TWI257705B - Device of detecting nanoparticle and method of the same - Google Patents

Device of detecting nanoparticle and method of the same Download PDF

Info

Publication number
TWI257705B
TWI257705B TW92125852A TW92125852A TWI257705B TW I257705 B TWI257705 B TW I257705B TW 92125852 A TW92125852 A TW 92125852A TW 92125852 A TW92125852 A TW 92125852A TW I257705 B TWI257705 B TW I257705B
Authority
TW
Taiwan
Prior art keywords
ion
detecting
particles
ion trap
particle
Prior art date
Application number
TW92125852A
Other languages
Chinese (zh)
Other versions
TW200512943A (en
Inventor
Huan-Cheng Chang
Wen-Ping Peng
Yong Cai
Original Assignee
Academia Sinica
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academia Sinica filed Critical Academia Sinica
Priority to TW92125852A priority Critical patent/TWI257705B/en
Priority to US10/726,071 priority patent/US7119331B2/en
Publication of TW200512943A publication Critical patent/TW200512943A/en
Application granted granted Critical
Publication of TWI257705B publication Critical patent/TWI257705B/en

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A mass spectrometry system includes a first ion trap that selectively ejects charged particles based on their mass-to-charge ratios. A second ion trap receives the particles ejected from the first ion trap, causing the particles to gather near the center of the second ion trap. A laser beam is directed towards the particles in the second ion trap to induce fluorescence, which is detected by the photon detector. Particles are periodically dumped from the second ion trap. A mass spectrum of the charged particles can be obtained by comparing the photon count with the particle ejection characteristics of the first ion trap.

Description

1257705 玖、發明說明: , * 【發明所屬之技術領域】 本發明係有關於-種探測裝置,特別是有關於一種奈米粒 子之探測裝置。 【先前技術】 質譜儀可用來決定組成固體、氣體或液體樣品之成份的種 類及含量。質譜儀係利用離子的質/荷比魯心啡加1〇) 進行$析與分離離子的工作,離子電荷代表離子的電荷數目, 離子貝里可以原子1單位(amU)或道爾吞(Dalt〇n, Da)來表示。質 曰儀中的種四極離子阱質譜儀(quadrupole ion trap mass QI™S)可用來分析原子、分子與簇離子(cluster ons)的貝里,一種典型的四極離子阱質譜儀具備有一環形電極 (ring electrode)以及兩帽電極㈣“叩electr〇d⑻。操作上,施 力:^日守間’交化的電壓(time_varying voltage)於該環形電極與該 等極=間,以使該裝置產生一隨時間變化之電場來侷限離 ;卩『疋區域内。藉頻率或隨時間變化之電壓振幅的變化, 離子拼會依據離子之質/荷比週期性地抛出該等離子。 、替射誘導的赏光可被用來探測螢光分子(例如染色分子)或 破赏光分子標記之粒子的存在,例如,一雷射光束直接照射侷 限f 一離子阱中的離子,以誘導產生螢光⑴,而一 光捸測器用來探測從離子發射出的光子數。 【發明内容】 、 有,μ方、此本务明之目的在於提供一種探測奈米粒子之方 f ’包括下列步驟:依據帶電粒子之質/荷比週期性地自一第一 離子阱中拋出該等粒子;一第二離子阱接收自該第一離子阱拋 1257705 粒ΐ::::子於該第二離…;直接對該第二離 子所誘發出之螢光。 才、 本發明另提供一種探測奈米粒子之方法,包括下列步驟: ::二離子阱中週期性地拋出帶電粒子;一第二離子阱接收 w弟挥隹子阱拋出之粒子;以及探測該第二離子 所誘發出之螢光。 祖千 上述以及本發明之其他方法,可包括下列一或數個特徵。 該第一離子啡係依據粒子之質/荷比抛出帶電粒子。 本方法包括直接照射一雷射光源於一固體、液體或膠體之 樣品,以脫附並電離該樣品中之粒子,而產生 該第-離子阱。 m、于 術 本方法包括使用電喷灑離子化(electr〇spray i〇mzat_)技 以產生帶電粒子提供予該第一離子阱。 子 本方法包括直接照射—雷料源於該第二離子时之粒 以誘導粒子產生螢光。 ^方法包括週期性地移除該第二離子中全部之粒子。 抓測光源之方法係包括使用一光電倍增管⑽出邱 tube),以探測自粒子拋出之光子數目。 該光電倍增管係冷卻至一低於攝氏零度之溫度。 5亥光迅倍i冒官係於一閑週期(gatepen〇d)計算光子數,並產 生一計數值。 全部粒子於該間隔週期(dweiitime),自該第二離子味中被 移除。 本方法包括以螢光染色分子標記帶電粒子。 ,九二勞:染色分子標記帶電粒子係包括多於-種型態之螢光 染色分子標記帶電粒子。 7 1257705 本方法包括產生一以一特定型態染色分子標記之粒子,之質 譜。 、 本方法包括控制一施加於該第二離子阱之交流電壓信號 (alternating voltage signal),以使該第二離子阱接收之粒子之阻 慢時間(damping time)低於200毫秒。 本方法包括施加一交流電壓信號於該第二離子啡,使產生 一震盪電磁場(oscillating electric field),以局限粒子於該第二 子阱中。 、°Λ 一^ 本方法包括週期性地關閉該交流電,………乐二 離子阱中之所有粒子,以及施加一直流電壓以清除於閘時& (gate time)内被計數之粒子。 粒子係為螢光染色粒子。 粒子係包含螢光染色分子。 粒子係包含生物分子。 該第二離子阱接收之粒子,其質/荷比高於106。 本發明另提供-種探測奈米粒子之裝置,包括:_第 :牌接收粒子亚依據其質/荷比週期性地自該 出;-第二離子牌,接收自該第一離働出之粒子=拖 探測器:探測自該第二離子时之粒子所誘發之螢光。及— 其他方法,可包括下列-或數個特徵。 ,,〜二l叫“虎產生器,產生一隨時間變化之電壓俨 唬,*施加於該第二離子 電磁場,•自該第—離子牌拋出:::7::牌中f生-震堡 後被減速,廿、士 ;、子在進入该第二離子阱 之中間位置 該第二離謝之位能最低處,即該牌 該第一離子阱係包括一四極 該第-離子_定為週期性地拋二 1257705 米之離子。 .' 該第一離子阱係設定為週期性地拋 ,. 子。 M ’何比高於106之粒 5亥第二離子阱係包括一四極離子阱。 δ亥板測器係包括一螢光探測器。 本裝置包括一雷射產生器,產生— 中粒子之雷射光束。 Α射该第二離子阱 本裝置包括一第一信號產生器,產生一 阱以於該第-離子醉中產生_震 “於該第-離子 信號。 座生辰h •之隨時間變化之第一 孩第一仏唬產生器於一量測循環期間 第-電•信號頻率之一第一頻率至一 :唤蚪間變化之 啡依據粒子之質/荷比週期性地抛出粒子率,使該第一離子 該第一信號產生器掃描該隨時間變 率’使頻率變化與時間呈一線性關係。 電壓信號頻 該第一信號產生器掃描該隨時間變 :二頻率變化與時間呈一非線性關係,㈣:::號頻 “亥弟―離子牌中拋出之粒子,其質/荷比與時間呈=期間, 本褒置包括-第二信號產生器,產生線性關係。 拼以於該第二離子啡中產生一震 二離子孀 信號。 穷< W日寸間變化之第二 本裝置包括-提供粒子之離子供應源。 σ亥離子供應源係包括一含粒子之基質。 使自該第一離子阱 ,包括下列步驟: 離子阱拋出之帶電 該第一離子阱係與該第二離子阱接合, 拋出之粒子被該第二離子阱捕獲。 本發明另提供一種探測奈米粒子之方法 使用-第二離子阱以降低週期性來自一第— 1257705 粒子之速度;以及探測一藉一 之螢光(fluorescence)。 雷射光源誘導而發射自帶電教子, 本發明另提供一種輕、、目丨丨大业 ^ 禋彳衣測奈未粒子之方法,包括下列步驟: 方匕加一弟一交流雷懕拉' 爿套Μ , i彳口唬於一包含帶電粒子之第一離子阱;搞 描該交流電壓信號頻率之一楚 知 L1 貝手之弟一頻率至一第二頻率,以週期 地抛出帶電粒子;施加一第-丄 ^ ’ ^ 4α A ^ 弟一父、机黾壓信號於一苐二離子阱以 f足自邊弟—離子_出之帶電粒子;以及依據-與該第—交 '電壓信號頻率之預定關料描該第二交流電壓信號之頻率, 使^-離子味接收之粒子侷限於該第二離子啡中。1257705 玖, invention description: , * [Technical field to which the invention pertains] The present invention relates to a detection device, and more particularly to a nanoparticle detection device. [Prior Art] A mass spectrometer can be used to determine the type and amount of components that make up a solid, gaseous or liquid sample. Mass spectrometry uses the mass/charge ratio of ions to add 1 〇) to perform the work of separating and separating ions. The ionic charge represents the number of charges of the ions. The ion berry can be 1 unit (amU) or Dalcant (Dalt). 〇n, Da) to express. The quadrupole ion trap mass spectrometer (quadrupole ion trap mass QITMS) can be used to analyze the atomic, molecular and cluster ons of Berry. A typical quadrupole ion trap mass spectrometer has a ring electrode ( Ring electrode) and two cap electrodes (4) "叩electr〇d (8). Operationally, the force is applied to: the time_varying voltage between the ring electrode and the poles to cause the device to generate a The electric field that changes with time is limited; 卩 疋 疋 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The light can be used to detect the presence of fluorescent molecules (such as dyed molecules) or particles that are marked by light molecules. For example, a laser beam directly illuminates ions in an ion trap to induce fluorescence (1). The optical detector is used to detect the number of photons emitted from the ions. [Invention] The purpose of the present invention is to provide a way to detect the nanoparticles of the nanoparticles. Step: periodically ejecting the particles from a first ion trap according to the mass/charge ratio of the charged particles; a second ion trap is received from the first ion trap and throwing 1257705 particles:::: The invention directly provides a method for detecting nano particles, comprising the following steps: :: periodically throwing charged particles in a diion trap; The second ion trap receives the particles ejected by the dice trap; and detects the fluorescence induced by the second ion. The above and other methods of the present invention may include one or more of the following features. An ionic body throws charged particles according to the mass/charge ratio of the particles. The method comprises directly irradiating a laser light source to a solid, liquid or colloid sample to desorb and ionize the particles in the sample to produce the first - an ion trap. m. The method comprises using an electrospray ionization (electr〇spray i〇mzat_) technique to generate charged particles for supply to the first ion trap. The method comprises direct illumination - the source of the rake originates from The second ion is tempted The guiding particles generate fluorescence. ^ The method comprises periodically removing all of the particles in the second ion. The method of capturing the light source comprises using a photomultiplier tube (10) to detect the number of photons thrown from the particles. The photomultiplier tube is cooled to a temperature lower than zero degrees Celsius. 5 Haiguang Xunyi calculates the number of photons in a idle period (gatepen〇d) and generates a count value. All particles are in the interval period. (dweiitime), removed from the second ionic taste. The method comprises labeling charged particles with fluorescent dye molecules. The smectic molecular marker charged particle system comprises more than one type of fluorescent dyed molecule Mark charged particles. 7 1257705 The method comprises producing a mass spectrum of particles labeled with a specific type of dyed molecule. The method includes controlling an alternating voltage signal applied to the second ion trap such that the particles received by the second ion trap have a damping time of less than 200 milliseconds. The method includes applying an alternating voltage signal to the second ionic body to cause an oscillating electric field to confine the particles to the second subwell. The method includes periodically turning off the alternating current, .... all the particles in the ion trap, and applying the DC voltage to clear the particles counted in the gate & gate time. The particle system is a fluorescent dyed particle. The particle system contains fluorescent dye molecules. The particle system contains biomolecules. The particles received by the second ion trap have a mass/charge ratio higher than 106. The invention further provides a device for detecting nano particles, comprising: _: a card receiving particle sub periodically from the mass/charge ratio; - a second ion card received from the first detachment Particle = Drag Detector: Fluorescence induced by particles detected from the second ion. And - other methods, which may include the following - or several features. ,,~2 l is called "the tiger generator, generates a voltage 随 that changes with time, * is applied to the second ion electromagnetic field, • throws from the first - ion card:::7:: card f- After the shocking castle is decelerated, the scorpion; the child enters the second ion trap in the middle of the second disengsing position, that is, the first ion trap system includes a quadrupole of the first ion _ is determined to periodically throw two ions of 1,257,705 meters. . . The first ion trap is set to periodically throw, .. M 'he is higher than 106 particles 5 Hai second ion trap system includes one four The polar ion trap includes a fluorescent detector. The device includes a laser generator that generates a laser beam of the medium particle. The second ion trap device includes a first signal generating device. And generating a trap to generate a "seismic" signal in the first ion. The first child of the first child, which changes with time, is the first frequency of the first-electric signal frequency during a measurement cycle. The first frequency to one: the change of the morphological relationship between the morphological and the mass of the particle The frequency is periodically thrown such that the first ion the first signal generator scans the variability over time' such that the frequency change is linear with time. The voltage signal frequency of the first signal generator scans over time: the two frequency changes have a nonlinear relationship with the time, (4)::: The number of particles thrown in the "Hai Di-Ion card, its mass/charge ratio and During the time = period, the device includes a second signal generator to generate a linear relationship. The second ion device is generated in the second ionic morphine. Including - providing an ion supply source for the particle. The σ海 ion supply source includes a particle-containing substrate. The first ion trap is included from the first ion trap, and the following steps are performed: the ion trap is thrown to electrify the first ion trap system and the second Ion trap bonding, the thrown particles are captured by the second ion trap. The present invention further provides a method for detecting nanoparticle using a second ion trap to reduce the periodicity of the velocity from a first - 1257705 particle; A fluorescent light source is induced by a laser light source and is emitted from a charged god. The present invention further provides a light, eye-catching method for measuring the negative particles of the clothing, including the following steps: The flow of thunder ' 爿 爿 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Throwing charged particles; applying a 第-丄^ ' ^ 4α A ^ 弟一父, machine 黾 信号 于 于 苐 苐 苐 苐 苐 苐 苐 苐 苐 — — — — — — — — — — — — — — — — — — — — — The predetermined amount of the first-to-AC voltage signal describes the frequency of the second alternating voltage signal such that the particles receiving the ion-charge are confined to the second ionic.

本發明之其他方法,可包括下列一或數個特徵。 知描該第二交流電壓们虎頻率係使該第二離子牌之附來 (qz)維持不變,此有關於該第二離子_接收之粒子。’ …麥數⑹係、與該第二交流電壓信號振幅呈正比,而與 该第一交流電壓信號頻率次方呈反比。 本方法包括週期性地降低該第二交流電壓信號之振幅,以 拋出該第二離子阱中之粒子。Other methods of the invention may include one or more of the following features. Knowing the second AC voltage, the tiger frequency keeps the second ion card attached (qz) unchanged, which is related to the second ion_receiving particles. The ... wheat number (6) is proportional to the amplitude of the second alternating voltage signal and inversely proportional to the frequency of the first alternating voltage signal. The method includes periodically reducing the amplitude of the second alternating voltage signal to eject particles in the second ion trap.

〃本發明另提供-種探測奈米粒子之方法,包括下列步驟: 二控制信號於一第一離子阱,以使該第一離子阱依據離子 之質/荷比週期性地抛出離子;使用一第二離子陕收集自該第一 離子阱拋出之離子;探測該第二離子阱中離子所發射之螢光, 以產生一彳木測化號;以及連結該探測信號與控制信號,以決定 一該第一離子阱中離子之質譜。 、 上述以及本發明之其他方法,可包括下列一或數個特徵。 本方法包括對一基質直接照射一雷射光,脫附電離該奈米 生物樣品,以於該第一離子阱中產生離子。 不、 本方法包括直接照射一雷射光於該第二離子阱中之離子, 以誘導產生螢光。 1257705 本方法包括調整該第二離子阱之參數以符合該第一離子阱, 之參數,使該第二離子阱於至少一特定時間週期捕獲自該第一 離子阱拋出之離子,並探測自該第二離子阱中離子所發射之螢 光。 本方法包括調整該第二離子阱之參數以符合該第一離子阱 之參數,使該第二離子阱捕獲自該第一離子阱拋出具有一特定 範圍質/荷比之離子。 本方法包括週期性地自該第二離子阱中拋出離子。 本方法包括產生一自該第二離子阱中離子發射之螢光信 號,離子後續自第二離子阱清出。The present invention further provides a method for detecting nanoparticle, comprising the steps of: controlling a signal in a first ion trap such that the first ion trap periodically ejects ions according to an ion mass/charge ratio; a second ion is collected from the ions thrown by the first ion trap; detecting fluorescence emitted by the ions in the second ion trap to generate a beech indicator; and connecting the detection signal and the control signal to A mass spectrum of ions in the first ion trap is determined. The above and other methods of the invention may include one or more of the following features. The method includes directly irradiating a substrate with a laser beam, and desorbing the nano biological sample to generate ions in the first ion trap. No, the method includes directly illuminating a source of laser light in the second ion trap to induce fluorescence. 1257705 The method includes adjusting a parameter of the second ion trap to conform to a parameter of the first ion trap, causing the second ion trap to capture ions emanating from the first ion trap for at least one specific time period, and detecting from Fluorescence emitted by ions in the second ion trap. The method includes adjusting a parameter of the second ion trap to conform to a parameter of the first ion trap such that the second ion trap captures ions having a specific range of mass/charge ratios from the first ion trap. The method includes periodically ejecting ions from the second ion trap. The method includes generating a fluorescent signal of ion emission from the second ion trap, the ions being subsequently purged from the second ion trap.

斤本發明另提供一種探測奈米粒子之方法,包括下列步驟: -第二離子牌接收依據_f/荷比週期性地自—第—離子拼抛出 之離子,且藉一雷射誘導使離子發射螢光;以及調整該第二離 子阱之參數以符合該第一離子阱之參數,使離子至少於一 時間週期侷限在該第二離子时,並探測自該第二離子拼中離 子所發射之雷射誘導螢光(lase卜mduced 。 ,述以及本發明之其他方法,可包括下列—或數個特徵。 離子係為螢光物質或為包含螢光分子之物質。 本毛明另提供一種探測奈米粒子之裝置,包括:一第二 子解’接收依據-質/荷比週期性地自—第—離子啡抛出: 子’一雷射產生ϋ,產生—直接照射於該第二離子时 ::::光束;—光探測器’探測自該第二離子啡中粒子所 射之蛋先,以及-電路,產生—施加於該第二離子啡之 壓,使該第二離子㈣選擇時間清出粒子,該粒子之清出工至 間隔-特定時間週期’以使該光探測器探 上述以及本發明之其他方法,可包括下列—或數個之 β亥弟—離子牌係包括一具有兩帽電極之四極離子牌。 1257705 …本哀置包括一彳§5虎產生器,產生一施加於該第一離 :弟二控制電壓,該第二控制電壓具有一掃描—第一頻率至一 弟一頻率之頻率,以週期性地拋出帶電粒子。 為讓本發明之上述目的、特徵及優點能更明顯易懂,下文 •牛—較佳實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 實施例 雙離子阱質譜儀 據蒂^參閱第1圖與2圖。一雙離子啡質譜系統100包括一依 ㈣之質/荷比而性地拋出該等粒子的第一離子 二第二離子_ 1G4’收集並減緩該等拋出粒子的速度, 昭:第该ϊ =於第二離子啡中心附近;一雷射光束150,直接 管二;t二〇4…中離子以誘導產生螢光,並藉-光電倍增 衣'、之f电粒子於預定的時間間隔週期性地自第二離 一 4中清出,遂在每一閘時間探測到的螢光強度,大體與 定質/荷比的粒子數目呈正比。比較藉光電倍增管1〇6 期二:=Γ=Γ與第一㈣102於該量測週 集之粒子的=經轉換後即可得到一第二離子_刚所收 第料牌102與第二離子牌104係設置於一直 :2:二—離子…為,例如,-雙曲面之四極離子二 =㈣笔極108、一第一帽電極110與一第二帽電極112,環 V电極⑺8具有兩彼此正相對位置的洞120盥122。 雙:子啡質譜儀1〇〇可用來量測具有大範圍尺寸的粒子, ^ ,於10奈米的粒子、質量大於106道爾吞的粒子、以 12 4 1257705 及質/荷比大於Η)6的粒子。該等帶電粒子本身可為榮光物質或. 被螢光染色分子標記的物質。 在Κ ^例中,利用基質辅助雷射脫附電離 —rix-assisted laser des〇rpt職 _ 職⑽⑽,MALm)技術於 第離子拼102中產生帶電粒子。一樣品18〇置於一不鑛鋼樣 品架126表面上’該樣品可為—包含被分析粒子的基質。一雷 射光束121射入洞120,於通過第一離子_ 1〇2後穿過洞122, 使粒子發生脫附與電離反應。 %加包各頻率f丨與一電壓振幅Li之第一拼驅動信 號M2於環形電極1〇8上,兩端帽電極ιι〇、ιΐ2則接地,以侷 限帶電粒子於第-離子牌102中。第一味驅動信號142係由一 #號產生器146產生並經由一功率放大器、144放大。作號產生 器146掃描的頻率範目,係依據待分析粒子的質/荷比而定。 一電腦150輸送一觸發信號152觸發信號產生器146,使 開始進行-頻率掃描,當頻率f】從例如一較高頻率掃描至一較 低頻率(如60千赫兹至500赫茲)時,具特定質/荷比粒子的移 =會開始變得不穩定且粒子會從第一離子拼1〇2末端帽電極 的㈤124拋出。若第—離子$ 1〇2的牌參數與電壓振幅^ 二疋值,則從第-離子It拋出之離子的f /荷比與頻率[呈一函 類似於第一離子钟102,第二離子陕1〇4可為,例如 雙^之四極離子啡包括—環形電極H4、-第-帽電極116 弟—帽電極118 ’第一帽電極ιΐ6設有一容許第—離子 j的離子進入第二離子啡104的洞128。一包含—頻率f2 电壓振幅vac,2的第二阱驅動信號176施加於環形電極 上’帽電極1 i 6、118則接地。 第一阱驅動信號176係由一信號產生器178產生並經由 13 1257705 功率放大器180放大 · 過第二阱驅動"“:生為178可由電腦150控制‘。透· 拋出與電壓振幅的選擇H離子牌102 拋出的一離子可被偈限在第二離子啡104中。 升 拼内㈣參數,稱,,时數”⑹,可制來描述於-離子 所内一γ電粒子的運動。 声丁 (第1式) — 〇n/z)r〇2Q2 壓捃巾:、,: ’2為粒子電荷'為拼驅動信號的電 保護蓋電極的半徑,驅動錢的頻率。 田H〇.幫時,離子變的不穩定且會從離子啡中抛出。 分子^子刚捕獲由外部射入之帶電粒子(可為原子或 104 ^ > ;::7:Γ02拋出的粒子被第二離子$104捕獲時, 在第二離子牌⑽中之拖=,的—數^,'大體與揭限 企笛〇 中之粒子所被估算的牌參數qz2不同,當第一 ,二:::的單位(例如。等)均相同,刪 知⑽,!的關係可被描述如下·· 4,2The invention further provides a method for detecting nano particles, comprising the following steps: - the second ion card receives ions periodically thrown from the -first ion according to the _f/charge ratio, and is induced by a laser Ion emitting fluorescence; and adjusting parameters of the second ion trap to conform to parameters of the first ion trap, causing ions to be confined to the second ion for at least a period of time, and detecting ions from the second ion The laser-induced fluorescence of the emission (lase, m, and other methods of the invention may include the following - or several features. The ion system is a fluorescent substance or a substance containing a fluorescent molecule. A device for detecting nanoparticles, comprising: a second sub-solution 'receiving basis-quality/charge ratio periodically from the first-ionic morphine throwing: a sub-a laser generating ϋ, generating - directly illuminating the first The second ion::::beam; the photodetector 'detects the egg from the second ionic morphine, and the -circuit, produces - the pressure applied to the second ionic, causing the second ion (4) Selecting time to clear the particles, the The clearing of the sub-work to the interval-specific time period 'to enable the photodetector to probe the above and other methods of the present invention may include the following - or a plurality of beta-diaphragm-ion cards comprising a quadrupole having two cap electrodes Ion card. 1257705 ... This mourning includes a 彳5 tiger generator, generating a control voltage applied to the first slave: the second control voltage having a scan-first frequency to a frequency of a brother-frequency In order to make the above-mentioned objects, features and advantages of the present invention more apparent and easy to understand, the following description of the preferred embodiment and the accompanying drawings are as follows: Method] The embodiment of the dual ion trap mass spectrometer is described in Figures 1 and 2. A double ionic glycan mass spectrometry system 100 includes a first ion two of the particles according to the mass/charge ratio of (4). The diion _ 1G4' collects and slows down the velocity of the ejected particles, indicating that the ϊ = is near the center of the second ionic body; a laser beam 150 is directly in the tube; t is in the second 〇 4... Fluorescent, and borrow - photomultiplier clothes, 'f The electro-particles are periodically cleared from the second divergence 4 at predetermined time intervals, and the fluorescence intensity detected at each gate time is generally proportional to the number of particles of the qualitative/charge ratio. Tube 1〇6期二:=Γ=Γ and the first (four) 102 in the measurement of the week's particles = after conversion can get a second ion _ just received the first card 102 and the second ion card 104 series Set to always: 2: two-ion... is, for example, a hyperboloid quadrupole ion two=(four) pen electrode 108, a first cap electrode 110 and a second cap electrode 112, and the ring V electrode (7) 8 has two positive The relative position of the hole 120盥122. Double: The morphine mass spectrometer 1〇〇 can be used to measure particles with a wide range of sizes, ^, particles at 10 nm, particles with a mass greater than 106 dow, to 12 4 1257705 Particles with a mass/charge ratio greater than Η)6. The charged particles themselves may be glory substances or substances marked by fluorescent dye molecules. In the example, a matrix-assisted laser desorption ionization-rix-assisted laser des〇rpt job (10) (10), MALm) technique is used to generate charged particles in the ion block 102. A sample 18 is placed on the surface of a non-mineral steel sample rack 126. The sample can be a matrix containing the particles to be analyzed. A laser beam 121 is incident on the hole 120 and passes through the hole 122 after passing through the first ion _ 1 〇 2 to cause desorption and ionization of the particles. The first pin drive signal M2 of each frequency f丨 and a voltage amplitude Li is applied to the ring electrode 1〇8, and the cap electrodes ιι〇 and ιΐ2 are grounded to limit the charged particles to the first ion card 102. The first taste drive signal 142 is generated by a # generator 146 and amplified by a power amplifier, 144. The frequency range scanned by the number generator 146 depends on the mass/charge ratio of the particles to be analyzed. A computer 150 transmits a trigger signal 152 to trigger the signal generator 146 to initiate a frequency sweep, which is specific when the frequency f is swept from, for example, a higher frequency to a lower frequency (e.g., 60 kHz to 500 Hz). The shift of the mass/charge ratio particles will begin to become unstable and the particles will be ejected from the (five) 124 of the first ion electrode. If the card parameter of the first ion $1〇2 and the voltage amplitude ^ 疋 value, the f / charge ratio of the ion ejected from the first ion It and the frequency [present a function similar to the first ion clock 102, second The ion 〇1〇4 may be, for example, a bipolar ionic morphine including a ring electrode H4, a - cap electrode 116, a cap electrode 118', and a first cap electrode ιΐ6 provided with an ion that allows the first ion i to enter the second Hole 128 of ionic brown 104. A second well drive signal 176 comprising a frequency f2 voltage amplitude vac, 2 is applied to the ring electrode. The cap electrodes 1 i 6, 118 are then grounded. The first well drive signal 176 is generated by a signal generator 178 and amplified by a 13 1257705 power amplifier 180. The second well drive is "": 178 can be controlled by the computer 150." Transparency and selection of voltage amplitude An ion ejected by the H-ion card 102 can be confined to the second ionic film 104. Within the lift (4) parameters, said, the number of hours (6), can be described to describe the motion of a gamma electric particle within the ion. Sound Ding (Formula 1) — 〇n/z)r〇2Q2 Pressing wipes:,,: '2 is the particle charge' is the radius of the electric cover electrode of the spell drive signal, driving the frequency of the money. Tian H〇. When helping, the ions become unstable and will be thrown from the ionics. The molecule ^ just captures the charged particles emitted by the outside (can be atomic or 104 ^ >;::7: Γ02 particles are captured by the second ion $104, dragged in the second ion card (10) =, The number of the card is different from the estimated card parameter qz2 of the particle in the whistle. When the first, second::: units (for example, etc.) are the same, the relationship between (10) and ! is deleted. Can be described as follows·· 4,2

Qz ~ Reject,] ΩιΨογ,Ι ω7κ7λ (第2式) 八1 2,、FacjfGc,2)係分別為第一離子阱1〇2〔笫-雜 子阱1〇4)的阱驅動頻率與電壓,由於 (弟-離 阱驅動頻率與電壓,使 # ^ 舁弟二離子阱的 102拋出的大量f:子二:’2值小於〇·9〇δ,目此,從第-離子胖 出的大里粒子可進入且被捕捉在第二離子啡104中。 雄,而H驅動信號掃描_頻率範圍時七值會隨之改 "、.、qz,2值在掃描範圍内不變的方法在於,掃描第-離子 胖頻率的同時,也掃描第二離 y貝半則可使qz,2的值保持 14 1257705 ^ 可藉電腦1 5()同步控制第一與第二離子阱妁掃 而達成。例如,在k等於L,2、同步掃描且掃描頻率 比隹為3的情況下,則在掃描過程中可得qz,2值為0.1。 通過環开二離子味104中的帶電粒子,使一雷射光幻50 二離子152直接照射具有冑密度粒子分佈的第 15〇激發 /由於粒子(或粒子上的螢光分子)被雷射光束 铲V备 射螢光通過末端帽電極H8的洞130,並繼續藉 核_雄 汁數為164元成計數,光子計數器164的計數 值於後’步驟中傳送至電腦1 5〇。 阻慢與清除 粒子:::、離子拼1〇4的空間160中充滿緩衝氣體以減緩入射 雷射光束⑼可,日子:V、4區域,使聚焦之 至停滯在第二離子進入第二離子…04 低阻慢時間可增加作/的;或比的^稱為”阻慢時間’,,降 (resolut1〇n) 〇 …勺雜讯比㈣naI-t〇-n〇lse)與解析度 第二離子阱1〇4會週期性地丟出 · 猎f子計數器164量測而得的計數值大體與第二離Qz ~ Reject,] ΩιΨογ, Ι ω7κ7λ (Form 2) 八1 2,FacjfGc,2) are the well drive frequency and voltage of the first ion trap 1〇2[笫-hetero well 1〇4), Because of the (different-displacement drive frequency and voltage, the #^ 舁二二离子井's 102 throws a large number of f: sub-two: '2 value is less than 〇·9〇δ, for this reason, from the first-ion fat Large particles can enter and be captured in the second ionic body 104. Male, and the H drive signal scans the _ frequency range when the seven values will change. The method of changing the value of ", ., qz, 2 in the scan range lies in While scanning the first-ion fat frequency, it also scans the second from y-be and half to keep the value of qz, 2 at 14 1257705 ^ by computer 1 5 () synchronous control of the first and second ion trap sweep For example, in the case where k is equal to L, 2, synchronous scanning, and the scanning frequency is 33, qz can be obtained during scanning, and the value of 2 is 0.1. By circulating the charged particles in the diionic odor 104, A laser illuminating 50 diion 152 directly illuminates the 15th 〇 excitation with a 胄 density particle distribution / due to the laser (or fluorophore on the particle) is laser The beam shovel V is ready to pass through the hole 130 of the end cap electrode H8, and continues to count by the number of _ male juices of 164 yuan, and the count value of the photon counter 164 is transmitted to the computer 1 5 于 in the following step. The space 160 with the particle:::, ion spliced 1 〇 4 is filled with buffer gas to slow the incident laser beam (9), day: V, 4 region, so that the focus is stagnant in the second ion into the second ion...04 Low resistance slow time can be increased as /; or ratio ^ is called "resistance time", drop (resolut1〇n) 〇... scoop noise ratio (four) naI-t〇-n〇lse) and resolution second ion The well 1〇4 will be periodically thrown out. The count value obtained by the hunting f sub counter 164 is roughly the same as the second deviation.

的二子數成-比例。4 了清出粒子,暫時關閉第項驅動信號 17 6 ’而施加一直流清除作辦m pi j · JU 卜,Pmg Slgnal)181 於末端帽 : '¥ f电粒子攸第二離子_ 104的洞130清出, 直“除信號的極性變化係依據帶電粒子的極性而定 子^電荷,則直流清除信號為負電虔,反之㈣, j 果粒子沒有週期性地被拋出,稍 Γ ’如 稍早進入拼104中的粒子會持續 15 1257705 放射出光子,造成重複計數。 光子計數器164在—,,„卩士日日/ 增管探測得到的光子/^間(_ Ume),,中計數由光電倍 中歸零重新計數。由:第數離隨後在一”間隔時間咖1"-),, 特定時間(依計數值決定)中光^ U内同時發生。連結一 定力々* 螢光強度與阱驅動信號頻率,可決 =:間中不同質,荷比的粒子特性,第4…圖係揭示上 述方法所得到的質譜。 口竹询不上 下決定一特第定型f粒子光譜的閉時間與間隔時間的時間長度係如 ㈣^:广1〇4中粒子的阻慢時間,係先由掃描第-夢光㈣率以拋出待分析粒子來決定,之後,計數 子的阻慢時;曼下降。該上升時嶋 午夕粒子被電場侷限在第二離子阱104中心 =強:;先有Γ高Γ峰/。大部分粒子聚於㈣4中心附近時, 粒子虫^又日^"間另X分子-粒子碰撞(例如在第二離子陕中’帶電 空間=!=分子之間的碰撞)的影響,此外,阻慢時間亦受 侷分佈的影響,即由於帶電粒子間的電荷排斥,使在 較少m中心附近的時間’會較偏限 T “子的時間為長。降低解驅動電壓會造成阻慢時間 、曰ϋ ’因當解|區動電壓下降卑 較長的時間偷:: 粒子的運動擴大’故須花費 擇 。、在中心附近。既然短的阻慢時間為較佳的選 第2式=對第二離子味104施予一更大的啡驅動電壓,然如 而'二一 :,4’2不可選擇太高’否則會使qz,2值高於0.908, 子iQ4中粒子的不穩定。由此,第一與第二離 k唬的電壓振幅與頻率須選擇使qz,2值保持低於〇 9〇8 16 1257705 的數值。 料胃多閱第3圖’一圖170係系、统100中不同信號隨時間的 =化圖:圖224係顯示觸發信號152的波型,目226係顯示掃 :頻率U虎148的波型,目172係顯示直流清除信號的波型, ”包含週期電壓脈衝(penodlc v〇ltagepulses)232,圖…係第二 ::動信號176的開啟_關閉時間圖,目23“系顯示來自雷射誘 導螢光光子的計數,其中,,高點”238係表示從第二離子_刚中 粒子之螢光開始由光子計數器164計數,而”低點,⑽係表示計 ,、已重新歸零並無計數,請係顯示光子計數器164的計 數值,可藉此建構一帶電粒子的質譜圖。 〇在時間U時,觸發信號152送出,以觸發產生掃描頻率信 直流清除信號Μ位於低點220,第二啡驅動信號174 被開啟=22。粒子於此環境下累積在第二離子啡⑽内,並由光 子汁數裔164開始計數222來自雷射誘導螢光的光子。 .在日守間t2時(tl〜t2為光子計數器164的間時間),第二啡驅 /號176關閉,而開啟直流清除信號172,此導致帶電粒子從 :::子# 104清出,其中直流清除信號的正或負係依據帶電 粒子的極性而變。 除广t3時(t2〜t3為光子計數器164的間隔時間),直流^ 累二厂2關閉’而開啟第二胖驅動信號176’使帶電粒子開女 系積在弟二離子阱104。 164的閘時間),第二阱驅 此導致帶電粒子開始從第 在時間t4時(t3〜t4為光子計數器 動信號關閉,而開啟直流清除信號, 二離子阱104中被清除。 在時間tl至t2期 子具有藉掃描頻率信號 時間t2所產生的計數值 間,累積在第二離子阱丨〇4中的帶電粒 H8決定的質/荷比。光子計數器164在 ,大體符合具有與時間tl與t2之平均 17 1257705 頻率呈函數關係的荷/質比的帶電粒子數。 在時間t3時,之前於時間tl至t2在第二離子_ 1〇4 累積的帶電粒子幾乎已被清除,因此,光子計數器164在 t4所產生的計數值,大體符合具有與時間t3與抖之平均頻率呈 函數關係的荷/質比的帶電粒子數。 、 根據上述方法,從第一阱驅動信號142 掃描至-較低頻率23。以週期,剛第一離子二:2; 電拉子之後’利用光子計數器· 164於每—閘時間終點所計數之 光子數,可建構一帶電粒子的質譜圖,如圖178所示。 雙離子阱質譜系統之實作 在一實施例中,第—拼1〇2與第二啡1()4係為RM J〇rdan =pany,Grass Vauey, Calif〇rnia 的 paul 哄第—與第二離子 :的…〇毫米,z。為7.07毫米’其中r。為環形電極i〇8的 +偟,Z〇為兩帽電極110、112中心距離的一半。盥 度為2毫米、具有-半徑3°毫米環形孔的鐵茲 個The number of two sub-numbers is proportional to. 4 Clear the particles, temporarily turn off the first driving signal 17 6 ' and apply the DC clearing to do m pi j · JU Bu, Pmg Slgnal) 181 in the end cap: '¥ f electric particle 攸 second ion _ 104 hole 130 clear, straight "except for the polarity change of the signal is based on the polarity of the charged particles and the stator ^ charge, then the DC clear signal is negative power, and vice versa (4), j fruit particles are not periodically thrown, later 如 ' as early as The particles entering the spell 104 will emit photons for 15 1257705, causing repeated counting. The photon counter 164 is counted in the photon/^ (_ Ume), which is detected by the 卩 日 日 日 日 日 日 日 日Zero back to zero. By: the number is then followed by an interval of time 1"-), and the specific time (determined by the count value) occurs simultaneously in the light ^ U. The connection is a certain force 々 * the intensity of the fluorescence and the frequency of the well drive signal can be determined = : The difference in the quality of the medium, the particle characteristics of the charge ratio, the fourth... The system reveals the mass spectrum obtained by the above method. The time limit of the closed time and the interval time of the spectrum of a special type f particle is determined by (4) ^: The slowing time of the particles in the wide 1〇4 is determined by scanning the first-dream light (four) rate to throw the particles to be analyzed, and then the counting slows down; the man falls. The particle is confined by the electric field to the center of the second ion trap 104 = strong:; first there is a high peak /. When most of the particles are concentrated near the center of (4) 4, the particle insects are again and the other X molecules - particle collisions (for example In the second ion Shaanxi, the influence of 'charged space =! = collision between molecules', in addition, the slowing time is also affected by the local distribution, that is, due to the charge repulsion between charged particles, making it near the center of less m The time 'will be longer than the limit T. The time of the child is long. Reducing the de-drive voltage will cause a slowdown, 曰ϋ 'because the solution | zone dynamic voltage drops a little longer time stealing:: the particle's motion is expanded' so it has to be chosen. Near the center. Since the short slowdown time is better, choose the second formula = give the second ion taste 104 a larger brown drive voltage, but if 'two one:, 4'2 can't be too high' would otherwise Qz, the value of 2 is higher than 0.908, and the particles in the sub-iQ4 are unstable. Thus, the voltage amplitude and frequency of the first and second departures k唬 must be chosen such that the value of qz, 2 remains below the value of 〇 9〇8 16 1257705. For more information on the stomach, see Figure 3, Figure 224 shows the waveform of the trigger signal 152, and the 226 shows the waveform of the frequency U Tiger 148. The target 172 shows the waveform of the DC clear signal, "including the periodic voltage pulse (penodlc v〇ltagepulses) 232, the picture is the second:: the on signal of the on-off signal of the dynamic signal 176, the head 23" shows the laser from the laser Inducing the counting of the fluorescent photons, wherein the high point "238" indicates that the photon counter 164 is counted from the fluorescence of the second ion_ganger particles, and the "low point, (10) indicates that the meter has been reset to zero. Without counting, please display the count value of the photon counter 164, thereby constructing a mass spectrum of a charged particle. At time U, the trigger signal 152 is sent to trigger the generation of the scan frequency signal. The DC clear signal is at the low point 220 and the second brown drive signal 174 is turned on = 22. The particles accumulate in the second ionic membrane (10) in this environment, and the photons from the laser-induced fluorescence are counted 222 from the photon juice 164. At daytime t2 (ttl~t2 is the time between photon counters 164), the second morph/driver 176 is turned off, and the dc clear signal 172 is turned on, which causes the charged particles to be cleared from :::#104. The positive or negative of the DC clear signal varies depending on the polarity of the charged particles. In addition to the wide t3 (t2~t3 is the interval time of the photon counter 164), the DC 2 is turned off and the second fat driving signal 176' is turned on to cause the charged particles to open in the young ion trap 104. The gate time of 164), the second well drive causes the charged particles to start from the first time t4 (t3~t4 is the photon counter signal off, and the DC clear signal is turned on, the diion trap 104 is cleared. At time t1 to The t2 phase has a mass/charge ratio determined by the charged particle H8 accumulated in the second ion trap 丨〇4 between the count values generated by the scanning frequency signal time t2. The photon counter 164 is substantially coincident with the time t1 and The average of t2 is 17 1257705. The frequency is a functional charge/mass ratio of charged particles. At time t3, the charged particles accumulated in the second ion _ 1〇4 before time t1 to t2 are almost cleared, therefore, photons The count value produced by counter 164 at t4 generally corresponds to the number of charged particles having a charge/mass ratio as a function of time t3 and the average frequency of the jitter. According to the above method, the first well drive signal 142 is scanned to - Low frequency 23. In the period, just the first ion two: 2; after the electric puller, the photon number of the charged particle can be constructed by using the photon counter 164 at the end of each gate time. 178. Implementation of the dual ion trap mass spectrometry system In one embodiment, the first spell 1 〇 2 and the second morphine 1 () 4 are RM J〇rdan = pany, paul Gra of Grass Vauey, Calif〇rnia The first and second ions: ... 〇 mm, z. is 7.07 mm 'where r is the + 环形 of the ring electrode i 〇 8 , Z 〇 is half the center distance of the two cap electrodes 110 , 112 . The twist is 2 mm , with a radius of 3 mm mm ring

+ 衣心电極上),以作為帶電粒子與MALDI :!束121的導入、探針雷射光束150的射入/出以及螢光的 ^集’位於第-離子㈣2上的洞的半徑為31毫米,位於t 米了牌104的帽電極與環形電極的洞的半徑分別為與3 8毫 底部機械幫浦(未顯示)用來排除真空腔室132内之壓 的:使其降至一低於1毫托的基礎壓力,另氦氣以大體50毫托 的穩^力㈣♦伽epressure)導入腔室⑴卜 毛托 雷射光束121係為一 5毫焦耳/脈衝(能量)、355奈 的脈衝雷射’產生自—三倍頻率( — ency七…⑽的趾从g 18 1257705 雷射 138(model Surelite™,from Continuum,Santa Clara, California)。雷射光束121係藉一焦距為0.5米長的鏡片140聚 焦,以形成一半徑大體1毫米的聚光點於樣品180上。信號產 生器 146 為 model DS345 Function & Abritrary Waveform Generator(from Standard Research System, Sunnyvale, California),且藉電腦150上的資料獲取程式(data acquisition program,Labview,from National Instruments,Austin,Texas)控 制。 雷射光束134的工作能量為400〜600毫瓦,波長為488奈 米,產生自一氬氣離子雷射154(model Innova 90C,from Coherent Inc.,Santa Clara,California)。雷射光束 150 係藉一焦 距為1米長的鏡片156聚焦,續通過擋光板(lightbaffles)158與 第二離子阱104環形電極114的洞152,而形成一大體200微米 的聚光點於該阱中心。從帶電粒子射出之螢光藉具有光圈值(F numbe〇3與焦距38毫米長的鏡片系統136聚焦。光電倍增管 106係為一熱電致冷(thermoelectrically cooled)之光電倍增管 (model R943-02, from Hamamatsu Corporation, Bridgewater, New+ on the core electrode, as the introduction of the charged particles and the MALDI:! beam 121, the injection/exit of the probe laser beam 150, and the radius of the hole on the first ion (four) 2 of 31 In millimeters, the radius of the hole of the cap electrode and the ring electrode of the t-meter 104 is respectively and the bottom of the mechanical pump (not shown) is used to exclude the pressure in the vacuum chamber 132: it is lowered to a low At a base pressure of 1 mTorr, another helium gas is introduced into the chamber with a force of 50 mTorr (4) ♦ gamma epressure) (1) The bronze laser beam 121 is a 5 mJ/pulse (energy), 355 Nai The pulsed laser 'produces from - triple frequency (- ency seven... (10) toe from g 18 1257705 laser 138 (model SureliteTM, from Continuum, Santa Clara, California). Laser beam 121 is borrowed by a focal length of 0.5 The meter-long lens 140 is focused to form a concentrating spot having a radius of substantially 1 mm on the sample 180. The signal generator 146 is a model DS345 Function & Abritrary Waveform Generator (from Standard Research System, Sunnyvale, California), and borrows a computer 150 Data acquisition program Acquisition program, Labview, from National Instruments, Austin, Texas) The laser beam 134 has an operating energy of 400 to 600 mW and a wavelength of 488 nm. It is generated from an argon ion laser 154 (model Innova 90C, from Coherent Inc., Santa Clara, Calif.) The laser beam 150 is focused by a lens 156 having a focal length of 1 meter, continuing through a light baffle 158 and a hole 152 of the ring electrode 114 of the second ion trap 104 to form a A generally 200 micron spot is concentrated at the center of the well. Fluorescence emitted from the charged particles is focused by a lens system 136 having an aperture value (F numbe 〇 3 and a focal length of 38 mm. The photomultiplier tube 106 is a thermoelectrically cooled ( Thermoelectrically cooled) photomultiplier tube (model R943-02, from Hamamatsu Corporation, Bridgewater, New

Jersey)。光子計數器 164 為 model SR400(from Stanford Research System) ° 待分析粒子係為懸浮於水中並以黃-綠螢光標記的聚苯乙 稀球(polystyrene beads,FluoSpheres,from Molecular Probes, Eugene,〇regon),根據一量測結果,聚笨乙烯球的尺寸為27±4 奈米’另一量測結果,聚苯乙烯球的尺寸為1丨〇 ± 8奈米,其中 27奈米與11〇奈米球係分別包含18〇與74〇〇的螢光染色分子 數’該等聚苯乙烯球的吸收波長為490奈米,放射波長為515 奈米’量子效率(quantum yield)為30%。 為製備MALDI的樣品,懸浮粒子以去離子水稀釋,得到 19 i 1257705 ίο粒子/立方厘米等級的濃度。等體積的樣品、基質盥一溶 (acet〇ne 、5溶液共同混合並置於樣品架126表面上,樣品架126 電極⑽上並嵌入第一離子牌之上環形電極的洞中。 緩衝^體1^二離子_的空間均充滿壓力為5G毫托的氦氣Jersey). The photon counter 164 is model SR400 (from Stanford Research System) ° The particle system to be analyzed is polystyrene beads (FluoSpheres, from Molecular Probes, Eugene, 〇regon) suspended in water and marked with yellow-green fluorescence. According to a measurement result, the size of the polystyrene ball is 27±4 nm. Another measurement result, the size of the polystyrene sphere is 1丨〇±8 nm, of which 27 nm and 11 nm. The spheres contain the number of fluorescent dye molecules of 18 〇 and 74 分别, respectively. The absorption wavelength of these polystyrene spheres is 490 nm, and the emission wavelength is 515 nm. The quantum yield is 30%. To prepare a sample of MALDI, the suspended particles were diluted with deionized water to give a concentration of 19 i 1257705 ίο particles per cubic centimeter. An equal volume of sample, matrix 盥 ( acet〇ne, 5 solution is mixed together and placed on the surface of sample holder 126, sample holder 126 electrode (10) and embedded in the hole of the ring electrode above the first ion plate. ^Diion _ space is filled with helium at a pressure of 5G mTorr

緩衝氣體,弟 一 ? iUi- 1 AO maldi產生的帶電粒 氮氣緩衝氣體協助捕獲由 體則協助拮η: ,在弟—離子阱104内的氦氣緩衝氣 體則協助捕獲由第-離子阱102拋出的粒子。 ^ ^ ^ ^ ^ 〇2 - « ° -^^^ctlon plate) 仇知甩壓,以增加探測效率。 俜夢二獲::尺寸27奈米的聚乙稀粒子質譜,第-離子請 質量:;之不赫…0°赫兹的牌驅動頻率(%)操作於-軸向 盆 巾模式(axlalmass_selectlve 咖杨^ 緩衝氣體存在下m特門產亥^畅描拉式避免了在高壓 、一個弘極間產生的電弧放電現象。 知到27奈米的聚乙烯粒子 104中27奈米粒子的阻慢時間。第L:V :"二離子啡 200讀内從6千赫兹掃描至〇 '年(Απ)係 光電倍增管1〇6探測之螢光 1以抛出27奈米粒子。 在圖4Α中,Ml 5〇宅托,上升日㈣4 〇.2秒。在 ^寸’㈣氣體壓力為 為60伏特,结 七 圖4β中,電壓振幅Γ ,改 根據上述結果,力為5〇毫托,則上升時間4 (J秒。 聚乙,子之間Η計數:=光子的料間係、選作為27奈米 清除時間係為2毫秒,直流清除信號為·ι〇〇伏特,以上條 20 1257705 件足以使帶電粒子 第5A圖係顯示二子阱104清出並避免粒子累積。 質譜200,其平约二 不米&本乙婦球的單掃描(single-scan) 圍從2*1 〇6至里為6·5百萬道爾吞,質/荷比分佈的範 弟5β圖係顯一、 2〇2的信號輪廓倍^累積十次單掃描結果的質譜202,質譜 為質/荷比集中分備^貝°曰200為平滑。質言普202的最主要特徵係 根據之前1微米叙大二6·5 1 〇,主要為單電荷粒子的貢獻。 0.908)作修正。 的里/則,質譜利用〇·95的拋出點^非 在5A與5B圖中,第二阱驅動信號176 固定頻率(Ω%)。 负 干赫炫的讀 弟5 C圖亦顯; 譜綱中第_ 累積十次單掃描結果的質譜綱,由於質 號142同::動'號176頻率,,婦 D固定為(u。比卜Γ人 千赫兹,且使牌參數 徵係探測範圍移轉至,柄一 知見貝,曰204的特 (例如掃描變動第二離/何比的&域’此表示動態捕獲條件 如固定第1子= 信號的頻率)較靜態捕獲條件(例 離子1〇4_。仏説的頻率)有更多雙電荷粒子被第二 弟6A圖係顯示_藉掃描1〇千赫茲至。 驅動信號頻率(Ω1/ )而嬸…a 赫炫之弟阱 盆中厂A而獲仔的110奈米粒子的單掃描質譜210, 之…::伏特。該附驅動信號使第-離子牌1。2所抛出 定在納〇6至⑽*106的範圍。__ 赏光珠的平均質量為 …、 萬道爾五“ 〇百萬道爾吞,質量分佈為350〜543百 禹道爾吞,尺寸間差显為 ^ 為士8奈未。此處顯示攜帶1至6個電荷 21 1257705 的粒=其質/荷比範圍介於(350〜543)*106至(58〜91)*1〇6之間。 第6B圖係顯示一累積十次單掃描結果的質譜212,質言垃 212的特徵係來自多電荷粒子。比較質譜⑴與質譜2〇4(第% 圖)發現’ U〇奈米粒子所攜帶的電荷數大體為27奈米粒子的兩 倍。 此處評估藉MALDI產生且滞於第一離子啡1〇2的粒子, 大體有i—o%會依轴向質量選擇拋出模式進入第二離子啡ι〇4,原 因係⑴第-離子阱1〇2的兩帽電極拋出等量的粒子。⑺第一離 子102至第二離子牌1()4的傳送過程中,部分拋出粒子會發 生遺失的現象。(3)由於相差(phasemismateh)的產生,部分抛^ 粒子無法被第二離子牌104捕獲。因此,例如一開始在第一離 子啡1〇2中有_個帶電粒子,則利用雷射誘導螢光法在第二 離子牌H)4掃描整個頻率範圍後會# 1〇(M固粒子被探測到。由 於5A〜6B圖中量測的粒子均屬質量與電荷數差異不大的粒子, ,如-低粒子密度會出現分離效果較佳的峰(如214、216),如 弟6A圖所示。 第6A圖中锋形尖細且分離效果較佳的特徵(如μ、叫 可能由於H0奈米的粒子其每—粒子包含大體测螢光染色分 子數所致’而能輕易地被探測。亦有可能粒子被iq個或更少的 螢光分子標記,利用上述方法探測。因任何尺寸大小的粒子均 可被染色分子標記,遂雙離子牌質譜系統1〇〇可具有一寬廣的 質譜分析範圍。 雙四極離子拼質譜系統100可進行對生物巨分子或生物粒 子的質量分析’例如’系統1〇〇用於探測纟漏_iarpr—s 公司製作被螢光標記的IgG(goat antl_m()use antib〇dy)。每一收 被平均6.2個Alexa Fluor 488的鸯光分子(質量為643道爾吞) 標記,總質量大體為⑽千道爾吞,Alexa 染料的光 22 1257705 , 譜其最大的吸收與放射光的波長分別為497奈米以及518奈 ,。27奈米聚笨乙烯珠所使用的雷射與光收集系統係相同用於 量測被染色標記的IgG分子質譜。 量測IgG時,閘時間選擇為2〇毫秒’施加於第二離子阱 1〇4外帽電極的直流清除信號為2〇〇伏特。一單頻率掃描係於 η秒内得到5〇〇個資料點數據。Sinapimc acid係作為雷射脫附 /電離的基質。 7 / 7圖係顯示一營光IgG分子的質譜圖,該質譜圖係藉掃 杬30千赫餘至5千赫茲的第一離子阱驅動頻率所獲 \ α",1為200伏特,且第二離子阱104操作於一動態捕獲模隹 式(例如第—離子w驅動信號176的頻率與第— ⑷的頻率同時掃…。 1口说 片…一質铸析度(maSS re—)(1=5)可藉累積十次掃描 貝、订比為1·5* 1〇的單電荷1gG分子的數據,雜訊比大於10的 情況下而獲得。 雙雜子牌光譜系統1〇〇可用來分析生物巨粒子 =的生物分子結合體,由於染色標記已經常用於生命科學 巧/⑨上述方法相當具有實用性。之前的質譜分析,毕色 ::㈣藉光探測連接於生物粒子的染色分子數量來加 子了子上染色分子的質量),而系統〜 且刀子不須攜帶多電荷即可探測的優點。 隹U本^明已以較佳實施例揭露如上,铁Α & 本發:,任何熟習此項技藝者,在不脫離本=二=:定 内,當可作更動與潤飾,因此本發明之伴月=子中和範圍 請專利範圍所界定者A _ '、°又乾圍§硯後附之申 者為準。其他貫施例依專利範圍記载如下。 23 Ϊ257705 第一離子阱1〇2中的雜工 + 質雄Mr 可错電喷灑離子化。第5Α~7的Buffer gas, brother I? iUi- 1 AO maldi generated charged particle nitrogen buffer gas assisted capture by the body to assist the η:, the helium buffer gas in the brother-ion trap 104 assists in capturing the trap by the first ion trap 102 Out of the particles. ^ ^ ^ ^ ^ 〇2 - « ° -^^^ctlon plate) Cheats to suppress the pressure to increase detection efficiency. Nightmare 2:: Size of 27 nm of polyethylene particles mass spectrometry, first ion quality:; not ... 0 ° Hertz card driving frequency (%) operating in - axial pad pattern (axlalmass_selectlve ^ In the presence of buffer gas, the m-gate production method avoids the arc discharge phenomenon between high voltage and a Hongji. It is known that the 27 nm particles in the 27 nm polyethylene particles have a slowing time. The L:V:" diionic morphine 200 reads from 6 kHz to 〇 'year (Απ) is a photomultiplier tube 1 〇 6 detected fluorescence 1 to throw 27 nm particles. In Figure 4, Ml 5 〇 托 ,, rise day (four) 4 〇. 2 seconds. In the ^ inch '(four) gas pressure is 60 volts, knot seven Figure 4β, the voltage amplitude Γ, according to the above results, the force is 5 〇 mTorr, then rise Time 4 (J seconds. Polyethylene, count between children: = photon between the materials, selected as 27 nm clearing time is 2 milliseconds, DC clearing signal is · ι volts, above 20 1257705 is enough Let the charged particle 5A show that the two sub-wells 104 are cleared and avoid particle accumulation. Mass spectrometer 200, which is about two square meters & The single-scan of the ball is from 2*1 〇6 to 6.5 million dolphins, and the signal/magnitude distribution of the Fandi 5β image shows a signal contour of 2〇2. Mass spectrometry 202 accumulating ten single-scan results, the mass spectrometry is mass/charge ratio concentration, and the mass spectrometry is smooth. The most important feature of the mass spectrometer 202 is based on the previous 1 micron syllabus 2·5 1 〇, mainly For the contribution of singly charged particles, 0.908) is corrected. In the case of NMR, the mass spectrometer uses the throw point of 〇·95. In the 5A and 5B diagrams, the second well drive signal 176 has a fixed frequency (Ω%). He Xuan’s 5 C picture is also shown; in the spectrum, the _ cumulative ten-single-scan results of mass spectrometry, because the quality number 142 is the same as:: moving 'number 176 frequency, the female D is fixed as (u. Bibi The human kilohertz, and the card parameter detection range is shifted to, the handle knows the shell, the 曰204 special (for example, the scan changes the second off/ho ratio & field', which means the dynamic capture condition is fixed first. = the frequency of the signal) compared to the static capture condition (eg ion 1〇4_. 频率 said frequency) there are more double-charged particles displayed by the second brother 6A map _ borrow scan 1 〇 kHz to Drive signal frequency (Ω1/) and 婶...a He Hyun's brother-in-the-pot plant A and get a single-scan mass spectrum 210 of 110 nm particles, ...:: Volt. The drive signal makes the -ion card 1 2 is thrown in the range of Nayong 6 to (10) * 106. __ The average quality of the viewing beads is ..., Wan Daoer five " 〇 million Dao Tun, the mass distribution is 350 ~ 543 hundred 禹 尔 吞, The difference between the dimensions is shown as ^8 奈. This shows the particles carrying 1 to 6 charges 21 1257705 = the mass/charge ratio range is (350~543)*106 to (58~91)*1〇6 between. Figure 6B shows a mass spectrum 212 that accumulates ten single-shot results, the characteristics of which are derived from multi-charged particles. Comparing mass spectrometry (1) with mass spectrometry 2〇4 (figure %), it was found that the number of charges carried by the U-nanoparticles was approximately twice that of the 27 nm particles. Here, the particles which are produced by MALDI and are lag behind the first ionic morphine 1〇2 are evaluated. Generally, i-o% will enter the second ionic morphine 4 according to the axial mass selection throwing mode, because (1) the first ion trap The two cap electrodes of 1〇2 throw an equal amount of particles. (7) During the transfer of the first ion 102 to the second ion card 1 () 4, a part of the thrown particles may be lost. (3) Due to the phase difference mating, some of the particles cannot be captured by the second ion card 104. Therefore, for example, if there are _ charged particles in the first ionic morphine 1 〇 2, the laser-induced fluorescence method will be used to scan the entire frequency range after the second ion plate H) 4 will be # 1 〇 (M solid particles are It is detected that since the particles measured in the 5A~6B map are particles with little difference in mass and charge number, for example, the peak with better separation effect (such as 214, 216) will appear in the low particle density, such as the 6A map. As shown in Fig. 6A, the features of the sharper tip and better separation effect (such as μ, which may be due to the number of H0 nanoparticle particles per particle containing the total number of fluorescent dyes) can be easily detected. It is also possible that particles are labeled with iq or fewer fluorescent molecules and detected by the above method. Since particles of any size can be labeled by dye molecules, the 遂 dual ion card mass spectrometry system can have a broad mass spectrum. Scope of analysis. The dual quadrupole ion mass spectrometry system 100 can perform mass analysis of biological macromolecules or biological particles 'for example' system 1 〇〇 for detecting leaks _iarpr-s company produces fluorescently labeled IgG (goat antl_m ( ) use antib〇dy). An average of 6.2 Alexa Fluor 488 luminescence molecules (mass 643 Dolby) were labeled with a total mass of (10) thousand dolphins, and an Alexa dye of 22 1257705. The maximum absorption and emission wavelengths were 497. Nano and 518 Nai. The laser used in the 27 nm polystyrene beads is the same as the light collection system for measuring the mass spectrum of the labeled IgG molecules. When measuring IgG, the gate time is chosen to be 2 〇 milliseconds. The DC clear signal applied to the outer electrode of the second ion trap 1〇4 is 2 volts. A single frequency scan is obtained in 5 seconds of data point data in n seconds. Sinapimc acid is used as laser desorption/ionization The matrix of the 7/7 image shows a mass spectrum of a camping light IgG molecule obtained from the first ion trap driving frequency of the 30 kHz to 5 kHz broom, and the temperature is obtained by \α", 1 is 200 volts. And the second ion trap 104 operates in a dynamic capture mode (for example, the frequency of the first-ion w drive signal 176 is simultaneously scanned with the frequency of the first (4). 1 port says a piece... a quality cast (maSS re- ) (1=5) can be accumulated by ten scans, and the order ratio is 1·5* 1〇 The data of the charge 1gG molecule is obtained with a noise ratio greater than 10. The double hybrid card spectroscopy system can be used to analyze the biomolecules of biological giant particles = because the dyeing markers are often used in life sciences. The above method is quite practical. Previous mass spectrometry, Bicolor:: (4) by means of light to detect the number of dye molecules attached to the biological particles to add the mass of the dyed molecules on the sub-), and the system ~ and the knife does not need to carry multiple charges The advantages that can be detected. 隹U本明明 has been disclosed in the preferred embodiment as above, shovel & hair: Anyone who is familiar with the art, can not be changed from this = two =: And the retouching, therefore, the companion of the present invention = sub-neutral scope, please define the scope of the patent defined by the scope of the patent A _ ', ° and 干 砚 砚 砚 。 。 。. Other embodiments are described below in terms of patent scope. 23 Ϊ257705 The handyman in the first ion trap 1〇2 + the mass male Mr can be electrically sprayed with ionization. 5th to 7th

貝口日圖係在一低電壓(2〇0你4士、 ^ J 叮、故P (00伙特)下線性掃描第一阱驅動頻率所 獲诗,可避免尚壓(5〇喜k" 干尸坏 放心的if尹^ .. )氦緩衝氣體存在時,電極發生電弧 到電腦150输制頻率的非線性掃描,可得 到一線性質譜圖。 Μ田」仔 在 貝知例中’弟一離子啡1 〇 2為暂旦、g炫丁 π 择竹丁,技μ , 雕于阱102在貝里遥擇的不穩定模式 ^她加榼跨於兩帽電極的辅助交流電壓掃描阱驅 電壓的振幅。-功能不同的幫浦區係設置於第—與第二離子 牌之間’-氦氣脈衝施加在第—離子_以便於儲存第—離子拼 7中:粒子’而再第二離子請中保持一穩流的氦緩衝氣 體,則是為阻慢粒子的目的。 質譜儀100藉使用%光學鏡頭系統以增加光收集效率來 增加探測的靈敏度,而靈敏度可進一步藉使用一更大開口的捕 獲裝置以降低背景雷射光的散射程度加以提升。一藍光雷射二 極體(blue d1〇de laser)或一高能量的LED(波長又為473奈米)可 代替氬離子雷射為一光源,以降低成本。特定產品的染色標定 技術(sample-specific dye-labeling technique)可藉雷射一極體辅 助的多色螢光光譜(multicolor fluorescence spectroscopy)梦別不 同樣品中的奈米粒子。 24 1257705 【圖式簡單說明】 第1圖與第2圖係根據本發明之一實施例,一雙離子阱質譜 糸統之不意圖。 第3圖係根據本發明之一實施例,不同信號隨時間之變化 圖。 第4A圖至7圖係根據本發明之一實施例,粒子之質譜圖。 【符號說明】 100〜雙離子阱質譜系統; 102〜第一離子阱; 1〇4〜第二離子阱; 106〜光電倍增管; 108、114〜環形電極; 110、112、116、118〜帽電極; 120、 122、124、128、130、152〜洞; 121、 134、150〜雷射光束; 12 6〜樣品架, 132〜腔室; 136、140、156〜鏡片; 138〜Nd:YAG 雷射; 142〜第一離子阱驅動信號; 144、180〜功率放大器; 146、178〜信號產生器; 148〜掃描頻率信號; 150〜電腦; 152〜觸發信號; 154〜氬離子雷射; 25 1257705 158〜擋光板; 160〜第二離子阱之内部空間; 162〜快速前置放大器; 164〜光子計數器; 170〜第3圖; 172〜直流清除信號之波型圖; 176〜第二離子阱驅動信號; 178〜光子計數器之計數值圖; 180〜樣品; 18 1〜直流清除信號; 200〜27奈米聚苯乙烯球之單掃描質譜; 202〜累積十次200之質譜; 204〜累積十次200之質譜(探測低質/荷比之區域); 210〜110奈米聚苯乙烯球之單次掃描質譜; 212〜累積十次210之質譜; 214、216〜峰; 220〜直流清除信號之低點; 222〜第二離子阱驅動信號開啟; 224〜觸發信號之波型圖; 226〜掃描頻率之波型圖; 228〜掃描頻率信號之高頻率; 230〜掃描頻率信號之低頻率; 232〜週期電壓脈衝; 234〜第二離子阱驅動信號之開啟-關閉圖; 236〜雷射誘導螢光之光子計數圖; 238〜雷射誘導螢光之光子計數高點; 240〜雷射誘導螢光之光子計數低點; 26 1257705The Beikou daily map is a poem obtained by linearly scanning the first well driving frequency under a low voltage (2〇0 you 4 士, ^ J 叮, then P (00 ”), which can avoid the pressure (5〇喜k" If you have a bad corpse, you can get a linear scan of the frequency at which the electrode arcs to the computer 150. The 质谱 」 仔 在 在 在 在 贝 贝 贝 贝 贝 贝 贝 贝 贝Morphology 1 〇 2 is temporary, g 炫 π 竹 竹, technology μ, carved in the unstable mode of the trap 102 in Berry remotely ^ she twisted across the two cap electrodes of the auxiliary AC voltage scanning well drive voltage Amplitude. - The different functional fauna is set between the first and the second ion plate. - The helium pulse is applied to the first ion _ in order to store the first ion block 7: the particle 'and the second ion. Maintaining a steady flow of helium buffer gas is the purpose of slowing down the particles. The mass spectrometer 100 uses a % optical lens system to increase the light collection efficiency to increase the sensitivity of the detection, and the sensitivity can be further extended by using a larger opening. The capture device is boosted by reducing the degree of scattering of the background laser light. A light laser diode (blue d1〇de laser) or a high-energy LED (wavelength of 473 nm) can replace argon ion laser as a light source to reduce cost. Staining calibration technology for specific products (sample- The specific dye-labeling technique can be used to multiply the nanoparticles in different samples by laser-assisted multicolor fluorescence spectroscopy. 24 1257705 [Simplified illustration] Figure 1 and Figure 2 According to one embodiment of the present invention, a dual ion trap mass spectrometer is not intended. Fig. 3 is a graph showing changes of different signals over time according to an embodiment of the present invention. Figs. 4A to 7 are diagrams according to the present invention. One embodiment, the mass spectrum of the particles. [Description of symbols] 100~ dual ion trap mass spectrometry system; 102~ first ion trap; 1〇4~ second ion trap; 106~photomultiplier tube; 108, 114~ ring electrode 110, 112, 116, 118~ cap electrode; 120, 122, 124, 128, 130, 152~ hole; 121, 134, 150~ laser beam; 12 6~ sample holder, 132~ chamber; 136, 140 , 156~ lens; 138~Nd:YAG laser; 142~1st ion trap drive signal; 144, 180~ power amplifier; 146, 178~ signal generator; 148~ scan frequency signal; 150~ computer; 152~ trigger signal; 154~ argon ion laser; 25 1257705 158~ Light blocking plate; 160~ internal space of the second ion trap; 162~ fast preamplifier; 164~photon counter; 170~3; 172~DC clear signal waveform pattern; 176~second ion trap driving signal; 178~photon counter count value map; 180~sample; 18 1~DC clear signal; 200~27 nanometer polystyrene sphere single scan mass spectrum; 202~ cumulative ten times 200 mass spectrum; 204~ cumulative ten times 200 Mass spectrometry (detection of low mass/charge ratio region); 210-110 nm polystyrene sphere single-shot mass spectrometry; 212~ cumulative ten times 210 mass spectrum; 214, 216~ peak; 220~DC clear signal low point; 222~Second ion trap drive signal is turned on; 224~ trigger signal waveform pattern; 226~ scan frequency waveform pattern; 228~ scan frequency signal high frequency; 230~ scan frequency signal low frequency; 232~cycle power Pressure pulse; 234~second ion trap drive signal on-off diagram; 236~laser induced fluorescence photon count diagram; 238~laser induced fluorescence photon count high point; 240~laser induced fluorescence Photon count low; 26 1257705

Claims (1)

修正日期:94.7.21 1257?齡25852號申請專利範圍修正本 拾、申請專利範圍: L種採測奈米粒子之方法,包括下列步驟: 週』丨生地自一第一離子阱(ion trap)拋出帶電粒子; 、於-第二離子牌接收自該第一離子胖拋出之該帶電粒子; 探測自該第二離子財該帶電粒子所被誘發之螢光。 &gt; ^如申請專利範圍第丨項所述之探測奈米粒子之方法,其 中该第-離子牌係依據該帶電粒子之質/荷比(職 ratio)拋出該粒子。 &amp; 3·如申請專利範目第丨項所述之探測奈米粒子之方法,更 包括直接照射一雷射光源於一固體、液體或膠體之樣品,以脫 附並電離《樣品中之該粒子’而產生該帶電粒子於該第—離子 阱中。 4.如申請專利範圍第丨項所述之探測奈米粒子之方法,其 中更包括使用電噴灑離子化(eleetn)spray iQnizat_)技術以產生 該帶電粒子並提供該帶電粒子至該第一離子阱。 5·如申請專利範圍第1項所述之探測奈米粒子之方法,更 ^括利用光離子化(phGtG_iGnizati()n)技術以產生該帶電粒子並 提供該帶電粒子於該第一離子阱中。 6·如申請專利範圍第1項所述之探測奈米粒子之方法,更 包括直接照射-雷射光源於該第二離子拼中之該粒+,以誘導 σ亥粒子產生螢光(fluorescence)。 7·如申請專利範圍第1項所述之探測奈米粒子之方法,更 包括週期性地移除該第二離子阱中至少一部分之粒子。 8·如申請專利範圍第1項所述之探測奈米粒子之方法,其 中该棟測光源之步驟係包括使用一光電倍增管(ph〇t_ltipHer 0578-A20102TWF2(N1);07A-920505;david 28 1257705 tube)以5十异自該粒子拋出之光子數目。 9.如申請專職圍第8項料之探财綠子之方法,盆 中該光電倍增管係冷卻至—低於攝氏零度之溫度。 ’、 10·如申請專利範圍第8項所述之探測奈米粒子之方法,1 中該光電倍增管係於—閘週期(gate period)計算光子數並產生二 計數值。 11·如申請專利範圍第10項所述之探測奈米粒子之方法, 其中於該間隔週期,移除該第二離子阱中至少一部分之粒子。 12·如申請專利範圍第丨項所述之探測奈米粒子之方法,其 中更包括以螢光染色分子標記該帶電粒子。 13·如申請專利範圍第12項所述之探測奈米粒子之方法, 其中係包括以多於一種之螢光染色分子標記該帶電粒子。 14·如申請專利範圍第12項所述之探測奈米粒子之方法, 更包括產生一以一特定種類染色分子標記之該粒子之質譜。 15·如申請專利範圍第丨項所述之探測奈米粒子之方法,更 包括控制一施加於該第二離子阱之交流電壓信號吨 voltage signal),以使該第二離子阱接收該粒子之阻慢時間 (damping time)低於 200 毫秒。 16·如申請專利範圍第丨項所述之探測奈米粒子之方法,更 包括施加一交流電壓信號於該第二離子阱,以產生一震盪電磁 場(oscillating electromagnetic field)侷限該粒子於該第二離子阱 中。 17.如申請專利範圍第16項所述之探測奈米粒子之方法, 更包括週期性地關閉該交流電壓信號,以移除該第二離子牌中 之所有粒子。 18·如申請專利範圍第1項所述之探測奈米粒子之方法,其 0578-A20102TWF2(N1 );07A-920505;david 29 1257705 中該粒子係為螢光粒子。 中專利範圍第1項所述之探測奈米粒子之方法,其 笮忒粒子係包含螢光染色分子。 20·如申請專利範圍第1 中該粒子係包含生物分子。 21·如申請專利範圍第1 中β亥第一離子牌所接收之至 106 〇 項所述之探測奈米粒子之方法,其 項所述之探測奈米粒子之方法,其 少一部分之粒子,其質/荷比高於 22.—種探測奈米粒子之裝置,包括·· 笛第—離子牌,接收粒子並依據其f/荷比,週期性地自該 第一離子阱拋出該粒子; 一第二離子解,接收自該第—離子_出之該粒子;以及 一探測器’探測自該第二離㈣中該粒子所發射之光源。 更勺ϋ申請專利範圍第22項所述之探測奈米粒子之裝置, 於兮笛產生產生—隨時間變化之電壓信號,當施加 離子㈣’於該第二離子味中產生一震盈電磁場,使 自離子《出之該粒子,在進人該第二離子㈣減速。 =如中請專利範圍帛22項所述之探測奈米粒子之裝置, 、&quot;苐—離子解係包括1極離子牌(quadrupole ion trap)。 =如巾請專利範圍第22韻述之探測奈米粒子之裝置, I離ΐ離子拼係設定為週期性地拋出尺寸介於1G〜100奈米 ^如中請專利範圍第22項所述之探測奈米粒子之裝置, 以第-離子解係設定為週期性地抛出質/荷比高於Μ之粒 27·如申請專利範圍第22項所述之探測奈米粒子之裝置, 〇578~A2〇1〇2TWF2(N1);07A -920505;david 30 1257705 其中該第二離子阱亦包括一四極離子阱。 28·如申請專利範圍第22項所述之探測奈米粒子之裝置, 其中該探測器係包括一螢光探測器。 29·如申請專利範圍第22項所述之探測奈米粒子之裝置, 其中該粒子係為螢光粒子。 3〇·如申請專利範圍第22項所述之探測奈米粒子之裝置, 其中該粒子係包含螢光染色分子。 31·如申請專利範圍第22項所述之探測奈米粒子之裝置, 更〇括田射產生益,產生一直接照射於該第二離子阱中該 子之雷射光束。 如申請專利範圍帛22 $所述之探測奈米粒+之裝置, =括-第一信號產生器,產生一施加於該第一離子啡以於該 弟離子財產生—震盪電磁場之隨時間變化之正弦函數信 !3:如申晴專利範圍$ 32項所述之探測奈米粒子之裝置, 其中β亥弟-信號產生器於—量測循環期間掃描該隨時 第一電壓信號頻率之-第—頻率至—第二頻率 胖依據該粒子之質/荷比關性地拋出該粒子。 離子 =如中請專·圍第33項所述之探測奈米粒子之裝置, ’、5虎產生器掃描該隨時間變化之第一電壓_赛@ 率,使頻率變化與時間呈—線性關係。 頻 ^=利範圍第33項所述之探測奈米粒子之裝置, :4 U產生器掃描該p«間變化之第—電壓 變化與時間呈-非線性關係,遂於該量測^ 弟—離子㈣出之該粒子,其質/荷比與時間呈-線性關係 36.如申請專利範圍第32項所述之探測奈米粒子之裝置、, 〇578-A201〇2TWF2(N1);〇7A-920505;david 31 1257705 更包括-第二信號產生器 第二離子w中產生一震盪 號。 ,產生一施加於該第二離子阱以於該 電磁場之隨時間變化之正弦函數信 7 ·如中請專·圍第2 2項所述之探測奈米粒子之裝置, 更已括一提供該粒子之離子供應源。 38·如申請專利範圍第37項所述之探測奈米粒子之裝置, ,、中该離子供應源係包括一含粒子之基質。 39·如申請專利範圍帛22項所述之探測奈米粒子之裝置, =該第-離㈣係與該第二離伟接合,使自該第—離子牌 出之5亥粒子被該第二離子阱捕獲。 中 4〇·—種探測奈米粒子之方法,包括下列步驟·· 施加一第-交流電壓信號於包含帶電粒子之_第_離子牌 自該交流電壓信號頻率之 以週期性地拋出該帶電粒子 兮嫌:加一第二交流電壓信號於一接收自該第-離子阱拋出之 该T電粒子之第二離子阱;以及 千 依據一與該第一 交流電壓信號之頻率 第二離子阱中。 交流電壓信號頻率之預定關係掃描該第二 ,使該第二離子阱接收之該粒子侷限於該 札如申請專利範圍帛40項所述之探測奈米粒子之方法, 其中掃描該第二交流電壓信號頻率係使該第二離子解之解參數 (qz)維持不變’此有關於該第二離子味所接收之該粒子。' 42.如申請專利範圍第41項所述之探測奈米粒子之方法, 其中該牌參數(qz)係與該第二交流㈣信號振幅呈正比,而與 第二交流電壓信號頻率次方呈反比。 一 Μ 0578~A20102TWF2(N1);07A-920505;david 32 1257705 43·如申請專利範圍第4〇項所述之探測奈米粒子之方法, 更包括週期性地降低該第二交流電壓信號之振幅,以清出該第 二離子阱中之該粒子。 44.一種探測奈米粒子之方法,包括下列步驟: 施加一控制信號於一第一離子阱,以使該第一離子阱依據 離子之質/荷比週期性地拋出該離子; 使用一第二離子阱收集自該第一離子陕抛出之該離子; 探測該第二離子阱中該離子所被激發之螢光,以產生一探 測信號;以及 連結該探測信號與該控制信號,以決定一該第一離子阱中 該離子之質譜。 45·如申請專利範圍第44項所述之探測奈米粒子之方法, 更包括對-基質直接照射-雷射光,誘導脫附與電離反應之發 生’以於該第一離子阱中產生該離子。 46·如申請專利範圍第44項所述之探測奈米粒子之方法, 更包括直接照射-雷射光於該第二離子时之該離子,以誘導 47.如申請專利範圍第44項所述之探測奈米粒子之方法, 更包括調整該第二料狀參數以符合該第—離㈣之 :該第二離子胖於至少一特定時間週期子 ===== 】包:調整該第二離子牌之參數以符= ^,該第-一具有-=範 49.如申請專利範圍第44項所述之探測奈米粒子之方法, 0578-A20102TWF2(N1);07A-920505;david 33 1257705 更包括週期性地自該第二離子阱中清出該離子。 5〇·如申請專利範圍第49項所述之探測奈米粒子之方法, 自該第二離子时該離子發射之光源量之信號, 该離子後績自第二離子阱清出。 51·種楝測奈米粒子之裝置,包括·· -第二離子阱,接收自一第一離子阱依據一質/荷比週期性 地拋出之離子; 雷射產生器,產生一直接照射於該第二離子阱中該帶電 粒子之雷射光束; 一光探測器,探測自該第二離子时該粒子發射之光源; 以及 電路,產生一施加於該第二離子阱之控制電壓,使該第 =離子牌於選擇時間清出該粒子,該粒子之拋出至少間隔一特 定時間週期,以使該光探測器探測該粒子所發射之榮光。 52·如申印專利範圍第51項所述之探測奈米粒子之裝置, 其中該第二離子牌係包括—具有兩帽電極㈣谓)之四極離子 53·如申凊專利範圍第51項所述之探測奈米粒子之裝置, 更1括彳5號產生态,產生一施加於該第一離子阱之一第二控 制電壓’以週期性地拋出該帶電粒子,該第二控制電壓具有一 自一第一頻率掃描至一第二頻率之頻率。 0578-A201 〇2TWF2(N1 );07A-920505;david 34Amendment date: 94.7.21 1257-year-old 25,852 patent application scope revision, patent application scope: L method for measuring nano-particles, including the following steps: Zhou Shengsheng from a first ion trap (ion trap) The charged particles are thrown; the second ion card receives the charged particles thrown from the first ion fat; and the fluorescent light induced by the charged particles is detected from the second ion. The method of detecting nanoparticle according to the above aspect of the invention, wherein the first ion card throws the particle according to a mass/charge ratio of the charged particle. & 3. The method for detecting nanoparticles as described in the application of the patent specification, further comprising directly irradiating a laser light source to a sample of a solid, liquid or colloid to desorb and ionize the sample The particles 'produce the charged particles in the first ion trap. 4. The method of detecting nanoparticle according to the above-mentioned claim, further comprising using an electrospray ionization ionization (orietn) spray iQnizat_) technique to generate the charged particle and provide the charged particle to the first ion trap . 5. The method for detecting nanoparticles according to claim 1, further comprising utilizing photoionization (phGtG_iGnizati()n) technology to generate the charged particles and providing the charged particles in the first ion trap . 6. The method of detecting nanoparticle according to claim 1, further comprising directly irradiating the laser light source with the particle + in the second ion to induce fluorescence of the σHai particles. . 7. The method of detecting nanoparticle according to claim 1, further comprising periodically removing at least a portion of the particles in the second ion trap. 8. The method of detecting nanoparticle according to claim 1, wherein the step of measuring the light source comprises using a photomultiplier tube (ph〇t_ltipHer 0578-A20102TWF2(N1); 07A-920505; david 28 1257705 tube) The number of photons thrown from the particle by a factor of five. 9. If you apply for the method of exploring the greens in the eighth item of the full-time, the photomultiplier tube in the basin is cooled to a temperature lower than zero degrees Celsius. The method of detecting nanoparticles as described in claim 8, wherein the photomultiplier tube calculates the number of photons in a gate period and generates two count values. 11. The method of detecting nanoparticle according to claim 10, wherein at least a portion of the particles in the second ion trap are removed during the interval. 12. The method of detecting nanoparticle according to claim </RTI> wherein the method further comprises labeling the charged particle with a fluorescent dye molecule. 13. The method of detecting nanoparticle as described in claim 12, wherein the charging of the charged particles is performed by more than one fluorescent dyeing molecule. 14. The method of detecting nanoparticle as described in claim 12, further comprising generating a mass spectrum of the particle labeled with a particular species of dyed molecule. 15. The method of detecting nanoparticle according to claim 2, further comprising controlling a voltage signal applied to the second ion trap to enable the second ion trap to receive the particle The damping time is less than 200 milliseconds. The method of detecting nanoparticle according to the above application, further comprising applying an alternating voltage signal to the second ion trap to generate an oscillating electromagnetic field to limit the particle to the second In the ion trap. 17. The method of detecting nanoparticle of claim 16, further comprising periodically turning off the alternating voltage signal to remove all particles in the second ion card. 18. The method of detecting nanoparticle according to claim 1, wherein the particle is a fluorescent particle in 0578-A20102TWF2 (N1); 07A-920505; david 29 1257705. The method for detecting nanoparticle according to Item 1, wherein the ruthenium particle system comprises a fluorescent dye molecule. 20. The particle system comprises a biomolecule as set forth in Patent Application No. 1. 21. The method for detecting nanoparticles as described in paragraph 106 of the first-half ion card of the first application of the patent scope, the method for detecting nano particles, wherein a part of the particles, The mass/charge ratio is higher than 22. A device for detecting nano particles, including a flute-ion plate, receiving particles and periodically ejecting the particles from the first ion trap according to their f/charge ratio a second ion solution, the particle received from the first ion, and a detector 'detecting the light source emitted by the particle from the second ion (four). Further, the apparatus for detecting nano particles described in claim 22 of the patent application method generates a voltage signal which changes with time when the whistle is applied, and generates a shock electromagnetic field when the applied ion (four)' The self-ion "extracts the particle, and the second ion (four) is decelerated when entering the person. = The device for detecting nanoparticles as described in the scope of Patent Application 帛22, &quot;苐-ion solution system includes a quadrupole ion trap. = For example, please refer to the device for detecting nano particles in the 22nd syllabus of the patent, and the I-ion ion-series system is set to periodically throw the size between 1G and 100nm ^ as described in item 22 of the patent scope. The apparatus for detecting nano particles, wherein the first ion solution system is set to periodically eject a particle having a mass/charge ratio higher than that of the crucible. 27. The device for detecting nano particles as described in claim 22 of the patent application, 578~A2〇1〇2TWF2(N1); 07A-920505; david 30 1257705 wherein the second ion trap also includes a quadrupole ion trap. 28. The apparatus for detecting nanoparticles of claim 22, wherein the detector comprises a fluorescent detector. The device for detecting nanoparticle according to claim 22, wherein the particle is a fluorescent particle. The device for detecting nanoparticle according to claim 22, wherein the particle system comprises a fluorescent dye molecule. 31. The apparatus for detecting nanoparticles as described in claim 22, further comprising generating a laser beam directly incident on the second ion trap. For example, the device for detecting nanoparticle+ described in the patent application 帛22 $, including the first signal generator, generates a time applied to the first ionic body to generate the oscillating electromagnetic field. Sinusoidal function letter! 3: The device for detecting nano particles as described in the Shen Qing patent range of $32, wherein the β hai-signal generator scans the frequency of the first voltage signal at any time during the measurement cycle - the first The frequency to - the second frequency fat is thrown off according to the mass/charge ratio of the particle. Ion=If you want to use the device for detecting nano particles as described in item 33, '5, the 5 tiger generator scans the first voltage _ 赛@ rate, which makes the frequency change linear with time. . The device for detecting nanoparticles as described in item 33 of the frequency range: the 4 U generator scans the first-voltage change of the change between the p« and the time-linear relationship, and the measurement is performed on the measurement-- The ion (4) is out of the particle, and its mass/charge ratio is linear with time. 36. The device for detecting nano particles according to claim 32, 〇578-A201〇2TWF2(N1); 〇7A -920505; david 31 1257705 further includes a second signal generator generating a oscillating number in the second ion w. Generating a sinusoidal function signal applied to the second ion trap for changing the electromagnetic field over time. The device for detecting nanoparticles as described in Item 2 is further provided. The ion supply source for the particles. 38. The apparatus for detecting nanoparticles according to claim 37, wherein the ion supply source comprises a matrix comprising particles. 39. The device for detecting nanoparticle according to claim 22, wherein the first-to-fourth (four) system is joined to the second ion, so that the 5th particle from the first-ion card is the second Ion trap capture. The method for detecting nano particles includes the following steps: applying a first-alternating voltage signal to a _th ion card containing charged particles from the frequency of the alternating voltage signal to periodically throw the charged The particle is suspected of: adding a second alternating voltage signal to a second ion trap that receives the T-electrode thrown from the first-ion trap; and a second ion trap based on a frequency of the first alternating voltage signal in. Scanning the second, the predetermined relationship of the frequency of the alternating voltage signal, such that the particles received by the second ion trap are limited to the method of detecting nanoparticles as described in claim 40, wherein the second alternating voltage is scanned The signal frequency maintains the solution parameter (qz) of the second ion solution unchanged. This is related to the particle received by the second ion taste. 42. The method of detecting nanoparticle according to claim 41, wherein the card parameter (qz) is proportional to the amplitude of the second alternating current signal, and the frequency of the second alternating voltage signal is Inverse ratio. A method for detecting nanoparticles as described in claim 4, further comprising periodically reducing the amplitude of the second alternating voltage signal, as described in claim 4, the method of detecting the nanoparticles of claim 4, To clear out the particles in the second ion trap. 44. A method of detecting nanoparticle, comprising the steps of: applying a control signal to a first ion trap such that the first ion trap periodically ejects the ion according to an ion mass/charge ratio; The second ion trap collects the ion thrown from the first ion; detects the fluorescent light excited by the ion in the second ion trap to generate a detection signal; and connects the detection signal and the control signal to determine a mass spectrum of the ions in the first ion trap. 45. The method of detecting nanoparticle as described in claim 44, further comprising directly irradiating a -substrate-laser light, inducing the occurrence of desorption and ionization reaction to generate the ion in the first ion trap . 46. The method of detecting nanoparticle according to claim 44, further comprising directly irradiating the laser light to the second ion to induce 47. As described in claim 44 The method for detecting nano particles further comprises adjusting the second material parameter to conform to the first-to-fourth (four): the second ion is fat for at least one specific time period ===== 】Package: adjusting the second ion The parameter of the card is the symbol = ^, and the first one has a -= 49. The method for detecting nano particles as described in claim 44, 0578-A20102TWF2 (N1); 07A-920505; david 33 1257705 This includes periodically clearing the ions from the second ion trap. 5. The method of detecting nanoparticle according to claim 49, wherein the signal of the amount of light emitted by the ion from the second ion is cleared from the second ion trap. 51. A device for measuring nanoparticle, comprising: a second ion trap, receiving ions periodically ejected from a first ion trap according to a mass/charge ratio; and a laser generator to generate a direct illumination a laser beam of the charged particle in the second ion trap; a light detector that detects a source of light emitted by the particle from the second ion; and a circuit that generates a control voltage applied to the second ion trap, such that The cation card clears the particle at a selected time, and the particle is ejected at least for a specific period of time such that the photodetector detects the glory emitted by the particle. 52. The apparatus for detecting nanoparticle according to claim 51, wherein the second ion card comprises a quadrupole ion having two cap electrodes (four) said 53. The device for detecting nano particles further includes a second generation voltage applied to the first ion trap to periodically eject the charged particles, the second control voltage having A frequency that is scanned from a first frequency to a second frequency. 0578-A201 〇2TWF2(N1); 07A-920505;david 34
TW92125852A 2003-08-07 2003-09-19 Device of detecting nanoparticle and method of the same TWI257705B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW92125852A TWI257705B (en) 2003-09-19 2003-09-19 Device of detecting nanoparticle and method of the same
US10/726,071 US7119331B2 (en) 2003-08-07 2003-12-01 Nanoparticle ion detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92125852A TWI257705B (en) 2003-09-19 2003-09-19 Device of detecting nanoparticle and method of the same

Publications (2)

Publication Number Publication Date
TW200512943A TW200512943A (en) 2005-04-01
TWI257705B true TWI257705B (en) 2006-07-01

Family

ID=37764239

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92125852A TWI257705B (en) 2003-08-07 2003-09-19 Device of detecting nanoparticle and method of the same

Country Status (1)

Country Link
TW (1) TWI257705B (en)

Also Published As

Publication number Publication date
TW200512943A (en) 2005-04-01

Similar Documents

Publication Publication Date Title
Barnes et al. Detecting single molecules in liquids
US11967496B2 (en) High resolution imaging apparatus and method
Hill et al. Real‐time measurement of fluorescence spectra from single airborne biological particles
US20210333173A1 (en) High speed modulation sample imaging apparatus and method
JP2012199224A (en) System and method for localization of many fluorescence markers in biological sample
JP2011099848A (en) Flow cytometer and flow cytometry method
JPS59174742A (en) Method and apparatus for dividing and sorting fine particle
US20210373313A1 (en) Autofocus sample imaging apparatus and method
US10161890B2 (en) Cathodoluminescence-activated nanoscale imaging
US20210404968A1 (en) Inductively coupled plasma torch with reverse vortex flow and method of operation
CN106290287A (en) A kind of method producing two-photon radiation based on single quantum dot
Szalai et al. Super-resolution FRET measurements
US12013341B2 (en) Microscopy method and system
CN106290277A (en) A kind of measure the device and method in conversion nano fluorescent particle life-span on single dispersing
WO2016139386A1 (en) A method for measuring the presence of an impurity substance in a liquid sample and a device for the same
JP2003344284A (en) Device and method for measuring fluorescent life distribution image
TWI257705B (en) Device of detecting nanoparticle and method of the same
JPS6080764A (en) Method and device for identifying microparticle
Jin et al. Practical time‐gated luminescence flow cytometry. I: Concepts
Bettiol et al. High-resolution fast ion microscopy of single whole biological cells
CN107063481A (en) A kind of second order correlation measuring system of wide bandgap semiconductor quantum dot fluorescence
Haddad et al. High-throughput single-cell analysis of nanoparticle-cell interactions
CN110779903A (en) Method for measuring confocal microscope detection efficiency based on single quantum dots
Delmdahl et al. Crossed-beam velocity map imaging of collisional autoionization processes
Chen Multi-photon Nonlinear Fluorescence Emission in Upconversion Nanoparticles for Super-Resolution Imaging

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees