1247438 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種氮化鎵系發光二極體,尤其是有關於一種具有高 逆向反抗電壓與高抗靜電能力之特性之氮化鎵系發光二極體。 【先前技術】 據瞭解,目前產業界所使用之影像顯示器之種類眾多,包括:以傳統险 極射線管(CRT)所製成之顯示器,在近年來高科技技術所發展製成之液晶顯 示器(LCD),以及由發光二極體(LED)所製成之顯示器等。通常,液晶 器適用於顯示動態畫面,而以發光二極體所製之顯示器適用於顯示靜態書 面。 在發光二極體領域中,氮化鎵(GaN)系發光二極體之結構為近年來光 電產業所致力研究發展發光二極體之一種,其主要特性為可以藉由控制其 材料之組成成份,而將其製作成發出各種顏色之光線。由於此種發光二極 體之亮度與發光效率方面之技術獲得重大進展,因而大幅擴展其使用領域。 通常,傳統習知技術中使用氮化銦鎵(InGaN) /氮化鎵(GaN)多重量 子井發光二極體(MQW LED)作為發光/照明裝置,而廣泛地應用於各種靜態 顯不功能用it。例如:電子鐘錶等消費產品之外,更可應用於各種顯示螢 幕與廣告看板等用途。 當,此種發光二極體使用於戶外之顯示螢幕與廣告看板制途時,由 於較為驗魏操作餅,此赚光二極體必須具有足夠高之逆向反抗電 壓(Reverse Withstanding Voltage )與抗靜電(Electr〇static Discharge, ESD)功ι ’才可以轉持久穩定之正常運作,充分發揮其發光/照明之功能。 以下概略傳統習知氮化鎵紐光二極體之結構與其製作方法。 如同第-圖所示,傳統式氮化鎵(GaN)系發光二極體〇〇)之結構,包 括:⑴基板11;⑵形成在基板之上之緩衝層12 (buffer layer);⑶ 1247438 形成在緩衝層12之上之N型氮化鎵系層13 ; (4)形成在N型氮化鎵系層13之上· 之發光堆疊層14 ;及(5)形成在發光堆疊層14之上之P型氮化鎵系層15。 (6)然後’利用乾式餘刻技術,向下餘刻通過P型氮化鎵系層π,發光 堆疊層14,然後到達N型氮化鎵系層13,形成N-金屬(N-Metal)形成區16 ; (Ό隨後,在P型氮化鎵系層15之上,形成既可作p型歐姆接觸使用,且1247438 IX. Description of the Invention: [Technical Field] The present invention relates to a gallium nitride-based light-emitting diode, and more particularly to a gallium nitride-based alloy having high reverse resistance voltage and high antistatic capability. Light-emitting diode. [Prior Art] It is understood that there are many types of image displays used in the industry, including: displays made of traditional dangerous polar ray tubes (CRTs), liquid crystal displays developed by high-tech technology in recent years ( LCD), and a display made of a light-emitting diode (LED). Generally, a liquid crystal device is suitable for displaying a dynamic picture, and a display made of a light-emitting diode is suitable for displaying a static book. In the field of light-emitting diodes, the structure of gallium nitride (GaN)-based light-emitting diodes is one of the research and development of light-emitting diodes in recent years. Its main characteristic is that it can control the composition of its materials. And make it into light of various colors. Since the technology for the brightness and luminous efficiency of such a light-emitting diode has made significant progress, it has greatly expanded its field of use. In general, indium gallium nitride (InGaN) / gallium nitride (GaN) multiple quantum well light-emitting diodes (MQW LEDs) are used as light-emitting/illuminating devices in the conventional art, and are widely used for various static display functions. It. For example, in addition to consumer products such as electronic timepieces, it can be applied to various display screens and billboards. When such a light-emitting diode is used in an outdoor display screen and an advertising kanban system, the light-emitting diode must have a sufficiently high reverse withstanding voltage and antistatic (because of the comparative operation of the cake). Electr〇static Discharge, ESD) can be used for long-term stable operation and full use of its lighting/illumination function. The following is a conventional conventional structure of a gallium nitride luminescence diode and a method for fabricating the same. As shown in the first figure, the structure of a conventional gallium nitride (GaN) light-emitting diode ,) includes: (1) a substrate 11; (2) a buffer layer 12 formed on the substrate; (3) 1247438 is formed. An N-type gallium nitride layer 13 over the buffer layer 12; (4) a light-emitting stack layer 14 formed over the N-type gallium nitride layer 13; and (5) formed over the light-emitting stack layer 14. The P-type gallium nitride layer 15 is formed. (6) Then, using the dry-type engraving technique, the P-type gallium nitride-based layer π is etched downward, and the stacked layer 14 is illuminated, and then reaches the N-type gallium nitride layer 13 to form an N-metal (N-Metal). Forming region 16; (Ό subsequently, on the P-type gallium nitride layer 15, forming a p-type ohmic contact, and
一 TCO 具透明特性之透明導電層 17 (TCL:fransparent Conductive Layer); 接著,在N-金屬形成區16之上,形成可以作N型歐姆接觸使用之n—金屬π ; 最後’在透明導電層17與N-金屬ΐέ之上,各別形成焊接墊19。藉由上述步 驟即可製成傳統習知之氮化鎵系發光二極體結構。 然而,如同於第4圖之特性曲線(a)與第5圖之特性曲線(a)所示:傳統 式氮化嫁(GaN)系發光二極體結構之逆向反抗電壓與抗靜電特性之值偏 低,仍不足使該發光二極體結構在戶外嚴格環境條件下維持長時期高位準 之發光/照明性能。 本發明之目的在於改善習知技術發光二極體上述之缺點與限制,以達 成大幅提升其逆向反抗電壓與抗靜電功能之目的,且維持其長的使用壽命。 【發明内容】 本發明之主要目的在於提供一種具有數位穿透層之氮化鎵系發光二極 體結構,以改善習知技術發光二極體有關於此之缺點與限制,以大幅提升 其逆向反抗電壓與抗靜電功能。 本發明之另一目的為提供一種降低於其中所設透明導電層 (transparent conductive layer)與P型氮化鎵系接觸層間電阻之裝置, 1247438 其藉由設置於此兩賴之-可在其_進行奸穿叙触穿透層,使上 述透明導電層或Μ導電氧化層與P魏化鎵緖觸層之間絲_接觸 之狀態’而可以降低此兩層間之電阻。 本發明之再-目的為提供-種可在細進行栽子穿透之材料。 在本發明中,是以-種對可見光具有優良透光性之例如鋼錫氧化物材 料取代傳統續金偶翻導㈣。但是,由於在此種轉氧化物材料與 Ρ型氮化鎵系材料之間並非呈歐姆接觸,因此必須在二者之間加入一數位穿 透層(Digital Penetration Layer),其結構如第3圖中所示,其利用該 層之載子穿透聽,使該兩制職_細,崎低兩者間之電阻。 如同以上說明,本發明之目的在於提供一種具有數位穿透層之氣化嫁 系發光-極體結構。其具齡驟為··首先,提供―基板;織,於該基板 上形成-系列半導體疊層,此系列半導體叠層由下至上依序堆疊而設有: 一緩衝層、一N型氮化鎵系接觸層、一發光堆疊層、以及一p型氮化鎵系接 觸層,接者,於P型氮化鎵系接觸層上形成一數位穿透層; 隨後,再使用乾姓刻法向下依序蝕刻經由數位穿透層、p型氮化鎵系接 觸層、發光堆疊層、並終止於N型氮化鎵系接觸層之上; 最後,於該數位穿透層上、未被該透明導電層覆蓋之表面上形成一第 一歐姆接觸電極,以作為p型歐姆接觸;以及於該N型氮化鎵系接觸層上 形成一第二歐姆接觸電極,作為N型歐姆接觸。以此方式製成本發明具有 大幅提升其逆向反抗電壓與抗靜電功能之發光二極體結構。 本發明之目的及多項優點將藉由下列具體實施例之詳細說明,以及參 1247438 考所附圖式而更加明顯。 【實施方式】 現在參考所附圖式說明本發明之各實施例。其中,某些元件的不同部 份並沒有依照實際尺寸繪製。某些尺寸與其它部份相關的尺寸比被誇張的 顯不以提供更清楚的描述以協助熟悉此技藝的相關人士瞭解本發明。 首先,請參考第二圖。第二圖中顯示根據本發明實施例之具有提升逆 向反抗電壓與抗靜電功能之氮化气系發光二極體結構20,其包括:基板 2卜緩衝層22、N型氮化鎵系(GaN)層23、發光堆疊層24、P型氮化鎵系(GaN) 層25、數位穿透層26、透明導電層27a或透明導電之氧化層27b、第一歐姆 電極28、以及第二歐姆電極29。 在上述結構中,此發光二極體之最底層為基板21,其材質為下列之一 所構成·氧化銘單晶(Sapphire)、6H-SiC、4H-SiC、Si、ZnO、GaAs、 尖晶石(MgAh〇4)、一晶格常數接近於氮化物半導體之單晶氧化物。 其-人,形成於基板21之上為緩衝層22,其材質為具有一特定 組成之氮化紹鎵銦AhuGaalribN,其中,0$a,b〈l,a+b2 1。 然後,N型氮化鎵系層23形成在該緩衝層22上,此層為接觸層,其成 長溫度為900-1200°C,其厚度為2-5/zm。 再其次,發光堆疊層24,形成於該N型氮化鎵系層上,其材質為特定之 氮化鋁鎵銦Ali-x-yGaxInyN,其中0<x,y<l,χ+yg 1,通常為氮化鋼嫁 (InGaN),成長溫度為700-900°C。 然後,在該發光堆疊層上形成P型氮化鎵系層25,其為接觸層,其成長 1247438 溫度為900-120(Tc,其厚度不大於5〇〇〇 A。 其次,數位穿透層26形成於P型氮化鎵系接觸層±,此為本發明特別設 置之層’其對於波長365nm-560nin之光線具有大於80%的_#,且於其内 可利用載子穿透效應⑽行載子祕,其目的與魏在較得··斯型氮化 鎵系層25與以下將說明之透明導電層27a或透明導電之氧化層⑽間之接 觸為歐姆細。隨後,乾絲麻從此數赠勒向下蝴,經由p型 氮化叙系層、發光堆疊層、而至N型氮化鎵系層上。 然後,在此數位穿透層26上形1成透明導電層27a,其材質為以下之一: Ni/Au' Nl/Pt'Ni/Pd'Pd/Au^Pt/Au^Cr/Au^Ni/AuBe>Ni/Cr/Au^Ni/^^^ Ni/Pd/Au以及其它類似材料;或透明導電之氧化層27b (TC〇: conductive oxide layer) ^ ITO ^ CTO > ZnO ^ In〇 ^ 以及其它類似材料。 其次,於該數位穿透層26上、未被該透明導電層覆蓋之表面上形成 第-歐姆接觸電極28,其作麟P型歐姆接觸,其材質為以下之—:m/Au 合金、Ni/Pt合金、Ni/Pd合金、Ni/Co合金、Pd/Au合金、Pt/Au合金、Ti/Au 合金、Cr/Au 合金、Sn/Au 合金、Ta/Au 合金、TiN、TiWNx(x^0)、WSiy(y^〇)。 最後,於該N型氮化鎵系接觸層23上形成第二歐姆接觸電極29,其 作用為N型歐姆接觸,其材貿由Ti/Al合金、Ti/Al/Ti/Au合金、Ti/Ai/Ni/Au 合金、Ti/Al/Pt/Au合金、Ti/Au合金、Cr/Au合金其中之一所構成。 經由以上說明可以製成··本發明之具有提升逆向反抗電壓與抗靜 電功能之氮化鎵系發光二極體結構。其中,該數位穿透層26之進一步更詳 1247438 細結構為:由二種厚度漸增(2埃到2〇埃)/漸減(20埃到2埃)之材料 A1XI nyGai-x-yNzp 卜 Z/A1 p I nqGa 卜 p-qNrPw 所構成之次層(sub-1 ayer)兩兩交替堆疊 而成,其重覆次數大於2,而其整個厚度不大於1〇〇埃,且〇^χ、y、z、p、 Q r $ 1。此 A1 x I nyGai-x-yNzPi-z 能隙寬度必須大於 a 1 p I nqGai-P-qNrPi-r 之能隙寬度, 其導電性可以為P型,N型,或!型;但並無須同時為p型,N型,或!型。 經實驗証實,此第三圖中所示數位穿透層100之各次層之最適結構成份與 厚度為如下所示: 次層3001:由I型氮化鎵GaN)所形成,其厚度為2〇a ; 次層3002:由N型氮化銦鎵(N-InGaN)所形成,其厚度為5A ; 次層3003:由1^型氮化鎵(1^&们所形成,其厚度為舰; 次層3004:由N型氮化銦鎵(N-InGaN)所形成,其厚度為10A ; 次層3005:由N型氮化鎵(N-GaN)所形成,其厚度為5A ;以及 次層3006:由I型氮化銦鎵(undoped InGaN)所形成,其厚度為2〇A。 上述第二圖中,該數位穿透層26是形成於P型氮化鎵系層25與透明 導電層27a或透明導電之氧化層27b間,該數位穿透層可在其内部進行載 子穿透,以使得此p型氮化鎵系層與透明導電層之間形成歐姆接觸之狀態。 因而使侍本發明之發光二極體(led)結構具有大幅提升之逆向反抗電壓與 抗靜電功能。茲藉由第四圖與第五圖中之特性曲線說明如下。 第四圖中所示為發光二極體(LED)之逆向反抗電壓(¥)(橫轴)相對於 注入電流(AA)(縱轴)之特性曲線。曲線(a)為傳統式發光二極體之特性曲 線。曲線(b)為本發明具有數位透射層(DPL: Digital Penetrati〇n Uye]r) 1247438 之發光二極體之特性曲線。由此兩曲線可明顯地看出,本發明之發光二極 體於此注人電流為0至-H)〃A之細巾,錢向反抗錢之絕龍大於傳·· 統習知技術所製發光二極體之逆向反抗電壓之絕對值。 第五圖中所不為發光二極體(LED)之漏電電流(mA)(縱軸)相對於ESD 振幅⑺(橫軸)之特性曲線。其中,曲線⑷為習知技術之發光二極體之特 性曲線’曲線⑹為本發明之發光二極體之特性曲線。由此圖中之兩曲線可 以看出:傳統習知技術發光二極體在ESD振幅範圍㈣睛之】咖v處之 漏電電流大幅增加至1. ,而本4明之發光二極體在此整個·振幅細· 0-2000V中之漏電電流均保持為0mA,且小於未設有數位穿透層之發光二& 體結構之漏電電流。 由以上說明可知’本發.光二極體之逆向反抗錢與抗靜電功能實 優於習知技術所製成者。因此,本發明實具產#上之_價值,且符合專 利要件。 以上所述僅為本發明之較佳實施例而已,其僅用於說明目的而非用以 限制本發明射請專利細之内容;凡是其他在未偏離本發明所揭示之精 神與範圍下所作之等效改變或修鋅,均應包含在以下所述之申請專利範圍 之範圍中。 11 1247438 【圖式簡單說明】 第一圖為習知技術之氮化鎵系發光二極體結構; 第二圖為根據本發明實施例之氮化鎵系發光二極體結構; 第三圖為根據本發明實施例之氮化鎵系發光二極體結構之數位穿透層之結 構; 第四圖為根據本發明實施例具有數位穿透層之氮化鎵系發光二極體結構vs 習知技術之氮化鎵系發光二極體結構之逆向反抗電壓之特性曲線比較圖; 以及 第五圖為根據本發明實施例具有轉位穿透層之氮化鎵系發光二極體結構vs 習知技術之氮化鎵系發光二極體結構之抗靜電功能之特性曲線比較 圖。 【主要元件符號說明】 10 發光二極體結構 11 基板 12 緩衝層 13 N型氮化鎵系層 14 發光堆疊層 15 P型氮化鎵系層 16 N-金屬形成區 17 透明導電層 18 N-金屬 19 焊接墊 20 發光二極體結構 21 基板 12 緩衝層 N型氮化鎵系層 發光堆疊層 P型氮化鎵系層 數位穿透層 透明導電層 透明導電氧化層 第一歐姆接觸電極 第二歐姆接觸電極 穿透層 穿透層之次層 穿透層之次層 穿透層之次層 穿透層之次層 穿透層之次層 穿透層之次層 13a TCO transparent conductive layer 17 (TCL: fransparent Conductive Layer); then, on the N-metal forming region 16, an n-metal π which can be used for N-type ohmic contact is formed; finally 'on the transparent conductive layer On top of the 17 and N-metal ruthenium, solder pads 19 are formed separately. By the above steps, a conventionally known gallium nitride-based light-emitting diode structure can be fabricated. However, as shown in the characteristic curves (a) of Fig. 4 and the characteristic curve (a) of Fig. 5: the value of the reverse resistance voltage and antistatic property of the conventional GaN-based light-emitting diode structure The low level is still insufficient to maintain the long-term high-level illumination/illumination performance of the light-emitting diode structure under strict outdoor environmental conditions. SUMMARY OF THE INVENTION The object of the present invention is to improve the above-mentioned shortcomings and limitations of the prior art light-emitting diodes in order to achieve the purpose of greatly increasing their reverse resistance voltage and antistatic function, and maintaining their long service life. SUMMARY OF THE INVENTION The main object of the present invention is to provide a gallium nitride-based light-emitting diode structure having a digital penetrating layer to improve the disadvantages and limitations of the prior art light-emitting diodes in order to greatly improve the reverse direction thereof. Resist the voltage and antistatic function. Another object of the present invention is to provide a device for reducing the resistance between a transparent conductive layer and a P-type gallium nitride contact layer, wherein 1247438 is provided by The resistance between the two layers can be reduced by carrying out the contact layer of the contact layer and making the wire-contact state between the transparent conductive layer or the tantalum conductive oxide layer and the P-Walton intermetallic contact layer. A further object of the present invention is to provide a material which can be penetrated finely. In the present invention, a conventional tin-gold alloy material is replaced by, for example, a steel tin oxide material having excellent light transmittance to visible light (4). However, since there is no ohmic contact between the oxide-conducting material and the bismuth-type gallium nitride-based material, a digital penetration layer must be added between the two, and the structure is as shown in FIG. As shown in the figure, it uses the carrier of the layer to penetrate and listen, so that the two jobs are thin and the resistance between the two is low. As explained above, it is an object of the present invention to provide a vaporized graft luminescent-polar structure having a digital penetrating layer. The first step is: first, providing a substrate; forming a series of semiconductor laminates on the substrate, the series of semiconductor stacks are sequentially stacked from bottom to top: a buffer layer, an N-type nitride a gallium contact layer, a light emitting stacked layer, and a p-type gallium nitride contact layer, and a digitized penetrating layer is formed on the P-type gallium nitride-based contact layer; Sequentially etching through the digital penetrating layer, the p-type gallium nitride-based contact layer, the light-emitting stacked layer, and terminating on the N-type gallium nitride-based contact layer; finally, on the digital penetrating layer, not A first ohmic contact electrode is formed on the surface covered by the transparent conductive layer as a p-type ohmic contact; and a second ohmic contact electrode is formed on the N-type gallium nitride-based contact layer as an N-type ohmic contact. In this way, the light-emitting diode structure of the present invention having a large anti-reverse voltage and antistatic function is greatly improved. The objectives and other advantages of the invention will be apparent from the description and appended claims appended claims [Embodiment] Embodiments of the present invention will now be described with reference to the drawings. Among them, different parts of some components are not drawn according to the actual size. The size of certain dimensions associated with other portions is exaggerated to provide a clearer description to assist those skilled in the art to understand the present invention. First, please refer to the second figure. The second figure shows a nitriding gas-based LED structure 20 having an improved reverse reactance voltage and an antistatic function according to an embodiment of the present invention, comprising: a substrate 2 buffer layer 22, and an N-type gallium nitride system (GaN) a layer 23, a light-emitting stacked layer 24, a P-type gallium nitride-based (GaN) layer 25, a digital penetrating layer 26, a transparent conductive layer 27a or a transparent conductive oxide layer 27b, a first ohmic electrode 28, and a second ohmic electrode 29. In the above structure, the bottom layer of the light-emitting diode is the substrate 21, and the material thereof is composed of one of the following: Sapphire, 6H-SiC, 4H-SiC, Si, ZnO, GaAs, spinel Stone (MgAh〇4), a lattice constant close to the single crystal oxide of a nitride semiconductor. It is formed on the substrate 21 as a buffer layer 22 made of a specific composition of gallium indium AhuGaalribN, wherein 0$a, b<l, a+b2 1. Then, an N-type gallium nitride layer 23 is formed on the buffer layer 22, which is a contact layer having a growth temperature of 900 to 1200 ° C and a thickness of 2 - 5 / zm. Further, the light-emitting stacked layer 24 is formed on the N-type gallium nitride layer, and the material thereof is a specific aluminum gallium indium nitride Ali-x-yGaxInyN, wherein 0 < x, y < l, χ + yg 1, It is usually nitrided steel (InGaN) and has a growth temperature of 700-900 °C. Then, a P-type gallium nitride layer 25 is formed on the light-emitting stack layer, which is a contact layer, and has a growth temperature of 1247438 and a temperature of 900-120 (Tc, the thickness of which is not more than 5 〇〇〇 A. Second, the digital penetrating layer 26 is formed on the P-type gallium nitride-based contact layer ±, which is a layer specially provided for the invention, which has a _# greater than 80% for light having a wavelength of 365 nm to 560 nin, and a carrier penetration effect can be utilized therein (10) The carrier is secreted in such a manner that the contact between the transparent gallium layer 25a and the transparent conductive oxide layer (10), which will be described later, is ohmic. From this number, the downward blisters are passed through the p-type nitride layer, the light-emitting stacked layer, and the N-type gallium nitride layer. Then, the transparent conductive layer 27a is formed on the digital penetrating layer 26, The material is one of the following: Ni/Au' Nl/Pt'Ni/Pd'Pd/Au^Pt/Au^Cr/Au^Ni/AuBe>Ni/Cr/Au^Ni/^^^ Ni/Pd/ Au and other similar materials; or transparent conductive oxide layer 27b (TC〇: conductive oxide layer) ^ ITO ^ CTO > ZnO ^ In〇 ^ and other similar materials. Second, on the digital penetrating layer 26, not A first ohmic contact electrode 28 is formed on the surface covered by the transparent conductive layer, and is made of a P-type ohmic contact. The material is as follows: :m/Au alloy, Ni/Pt alloy, Ni/Pd alloy, Ni/Co Alloy, Pd/Au alloy, Pt/Au alloy, Ti/Au alloy, Cr/Au alloy, Sn/Au alloy, Ta/Au alloy, TiN, TiWNx (x^0), WSiy (y^〇). Finally, A second ohmic contact electrode 29 is formed on the N-type gallium nitride-based contact layer 23, and functions as an N-type ohmic contact, and the material trade is made of Ti/Al alloy, Ti/Al/Ti/Au alloy, Ti/Ai/ It is composed of one of Ni/Au alloy, Ti/Al/Pt/Au alloy, Ti/Au alloy and Cr/Au alloy. It can be made through the above description·· The invention has the function of raising reverse reactance voltage and antistatic function. A gallium nitride-based light-emitting diode structure in which the digital transmissive layer 26 is further more detailed 1247438 fine structure: increasing from two thicknesses (2 angstroms to 2 angstroms) / decreasing (20 angstroms to 2 angstroms) The material A1XI nyGai-x-yNzp, Z/A1 p I nqGa, p-qNrPw, the sub-layer (sub-1 ayer) is alternately stacked in pairs, the number of repetitions is greater than 2, and the entire thickness is not greater than 1 〇〇 And 〇^χ, y, z, p, Q r $ 1. The A1 x I nyGai-x-yNzPi-z energy gap width must be greater than the energy gap width of a 1 p I nqGai-P-qNrPi-r, Conductivity can be P type, N type, or! Type; but there is no need to be p-type, N-type, or! type. It has been experimentally confirmed that the optimum structural composition and thickness of each layer of the digital penetrating layer 100 shown in the third figure are as follows: Sublayer 3001: formed by I-type gallium nitride GaN, and has a thickness of 2 〇a ; sublayer 3002: formed of N-type indium gallium nitride (N-InGaN), the thickness of which is 5A; sub-layer 3003: formed by 1^-type gallium nitride (1^& Substratum 3004: formed of N-type indium gallium nitride (N-InGaN) having a thickness of 10A; sublayer 3005: formed of N-type gallium nitride (N-GaN) having a thickness of 5A; The sub-layer 3006 is formed of I-type indium nitride (undoped InGaN) and has a thickness of 2 〇 A. In the second figure, the digital transmissive layer 26 is formed on the P-type gallium nitride layer 25 and transparent. Between the conductive layer 27a or the transparent conductive oxide layer 27b, the digital penetrating layer can perform carrier penetration therein to form an ohmic contact state between the p-type gallium nitride layer and the transparent conductive layer. The LED structure of the present invention has a greatly improved reverse resistance voltage and antistatic function. The following is a description of the characteristic curves in the fourth and fifth figures. It is the characteristic curve of the reverse reactance voltage (¥) (horizontal axis) of the light-emitting diode (LED) with respect to the injection current (AA) (vertical axis). The curve (a) is the characteristic curve of the conventional light-emitting diode. (b) is a characteristic curve of the light-emitting diode of the present invention having a digital transmission layer (DPL: Digital Penetrati〇n Uye) r) 1247438. From the two curves, it is apparent that the light-emitting diode of the present invention is Note that the current is 0 to -H) 〃A's fine towel, the absolute value of the reverse resistance voltage of the light-emitting diode made by the technology. The fifth graph is not a characteristic curve of the leakage current (mA) (vertical axis) of the light-emitting diode (LED) with respect to the ESD amplitude (7) (horizontal axis). Among them, the curve (4) is a characteristic curve of the light-emitting diode of the prior art, and the curve (6) is a characteristic curve of the light-emitting diode of the present invention. From the two curves in the figure, it can be seen that the leakage current of the conventional conventional technology LED in the amplitude range of the ESD (fourth) is greatly increased to 1. The light-emitting diode of the present invention is here. • The amplitude is fine. The leakage current in 0-2000V is kept at 0 mA, and is smaller than the leakage current of the light-emitting two & body structure without the digital penetrating layer. It can be seen from the above description that the reverse anti-money and antistatic function of the present invention is superior to those of the prior art. Therefore, the present invention has a value of #, and is in compliance with the patent requirements. The above is only the preferred embodiment of the present invention, which is for illustrative purposes only and is not intended to limit the scope of the present invention; the invention is made without departing from the spirit and scope of the invention. Equivalent changes or zinc repairs are to be included in the scope of the patent application described below. 11 1247438 BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a gallium nitride-based light-emitting diode structure of a conventional technique; the second figure is a gallium nitride-based light-emitting diode structure according to an embodiment of the present invention; The structure of the digital penetrating layer of the gallium nitride based light emitting diode structure according to the embodiment of the present invention; the fourth figure is a gallium nitride based light emitting diode structure having a digital penetrating layer according to an embodiment of the present invention. A comparison chart of the characteristic curves of the reverse reactance voltage of the gallium nitride-based light-emitting diode structure of the technology; and a fifth figure is a gallium nitride-based light-emitting diode structure having an index transmissive layer according to an embodiment of the present invention. A comparison chart of the characteristic curves of the antistatic function of the gallium nitride-based light-emitting diode structure of the technology. [Main component symbol description] 10 LED structure 11 Substrate 12 Buffer layer 13 N-type gallium nitride layer 14 Light-emitting stack layer 15 P-type gallium nitride layer 16 N-metal forming region 17 Transparent conductive layer 18 N- Metal 19 solder pad 20 light-emitting diode structure 21 substrate 12 buffer layer N-type gallium nitride layer light-emitting stack layer P-type gallium nitride layer digital penetrating layer transparent conductive layer transparent conductive oxide layer first ohmic contact electrode second The sub-layer 13 of the sub-layer penetrating layer of the sub-layer penetrating layer of the sub-layer penetrating layer of the sub-layer penetrating layer of the sub-layer penetrating layer of the ohmic contact electrode penetrating layer