TWI250668B - Light apparatus emitting light with multiple wavelengths via nanometer fluorescent material, light device and manufacturing method thereof - Google Patents

Light apparatus emitting light with multiple wavelengths via nanometer fluorescent material, light device and manufacturing method thereof Download PDF

Info

Publication number
TWI250668B
TWI250668B TW93129202A TW93129202A TWI250668B TW I250668 B TWI250668 B TW I250668B TW 93129202 A TW93129202 A TW 93129202A TW 93129202 A TW93129202 A TW 93129202A TW I250668 B TWI250668 B TW I250668B
Authority
TW
Taiwan
Prior art keywords
light
nano
wavelength
fluorescent
emitting device
Prior art date
Application number
TW93129202A
Other languages
Chinese (zh)
Other versions
TW200611433A (en
Inventor
Shih-Hsiung Chan
Jian-Shihn Tseng
Original Assignee
Advanced Optoelectronic Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Optoelectronic Tech filed Critical Advanced Optoelectronic Tech
Priority to TW93129202A priority Critical patent/TWI250668B/en
Application granted granted Critical
Publication of TWI250668B publication Critical patent/TWI250668B/en
Publication of TW200611433A publication Critical patent/TW200611433A/en

Links

Landscapes

  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention relates to a light apparatus emitting light with multiple wavelengths via nanometer fluorescent materials, light device and manufacturing method thereof. The light device includes an initial light source capable of generating an initial color light; a transparent mold element enveloping the initial light source; and at least one kind of nanometer fluorescent materials distributed inside or on the mold element or coated on the initial light source. The nanometer fluorescent material will absorb the initial color light and thus excite fluorescent light that is different from the initial color light. The initial color light is combined with the fluorescent light to become a light with multiple wavelengths, which is emitted via the light device. In addition, various nanometer fluorescent materials with various grain sizes thereof can be combined to generate light with multiple wavelengths composed of different main wavelength sets.

Description

1250668 九、發明說明: 【發明所屬之技術領域】 本發明,特別是有關於一種利用奈米(nanometer; nm)螢光物質產生多波長光線之發光裝置、發光元件及其 製造方法,尤係關於一種包含奈米螢光物質之半導體 光電元件。 【先前技術】 發光二極體(lightemittingdiode;LED)係一種接 受電力後可自主發光之光電元件,其體積小且電力效 率極佳,而且具有優異之初期驅動特性,因此已廣泛 運用於一般照明、大型看板及顯示器背光源等用途。 目前發光二極體之種類可依照其所使用之半導體 材料來分類,例如:GaAs、GaAsl-xPx或GaP等系 列。此外,若在GaAsl-xPx、GaP系列半導體材料中 摻雜氮原子,可以產生不同顏色之光線。一般而言, 發光二極體所發出之光線具有單色性波長之特性,至 於该波長之長短係根據可發光之電子轉移過程处 |月匕 量變化而定,目前實際上使用之波長包含紅外光、紅 光、綠光、黃光及藍光等等。在人體視覺中,可藉由 紅、綠、藍三種不同顏色光的感應而產生多種顏色的 感覺,此亦即稱紅、綠、藍三色為光的『三原色』。 方將紅、綠、藍三種不同波長之發光二極體光源鄰 接配置,將可因為混光而得到其它顏色光。美國專利 第5,995,070號揭露採用鄰接不同之光源做為顯示裝 H:\HU\LGC\ 先進開S\95470\95470.doc 1250668 置,其中每一像素係由一紅光源、一藍光源以及兩綠 光源之二極體所組成。 上述利用不同波長之光源混色所產生的白光會有 色調與亮度分散之問題,因此不易產生真正所需要的 白光。再者,該白光發光源係總合不同電性之二極體 所構成,必須分別以適合之驅動電路控制,因此在系 統設計上較為複雜。 另外美國專利第6,6 14,179號揭露以發光二極體產 生藍光’該藍光會激發磷光劑而產生黃光,兩種光源 昆色後就形成白光,其中藍光波長為 420nm〜 4 9〇nm ’ 以及鱗光劑係由{[(Y,Gd)Sm](AlGa)0:Ce}所 組成。但此方式所產生的白光對於物體真實色彩的表 現較差’亦即色溫度(c〇l〇r temperature )較高而致 使演色性(color rendering index)不佳。 因此若要發展一高演色性的白光,必須藉由控制或 調整光源出光線中所含各色光之比例,使其與自然光 之組成比例相近,則其所呈現物體的色彩能較為逼 真。另在勞光物質的研發上,目前皆以釔鋁石榴石2 體(化學式·· X3(A3B2)〇12)的組成成分為研發重點, 如 Y A G 勞光體纟士播 a ' 〇 構中之 y3(ai3ai2)〇12 、 (Y3-xcex)Al5〇12 、 (Y29Tb"5)Ai5〇"、及 (Y2.95-aCe0.05Gda)(Al5_bGab)〇i2 等。1250668 IX. Description of the Invention: [Technical Field] The present invention relates, in particular, to a light-emitting device, a light-emitting element, and a method of manufacturing the same, which are capable of producing multi-wavelength light using a nanometer (nm) fluorescent substance, in particular A semiconductor optoelectronic component comprising a nano-fluorescent substance. [Prior Art] A light-emitting diode (LED) is a photovoltaic element that can emit light autonomously after receiving electric power. It has a small size, excellent power efficiency, and excellent initial driving characteristics, and thus has been widely used for general illumination. Large kanban and display backlights. The types of light-emitting diodes can be classified according to the semiconductor materials used, for example, GaAs, GaAs1-xPx or GaP. In addition, if a nitrogen atom is doped in the GaAsl-xPx or GaP series semiconductor materials, light of different colors can be generated. In general, the light emitted by the light-emitting diode has a monochromatic wavelength characteristic, and the length of the wavelength is determined according to the change of the amount of electrons in the electron-transfer process, and the wavelength actually used currently includes infrared Light, red, green, yellow and blue. In human vision, multiple colors of red, green, and blue can be used to induce multiple colors. This is called "three primary colors" of red, green, and blue. The light source diodes of three different wavelengths of red, green and blue are arranged adjacent to each other, and other color lights can be obtained due to the light mixing. U.S. Patent No. 5,995,070 discloses the use of adjacent light sources as display H:\HU\LGC\Advanced S\95470\95470.doc 1250668, each of which consists of a red light source, a blue light source, and two green lights. The diode of the light source is composed of. The white light generated by the above-described color mixing using light sources of different wavelengths has a problem of dispersing the hue and the brightness, so that it is difficult to produce the white light that is actually required. Furthermore, the white light source is composed of a plurality of diodes of different electrical properties, and must be controlled by a suitable driving circuit, so that the system design is complicated. In addition, U.S. Patent No. 6,6,179 discloses the generation of blue light by a light-emitting diode which generates a yellow light by exciting a phosphor, and white light is formed after the two light sources are colored, wherein the blue light has a wavelength of 420 nm to 4 9 〇 nm. And the sizing agent is composed of {[(Y, Gd)Sm](AlGa)0:Ce}. However, the white light produced by this method has a poor performance for the true color of the object, that is, the color temperature (c〇l〇r temperature) is high, resulting in poor color rendering index. Therefore, in order to develop a high color rendering white light, it is necessary to control or adjust the proportion of the light contained in the light source to be close to the composition ratio of the natural light, so that the color of the object presented can be more realistic. In addition, in the research and development of the Luguang material, the composition of the yttrium aluminum garnet 2 (chemical formula · X3 (A3B2) 〇 12) is currently the focus of research and development, such as YAG labor light body gentleman broadcast a ' 〇 Y3(ai3ai2)〇12, (Y3-xcex)Al5〇12, (Y29Tb"5)Ai5〇", and (Y2.95-aCe0.05Gda)(Al5_bGab)〇i2, etc.

