TWI249204B - Semiconductor resistance device, and manufacturing method for the same - Google Patents
Semiconductor resistance device, and manufacturing method for the same Download PDFInfo
- Publication number
- TWI249204B TWI249204B TW92130800A TW92130800A TWI249204B TW I249204 B TWI249204 B TW I249204B TW 92130800 A TW92130800 A TW 92130800A TW 92130800 A TW92130800 A TW 92130800A TW I249204 B TWI249204 B TW I249204B
- Authority
- TW
- Taiwan
- Prior art keywords
- metal
- layer
- semiconductor
- oxide layer
- manufacturing
- Prior art date
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
1249204 五、發明說明(1) 一、 【發明所屬之技術領域】 本發明係有關一種在半導體基底上直接製作電阻元件 的技術,特別是關於一種半導體之多晶矽電阻元件及其製 造方法。 二、 【先前技術】 按,所謂之多晶石夕(Ρ ο 1 y s i 1 i c ο η),就是一種由多 種不同結晶方向的小單晶矽晶粒所組成的純矽物質,其中 多晶碎内的母個早晶晶粒之間係措由晶粒界面(G r a i π Boundary)所隔開。且因晶粒界面内含有各種的線缺陷及 點缺陷,這使得摻質原子經過此些晶粒界面而進行的擴散 能力將比經由晶粒内部的运要快。 基於上述之因素,可以對多晶矽進行摻雜,以改變其 電性並獲得符合製程條件之多晶矽材質;換言之,固態電 子元件的製作,通常係藉由摻雜不同性質和濃度的摻質, 來調整多晶矽材料的特性,再利用電性的變化特性,來設 計出具有不同功能性的電子元件。因此,利用多晶矽本身 具有很高的電阻率,故可以作為I C設計上所需要的電阻元 件。 當多晶矽作為電阻元件時,如第一圖及第二圖所示, 其多晶石夕層10兩端係形成具有接觸塾(contact) 14的自 行對準金屬矽化物(sa 1 i c i de) 1 2,用以與外部導線連接 。由於電阻元件本身必須為非金屬石夕化物(η ο η - s a 1 i c i d e ) ,所以在多晶石夕層1 0表面上係覆蓋有一阻障氧化層(b 1 o c k oxide) 1 6,以防止形成金屬矽化物1 2。然而當電阻元件BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for directly fabricating a resistive element on a semiconductor substrate, and more particularly to a polycrystalline germanium resistive element of a semiconductor and a method of fabricating the same. 2. [Prior Art] According to the so-called polycrystalline stone Ρ Ρ 1 1 1 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 就是 多 多 多 多 多 多 多The parental early crystal grains are separated by a grain interface (G rai π Boundary). And because of the various line defects and point defects in the grain interface, the diffusing ability of the dopant atoms through the grain boundaries will be faster than that through the grain interior. Based on the above factors, polycrystalline germanium can be doped to change its electrical properties and obtain a polycrystalline germanium material that meets the processing conditions; in other words, the fabrication of solid electronic components is usually adjusted by doping dopants of different properties and concentrations. The characteristics of polycrystalline germanium materials, and then the electrical characteristics of the changes, to design electronic components with different functionalities. Therefore, the use of polysilicon itself has a high electrical resistivity, so it can be used as a resistor element for the I C design. When the polysilicon is used as the resistive element, as shown in the first and second figures, the ends of the polycrystalline layer 10 are formed with self-aligned metal telluride (sa 1 ici de) 1 having a contact 14 . 2, used to connect with external wires. Since the resistive element itself must be a non-metal stellite (η ο η - sa 1 icide ), a surface of the polycrystalline layer 10 is covered with a barrier oxide layer 16 to prevent A metal halide 12 is formed. However when the resistance element
1249204 五、發明說明(2) 為高電阻係數時,如大於1 ΚΩ /m,金屬矽化物1 2與阻障氧 化層16之間會產生一界面電阻(interface resistance),此界面電阻值會受到電壓或溫度變化,造 成電阻值不穩定。如第三圖所示,其係為P型高電阻之電 阻元件受電壓之影響,使得其電阻值變得相當不穩定。 有鑑於此,本發明係在提出一種可降低界面電阻之 半導體電阻元件及其製造方法,以有效解決存在於先前技 術中之缺失者。 三、【發明内容】1249204 V. INSTRUCTIONS (2) For high resistivity, if greater than 1 ΚΩ / m, an interface resistance will occur between the metal telluride 12 and the barrier oxide layer 16. The interface resistance will be affected. A change in voltage or temperature causes the resistance value to be unstable. As shown in the third figure, the resistance element of the P-type high resistance is affected by the voltage, so that its resistance value becomes quite unstable. In view of the above, the present invention proposes a semiconductor resistor element which can reduce the interface resistance and a method of manufacturing the same, to effectively solve the defects existing in the prior art. Third, [invention content]
本發明之主要目的係提供一種半導體電阻元件及其製 造方法,其係在電阻元件之兩端形成一高濃度的離子摻雜 區域,使電阻元件兩端之多晶矽具有較低之電阻係數,以 大大降低金屬矽化物與阻障氧化層之間的界面電阻。 本發明之另一目的係在提供一種半導體電阻元件及其 製造方法,其係利用降低金屬矽化物與阻障氧化層間之界 面電阻,使電阻元件受電壓與溫度之變化可大為減少,以 有效解決習知電阻元件受到電壓及溫度變化會造成電阻值 不穩定之缺失者。The main object of the present invention is to provide a semiconductor resistor element and a method of fabricating the same, which form a high concentration ion doping region at both ends of the resistor element, so that the polysilicon at both ends of the resistor element has a lower resistivity, The interface resistance between the metal telluride and the barrier oxide layer is lowered. Another object of the present invention is to provide a semiconductor resistor element and a method of fabricating the same, which utilizes reducing the interface resistance between a metal telluride and a barrier oxide layer, so that the resistance element can be greatly reduced by voltage and temperature, thereby effectively reducing Solving the problem that the conventional resistance element is subjected to voltage and temperature changes will cause instability of the resistance value.
本發明之一實施態樣係在提出一種半導體電阻元件構 造,其係在一半導體基底上係形成一多晶矽層;在多晶矽 層之二側設有二自行對準金屬矽化物,且在此二自行對準 金屬矽化物之間的多晶矽層表面係具有一阻障氧化層,並 在該二自行對準金屬矽化物下方之多晶矽層内係利用離子 植入法形成高濃度之離子摻雜區域;另有一利用化學氣相An embodiment of the present invention provides a semiconductor resistor element structure for forming a polysilicon layer on a semiconductor substrate; two self-aligned metal halides on two sides of the polysilicon layer, and Aligning the surface of the polycrystalline germanium layer between the metal tellurides has a barrier oxide layer, and forming a high concentration ion doping region by ion implantation in the polycrystalline germanium layer below the self-aligned metal germanide; Have a chemical vapor phase
第6頁 1249204 五、發明說明(3) 沈積(CVD)技術所形成之氧化層係覆蓋於阻障氧& 金屬矽化物之表面,僅露出部份該金屬矽化物以作、層與 墊之用。 下為接觸 本發明之另一實施態樣係在提出一種半導體電 的製造方法,首先,在一半導體基底上形成一客曰卩且元件 ^ 夕晶石夕展 其上再形成一圖案化阻障氧化層;以此阻障氧化層 ’ ’ ,對半導體基底進行一高濃度離子摻雜,以便於二^,幕 層兩側之多晶矽層内各形成一離子摻雜區域;再以~氣化 氧化層為罩幕,進行自行對準金屬石夕化物製蔣 t阻11 早 衣狂於阻隆备 化層兩端之多晶石夕層表面各形成一層金屬石夕化物· _ /乳 沈積一氧化層覆蓋於阻障氧化層與金屬矽化物之表$後在 露出部份該金屬矽化物以作為接觸墊。 ’並 底下藉由具體實施例配合所附的圖式詳加說明,告 容易瞭解本發明之目的、技術内容、特點及其所達$ §更 效。 J力 四、【實施方式】 本發明提出一種半導體電阻元件及其製造方法,其係 於電阻元件之兩端形成自行對準金屬矽化物之前,先&行 一高濃度的離子植入,以降低金屬矽化物與阻障氧化層之 間的界面電阻(interface resistance)。 如第四圖及第五圖所示,一半導體基底2 0上係形成有 一多晶矽層2 2 ;在多晶矽層2 2之二側設有二自行對準金屬 矽化物(s a 1 i c i d e) 2 4 ’且在此二自行對準金屬石夕化物2 4 之間的多晶矽層22表面係具有一阻障氧化層(bl0(:kPage 6 1249204 V. Description of the Invention (3) The oxide layer formed by the deposition (CVD) technique covers the surface of the barrier oxygen & metal halide, and only a part of the metal halide is exposed as a layer and a pad. use. In another embodiment of the present invention, a semiconductor electrical manufacturing method is proposed. First, a guest is formed on a semiconductor substrate, and a component is formed thereon to form a patterned barrier. The oxide layer; the barrier oxide layer '', a high concentration ion doping of the semiconductor substrate, so as to form an ion doped region in the polycrystalline germanium layer on both sides of the curtain layer; The layer is a mask, and the self-aligned metal lithium is made by Jiang T. 11 The early-clothing madness is formed on the surface of the polycrystalline stone layer at both ends of the preparation layer. The layer covers the surface of the barrier oxide layer and the metal halide to expose the portion of the metal halide as a contact pad. And the detailed description of the specific embodiments, the technical contents, the features, and the § § is more effective. J. Fourth Embodiment [Embodiment] The present invention provides a semiconductor resistor element and a method of fabricating the same, which are capable of performing a high concentration ion implantation before forming a self-aligned metal telluride at both ends of the resistive element. The interface resistance between the metal telluride and the barrier oxide layer is lowered. As shown in the fourth and fifth figures, a polycrystalline germanium layer 2 2 is formed on a semiconductor substrate 20; and two self-aligned metal tellurides (sa 1icide) 2 4 ' are disposed on two sides of the polycrystalline germanium layer 2 2 . And the surface of the polycrystalline germanium layer 22 between the self-aligned metal lithium 2 4 has a barrier oxide layer (bl0(:k)
第7頁 1249204 五、發明說明(4) oxide) 26,其中在該二自行對準金屬矽化物24下方之多 晶矽層2 2内係利用離子植入技術進行高濃度之離子摻雜, 其推雜濃度需大於1015/平方公分,以分別形成二南濃度之 離子摻雜區域28 ;另有一利用化學氣相沈積(CVD)技術 所形成之氧化層3 0,其係覆蓋於阻障氧化層2 6與該二金屬 矽化物2 4之表面,僅露出部份該金屬矽化物2 4以作為 墊(contact) 32之用。 其中’在進行高濃度的離子植入時,上述之電阻元件 若為N型電阻,則離子摻雜區域28係植入高濃度之n型摻質 :反之,若電阻元件係為P型電阻,則該離子' 係植入高濃度之P型掺質,且摻雜濃度♦ >雜£ 一 分方能達到效果。 辰度而大於平方公 第六(a )圖至第六(d )圖分別為本發明 用自行對準金屬矽化物製程製作多晶石^ 較佳實施例利 構造剖視圖;如圖所示,本發明之^ 4 +阻70件的各步驟 步驟。 ^ 法係包括有下列 請爹閱弟 ㈡…,隹_主、 先形成一多晶矽層22,而後再利用化風導體基底20上 技術配合微影蝕刻製程,在多晶矽層相沈積(CVD) 行對準金屬矽化物阻障之圖案化阻产^ 面形成一作為自 介於2 0 0埃(A)至20 0 0埃之間,此^ =化層26,其厚度係 作為避免於後續的自行對準金屬坊二^化阻障氧化層2 6係 金屬矽化物。 屬夕化物的形成過程中產生Page 7 1249204 5. Inventive Note (4) oxide) 26, wherein the polycrystalline germanium layer 2 under the self-aligned metal germanide 24 is ion-doped by a high-concentration ion doping technique. The concentration needs to be greater than 1015/cm 2 to form the ion doping region 28 of the dinan concentration, and the oxide layer 30 formed by the chemical vapor deposition (CVD) technique, which covers the barrier oxide layer 26 With respect to the surface of the dimetal telluride 24, only a portion of the metal halide 24 is exposed for use as a contact 32. Wherein, in the case of performing high-concentration ion implantation, if the resistive element is an N-type resistor, the ion doped region 28 is implanted with a high concentration of n-type dopant: conversely, if the resistive element is a P-type resistor, Then the ion' is implanted with a high concentration of P-type dopant, and the doping concentration is ♦ > The sixth degree (a) to the sixth (d) of the present invention are respectively a cross-sectional view of the preferred embodiment of the present invention for fabricating a polycrystalline stone by a self-aligned metal telluride process; as shown in the figure, Each step of the invention is performed. ^ The legal system includes the following: please read the second (...), 隹 _ main, first form a polysilicon layer 22, and then use the chemical wind conductor substrate 20 technology with the lithography etching process, in the polycrystalline germanium layer deposition (CVD) row The patterning resistance of the metalloid telluride barrier is formed as a self between 200 Å (A) and 20,000 Å, and the thickness of the layer 26 is used as a self-avoiding Aligning the metallization of the barrier oxide layer of the 6-series metal telluride. Produced during the formation of the genus
再以圖案化阻障氧化層26為罩幕(Mask) 對半導體Then, the patterned barrier oxide layer 26 is used as a mask (Mask) to the semiconductor.
547 1249204 五、發明說明(5) 基底2 0進行一高濃度的離子植入,如第六(b )圖所示,以 便在阻障氧化層2 6兩側之多晶矽層2 2内摻雜形成N型或P型 的高濃度離子摻雜區域2 8 ;隨後進行一快速熱回火處理。 接續即可進行自行對準金屬矽化物製程。 請再參閱第六(c )圖所示,在多晶矽層2 2與圖案化阻 障氧化層26表面先濺鍍形成一金屬層34;再進行第一次高 溫快速加熱(RTA)製程,使金屬層34與露出之多晶矽層 2 2表面相接觸之部份產生矽化反應而自行對準形成金屬矽 化物2 4 ;而未參與反應或反應後剩餘的金屬層3 4將以溼蝕 刻的方式選擇性地加以去除,並進行第二次而溫快速加熱 製程,如此即可在半導體基底2 0上形成如第六(d )圖所示 之穩定的自行對準金屬矽化物24結構。 最後,如第六(d )圖所示,利用化學氣相沈積技術在 半導體基底2 0上沈積一氧化層3 0,使其覆蓋於該阻障氧化 層2 6與金屬矽化物2 4之表面,僅露出部份該金屬矽化物2 4 以作為接觸墊3 2之用,此接觸墊3 2係用以與外部導線形成 電性連接。 其中,上述之金屬層之材質係可為鈷、鈦、鎳、鈀或 鉑等金屬,並使其相對形成鈷金屬矽化物、鈦金屬矽化物 、鎳金屬矽化物、鈀金屬矽化物或鉑金屬矽化物等金屬矽 化物。 本發明係在電阻元件之兩端形成自行對準金屬矽化物 步驟之前,先摻雜形成一高濃度的離子摻雜區域,使電阻 元件兩端之多晶矽層具有較低之電阻係數,以大大降低金547 1249204 V. DESCRIPTION OF THE INVENTION (5) Substrate 20 performs a high concentration of ion implantation as shown in the sixth (b) diagram to dope in the polysilicon layer 2 2 on both sides of the barrier oxide layer 26. The N-type or P-type high concentration ion doped region 28; followed by a rapid thermal tempering treatment. The metal tantalum process can be self-aligned after the connection. Referring to FIG. 6(c), a metal layer 34 is first sputtered on the surface of the polysilicon layer 22 and the patterned barrier oxide layer 26; and the first high temperature rapid heating (RTA) process is performed to make the metal. The portion of the layer 34 that is in contact with the surface of the exposed polycrystalline layer 2 2 undergoes a deuteration reaction to self-align to form a metal telluride 24; while the remaining metal layer 34 which is not involved in the reaction or reaction is selectively wet-etched. The ground is removed and a second, warm and rapid heating process is performed, so that a stable self-aligned metal telluride 24 structure as shown in the sixth (d) is formed on the semiconductor substrate 20. Finally, as shown in the sixth (d) diagram, an oxide layer 30 is deposited on the semiconductor substrate 20 by chemical vapor deposition to cover the surface of the barrier oxide layer 26 and the metal halide 24 Only a portion of the metal halide 2 4 is exposed for use as a contact pad 32 for electrically connecting to an external lead. Wherein, the material of the metal layer may be a metal such as cobalt, titanium, nickel, palladium or platinum, and is formed to form a cobalt metal telluride, a titanium metal telluride, a nickel metal telluride, a palladium metal telluride or a platinum metal. Metal halides such as tellurides. The invention firstly forms a high concentration ion doping region before forming a self-aligned metal telluride step on both ends of the resistive element, so that the polysilicon layer at both ends of the resistive element has a lower resistivity, thereby greatly reducing gold
第9頁 1249204 五、發明說明(6) 屬矽化物與阻障氧化層之間的界面電阻,使電阻元件受電 壓與溫度之變化可大為減少,如第七圖所示,其受電壓變 化之影響係變得較為穩定,以有效解決習知電阻元件受到 電壓及溫度變化會造成電阻值不穩定之缺失者。 以上所述之實施例僅係為說明本發明之技術思想及特 點,其目的在使熟習此項技藝之人士能夠瞭解本發明之内 容並據以實施,當不能以之限定本發明之專利範圍,即大 凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵 蓋在本發明之專利範圍内。Page 9 1249204 V. Description of the invention (6) It is the interface resistance between the telluride and the barrier oxide layer, so that the resistance element can be greatly reduced by voltage and temperature. As shown in the seventh figure, it is subject to voltage change. The influence becomes more stable, so as to effectively solve the problem that the conventional resistance element is subjected to voltage and temperature changes, which may cause instability of the resistance value. The embodiments described above are merely illustrative of the technical spirit and the features of the present invention, and the objects of the present invention can be understood by those skilled in the art, and the scope of the present invention cannot be limited thereto. That is, the equivalent variations or modifications made by the spirit of the present invention should still be included in the scope of the present invention.
圖號說明: 10 多 晶 矽 層 12 白 行 對 準 金 14 接 觸 墊 16 阻 障 氧 化 層 20 半 導 體 基 底 22 多 晶 矽 層 24 白 行 對 準 金 屬矽化物 26 阻 障 氧 化 層 28 離 子 摻 雜 區 域 30 氧 化 層 32 接 觸 墊 34 金 屬 層Figure number description: 10 polysilicon layer 12 white line alignment gold 14 contact pad 16 barrier oxide layer 20 semiconductor substrate 22 polysilicon layer 24 white line alignment metal germanide 26 barrier oxide layer 28 ion doped region 30 oxide layer 32 contact Pad 34 metal layer
第10頁 1249204 圖式簡單說明 第一圖為習知之電阻元件的構造剖視圖。 第二圖為習知之電阻元件的構造俯視圖。 第三圖為習知之電阻元件受電壓變化影響的示意圖。 第四圖為本發明之電阻元件的構造剖視圖。 第五圖為本發明之電阻元件的構造俯視圖。 第六(a )圖至第六(d )圖分別為本發明在製作電阻元件的各 步驟構造剖視圖。 第七圖為本發明之電阻元件受電壓變化影響的示意圖。Page 10 1249204 BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a cross-sectional view of a conventional resistive element. The second figure is a top view of the construction of a conventional resistive element. The third figure is a schematic diagram of a conventional resistive element affected by a voltage change. The fourth figure is a cross-sectional view showing the structure of the resistive element of the present invention. Fig. 5 is a plan view showing the structure of the resistive element of the present invention. 6(a) to 6(d) are respectively sectional views showing the steps of the steps of fabricating the resistive element of the present invention. The seventh figure is a schematic diagram of the resistance element of the present invention affected by the voltage change.
第11頁Page 11
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92130800A TWI249204B (en) | 2003-11-04 | 2003-11-04 | Semiconductor resistance device, and manufacturing method for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92130800A TWI249204B (en) | 2003-11-04 | 2003-11-04 | Semiconductor resistance device, and manufacturing method for the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200516670A TW200516670A (en) | 2005-05-16 |
TWI249204B true TWI249204B (en) | 2006-02-11 |
Family
ID=37429489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92130800A TWI249204B (en) | 2003-11-04 | 2003-11-04 | Semiconductor resistance device, and manufacturing method for the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI249204B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230275121A1 (en) * | 2022-02-28 | 2023-08-31 | Taiwan Semiconductor Manufacturing Company Limited | Semiconductor structure and method of manufacture |
-
2003
- 2003-11-04 TW TW92130800A patent/TWI249204B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200516670A (en) | 2005-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI255007B (en) | Method of fabricating a semiconductor device having reduced contact resistance | |
US20060255404A1 (en) | Semiconductor resistance element and fabrication method thereof | |
JP2005150752A (en) | Method of forming nickel silicide film and method of manufacturing semiconductor device using same | |
TW201117323A (en) | Semiconductor devices with improved local matching and end resistance of RX based resistors | |
JPH0453090B2 (en) | ||
KR19990013586A (en) | Formation method of silicide layer using metal impurity and pre-amorphization | |
US5313084A (en) | Interconnect structure for an integrated circuit | |
JPS607775A (en) | Semiconductor device and manufacture thereof | |
TWI249204B (en) | Semiconductor resistance device, and manufacturing method for the same | |
JP3144350B2 (en) | Method for manufacturing semiconductor device | |
TW201232626A (en) | A method for forming a dual silicide, germanide structure | |
JPH0563189A (en) | Manufacture of integrated circuit structure | |
TWI280610B (en) | Hard mask structure for deep trench super-junction device | |
JP2001223177A (en) | Silicide structure and its forming method | |
TWI276145B (en) | Semiconductor device having nickel silicide and method of fabricating nickel silicide | |
US20060043496A1 (en) | Semiconductor device and method for fabricating the same | |
JP3823826B2 (en) | Manufacturing method of semiconductor device | |
JPH0564469B2 (en) | ||
JPS6180862A (en) | Manufacture of semiconductor device | |
JP2002009015A (en) | Semiconductor device and its manufacturing method | |
JPS60782B2 (en) | Manufacturing method of semiconductor device | |
JPH11219916A (en) | Semiconductor device and manufacture of the same | |
JPH05299348A (en) | Forming method for polysrystalline silicon thin film | |
TWI222141B (en) | Semiconductor devices having a metal silicide bi-layer and the method for fabricating the same | |
JPH0878356A (en) | Manufacture of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |