of the device is even lower. The other optical lens system is combined with the photo-sensing device, and then the photo-inductor _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The interface bonding technology or the conductive material is electrically connected to the electrode sensing end of the electrical sensing terminal to the electrode end of the other photo-sensing control module. The photo-electric sensing control surface group may further comprise a stacked or planar electrical system. Connecting one or a plurality of optical inductors _ side control integrated circuit components on the circuit substrate 0 [Embodiment] Luz has made a step-by-step read by the reviewing committee on the features, structures, methods, and effects of the present invention. Brewing knowledge, the following better _ ship with the detailed description of the invention, as explained later. The present invention - the implementation of the photoelectric photo-electric system includes a photoelectric base wire comprising a photoelectric element conversion region - a transparent button provided with at least one groove, the direct money is joined to each other by a bonding technique and the groove of the transparent substrate is It is the electrode of the substrate corresponding to the photo-sensing. In addition, the external connection end of the sample can be 11 1257710 by thinning from the upper surface of the transparent substrate to the bottom of the groove, so that the inner electrode of the electrode is exposed to the money by the other The step of sensing the lower surface of the substrate is thinned and the steps of the electrode are exposed in the photo-sensing substrate to expose the electrical connection end. The photo-sensing light energy can be converted into a photoelectric image by the transparent substrate reaching the photoelectric conversion. The towel, the electrode pad of the photo-sensing substrate can be electrically connected to other photo-electric sensing and control groups with photo-sensing related functional blocks. The photo-sensing function block may include a system microcontroller 'digital signal processing unit, a system timing control circuit (10) C), a memory buffer and a peripheral control circuit or an integrated photo-sensing control including the aforementioned functions. The system is difficult. The material can be set or adjustable in a difficult distance mode. The configuration-optical lens system is difficult to place on the optical inductor, and the quality and performance of the photo-sensing device are increased. Li Wei's reading of Figure 5 is a full-wafer schematic diagram of a plurality of photo-sensing devices in which the photo-sensing device wafer is cut into a single photo-sensing wafer by a single crystal ingot. _ Semiconductor manufacturing technology is completed on it - the complex I # photo-sensing device contains therein - the photo-sensing die 151 and the die-cutting region 152, and the chip 15 is cut into individual optical inductors. Measure the grain (5). ▲Please refer to FIG. 6 for a magnified view of the optical inductance measurement of the fifth embodiment, which causes the neon package sensing 曰曰 151 to include a photoelectric element conversion region 155, and an electromagnetic resonance around the photoelectric component conversion region 155. The shielding layer 156 and a surrounding control circuit 157 and a plurality of externally connected 12 1257710-bonding plugs 166 located on the electrode pads 159 of the upper surface of the photo-sensing substrate or the inner electrodes thereof, wherein the upper surface electrode pads or the inner electrodes thereof The plurality of joint plugs can be used as electrical connection terminals connected to other photo-sensing control modules. Please refer to the section 7A to 7D for explaining the manufacturing steps of the plug 166 and the electromagnetic shielding layer 156 along the line aa, line white. According to the seventh figure, a plurality of trenches 161 are formed on the upper surface 16 of the die substrate 151 by the photo-sensing film, and a plurality of trenches 161 are formed by using a technique such as electro-mechanical engraving, laser engraving or laser perforation, wherein the trench can be used by using a semiconductor step. The bonding plug 166 and the electromagnetic shielding layer 156 are completed (the deposition insulating film may be omitted). In an embodiment of the invention, the gauge can also be used on other semiconductor substrates containing sapphire layers, semiconductor overlying insulating layers (10), or on plastic or glass: substrates. As illustrated in FIGS. 7B and 7C, an insulating film such as an oxide film 162 or an additional nitride film 163 may be formed on the inner wall of the trench 161 to isolate the plurality of trenches 161. Thereafter, the trench 161 can be filled with a conductive material therein to form the bond plug 166 and the electromagnetic shield layer 156 as shown in FIG. 7D. In a preferred embodiment of the present invention, the conductive material may be titanium, titanium nitride, inscription, copper, water, recorded, tin, silver, tungsten, gold, alloy, silver, tin, and conductive. A polymer, another conductive substance, or a combination thereof, a compound, a metal alloy, or the like = a material filled in the deep axis. After that, you can learn mechanical grinding _, wet rice engraving 9 electric water paste or its towel combination method, the surface of the bottom of the wire inductor is thinned and the money is carved into the external electrode bonding rod 168 and the electromagnetic shielding layer 156 . The bonding plug 168 that is fabricated to be in the photo-sensing device is 1257710 very flexible. The step of forming the bonding plug 166 may precede or follow the interlayer dielectric insulation (ILD) in the photo-sensing device. ), before or after the forming step of the metal layer, the contact layer, the tortoise crystal, or the photoelectric conversion element 155. Please refer to Figure 8A for the diagram of the a-A, direction cross-section of the photo-sensing die in Figure 6. In the subsequent process of the ® 7D step, the photoelectric conversion element region 155 is formed on the upper surface (10) of the light-made die 151, and is usually located in the middle region of the photo-sensing die 151. In addition, the electromagnetic shielding layer 156 and a surrounding photoelectric conversion element control circuit 157 are disposed in a peripheral region having a large number of two-dimensional matrix unit photoelectric conversion elements (not labeled), which generally have photoelectric conversion element address decoding and telecommunications processing functions. A plurality of external electrical connection plugs 166 of the light-sensing sensing substrate can be used as electrical connections to other photo-electric sensing controllers. Each of the photovoltaic component unit emitters includes a photoreceptor diode and/or at least a transistor that acts as a domain large transition charge and converts the phase f density. In addition, the peripheral circuit 157 may also include a driving circuit for a charge signal of the photoelectric conversion element, and an analog/digital (A/D) conversion circuit as a domain for converting the charge signal to the digital sign and the digital signal processing unit circuit. Control the output and input signals of the photo-sensing device. Furthermore, it is still possible to form an interlayer dielectric layer m over the hetero-domain of the photoelectric conversion element 155 and the surrounding circuit 157. For example, the δβ-picture scale indicates that the interlayer dielectric (IV) 170 series may include New Zealand, m, domain transfer, Person = 17 (not shown in Figure 8B). In addition, the Inner Mongolian layer η 此 && can be on the interlayer dielectric layer 170, including the formation-protection layer 180, which makes the protective layer ~ _ dioxotomy, nitride 夕 1257710 〆 ', his transparent material The opening (8) in which the protective layer (10) can reserve the fresh electrode of the electrode is used as a connection of the optical measuring device, and another color filter layer and a microlens array layer are formed on the protective layer 180 ( It is not shown in Fig. 8C/mi) 'to complete the photo-sensing device, as shown in the % diagram. Please refer to the schematic diagram of the transparent substrate which can correspond to the wafer of the photo-sensing device, wherein the through-bottom system can form a plurality of individual transparent crystal regions which can correspond to the die of the photo-sensing device respectively. . The first pattern is an enlarged view of the transparent grain region in the 9A, wherein the individual transparent (4) grain region 2G1 is provided with at least one groove 2〇2, and the electrode 151 can be selected to be accommodating with the photo-inductance. And the die cutting region 152 correspond to each other; and the photo-sensing transparent region 203' can correspond to the photoelectric conversion element 155 on the photo-sensing device die. In addition, it can also include a flip-bond area, and the wire can be connected to the wire. Please refer to the Winner 10D for a schematic diagram illustrating the bonding steps of the photodetector wafer 15A and the substrate 200. As shown in the figure of FIG. 1A, the upper and lower surfaces of the transparent substrate 200 may optionally be additionally formed with at least one optical film layer (not shown in FIG. 10A) for providing IR (infrared) and/or The function of low frequency crossing light. Optionally, the adhesive layer 21G is formed between the photoconductor integrated wafer 150 and the transparent substrate 200, and the hybrid layer 21 is optionally covered by the transparent bonding region 204 and the photo-sensing transparent region. 203 (not shown in FIG. 1A) for directly bonding the transparent substrate 200 and the photo-sensing device wafer 150, wherein the bonding step is selectable to be a full-wafer and a portion including at least one photo-sensing device Wafers, while a large number of 15 1257710 are manufactured to simplify production process and reduce production costs. After the bonding is completed, the photoelectric storage can be stored in the non-compartment, and the semi-product of the photo-sensing device is not subjected to a long storage time or a poor storage environment before the subsequent manufacturing process, resulting in the solder pad. Corrosion or contamination of the photo-sensing device, etc., and cause problems such as poor contact of the package connection or product reliability in the future. In other words, the cost of the photo-sensing device of the present invention is lower than that of the photo-sensing device manufactured by the prior art. In addition, other bonding techniques, such as anodic bonding, eutectic bonding, other bonding, μ φ bonding, local bonding (1) bQnding, low temperature bonding, etc. - The combination method 'by directly bonding the transparent substrate and the photo-sensing device wafer (10) to complete the effect of (4). Furthermore, the adjacent surface of the wire sensing device wafer 150 and the flip substrate 2 (9) may also be selected to form a raised portion.卩 212. The raised portion 211 and the recessed portion 212 may be formed by a process such as a ruin process, or may be formed by other stamper or transfer process technologies for enhancing the photo-sensing device wafer 150 and the transparent substrate 200. It is also one of the spirits of the present invention to precisely align the alignment. "The (10) and 10C maps show that the bottom surface 190 of the electroforming device wafer 150 directly thins the substrate by selectively using the backside technique such as chemical mechanical polishing, highly selective plasma side and ugly steps. And will be exposed: = exposed, as the light of the external electrical connection of the device: ° 8 ° In addition, the inner electromagnetic shielding layer 156 can also be polished and etched 16 1257710 engraved and other techniques The inner electromagnetic shielding layer 156 is exposed to be electrically connected to the grounding end of the other circuit substrate, and the noise is set to be low. In addition, the bottom surface 208 of the transparent substrate recess 2 〇 2 can be directly thinned from the upper surface 23 of the transparent substrate 200 by using the above-mentioned grinding, side, etc., and the photo-sensing device can be crystallized. The electrode electrode pad 159 of the grain is exposed. Subsequently, the photo-sensing device wafer 150 can be cut into separate low-noise thin-type photo-sensing die 151 by using a cutting technique, as shown in the figure (10). Please refer to FIG. 11A to FIG. 11D. A low noise thin photoelectric photoelectric device of another embodiment of the present invention. The main structure is substantially the same as that of the first withdrawal embodiment. However, as shown in FIG. 11A of the present embodiment, the photo-sensing device wafer 25 只 is only used as the photo-sensing device by the electrode recording pad 259 located on the upper surface of the photo-sensing device wafer 25Q. The external electrical connection end is not provided with an internal contact plug 166' to form an external electrode joint 168 as an electrical connection end of the photo-sensing device. Please refer to FIG. 12A to FIG. 12D, which is a thin type sensing device according to still another embodiment of the present invention. The main structure is substantially the same as that of the 11A to 11D embodiments. However, as shown in the 12th embodiment of the present embodiment, the photo-sensing device wafer lake is only used as the photo-sensing electrode by the electrode pad 35g located on the upper surface of the wafer 35 忒. The external electrical connection end of the device is not provided with another inner contact plug (10) and the inner shield 4 156' to form an external electrode joint rod 168 as the electrical connection end of the optical inductor 17 1257710 and reduce the The noise of the photo-sensing device. Please refer to Figures 13A to 13C for another embodiment of the present invention, which is still applicable. The transparent transparent substrate lower surface 232' forms a combined optical combination surface having a - plane, a spherical mirror, an aspherical mirror, a Kin0f0rm surface or each of the above optical diffraction or refractive surfaces to enhance the photoelectric image pattern exhibited by the photoelectric element conversion region quality. (Aspherical mirrors, Kinoform, etc. will not be shown in Figures 13A to 13c). Referring to FIG. 14A, in some embodiments of the present invention, a predetermined height support layer 268 may be selectively inserted between the photo-sensing device die and the transparent substrate to be preset to 272. The optical surface of the lower surface of the transparent substrate 2 (9) is moved to enhance the efficiency of the photoelectric conversion element 155 on the photo-sensing device wafer (only the r structure is selected). The continuation layer may also be formed to include a conductive inner coil structure 228 and a magnetic body 226, and the conductive layer structure and the magnetic body 226 are removed from the support layer, and the adhesive layer 21 may be utilized. ) respectively, which are respectively fixed on the support layer 268, the rainy end (the above-mentioned bonding technique), and the magnitude of the current applied by the inner conductive coil structure 228 in combination with the supporting layer and the magnetic body 226 to sense the relative The magnetic force acts to drive the conductive coil structure 228 and the magnetic body 226 of the supporting layer to move relative to each other. In addition, the photo-inductance device wafer substrate (10) and the flip substrate can be driven by the above-mentioned bonding-bonding technology. The base and the transparent base are moved to each other without the conventional complicated mechanically stretched structure to achieve the adjustment of the 1257710 focal length (zoom) function, as shown in Fig. 14B. Referring to the 15th __' embodiments of the present invention, it is also possible to select between the photo-inductor 1 substrate® substrate 150 and the transparent substrate by filling a transparent material! After that, the hole 272 is preset. The transparent material 270 may be a stellite epoxy resin, a stellite material, a polylysine liquid crystal, a naphthalene, or other gases. More = 'The transparent material 272 can still select a refractive index material matching the transparent substrate 2 and the protective layer (10) on the S-particles of the photo-inductor array, thereby reducing the difference in refractive index between the materials. The loss of photoelectric conversion efficiency is to enhance the luminosity of the photoelectric conversion element 155 of the photo-sensing device die. "Please refer to the 16th to 16th schematic diagrams. In the embodiments of the present invention, in addition to the bonding technique described above, the photo-inductance device wafer substrate 150 and the transparent substrate are directly bonded. Technology - or a combination thereof - in the form of a full wafer or a portion of the wafer containing at least one photo-inductive position, bonding another optical lens system 28 on the surface 230 above the substrate 200 (eg, 16Α~16C is shown by another adhesive layer 21), wherein the optical lens system can include at least one plane, a spherical mirror, an aspherical mirror, a Km〇f〇rffl surface or each of the above-mentioned wires. The lining surface of the towel is the combination of the optical combination surface, which can also include the insertion-support layer on the optical lens towel to make it have a fixed focal length and adjust the focal length _,) d to increase _ photoelectric ❹ 欢 光电 photoelectric conversion components Sensitivity of 155. Subsequently, the photo-inductive device wafer substrate 150 is cut into a separate low-noise thin photo-inductor 19 1257710 combined with an optical lens to measure the die 374, such as 帛161) The beginning of the month. 17A 17D schematic view showing a partial cross-sectional view of another 5 light vehicle lens system on the transparent substrate according to the present invention. As shown, the optical lens system of the present invention, and the prior structure, are deposited by deposition. At least the _ layer photoresist layer 371 is on the transparent substrate upper surface 230, as shown in FIG. 17A. The stepwise shape photoresist structure pattern 372 can be formed by subsequent exposure, etching, cleaning, and the like. In addition, the shape of the step can be made by the subsequent photoresist temperature control.
光阻結構形成具有1計光學透鏡魏之光學面373,如第17C 圖所不。ωι: ’即可利用切割技術把該光電感測裝置晶圓15〇切 告4成結合光學透鏡之分開獨立的光電感測晶粒375,如第⑽ 圖所纟會示。 明苓閱第18Α〜18D示意圖,係為本發明於該透明基底2〇〇上 幵/成再光學透鏡系統之局部剖面示意圖。如圖所示,本發明之 再光予透鏡系統之結構,係為藉由該透明基底2〇〇上表面23〇 之預叹光阻圖案383,如第18Α圖所繪示。隨後,藉由後續曝光、 姓刻、清洗等步驟於該透明基底2〇〇之上表面23〇,形成一具有不 同深度之凹部面384,如第18Β〜18c圖所示。此外,藉由沈積至少 一層光阻層385於該透明基底200上表面23〇之不同深度凹部面 384上,尚可藉由後續光阻回溫控制,使該不同深度凹部面384 之光阻層385結構形成具有一預計光學透鏡功能之光學面 386 ’如第18C圖所示。隨後,即可利用切割技術把該光電感測裝 20 1257710 置晶圓15G爾—結合_料_概電感測晶粒 387,如第18D圖所緣示。 請參閱第19A〜19C圖即特別闡示本發明之三種接合摔⑽, 以不同方式所建構形成之示意圖。其中第19A圖係為經由上述第 撤~應等製造步驟後之放大剖面示意圖。另外,請參閱第⑽ 圖,亦可直接選擇自光電感測裝底15〇之下表面⑽侧完 成複數個背面壕溝m,並相對於上述之喊接合絲⑽且彼 此相互a⑨連接。之後’尚可建構—絕層於該背面壕溝191之内 壁上,而後再以前述導電性材料填充該背面壕溝内,如此便能建 構=背面接合榫198。該背面接合榫係電性連接至上述之内薇接合 栓塞166,如此便形成一完整之外部電極接合榫⑽。 相反地’亦可自基底为面直接建構該接合榫作為外部電極 連接端’無論該光電感測裝置基底15〇冑薄與否,該背面接合摔 188係可自該光電感測裝置基底15〇之下表面19〇貫穿自上表面 160之單-背面深壕溝182所構成,隨後亦可沉積絕緣膜及埴充導 電材料於其内,其中該背面接合榫188係可電性連結至位於該光 電感測裝置上之介電質17G⑽電性連接層172,如第⑽圖。 請參閱第施〜2GB示意®1,本發明之光電感測裝置更可與其 他光電感測控制模組組合成—輕巧之光電感測模組裝置,適合應 用於各類電子裝置。第观、肅圖侧示光電感測裝置與光口電感 測控制模組組合之示細,-低雜訊㈣光電感測模組係由前述 1257710 各別之低雜訊輕薄光電感測晶粒666與—光電感測控制模組⑺ 相結合,可選擇藉由低雜訊輕薄光電感測晶粒上之外部電極鲜墊 端及外部電極接合榫連接電性連接至一光電感測控制模組爪所 建構而成。該光電感測控制模組777係由光電感測相關功效電路 ^塊整合而成’其中該電路區塊包括系統控制ϋ,數位電信處理 單位’系統時序控制電路’記憶體緩衝器和周邊控制電路。尚可 利用-些封裝連接技術及材料’例如同方向性導錄著膠,其他 傳統之表面黏著,異方向性導電接合膠,金或錫錯凸塊接合,傳· 統繞線’球腳格狀陣列’各類導電線或覆晶技術等,以形成該整 合性的輕巧低雜訊輕薄光電感測模組。 任何熟悉此技藝者,在不脫離本創作發明之精神或範圍内, 可作各種結構之更動與潤飾,凡依本創作發明精神及以下專利申 請範圍所作之各種變動及潤飾均屬本創作之範圍。有關本發明 之斗寸色、觀點及其優點將於下述說明、專利申請範圍、及圖示中 詳加說明以利了解: 儀 【圖式簡單說明】 有關本發明之特色、觀點及其優點將於下述說明、專利申請 範圍、及圖示中詳加說明以利了解: 第1圖至第3圖係為繪示傳統習知之光電感測裝置及封裝之示咅 圖; 第4圖係為繪示習知之低雜訊光電影像感測器之示意圖; 第5圖係為繪示包含有複數個光電感測裝置全晶圓之示意圖; 22 1257710 第6圖為繪示第5圖中光電感測裝置晶粒之放大示意圖; 第7A〜7D圖係為繪示光電感測裝置中接合栓塞和内篏電磁屏蔽導 電層之局部剖面示意圖; 第8A〜8C圖係為繪示光電感測裝置之局部剖面示意圖; 第9A圖係為繪示透明基底與光電感測裝置全晶圓相對應之示意 圖; 第9B圖係為繪示部份透明基底與光電感測裝置晶粒相對應之放 大示意圖; · 第10A〜10D圖係為本發明之一較佳實施例之局部剖面示意圖; 第11A〜11D圖係為本發明另一實施例之局部剖面示意圖; 第12A〜12D圖係為本發明又一實施例之局部剖面示意圖; 第13A〜13C圖係為本發明再一實施例之局部剖面示意圖; 第14A圖係為本發明包含一支撑層之實施例局部剖面示意圖; 第14B圖係為本發明可伸縮的支撑層之局部放大剖面圖; 第15圖係、為本發明填充透明材料之-實施態樣之局部剖Φ 馨 不意圖; 第16A 16D圖係為本發明光電感測裝置晶圓接合另一光學透鏡 系統之不同實施態樣局部剖面示意圖; 弟17A〜17D ®料本發縣電感赚置晶嶋合形成—光學透鏡 系統之實施態樣局部剖面示意圖; 弟18A〜18D圖係為本發縣電感測裝置關接合形成光學透鏡系 23 1257710 統另一實施態樣局部剖面示意圖; 第19H9C圖係為本發明之三種不同方法形成外接電極接合棒之 實施態樣之剖面放大示意圖;及 口 絲魏聰置與綠酬_模組結合 151 【主要元件符號說明】 光電感測晶圓基底 151 光電感測晶粒 152 161 樣溝 160 162 絕緣層 163 166 接合栓塞 168 157 光電轉換區 158 電磁屏蔽層 157 159 電極鲜墊端 170 180 保護層 172 190 光電感測晶粒下表面 181 200 透明基底 201 透明晶粒區域 202 208 凹槽底部 203 210 黏著層 204 211 凸起部 212 230 透明基底上表面 232 268 支撐層 270 272 空穴 280 晶粒切割區 _ 光電感測晶粒上表面 絕緣層 外接電極接合榫 光電轉換周圍電路 介電層 介電層電性連接層 保護層窗口 _ 凹槽 透明基底透明區域 透明基底接合區域 凹起部 透明基底下表面 透明材料 光學透鏡系統 24 光電感測晶粒 光電感測晶粒上表面 259 電極銲墊端 光電感測晶粒 359 電極銲墊端 背面壕溝 182 背面壕溝 背面電極接合榫 188 背面電極接合榫 光阻 372 步階光阻結構 光學面 375 透鏡晶粒 光阻圖案 384 凹部面 光阻 386 光學面 光電感測晶粒 磁性體 228 導電線圈結構體 光電感測晶粒 光電感測控制模組 陶瓷封裝 101 凹槽 陶瓷基底 102 導電内引脚 光電感測晶粒 105 黏著層 電極銲墊 107 金屬線 塑膠封裝 111 凹槽 塑膠基底 112 内引脚 引脚架 115 黏著層 外引脚 CCD封裝 314 繞架 陶瓷基底 318 軟性電路板 光電感測晶粒 329 金屬接合線 光電感測晶粒 430 透光片 25 1257710 ❿ 432 紅外線濾光片 410 薄膜基板 415 介整層 416 金屬線路層 417 外接電極接合端 424 凸塊 413 440 窗口 電磁屏蔽金屬層 470 電磁屏敝金屬層 26The photoresist structure is formed to have an optical surface 373 of one optical lens, as shown in Fig. 17C. Ωι: ' can be used to cut the photo-sensing device wafer 15 into a separate and independent photo-sensing die 375 combined with the optical lens, as shown in the figure (10). BRIEF DESCRIPTION OF THE DRAWINGS FIG. 18 is a partial cross-sectional view showing the 光学/forming re-optical lens system on the transparent substrate. As shown in the figure, the structure of the re-lighting lens system of the present invention is a pre-slit photoresist pattern 383 on the upper surface 23 of the transparent substrate 2, as shown in Fig. 18. Subsequently, a step 384 having a different depth is formed on the upper surface 23 of the transparent substrate 2 by a subsequent exposure, surname, cleaning, etc., as shown in Figs. 18 to 18c. In addition, by depositing at least one photoresist layer 385 on the concave surface 384 of different depths of the upper surface 23 of the transparent substrate 200, the photoresist layer of the different depth concave surface 384 can still be controlled by the subsequent photoresist temperature return control. The 385 structure forms an optical surface 386' having an intended optical lens function as shown in Fig. 18C. Subsequently, the photo-inductance can be used to measure the photo-inductance of 20 1257710 into a wafer of 15 Gr - combined with the material-inductance measuring die 387, as shown in Figure 18D. Referring to Figures 19A to 19C, a schematic view of the three types of joints (10) of the present invention, which are constructed in different ways, is specifically illustrated. Fig. 19A is an enlarged cross-sectional view showing the manufacturing steps after the above-mentioned first withdrawal and the like. In addition, please refer to the figure (10), or directly select a plurality of back trenches m from the lower surface (10) side of the photodetector bottom 15 并, and connect with respect to the above-mentioned shunt wire (10) and mutually a9. Thereafter, it is constructed to be laminated on the inner wall of the back trench 191, and then the back trench is filled with the above-mentioned conductive material, so that the structure = back joint 榫 198 can be constructed. The backside tying is electrically connected to the inner ferrule plug 166 as described above, thus forming a complete outer electrode nip (10). Conversely, the junction can be directly constructed from the substrate as the external electrode connection end. The backside bonding 188 can be self-contained from the photodetector substrate 15 regardless of whether the photodetector substrate 15 is thin or not. The lower surface 19〇 is formed through the single-back deep trench 182 from the upper surface 160, and then an insulating film and a conductive conductive material may be deposited therein, wherein the back surface bonding layer 188 is electrically connected to the photovoltaic layer. The dielectric 17G (10) electrical connection layer 172 on the sensing device is as shown in the figure (10). Please refer to the second ~2GB schematic®1. The photo-sensing device of the present invention can be combined with other photo-sensing control modules to form a lightweight photo-sensing module device suitable for use in various electronic devices. The first and second sides show the combination of the photo-sensing device and the optical port inductance measuring control module. The low-noise (4) photo-sensing module is measured by the aforementioned 1257710 low-noise light and thin photo-sensing die. The 666 is combined with the photo-sensing control module (7), and the external electrode of the low-noise thin photo-sensing chip can be selected to be electrically connected to the photo-sensing control module by the external pad and the external electrode of the die. The claws are constructed. The photo-sensing measurement control module 777 is integrated by a photo-sensing-related functional circuit block, wherein the circuit block includes a system control port, a digital telecommunication processing unit 'system timing control circuit', a memory buffer and a peripheral control circuit. . Can also use some of the package connection technology and materials 'such as the same direction of the guide tape, other traditional surface adhesion, the opposite direction of conductive bonding glue, gold or tin bump bump joint, pass · system winding 'ball foot grid Arrays of various types of conductive or flip chip technology to form the integrated lightweight and low noise light and thin optical sensor module. Any changes and refinements made by the spirit of the invention and the scope of the following patent applications are subject to the scope of this creation without departing from the spirit and scope of the invention. . The details, viewpoints and advantages of the present invention will be described in detail in the following description, the scope of the patent application, and the drawings. The following description, the scope of the patent application, and the drawings are described in detail for the purpose of understanding: FIG. 1 to FIG. 3 are diagrams showing conventional conventional photo-sensing devices and packages; A schematic diagram showing a conventional low noise photoelectric image sensor; FIG. 5 is a schematic diagram showing a full wafer including a plurality of photo-sensing devices; 22 1257710 FIG. 6 is a diagram showing photoelectricity in FIG. FIG. 7A to FIG. 7D are partial cross-sectional views showing the bonding plug and the inner-electrode electromagnetic shielding conductive layer in the photo-sensing device; FIGS. 8A-8C are diagrams showing the photo-sensing device FIG. 9A is a schematic diagram showing a transparent substrate corresponding to a full wafer of a photo-sensing device; FIG. 9B is an enlarged schematic view showing a portion of a transparent substrate corresponding to a photo-sensing device die; ; 10A~1 0D is a partial cross-sectional view of a preferred embodiment of the present invention; FIGS. 11A-11D are partial cross-sectional views of another embodiment of the present invention; FIGS. 12A-12D are partial portions of another embodiment of the present invention FIG. 13A to FIG. 13C are partial cross-sectional views showing still another embodiment of the present invention; FIG. 14A is a partial cross-sectional view showing an embodiment of the present invention including a support layer; and FIG. 14B is a retractable support of the present invention. A partial enlarged cross-sectional view of the layer; Figure 15 is a partial cross-sectional view of the embodiment of the present invention filled with a transparent material; 16A 16D is a photo-inductance device wafer bonding another optical lens of the present invention Schematic diagram of a partial cross-section of different implementations of the system; brother 17A~17D ® material in the county of the county to earn crystallographic formation - a partial cross-sectional view of the implementation of the optical lens system; brother 18A ~ 18D map is the county's inductance measurement The apparatus is closed to form a partial cross-sectional view of another embodiment of the optical lens system 23 1257710; the 19th H9C diagram is an implementation aspect of the external electrode bonding rod formed by the three different methods of the present invention. The cross-sectional enlarged view; and the mouth silk Wei Cong set and the green compensation _ module combination 151 [main component symbol description] photo-sensing wafer base 151 photo-sensing die 152 161 trench 104 162 insulation 163 166 joint plug 168 157 photoelectric conversion zone 158 electromagnetic shielding layer 157 159 electrode fresh pad end 170 180 protective layer 172 190 optical inductance measurement die lower surface 181 200 transparent substrate 201 transparent crystal grain region 202 208 groove bottom 203 210 adhesive layer 204 211 convex portion 212 230 transparent substrate upper surface 232 268 support layer 270 272 cavity 280 die cutting area _ photo-sensing die upper surface insulating layer external electrode bonding 榫 photoelectric conversion surrounding circuit dielectric layer dielectric layer electrical connection layer protective layer window _ Groove transparent base transparent area transparent substrate joint area concave part transparent base lower surface transparent material optical lens system 24 photo-sensing grain spectroscopy film upper surface 259 electrode pad end photo-electricity measurement die 359 electrode pad End back groove 182 back groove back electrode joint 榫 188 back electrode joint 榫 photoresist 372 steps Photoresist structure optical surface 375 lens grain resist pattern 384 concave surface photoresist 386 optical surface photo-sensing grain magnetic body 228 conductive coil structure body photo-sensing grain opto-inductance control module ceramic package 101 groove ceramic substrate 102 Conductive Inner Pin Photoinductor Die 105 Adhesive Layer Electrode Pad 107 Metal Wire Plastic Package 111 Groove Plastic Substrate 112 Inner Pin Lead Frame 115 Adhesive Layer Outer Pin CCD Package 314 Winding Ceramic Substrate 318 Flexible Circuit Board Photoelectricity measurement die 329 Metal bond wire Photoelectricity measurement die 430 Transmissive sheet 25 1257710 ❿ 432 Infrared filter 410 Film substrate 415 Dielectric layer 416 Metal circuit layer 417 External electrode joint end 424 Bump 413 440 Window electromagnetic shielding Metal layer 470 electromagnetic screen metal layer 26