综上所述,市場上亟需I 、 而要—種與自然光之組成比例相 近之發光裝置,且擁有較彳土 ^之發光效率及亮度。 H.\fiU\LGC\ 先進開S\95470\95470.doc 1250668 【發明内容】 本發明之目的係提供—種利用奈米營光物f產生多波長 光線之發光裝置、發光元件及其製造方法,其係利用奈米 螢光體吸收發光元件產生之初始顏色光,而激發出異於初 始顏色光之螢光光源’混合初始顏色光及螢光光源就能形 成多波長光源之發光裝置。 本發明之另—目的係藉由調整螢光物質之奈米顆粒尺寸 而產生多波長光線之發光裝置,可同時混合多種顆粒尺寸 之同一奈米螢光物質而得到白光光源。 為達上述目的,本發明揭示—種利用奈米勞光物質產生 多波長光線之發光裝置、發光元件及其製造方法,該發光 裝置包含-能產生初始顏色光之初始光源。—包覆於該初 始光源上之透光之模構件包覆於該初始光源上,並有至少 -種奈米螢光物質分佈於該模構件内或表面,或者是覆蓋 於》亥初始光源上。该奈米螢光物質會吸收該初始顏色光, 因而激發產生異於該初始顏色光之瑩光光線。該初始顏色 光與該螢光錢會混合為—?波長光線,且該多波長光線 會自該發光裝置射出。另外,可組合不同奈米螢光物質及 其顆粒尺寸’而產生不同主波長組成之多波長光線。 該初始光源係由一發光二極體提供,尤其以氮化物半導 體之發光二極體為較佳。 該奈米螢光物質係由有機螢光物質及無機螢光物質所構 成,可直接塗佈於該初始光源之表面或該模構件之表面, 亦可混佈於該模構件内。 H:\HU\LGC\ 先進開 S\95470\95470.doc 1250668 該發光裝置之製造方法係先提供一可 初始光源,該初始光源係藉將—刀17項―之 心尤凡件固定及電性連社 於一導線架或基板上。並將至 遷、、、口 #、 τ π 士 續不水螢光物質覆蓋於 该初始光源表面,最後以一模構 再1干巴復並保護該初始光源 及奈米螢光物質。 【實施方式】 在奈米科技領$的研發上,已發現在物質顆粒尺寸 達到奈米時將產生量子效應(quantumeffee〇,此時 物質的能階(energy level )及物理、化學特性都會 產生某些變化。如表一所示:螢光物質CdSe的顆粒 尺寸在2.8nm時,受到激發後可產生波長5 3 3nm的 綠色螢光;若顆粒尺寸改變為4.0nm,在受到激發後 可產生波長5 85nm的橘色螢光;若顆粒尺寸為5 6nm 時,受到激發後可產生波長64Onm的紅色螢光。由 以上數據可知,奈米顆粒之尺寸可用於調整及控制發 光波長。若能同時使用多種顆粒尺寸來產生不同螢 光’將可得到多波長高演色性的光源。假設有一發光 二極體可產生藍光,若同時將顆粒尺寸為2.8及 5 · 6nm之螢光材料覆蓋於發光二極體表面,則可混合 紅、綠、藍三種不同波長之光線以產生白光。 表一:奈米顆粒之尺寸及其產生螢光 單位:nm 螢光顏色 綠色 黃色 橘色 橘紅色 紅色 發射波長 535±10 560+10 585±10 610+10 640±10 H:\HU\LGC\ 先進開發\95470\95470.(!(^ 1250668 峰值波長 —------ 522 547 572 597 顆粒尺寸 2.8 3.5 4.0 4.7 0 / 5.6 圖1係本發明之多波長光線發光裝置之示意圖。發光裝 置ίο主要包含固定於導線架(leadframe) 13杯型構造處 之發光元件之晶粒㈤12’該晶粒12藉由金屬導線15 分別與導線架13之㈣13a及祕13b電性相連,可以是 一發光二極體或雷射二極體。於該杯型構造處有奈米螢光 物質11填滿’因此當晶粒12接收外部電力供應會發出初 始顏色光線,覆蓋於四周之奈米螢光物質u會被初始光線 激發,並因而產生異於該初始顏色光之營光光線。該初始 顏色光與該螢光光線會混合為一多波長光線,最後該多波 長光線會穿透模構件14而射出。 奈米螢光物質11可以是有機材料及無機材料之其中一 者,或者由该兩種材料混合所組成。無機材料可包含氧化 物、氮化物、氮氧化物或硫化物等以一種或多種奈米顆粒 尺寸或成分所組成的混合物,例如··氧化矽、氮氧化石夕、 氮化矽、氧化鋁、氧化辞,或釔鋁石榴石螢光體等;也可 由不同顆粒直徑大小的硫化辞(ZnS )、硒化辞(ZnSe )、蹄 化鋅(ZnTe )、硫化鎘(CdS )、硒化鎘(CdSe )、碲化鎘 (CdTe )、石西化船(PbSe )、氮化鎵(GaN )、氮化鋁(A1N )、 氮化鋁鎵(AlGaN)、氮化鋁銦鎵(AlInGaN)、磷化鎵(GaP)、 砷磷化鎵(GaAsP )、砷化鎵(GaAs )、砷化鋁(aIAs )、石申 化鋁鎵(AlGaAs )、磷化鋁鎵銦(AlGalnP )、磷化銦鎵 (InGaP )、磷化銦鋁(ΐηΑΙΡ )、矽(si )、鍺(Ge )、碳化 迚\1^\1^(:\先進開發\95470\95470.€1(^ 1250668 秒(Sic )或碳(c )之奈米材料混合而組成。另外,有機 材料係由矽樹脂(silicone )系列、環氧樹脂(epoxy )系列、 及聚合物(polymer )系列之含矽聚合物中的一種或多種材 料所組成。因此,該奈米螢光物質11可以被激發出單波長 或多波長之螢光光線。 除了如圖1覆盍於晶粒12表面外,奈米螢光物質21亦 可塗佈或附著於模構件24表面,如圖2所示。發光二極體 之晶粒12發出之初始顏色光線會先穿透模構件24,然後激 务奈米螢光物質2 1產生螢光光線,其中以氮化物半導體作 為忒發光一極體為較佳,例如:Al、Ga及In之氮化物,然 亦可以雷射二極體取代來作為初始光源。 圖3係本發明之另一多波長光線發光裝置之示意圖,其 係在發光裝置30之模構件34表面塗佈一層奈米螢光物質 312。另外,於晶粒12處四周亦覆蓋另一奈米螢光物質3^。 另外,奈米螢光物質41亦可分佈於模構件44内,如圖 4所示。於壓模(molding)製程時,將該奈米螢光物質μ 與裱氧樹脂混合之壓模膠(molding c〇mp〇und) 一同注射 入模具内,如此就能形成如圖4之發光裝置4〇。 圖5係本發明之再一多波長光線發光裝置之示意圖。相 較於上述各圖中針腳(ριη)型式之封裝外觀,圖5係一表 面黏著(SMD)型式之發弁奘罟Β ) 土八之心尤衣置50。晶粒52固定於絕緣 層53c表面之Ν型導電銅羯別上,並藉由金屬導線55盘 p型導電銅猪53a電性相連’其中P型導電銅箱⑽型 導電銅箱53b及絕緣層53c構成具有電路之基板53。奈米 H: \HU\LGC\ 先進開發\95470\95470. doc -10- 1250668 形成 511 螢光物質5U及512可先塗佈在晶粒52表面,然後才 透明之模構件54於練53上方。另外,奈米螢光物質 亦可採沈積製程直接形成於晶粒52上表面。 本發明之技術内容及技術特點已揭示如上,’然而熟悉本 :技術之人士仍可能基於本發明之教示及揭示而作種種不 月離本&明精神之替換及修飾。因此,本發明之保護範圍 應不限於實施例所揭示者’而應包括各種不背離本發明之 替換及修飾’並為以下之巾請專利範圍所涵蓋。 【圖式簡單說明】 圖1係本發明之第一實施例之多波長光線發光裝置之示 意圖; 圖2係本發明之第二實施例之多波長光線發光裝置之示 意圖; 圖3係本發明之第三實施例之多波長光線發光裝置之示 意圖; 圖4係本發明之第四實施例之多波長光線發光裝置之示 意圖;以及 圖5係本發明之第五實施例之多波長光線發光裝置之示 意圖。 【主要元件符號說明】 10、 20、30、40、50 發光裝置 11、 21、311'312、41、511、512 奈米螢光物質 12、 5 2 晶粒 13 導線架 13a陰極 13b陽極 H:\HU\LGC\ 先進開#\95470\95470.doc -11 - 1250668 14、 15、 53 53b 24 、 34 、 44 、 54 模構件 55 金屬導線 基板 53a P型導電銅箔 N型導電銅箔 53c 絕緣層 H:\HU\LGC\ 先進開發\95470\95470.也〇 12-In summary, there is a need in the market for I, but a kind of illuminating device that is similar in proportion to the composition of natural light, and has a luminous efficiency and brightness comparable to that of the earth. H.\fiU\LGC\Advanced Open S\95470\95470.doc 1250668 SUMMARY OF THE INVENTION An object of the present invention is to provide a light-emitting device for generating multi-wavelength light using nano-camera f, a light-emitting element, and a method of manufacturing the same It is a light-emitting device that uses a nano-luminous body to absorb the initial color light generated by the light-emitting element, and excites a fluorescent light source that is different from the initial color light to mix the initial color light and the fluorescent light source to form a multi-wavelength light source. Another object of the present invention is to provide a light-emitting device for multi-wavelength light by adjusting the size of the nanoparticle of the fluorescent material, and to simultaneously mix the same nano-fluorescent material of a plurality of particle sizes to obtain a white light source. In order to achieve the above object, the present invention discloses a light-emitting device for producing multi-wavelength light using a nano-light material, a light-emitting element, and a method of manufacturing the same, the light-emitting device comprising an initial light source capable of generating an initial color light. a light transmissive mold member coated on the initial light source is coated on the initial light source, and at least one kind of nano fluorescent material is distributed in or on the mold member, or is covered on the initial light source . The nano-fluorescent material absorbs the initial color light, thereby exciting a fluorescent light that is different from the initial color light. The initial color light and the fluorescent money will be mixed as -? Wavelength light, and the multi-wavelength light is emitted from the light emitting device. In addition, different nano-fluorescent materials and their particle size can be combined to produce multi-wavelength light of different dominant wavelengths. The initial light source is provided by a light-emitting diode, especially a light-emitting diode of a nitride semiconductor. The nano-fluorescent substance is composed of an organic fluorescent substance and an inorganic fluorescent substance, and may be directly applied to the surface of the initial light source or the surface of the mold member, or may be mixed in the mold member. H:\HU\LGC\Advanced opening S\95470\95470.doc 1250668 The manufacturing method of the illuminating device first provides an initial light source, which is fixed and powered by a 17-item The company is connected to a lead frame or a substrate. The fluorescing material is moved to the surface of the initial light source, and the initial light source and the nano fluorescent material are protected by a dry structure. [Embodiment] In the research and development of nanotechnology, it has been found that when the particle size reaches nanometer, quantum effect (quantumeffee〇) will occur, and the energy level and physical and chemical properties of the substance will produce some Some changes are shown in Table 1. When the particle size of the fluorescent substance CdSe is 2.8 nm, it can generate green fluorescence with a wavelength of 53 3 nm after excitation; if the particle size changes to 4.0 nm, it can generate wavelength after being excited. 5 85nm orange fluorescence; if the particle size is 56nm, it will produce red fluorescence with a wavelength of 64Onm after excitation. From the above data, the size of the nanoparticle can be used to adjust and control the wavelength of the light. A variety of particle sizes to produce different fluorescence' will result in a multi-wavelength, high color rendering light source. It is assumed that a light-emitting diode can generate blue light, and at the same time, a fluorescent material with a particle size of 2.8 and 5.6 nm is coated on the light-emitting diode. On the surface of the body, light of three different wavelengths of red, green and blue can be mixed to produce white light. Table 1: Size of the nanoparticle and its fluorescent unit: nm fluorescent color Color yellow orange orange red emission wavelength 535±10 560+10 585±10 610+10 640±10 H:\HU\LGC\ Advanced development\95470\95470.(!(^ 1250668 Peak wavelength ----- -- 522 547 572 597 Particle size 2.8 3.5 4.0 4.7 0 / 5.6 Figure 1 is a schematic diagram of the multi-wavelength light-emitting device of the present invention. The light-emitting device ίο mainly comprises a light-emitting element fixed at a 13-cup structure of a leadframe. The die (5) 12' is electrically connected to the (four) 13a and the secret 13b of the lead frame 13 by the metal wires 15, and may be a light emitting diode or a laser diode. There is a nanometer in the cup type structure. The phosphor material 11 is filled up. Therefore, when the crystal chip 12 receives the external power supply, it emits an initial color light, and the surrounding nano-fluorescent material u is excited by the initial light, thereby generating a light different from the initial color light. The initial color light and the fluorescent light are mixed into a multi-wavelength light, and finally the multi-wavelength light is transmitted through the mold member 14. The nano-fluorescent substance 11 may be one of an organic material and an inorganic material. Or by the two materials The inorganic material may comprise a mixture of oxides, nitrides, nitrogen oxides or sulfides, etc., in one or more nanoparticle sizes or compositions, such as cerium oxide, arsenic oxynitride, and cerium nitride. , alumina, oxidized, or yttrium aluminum garnet phosphor; etc.; also can be sulphide (ZnS), selenium (ZnSe), gamma zinc (ZnTe), cadmium sulfide (CdS), selenization of different particle diameters CdSe, CdTe, PbSe, GaN, Al1N, AlGaN Gallium phosphide (GaP), GaAs gallium arsenide (GaAsP), gallium arsenide (GaAs), aluminum arsenide (aIAs), stellite aluminum gallium (AlGaAs), aluminum gallium phosphide (AlGalnP), indium phosphide Gallium (InGaP), Indium phosphide (ΐηΑΙΡ), 矽(si), 锗(Ge), 碳?1^\1^(:\Advanced Development\95470\95470.€1(^ 1250668 s(Sic) Or carbon (c) nanomaterials are mixed to form. Further, the organic material is composed of one or more materials selected from the group consisting of a silicone series, an epoxy series, and a polymer-containing cerium-containing polymer. Therefore, the nano-fluorescent substance 11 can be excited by a single-wavelength or multi-wavelength fluorescent light. In addition to the surface of the die 12 as shown in Fig. 1, the nano-fluorescent substance 21 may be coated or attached to the surface of the mold member 24, as shown in Fig. 2. The initial color light emitted by the crystal 12 of the light-emitting diode first passes through the mold member 24, and then the excitation nano-fluorescent substance 2 1 generates fluorescent light, wherein the nitride semiconductor is preferably used as the x-ray emitting body. For example, nitrides of Al, Ga, and In can be replaced by a laser diode as an initial light source. 3 is a schematic view of another multi-wavelength light-emitting device of the present invention, which is coated with a layer of nano-fluorescent substance 312 on the surface of the mold member 34 of the light-emitting device 30. In addition, another nano-fluorescent substance 3 is also covered around the crystal grain 12. Alternatively, the nano-fluorescent substance 41 may be distributed in the mold member 44 as shown in FIG. In the molding process, the nano-fluorescent substance μ and the epoxy resin mixed molding compound (molding c〇mp〇und) are injected into the mold together, thereby forming the light-emitting device as shown in FIG. 4〇. Figure 5 is a schematic illustration of yet another multi-wavelength light illuminating device of the present invention. Compared with the package appearance of the pin (ριη) type in the above figures, Fig. 5 is a surface-adhesive (SMD) type of hairpin. The die 52 is fixed on the 导电-type conductive copper of the surface of the insulating layer 53c, and is electrically connected by a p-type conductive copper pig 53a of the metal wire 55. The P-type conductive copper box (10) type conductive copper box 53b and the insulating layer 53c constitutes a substrate 53 having a circuit. Nano H: \HU\LGC\ Advanced Development\95470\95470. doc -10- 1250668 Forming 511 Fluorescent materials 5U and 512 can be applied to the surface of the die 52 before the transparent mold member 54 is above the practice 53 . In addition, the nano-fluorescent substance may be directly formed on the upper surface of the crystal grain 52 by a deposition process. The technical contents and technical features of the present invention have been disclosed as above, and it is to be understood that those skilled in the art can make various substitutions and modifications of the present invention in light of the teachings and the disclosure of the present invention. Therefore, the scope of the invention should be construed as not limited by the scope of the invention, and should be BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a multi-wavelength light-emitting device according to a first embodiment of the present invention; FIG. 2 is a schematic view of a multi-wavelength light-emitting device according to a second embodiment of the present invention; 4 is a schematic diagram of a multi-wavelength light-emitting device according to a fourth embodiment of the present invention; and FIG. 5 is a multi-wavelength light-emitting device according to a fifth embodiment of the present invention. schematic diagram. [Description of main component symbols] 10, 20, 30, 40, 50 Illumination device 11, 21, 311 '312, 41, 511, 512 Nano fluorescent substance 12, 5 2 Grain 13 Lead frame 13a Cathode 13b Anode H: \HU\LGC\Advanced Open #\95470\95470.doc -11 - 1250668 14, 15, 53 53b 24, 34, 44, 54 Mold member 55 Metal wire substrate 53a P-type conductive copper foil N-type conductive copper foil 53c Insulation Layer H:\HU\LGC\ Advanced Development\95470\95470. Also 〇12-

Claims (1)

1250668 十、申請專利範圍: 1 · 一種利用奈米螢光物質產生多波長光線之發光裝置,包 含·· 一初始光源,產生一初始顏色光; 一模構件’包覆該初始光源;以及 至少一奈米螢光物質,接受該初始顏色光之激發,並 產生異於該初始顏色光之螢光光線; 藉由該初始顏色光與螢光光線混合使該發光裝置發出 多波長光線。 2. 如申請專利範圍第旧之利用奈米榮光物質產生多波長光 線之毛光衣置,其中该初始光源係一發光二極體。 3. 如申請專利範圍第2項之利用奈米營光物質產生多波長光 -良之!X光衣置’其中該發光二極體係一氮化物半導體之發 光二極體。 (如申請專利範圍第!項之利用奈米榮光物質產生多波長光 、、友之光$置,其中3奈米榮光物質係'至少由—種有機材 料及一種無機材料中之一者所組成。 5·如申請專利範圍第W之利用奈米螢光物質產生多波長光 線之發光裝置,其中該奈米榮光物質係由不同顆粒尺寸之 材料混合所組成。 6·如申請專利範圍第4項之利用奈米榮光物質產生多波長光 線之發光裝置,其中該無機材料係由硫化辞(Zns)、石西 辛(ZnSe)碎化辞(ZnTe)、硫化鑛(CdS)、砸化 編(cdSe) '碌化鑛(CdTe)、石西化錯(pbse)、氮化 H:\HU\LGC\ 先進開發\95470\95470.· 1250668 鎵(GaN)、氮化鋁(A1N)、氮化鋁鎵(AlGaN)、氮 化銘錮蘇(AlInGaN )、填化鎵(GaP )、钟磷化鎵(GaAsP )、 石申化鎵(GaAs )、砷化鋁(AlAs )、砷化鋁鎵(AlGaAs )、 磷化鋁鎵銦(AlGalnP)、磷化銦鎵(InGaP)、磷化銦 鋁(ΙηΑΙΡ )、矽(Si)、鍺(Ge )、碳化矽(sic )及碳 (C )中之至少一者,且以至少一種奈米顆粒尺寸所組成。 如申請專利範圍第4項之利用奈米螢光物質產生多波長光 線之發光裝置,其中該無機材料係由氧化物、氮化物、氮 氧化物及硫化物中至少一種化合物,且以至少一種奈米顆 粒尺寸所組成。 8 ·如申請專利範圍第7項之利用奈米榮光物質產生多波長光 線之發光裝置,其中該化合物包含氧化石夕、氮氧化石夕、氮 化矽、氧化鋁、氧化鋅及釔鋁石榴石螢光體。 9.如申請專利範圍第4項之利用奈米營光物質產生多波長光 線之發光裝置,其中該有機材料係包含石夕樹脂系列、環氧 樹脂系列、及聚合物系列之含石夕聚合物中至少-種材料。 10.7請專利範圍第1項之利用奈米榮光物質產生多波長光 線之發光裝置,其中哕太止μ 长尤 光源之表面。&物質係直捿覆蓋於該初始 11。如申請專利範圍第1項 線之發光裝置,盆中节大/奈米f光物f產生多波長光 内部。 、以示米螢光物質係分佈於該模構件之 I2.如申請專利範圍第丨 線之發光裝置,其中节大j用奈米螢光物質產生多波長光 δΛ*米螢光物質係塗佈於該模構件之 H:\HU\LGC\ 先進開發\95470\95470. doc 1250668 表面。 1 3 .如申请專利範圍第i項之利用奈米螢光物質產生多波長光 線之毛光衣置,其中該奈米營光物質係直接覆蓋於該初始 光源之表面’並塗佈於該模構件之表面。 1 4 ·如申叫專利範圍第i項之利用奈米螢光物質產生多波長光 線之發光裝置,其中該奈米勞光物質係由至少-層之螢光 材料所組成。 15. 如申請專利範圍第1項之利用奈米勞光物質產生多波長光 線之發光裝置,其中該發光裝置係一表面黏著型式之裝 置。 16. -種利用奈米螢光物f產生多波長光線之發光裝置 含: M W始光源’係整合-發光S件及至少-奈米營光物 質在一起;以及 一模構件,包覆該初始光源; 、,其中該奈米勞光物質接受該發光元件發出之初始顏色 2,並產生異於該初始顏色光之螢光光線,藉由該初始顏 與螢光光線混合使該發光裝置發出多波長光線。 17.^請專利範圍第16項之利用㈣螢光物質產生多波長 、'在之《光衣置’其中該發光元件係一發光二極體。 18^申請專利範圍第17項之利用奈米螢光物質產生多波長 么光衣置’其尹該發光二極體係一氮化物半導體 發光二極體。 I 19.如申請專利範圍第16項之㈣奈μ光物質產生多波長 H:\HU\LGC\先進開發物勘: 5470.doc !25〇668 光線之發光裝置’其中該奈米螢光物質係藉由半導體製程 與該發光元件結合在一起。 20·如申請專利範圍第16項之利用奈米營光物質產生多波長 光線之發光裝置,其中該奈米螢光物質係至少由一種有機 材料及種無機材料之其中一者所組成。 21·如申請專利範圍第16項之制奈米螢光物f產生多波長 光線之兔光裝置,其中该奈米螢光物質係由不同顆粒尺寸 之材料混合所組成。 22·如申請專利範圍第2G項之利用奈米螢光物質產生多波長 光線之發光裝置,其中該無機材料係由硫化辞、碼化辞、 碲化辞、硫化錢、砸化録、碌化鑛、石西化鉛、氮化嫁、氮 化鋁、IUMS鎵、氮化紹銦鎵、磷化鎵、珅磷化鎵、坤化 録、石申化銘、石申化紹鎵、碟化銘鎵麵、麟化銦鎵、碟化鋼 鋁、石夕、鍺、碳化石夕及碳中之至少一者,且以至少一種奈 米顆粒尺寸所組成。 23.如中請專利範圍第2G項之利用奈米螢光物f產生多波長 光線之發光裝置,其中該無機材料係由氧化物、氮化物: 氮氧化物及硫化物中至少一種化合物,且以至少一種奈米 顆粒尺寸所組成。 、 2 4 ·如申請專利範圍第2 3項之利用奈米螢光物質產生多波長 光線之發光裝置’其中該化合物包含氧化矽、氮氧化矽、 氮化矽、氧化鋁、氧化鋅及釔鋁石榴石螢光體。 A如中請專利範圍第2〇項之利用奈米營光物f產生多波長 光線之發光裝置,其中該有機材料包含石夕樹脂系列、環氧 H:\HU\LGC\ 先進開#\95470\95470.doc 1250668 才于月曰系列、及聚合物系列之含石夕聚合物中至少一種材料。 2 6 ·如申請專利範圍第2〇項之利用奈米螢光物質產生多波長 光線之發光裝置,其中該奈米螢光物質係由至少一層之螢 光材料所組成。 2 7 ·如申請專利範圍第2〇項之利用奈米螢光物質產生多波長 光線之發光裝置,其中該發光裝置係一表面黏著型式之装 置。 、 2 8.利用I米榮光物質產生多&長光線之發光I置之製造方 法,其包含下列步驟: 择供一可發出初始顏色光之初始光源; 覆蓋至)一層奈米螢光物質於該初始光源表面;以及 以一模構件包覆該初始光源。 2 9 .如巾請專利範圍第則之㈣奈米螢光物質產生多波長 光線之發光裳置之製造方法,其另包含固定一發光元件: 一導線架而形成該初始光源之步驟。 30.如中請專利範圍第29項之利用奈米f光物f產生多波長 光線之發光裝置之製造方法,其中該發光元件係一種發光 一極體或雷射二極體。 1·如申請專利範圍第3〇項之利 光線之發光裝置之製造方法 物半導體之發光二極體。 用奈米螢光物質產生多波長 其中該發光二極體係一氮化 3 2 ·如申請專利範圍第28項之利 〜用不未螢光物質產生多波長 光線之發光裝置之製造方法,其中 Τ δ亥奈未螢光物質係藉由 丰V體製程沈積於該初始光源 HAHU\LGC\ 先進開發\9547〇\9547〇&^ 1250668 ;3·Π請專利範圍第28項之利用奈米榮光物質產生多波長 先線之發光裝置之製造方法,其中該奈米營光物質係至少 由-種有機材料及-種無機材料中之一者所组成。 4.如申請專利範圍第則之利用奈米螢光物f產生多波長 先線之發光裝置之製造方法,其中該奈米螢光物質係由不 同顆粒尺寸之材料混合所組成。 35. 如申請專利範圍第33項之利用奈錢光物質產生多波長 光線之發光裝置之製造方法,其中該無機材料係由硫化 鋅、砸化鋅、碲㈣m則㈣、碲化鑛、砸化錯、 氮㈣、氮化紹、氮化|呂鎵、氮化銘銦嫁、鱗化嫁、石申鱗 化鎵、石申化鎵、砂化銘、碎化銘鎵、麟化銘嫁姻、填化姻 鎵、磷化銦鋁、矽、鍺、碳化矽及碳中之至少一者,且以 至少一種奈米顆粒尺寸所組成。 36. 如申請專利範圍第33項之利用奈米螢光物質產生多波長 光線之發光裝置之製造方法,其中該無機材料係由氧化 物、氮化物、氮氧化物及硫化物中至少一種化合物,且以 至少一種奈米顆粒尺寸所組成。 3 7 .如申請專利範圍第36項之利用奈米螢光物質產生多波長 光線之發光裝置之製造方法,其中該化合物包含氧化矽、 氮氧化矽、氮化矽、氧化鋁、氧化鋅及釔鋁石榴石螢光體。 38.如申請專利範圍第33項之利用奈米螢光物質產生多波長 光線之發光装置之製造方法,其中該有機材料包含矽樹脂 糸列、環氧樹脂系列、及聚合物系列之含石夕聚合物中至少 一種材料。 HAHU\LGC\先進開發\95470\95470 d〇c 1250668 46 4 7 48 4 9 50 5 1. 52. 2請專利範圍第45項之利用奈㈣光物質產生多波長 丰毛光衣置之製""方法,其中該發光二極體係一氮化 物+導體之發光二極體。 =請專利範圍第43項之利用奈米榮光物質產生多波長 :線之發光裝置之製造方法,其中該奈米勞光物質係至少 -種有機材料及一種無機材料之其中一者所組成。 :申請專利範圍第43項之利用奈米f光物f產生多波長 線之發光裝置之製造方法,其中該奈米螢光物質係由不 同顆粒尺寸之材料混合所組成。 ‘如申請專利範圍第47項之利用奈米螢光物質產生多波長 光線之發光裝置之製造方法,其中該無機材料係由硫化 ^、碼化鋅、碲㈣、硫㈣、魏锡、碲Μ、砸化錯、 氮化鎵、氮化紹、氮化紹嫁、氣化銘姻嫁、麟化嫁、石申鱗 化録’化鎵、珅魅、坤化㈣、軌㈣銦、礙化銦 鎵、碟化銦紹、石夕、鍺、碳化石夕或碳十之至少一者,且以 至少一種奈米顆粒尺寸所組成。 如申明專利範圍第47項之利用奈米螢光物質產生多波長 光線之發光裝置之製造方法,其中該無機材料係由氧化 物、氮化物、氮氧化物及硫化物中至少一種化合物,且以 至少一種奈米顆粒尺寸所組成。 如申請專利範圍第50項之利用奈米螢光物質產生多波長 光線之發光裝置之製造方法’其中該化合物包含氧化石夕、 氮氧化矽、氮化矽、氧化鋁、氧化辞及釔鋁石榴石螢光體。 如申請專利範圍第47項之利用奈米螢光物質產生多波長 H: \H U\LGC\ 先進開發\95470\95470. doc !25〇668 2之發光裝置之製造方法,其中該有機材料包含秒樹脂 系列、環氧樹脂系列、及聚合物系列之切聚合 一種材料。 V 53.如申請專利範圍第43項之利用奈米f光物質產生多 光線之發光裝置之製造方法,其另包含 、 ^ 3將另一奈米螢弁物 貝覆蓋於該初始光源之步驟。 54·如申請專利範圍第43項之利用奈米螢光物質產生多波長 光線之發光裝置之製造方法,其另包含 ' 質塗佈於該模構件表面之步驟。 另—奈米榮光物 55·:種利用奈米螢光物質產生多波長光線之發光元件,包 一電致發光之半導體物體,產生_ 度王初始顏色光;以及 至少一種奈米螢光物質,盘該 ^ 4千導體物體結合,並接 受該初始顏色光之激發,而產生 I王兵於该初始顏色光之螢 光線。 Μ 56·如申請專利範圍第55項 一 ^< 刊用奈水螢光物質產生多波長 光線之發光7L件,其中該來ill m I, ,、Y 4 +導體物體係一發光二極體。 57·如申請專利範圍第56項之利 、心力用奈未螢光物質產生多波長 光線之發光元件,其中該私古_ &先—極體係一氮化物半導體之 發光二極體。 5 8·如申請專利範圍第55項之剎 貞之利用奈米螢光物質產生多波長 光線之發光元件,其中該奉半Μ /、水嘵光物質係至少由一種有機 材料及一種無機材料中之一者 59·如申請專利範圍第55項之利 1总 、心力用奈米螢光物質產生多波長 R· \HU\LGC\ 先進開發\95470\95470. doc !25〇668 光線之發光元件’其中該奈米螢光物質係由不同顆粒尺寸 之材料混合所組成。 6 0 ·如申請專利範圍第58項之利用奈米螢光物質產生多波長 光線之發光元件,其中該無機材料係由硫化辞、硒化辞、 碲化鋅、硫化鎘、硒化鎘、碲化鎘、硒化鉛、氮化鎵、氮 化鋁、氮化鋁鎵、氮化鋁銦鎵、磷化鎵、砷磷化鎵、砷化 鎵、石申化紹、石申化銘鎵、磷化銘鎵姻、磷化銦鎵、鱗化鋼 銘、石夕、鍺、碳化石夕及碳中之至少一者,且以至少一種奈 米顆粒尺寸所組成。 丁 61_如申請專利範圍第58項之利用奈米螢 光線之發光元件,其中該無機材料係由氧化物、氮^ 齓氧化物及硫化物中至少一種化合物,且以至少 顆粒尺寸所組成。 不木 光利用奈米榮光物質產生多波長 2發光元件’其中該化合物包含氧切、氮氧切、 化石夕、氧化1呂、氧化辞及㈣呂石榴石螢光體。 认^申請專利範圍第58項之利用奈米勞光 =光元件,其中該有機材料包她系列= 二糸列、及聚合物系列之切聚合物中至少—種材; • 1 4專利範圍第58項之利用奈0光物 光線之發光元件,其中該奈米榮光幻皮長 光材料所組成。 、/、 夕一層之螢 H_\HU\LGa先進開發\95470\95470.也〇 -10- 1250668 72. 73. 74. Π請專利範圍第69項之利用奈米勞光物質產生多波長 Γ,::元件之製造方法…該無機材料係由氧化 物、鼠化物、氮氧化物及硫化物中至少—種化合物,且以 至少一種奈米顆粒尺寸所組成。 如申請專利範圍第72項之利用奈米f光物質產生多波長 =之發光S件之製造方法,其中該化合物包含氧化石夕、 厂> it化石夕、氧化銘、氧化鋅及在乙銘石權石發光體。 如申請專利範圍第69項之利用奈米螢光物質產生多波長 光線之f光元件之製造方法,其巾該有機材料包含石夕樹脂 系歹j環氧祕脂系列、及聚合物系列之含矽聚合物中至少 一種材料。 75. 如申請專利範圍第66項之利用奈米螢光物質產生多波長 光線之^光元件之製造方法,其中該奈米螢光物質層係以 沈積製程覆蓋於半導體物體表面。 H:\HD\LGC\先進開發\95470\95470也(; 12-1250668 X. Patent application scope: 1 · A light-emitting device for generating multi-wavelength light by using a nano-fluorescent substance, comprising: an initial light source to generate an initial color light; a mold member 'coating the initial light source; and at least one The nano-fluorescent substance receives the excitation of the initial color light and generates a fluorescent light different from the initial color light; and the initial color light is mixed with the fluorescent light to cause the light-emitting device to emit multi-wavelength light. 2. The furnishing of a multi-wavelength light source using a nano glory material as claimed in the patent application, wherein the initial light source is a light-emitting diode. 3. If you use the nano-banking material to produce multi-wavelength light in the second paragraph of the patent application area - good! The X-ray garment is disposed as a light-emitting diode of the light-emitting diode-nitride semiconductor. (For example, the application of the patent scope item! uses the nano glory material to produce multi-wavelength light, and the friend's light is set, wherein the 3 nm glory material system is composed of at least one of an organic material and an inorganic material. 5. The illuminating device for generating multi-wavelength light by using a nano-fluorescent substance, as claimed in the patent application, wherein the nano-luminous material is composed of a mixture of materials of different particle sizes. A light-emitting device for generating multi-wavelength light by using a nano-luminous material, wherein the inorganic material is composed of Zns, ZnSe, ZnTe, sulfide ore (CdS), and cdSe. 'CdTe, CbTe, nitriding H:\HU\LGC\Advanced development\95470\95470.· 1250668 Gallium (GaN), aluminum nitride (A1N), aluminum gallium nitride ( AlGaN), NiInGaN, GaP, GaAsP, GaAs, AlAs, AlGaAs Aluminum gallium indium phosphide (AlGalnP), indium gallium phosphide (InGaP), indium phosphide (ΙηΑΙΡ), bismuth ( At least one of Si), germanium (Ge), strontium carbide (sic), and carbon (C), and is composed of at least one nanoparticle size. The use of nano fluorescent material is produced according to item 4 of the patent application. A multi-wavelength light-emitting device, wherein the inorganic material is composed of at least one compound of oxides, nitrides, nitrogen oxides, and sulfides, and is composed of at least one nanoparticle size. 8 · Patent Application No. 7 The illuminating device for generating multi-wavelength light by using a nano luminescent material, wherein the compound comprises oxidized stone, oxynitride, tantalum nitride, aluminum oxide, zinc oxide and yttrium aluminum garnet phosphor. A light-emitting device for producing multi-wavelength light by using a nano-lighting material, wherein the organic material comprises at least one of a Shih-Hui resin series, an epoxy resin series, and a polymer series-containing stone polymer. Please use the nano glory material to produce multi-wavelength light illuminating device in the first item of the patent scope, in which the surface of the ray is too long, and the material is directly covered by the initial light source. 11. If the illuminating device of the first line of the patent application scope is applied, the large/nano-light material f in the basin generates a multi-wavelength light inside. The fluorescing material is distributed in the mold member I2. The illuminating device of the ninth line of the range, wherein the large-density fluorescent material is used to generate multi-wavelength light δΛ*m fluorescent substance is applied to the mold member H:\HU\LGC\ Advanced Development\95470\95470. Doc 1250668 Surface. 1 3. The use of nano-fluorescent material to produce a multi-wavelength ray of light, as in the scope of claim i, wherein the nano-lighting material directly covers the surface of the initial light source and is coated Deployed on the surface of the mold member. 1 4 A light-emitting device for producing a multi-wavelength light using a nano-fluorescent substance according to the item i of the patent scope, wherein the nano-light material is composed of at least a layer of fluorescent material. 15. The illuminating device for producing a multi-wavelength light using a nano-light material according to the first aspect of the patent application, wherein the illuminating device is a surface-adhesive type device. 16. A light-emitting device for generating multi-wavelength light using nano fluorescent material f: MW starting light source 'integrating-lighting S piece and at least-nano camping light material together; and a mold member covering the initial a light source; wherein the nano-light material receives the initial color 2 emitted by the light-emitting element, and generates a fluorescent light different from the initial color light, and the initial color is mixed with the fluorescent light to cause the light-emitting device to emit more Wavelength light. 17.^ Please use the 16th item of the patent scope. (4) The fluorescent material produces multiple wavelengths, and the light-emitting element is a light-emitting diode. 18^ Patent Application No. 17 uses a nano-fluorescent substance to produce a multi-wavelength light source. The light-emitting diode system is a nitride semiconductor light-emitting diode. I 19. If the application of patent scope 16 (4) nano-light material produces multi-wavelength H:\HU\LGC\Advanced development object survey: 5470.doc !25〇668 Light-emitting device 'where the nano-fluorescent substance It is combined with the light-emitting element by a semiconductor process. 20. The illuminating device for producing multi-wavelength light using a nano-combustion material according to claim 16 wherein the nano-fluorescent substance is composed of at least one of an organic material and an inorganic material. 21. The nano-fluorescent material f of the invention of claim 16 produces a multi-wavelength light optical device, wherein the nano-fluorescent material is composed of a mixture of materials of different particle sizes. 22. The illuminating device for generating multi-wavelength light by using a nano-fluorescent substance according to the second aspect of the patent application, wherein the inorganic material is composed of a vulcanization word, a code word, a sulphur word, a vulcanization money, a sputum record, and a smelting Mine, stone western lead, nitriding, aluminum nitride, IGS gallium, bismuth sulphide gallium nitride, gallium phosphide, gallium phosphide, Kun Hualu, Shi Shenhuaming, Shi Shenhua Shao gallium, disc huaming gallium surface At least one of linalin gallium, discitic steel aluminum, shixi, bismuth, carbon carbide, and carbon, and is composed of at least one nanoparticle size. 23. The illuminating device for generating multi-wavelength light using the nano fluoresce f according to the second aspect of the patent, wherein the inorganic material is composed of at least one compound of an oxide, a nitride, an oxynitride and a sulfide, and It is composed of at least one nanoparticle size. 2 4 · A light-emitting device for generating multi-wavelength light using a nano-fluorescent substance as claimed in item 23 of the patent application, wherein the compound comprises cerium oxide, cerium oxynitride, cerium nitride, aluminum oxide, zinc oxide and lanthanum aluminum Garnet phosphor. A. The illuminating device for generating multi-wavelength light using nano luminaire f in the second aspect of the patent scope, wherein the organic material comprises Shishi resin series, epoxy H:\HU\LGC\Advanced opening #\95470 \95470.doc 1250668 At least one of the Moonlight series and the polymer series containing the lithium polymer. The light-emitting device for producing multi-wavelength light using a nano-fluorescent substance according to the second aspect of the patent application, wherein the nano-fluorescent substance is composed of at least one layer of fluorescent material. 2 7 - A light-emitting device for producing multi-wavelength light using a nano-fluorescent substance according to the second aspect of the patent application, wherein the light-emitting device is a surface-adhesive type device. , 2 8. A method for producing a multi- & long-light illumination I using an I-meter glare material, comprising the steps of: selecting an initial source that emits an initial color of light; covering a layer of nano-fluorescent material The initial light source surface; and coating the initial light source with a mold member. 2 9. A method for manufacturing a multi-wavelength light emitting device for a nano-fluorescent substance, which further comprises the step of fixing a light-emitting element: a lead frame to form the initial light source. 30. A method of fabricating a light-emitting device for producing multi-wavelength light using nano-f light material f according to claim 29, wherein the light-emitting element is a light-emitting diode or a laser diode. 1. A method of manufacturing a light-emitting device of the light source according to the third aspect of the patent application. A light-emitting diode of a semiconductor. Producing a multi-wavelength using a nano-fluorescent substance, wherein the light-emitting diode system is nitrided 3 2 · As disclosed in claim 28, a method of manufacturing a light-emitting device using a non-fluorescent substance to generate multi-wavelength light, wherein The δHina unfluorescent substance is deposited on the initial light source HAHU\LGC\ Advanced Development\9547〇\9547〇&^ 1250668 by the abundance V system process; 3. The use of nano glory material in the 28th patent scope A method of manufacturing a multi-wavelength first-line light-emitting device, wherein the nano-light-emitting material is composed of at least one of an organic material and an inorganic material. 4. A method of producing a multi-wavelength first-line light-emitting device using the nano-fluorescent material f as in the scope of the patent application, wherein the nano-fluorescent substance is composed of a mixture of materials of different particle sizes. 35. The method for producing a light-emitting device for generating multi-wavelength light using a nano-light material according to claim 33, wherein the inorganic material is zinc sulfide, zinc telluride, antimony (four) m (four), antimony ore, antimony Wrong, nitrogen (four), nitriding, nitriding | Lu gallium, nitriding indium marry, squamous marry, Shishen scale gallium, Shi Shenhua gallium, sandification Ming, shredded Ming gallium, Lin Huaming marriage And filling at least one of gallium gallium, indium phosphide, antimony, bismuth, niobium carbide and carbon, and consisting of at least one nanoparticle size. 36. The method of producing a light-emitting device using a nano-fluorescent substance to generate multi-wavelength light according to claim 33, wherein the inorganic material is at least one compound selected from the group consisting of oxides, nitrides, nitrogen oxides, and sulfides, And consisting of at least one nanoparticle size. 3 7. A method of producing a light-emitting device using a nano-fluorescent substance to generate multi-wavelength light according to claim 36, wherein the compound comprises cerium oxide, cerium oxynitride, cerium nitride, aluminum oxide, zinc oxide and cerium Aluminum garnet phosphor. 38. The method for producing a light-emitting device using a nano-fluorescent substance to generate multi-wavelength light according to claim 33, wherein the organic material comprises a tantalum resin series, an epoxy resin series, and a polymer series At least one material in the polymer. HAHU\LGC\Advanced Development\95470\95470 d〇c 1250668 46 4 7 48 4 9 50 5 1. 52. 2 Please use the 45th item of the patent scope to produce the multi-wavelength bristles. a method in which the light-emitting diode of the light-emitting diode system is a nitride + conductor. = Please refer to Article 43 of the patent scope for producing a multi-wavelength using a nano-luminous material: a method of manufacturing a light-emitting device, wherein the nano-light material is composed of at least one of an organic material and an inorganic material. A method of producing a multi-wavelength light-emitting device using a nano-f photo material f in claim 43 wherein the nano-fluorescent substance is composed of a mixture of materials of different particle sizes. A method for producing a light-emitting device using a nano-fluorescent substance to generate multi-wavelength light, as in claim 47, wherein the inorganic material is made of vulcanized, zinc-coded, antimony (tetra), sulfur (tetra), weiss, antimony , 砸 错 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , At least one of indium gallium, indium bismuth, stellite, strontium, carbon carbide or carbon ten, and is composed of at least one nanoparticle size. A method for producing a light-emitting device for generating multi-wavelength light using a nano-fluorescent substance according to claim 47, wherein the inorganic material is composed of at least one compound of an oxide, a nitride, an oxynitride, and a sulfide, and At least one nanoparticle size consists of. A method for producing a light-emitting device using a nano-fluorescent substance to generate multi-wavelength light according to claim 50, wherein the compound comprises oxidized stone, yttrium oxynitride, tantalum nitride, aluminum oxide, yttria and yttrium aluminum pomegranate. Stone fluorescent body. For example, the method for manufacturing a light-emitting device using a nano-fluorescent substance to produce a multi-wavelength H: \HU\LGC\ advanced development\95470\95470. doc !25〇668 2, wherein the organic material contains seconds A material selected from the group consisting of a resin series, an epoxy resin series, and a polymer series. V 53. The method for producing a light-emitting device for producing a multi-ray using a nano-f light substance according to claim 43 of the patent application, further comprising the step of covering another nano-fluorine shell with the initial light source. 54. The method of producing a light-emitting device for producing multi-wavelength light using a nano-fluorescent substance according to claim 43 of the patent application, further comprising the step of applying a substance to the surface of the mold member. Another - nano glory 55 ·: a kind of light-emitting element that uses nano-fluorescent material to generate multi-wavelength light, encapsulates an electroluminescent semiconductor object, produces _ degree king initial color light; and at least one nano-fluorescent substance, The disk is combined with the 4 thousand conductor objects and is excited by the initial color light to generate the illuminating light of the initial color light. Μ 56·If you apply for the patent scope, item 55^^<  use the water-soluble fluorescent substance to produce 7L pieces of multi-wavelength light, wherein the ill m I, , Y 4 + conductor system-light-emitting diode . 57. A light-emitting element that generates multi-wavelength light by using a non-fluorescent substance, such as the light-emitting diode of the first-pole system-nitride semiconductor. 5 8. The light-emitting element for generating multi-wavelength light by using a nano-fluorescent substance, as in the application of the 55th item of the patent scope, wherein the semi-finished/hydrophobic substance is at least one organic material and one inorganic material. One 59. If the patent application scope is the 55th of the patent, the total intensity of the nano-fluorescent material is multi-wavelength R· \HU\LGC\ Advanced development\95470\95470. doc !25〇668 Light-emitting elements' Wherein the nano fluorescent material is composed of a mixture of materials of different particle sizes. 6 0 · A light-emitting element for generating multi-wavelength light using a nano-fluorescent substance according to claim 58 of the patent scope, wherein the inorganic material is a vulcanized word, a selenium, a zinc telluride, a cadmium sulfide, a cadmium selenide, a cesium Cadmium, lead selenide, gallium nitride, aluminum nitride, aluminum gallium nitride, aluminum indium gallium nitride, gallium phosphide, gallium arsenide gallium arsenide, gallium arsenide, Shi Shenhua, Shi Shenhuaming gallium, phosphating At least one of Ming Gaon, Indium Gallium Phosphate, Scaly Steel, Shi Xi, Tantalum, Carbonized Fossil and Carbon, and is composed of at least one nanoparticle size. A light-emitting element utilizing nano-fluorescence, wherein the inorganic material is composed of at least one of an oxide, a nitrogen oxide, and a sulfide, and is composed of at least a particle size. The non-wood light utilizes a nano-luminous material to produce a multi-wavelength 2 light-emitting element, wherein the compound comprises oxygen cut, oxynitride, fossil eve, oxidized 1 liter, oxidized word, and (iv) rye garnet phosphor. Recognize that the patent application scope 58 uses the nano-labor light = optical component, wherein the organic material includes her series = two columns, and at least one of the polymer of the polymer series; 58 items of light-emitting elements utilizing nano-light rays, which are composed of the nano luminescence phantom long light material. , /, 夕 之 萤 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H :: Method of manufacturing an element... The inorganic material is composed of at least one compound of an oxide, a mouse compound, an oxynitride, and a sulfide, and is composed of at least one nanoparticle size. For example, the method for manufacturing a light-emitting S piece using a nano-f light substance to produce a multi-wavelength=the compound includes the oxidized stone eve, the factory> it fossil eve, the oxidized inscription, the zinc oxide, and the Shiquanshi illuminant. The method for producing a f-light element for generating multi-wavelength light by using a nano-fluorescent substance according to claim 69 of the patent application, wherein the organic material comprises a series of a series of epoxy resin, and a polymer series. At least one material in the bismuth polymer. 75. A method of fabricating a multi-wavelength light-emitting element using a nano-fluorescent material as claimed in claim 66, wherein the nano-fluorescent material layer is deposited on the surface of the semiconductor object by a deposition process. H:\HD\LGC\Advanced Development\95470\95470 Also (; 12-
TW93129202A 2004-09-27 2004-09-27 Light apparatus emitting light with multiple wavelengths via nanometer fluorescent material, light device and manufacturing method thereof TWI250668B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93129202A TWI250668B (en) 2004-09-27 2004-09-27 Light apparatus emitting light with multiple wavelengths via nanometer fluorescent material, light device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93129202A TWI250668B (en) 2004-09-27 2004-09-27 Light apparatus emitting light with multiple wavelengths via nanometer fluorescent material, light device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI250668B true TWI250668B (en) 2006-03-01
TW200611433A TW200611433A (en) 2006-04-01

Family

ID=37433102

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93129202A TWI250668B (en) 2004-09-27 2004-09-27 Light apparatus emitting light with multiple wavelengths via nanometer fluorescent material, light device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI250668B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856465B (en) * 2011-06-29 2015-03-11 赛恩倍吉科技顾问(深圳)有限公司 Light emitting diode packaging structure
TWI528601B (en) 2014-04-30 2016-04-01 新世紀光電股份有限公司 Package method and package structure

Also Published As

Publication number Publication date
TW200611433A (en) 2006-04-01

Similar Documents

Publication Publication Date Title
US10128418B2 (en) LED cap containing quantum dot phosphors
US7602116B2 (en) Light apparatus capable of emitting light of multiple wavelengths using nanometer fluorescent material, light device and manufacturing method thereof
TWI229460B (en) White color light emitting device
US7005667B2 (en) Broad-spectrum A1(1-x-y)InyGaxN light emitting diodes and solid state white light emitting devices
CN1954044B (en) Rules for efficient light sources using phosphor converted LEDs
US20060082296A1 (en) Mixture of alkaline earth metal thiogallate green phosphor and sulfide red phosphor for phosphor-converted LED
TW200832763A (en) Lighting device and lighting method
JP2003513474A (en) Light-emitting diode white light source with broadband excitation
JP2006524425A (en) White semiconductor light emitting device
KR101707858B1 (en) Quantum dot embedded silica and luminescent film comprising the silica
CN107170866A (en) A kind of multispectral light emitting diode construction
CN106558576A (en) White light source module and backlight module
KR101568707B1 (en) White lighting emitting diode comprising luminescent film comprising quantum dot embedded silica and method for producing the WLED
TWI245440B (en) Light emitting diode
TW569475B (en) Light emitting diode and method of making the same
KR20160134025A (en) LED lighting device having a quantum dots enhanced panel
TWI250668B (en) Light apparatus emitting light with multiple wavelengths via nanometer fluorescent material, light device and manufacturing method thereof
Ying et al. The modeling of two phosphors in conversion white-light LED
KR101164368B1 (en) Light emitting diode package and method for fabricating the same
JP4389524B2 (en) Pseudo-flame type light emitting device, manufacturing method thereof, and electronic flame lamp
KR101581231B1 (en) Method for producing quantum dot embedded silica and luminescent film comprising the silica
JP2008227550A (en) Light emitting diode, its production method, and white lighting apparatus
TWI248688B (en) Light apparatus emitting light with multiple wavelengths and manufacturing method thereof
Dinh et al. Characterization of hybrid composites of nano YAG: Ce-CdSe/ZnS quantum dots and conjugate polymer used for solid state lighting
US20050167685A1 (en) Device and method for emitting output light using Group IIB element Selenide-based phosphor material

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees