TWI245878B - Device for measuring linear dual axis geometric tolerances - Google Patents

Device for measuring linear dual axis geometric tolerances Download PDF

Info

Publication number
TWI245878B
TWI245878B TW93119554A TW93119554A TWI245878B TW I245878 B TWI245878 B TW I245878B TW 93119554 A TW93119554 A TW 93119554A TW 93119554 A TW93119554 A TW 93119554A TW I245878 B TWI245878 B TW I245878B
Authority
TW
Taiwan
Prior art keywords
axis
sets
platform
dimensional
biaxial
Prior art date
Application number
TW93119554A
Other languages
Chinese (zh)
Other versions
TW200600749A (en
Inventor
Wen-Yuh Jywe
Chien-Hong Liu
Hsueh-Liang Huang
Original Assignee
Nat Huwei Institue Of Technolo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Huwei Institue Of Technolo filed Critical Nat Huwei Institue Of Technolo
Priority to TW93119554A priority Critical patent/TWI245878B/en
Application granted granted Critical
Publication of TWI245878B publication Critical patent/TWI245878B/en
Publication of TW200600749A publication Critical patent/TW200600749A/en

Links

Abstract

A device for measuring linear dual axis geometric tolerances is disclosed. The system of the device comprises four sets of optical fiber displacement gauges, four sets of two-dimension optical sensors, and one two-dimension optical grating scale plate. The two-dimension optical sensor and the two-dimension optical grating scale plate form a grid encoder. The four sets of optical fiber displacement gauges and the four sets of two-dimension optical sensors are separately arranged on the two-dimension optical grating scale plate. The structure of a dual axis working platform is mainly constructed by dual axis ball screws. When the dual axis working platform is operated, thirteen rotating geometric tolerances are formed. The device can precisely measure the thirteen rotating geometric tolerances when the platform is operated. Moreover, the device can calibrate and compensate the tolerances.

Description

1245878 玫、發明說明: 【發明所屬之技術領域】 本發明為一種線性雙軸幾仿 曰 成何决差之置測裝置,特別指一 種能量測雙軸工作平台運動時 了所產生之十三個幾何轉動謂 至,並能加以校正與補償的量測裝置。 【先前技術】 高精密定位與高重複精度之線性平台與χ—γ平台為精穷 定位機械的關鍵性設備,近年來廣泛應用在微細加工、: 測、微影術(lithography)、半導,f ^ 豆I私及其他自動化工業。 由於高精密定位技術的發展, ^ 疋位技術之重要性急速增加, 不論是在精密機械、半導體產業、微(奈)米科技皆朝微小 化:精密化與奈米級的方向前進,因此在精密機械領域之量 測设備、製造技術、整人拮 口技術的發展,微定位平台設計盘精 密定位檢測技術的相關研究是丨容克緩。 雙轴工作平台是國内相當普遍的應用機具之—,然而在 最近這幾年’產業界和學術界相繼投入研究下,雙軸工作平 台的發展已經有了相當大… 雙軸作千 田大的犬破,也因如此,使得精密度侖 來愈準確。故雙軸工作平么 ^ 口示了功月匕之外,相對精密度的優1245878 Description of the invention: [Technical field to which the invention belongs] The present invention is a linear dual-axis measuring device that mimics the difference, in particular, it refers to a thirteen that is generated when an energy measuring dual-axis working platform moves. A measuring device whose geometric rotation is up to and can be corrected and compensated. [Previous technology] High-precision positioning and high repeatability linear platform and χ-γ platform are the key equipment of fine and poor positioning machinery. In recent years, it has been widely used in micro-machining, surveying, lithography, and semiconducting. f ^ Dou I and other automation industries. Due to the development of high-precision positioning technology, the importance of 疋 bit technology has increased rapidly. No matter in the precision machinery, semiconductor industry, micro (nano) technology is going to be miniaturized: precision and nano-level progress, so in The development of measurement equipment, manufacturing technology, and full-bodied technology in the field of precision machinery, and related research on micro-positioning platform design disk precision positioning detection technology is Junker's slow. The dual-axis work platform is one of the most commonly used tools in China. However, in recent years, the industry and academia have invested in research, and the development of the dual-axis work platform has been quite large. The dog is broken, and because of this, the precision is more accurate. So is the dual-axis working flat? ^ Explains the relative precision of

劣也是決定雙轴工作承A 作千台好壞的重要指標。 雙軸工作平台其動/ 乍方式疋採多自由度方位變動,且景$ 響著各目標產生誤差,A^ 在具際運動時,會產生共計十三個幾 1245878 何轉動誤差。由於機器中之各種雙轴工作平台的特塑 整台機器的精度與加工產品的品質,故被加工工件的定:: 個的 精被零件在空間的運動位置和姿態都需要如上述十: 幾何轉動誤差之量測與調整或控制。 ^ 由於雙轴工作平台在動作時會產生乒 ^ /、十~個的幾何轉 動 因此士付在運動的過程中將這十三個幾何轉動亨差 精準的量測出來,並且加以校正與補償就顯得非常;; 因此’發展雙軸工作平台的幾何誤 〃'、<,將可提供雙 軸工作平台有愈來愈高的精密纟,、 , 糸界有莫大的助 益。 在許多習用技蓺中,由7Kq # 曰、 中由如叫於1988年發表的—篇利 用直接$測位移(dispiacement)而得到2ι 。 、 e U决差元素的方 法’其強調用此方法可以描古旦、τ 了 “里測的精密度,並減少儀哭之 使用;而台灣大學羞教授則 曰, 種雙軸線上六自由度 量測系統,可同時獲得雙軸工作 又 σ 一方向六自由度誤 兩個分光鏡與兩 該六自由度量測系統之架構是利用四個都卜勒雷射位移 計、兩個長條平面鏡、一長條直角反射鏡、 個四象線位置感測器。 【發明内容】 本發明的目的在於提供一種線 種綠ί生雙轴幾何誤差之量測 褎置,其能量測雙軸工作平台運動時 玍之十三個幾何轉 1245878 動誤差,並加以校正與補償,藉以提高雙軸工作平台的精密 度。 本發明係一種線性雙軸幾何誤差之量測裝置,此系統 包括四組光纖位移計、四組二維光學讀頭及—個二維光樹 刻度尺平板,該二維光學讀頭及二維光概刻度尺平板合稱 格子編碼n,·將⑽光纖㈣計與n料學讀頭分別 放置於二維光柵刻度尺平板上。 、,么藉由H維光學讀頭可以精確的讀取出雙軸工作 平口 X方向與γ方向的移動值’而四組光纖位移計彳以 精確的讀取出雙軸工作 σ 方向的移動值,也可以由 光纖位移計上得知雙軸工作平台的傾斜度。 配合四組光纖位銘 忠亡丨丨打 了., 時 ’所產生如 校正與補償, 1. δ,(χ): 2. Sy(y). 3. εΑχ): 4. Φ): 5. Φ):- 6. sAy). σ 、、且二維光學讀頭及一個二維 …工一 /夂W左 , Y輛移動時, Υ轴所產生的直度誤差; 心動日寸’ Υ軸所產生的角度誤差; 1245878 ε 8. 9. 10. ε. (χ): (y): χ軸 γ軸 移動時 移動時Inferiority is also an important index that determines the quality of a two-axis work bearing A for a thousand units. The dual-axis working platform adopts multi-degree-of-freedom azimuth changes, and the scene produces errors due to each target. A ^ will produce a total of thirteen and several 1245878 rotation errors when it moves in interstitial motion. Due to the precision of the entire machine and the quality of the processed products of the various dual-axis working platforms in the machine, the determination of the workpieces to be processed: The movement position and attitude of the precise parts in space need to be as described above: Measurement and adjustment or control of rotation error. ^ As the two-axis working platform will produce ping ping when it is in motion, ten or ten geometric rotations, so Shi Fu accurately measured the thirteen geometric rotations during the movement, and corrected and compensated. It seems very; therefore, 'developing the geometrical misalignment of the dual-axis work platform', < will provide the higher and higher precision of the dual-axis work platform. In many conventional techniques, 7Kq # said, Zhong Youru published in 1988-using direct measurement of displacement (dispiacement) to get 2 ι. The method of determining element difference between e and U 'emphasizes that this method can be used to describe the accuracy of Gudan and τ, and to reduce the use of instrument crying, while Professor Xiu of Taiwan University said that it has six degrees of freedom on two axes. The measurement system can obtain dual-axis operation and σ. One direction, six degrees of freedom, two spectroscopes, and two six-degree-of-freedom measurement systems. The structure is based on four Doppler laser displacement meters and two long flat mirrors. , A long right-angle mirror, and a four-image line position sensor. SUMMARY OF THE INVENTION The object of the present invention is to provide a measuring device for measuring the geometric error of a biaxial green axis, and the energy measurement of the biaxial operation. When the platform moves, the thirteen geometric rotations are 1245878, and the errors are corrected and compensated to improve the precision of the two-axis working platform. The invention is a linear two-axis geometric error measurement device. The system includes four groups of optical fibers Displacement meter, four sets of two-dimensional optical read heads and a two-dimensional optical tree scale plate. The two-dimensional optical read head and two-dimensional optical scale plate are collectively referred to as lattice code n. Read heads separately It is placed on a two-dimensional grating scale plate. With the H-dimensional optical read head, the movement values of the X-axis and γ-direction of the biaxial working flat port can be accurately read. Taking out the movement value of the biaxial working σ direction, the inclination of the biaxial working platform can also be obtained from the optical fiber displacement meter. With the four groups of optical fiber mottos loyalty 丨 丨 hit. When the 'produced such as correction and compensation, 1. δ, (χ): 2. Sy (y). 3. εΑχ): 4. Φ): 5. Φ):-6. sAy). Σ, and two-dimensional optical read head and a two-dimensional ... Gongyi / 夂 W Left, when Y vehicles move, the straightness error produced by the Υ axis; the angular error produced by the cardioid axis' 寸 axis; 1245878 ε 8. 9. 10. ε. (Χ): (y) : When moving when the χ-axis γ-axis moves

• X sAy). 車由移動 時• X sAy). When the car is moving

11. ^λχ) : X 12. ^Xy) : γ • υ軸移動時 軸移動時 軸移動時 Z軸所產生的角度誤差; Z車由所產生的角度誤差; Y軸所產生的直度誤差; X軸所產生的直度誤差; z軸所產生的直度誤差; z軸所產生的直度誤差; 13. χ軸與γ輛的垂直度誤差。 【實施方式】 —本么月之種線性雙軸幾何誤差之量測裝置如圖— 所不’其包括:四組光纖位移計A-1、A-2、a—3、A—4;四* 二維光學讀頭β—丨、β_2 、B-4及一個二維光柵刻度尺今 板c;該二維光學讀頭β—n β 3、B-4及二維光柵刻肩 尺平板C可組合成一袼子編碼器。 本系統架構利用四組光纖 戴位私计A-1、A-2、A-3、A-4與 四組二維光學讀頭2、B-3、B-4敕八/ ^ ^ 、 + 正3在一起成一組量 測頃頭’二維光桃刻度尺平才反11. ^ λχ): X 12. ^ Xy): γ • Angular error caused by the Z axis when the axis moves while the axis moves; Angular error caused by the Z car; Straightness error caused by the Y axis Straightness error caused by X axis; Straightness error produced by z axis; Straightness error produced by z axis; 13. Verticality error of χ axis and γ vehicles. [Embodiment] —The measurement device for the linear biaxial geometric error of this month ’s seed is shown in the figure—Nothing ’It includes: four groups of fiber displacement meters A-1, A-2, a-3, A-4; four * Two-dimensional optical reading head β- 丨, β_2, B-4 and a two-dimensional grating scale c; the two-dimensional optical reading head β-n β 3, B-4 and two-dimensional grating shoulder scale C Can be combined into a mule encoder. This system architecture uses four sets of optical fiber wearing positions A-1, A-2, A-3, A-4 and four sets of two-dimensional optical read heads 2, B-3, B-4 敕 八 / ^ ^, + Positive 3 together into a set of measuring arenas' two-dimensional light peach scale

u心在雙軸工作平台 上。平台移動時,四組光纖位移計 D 丄八Z、A—3、A-4可得 到Z軸方向的變化位移;四組二 R4^r八, 择先學碩頭B-hB-2、B-3、 B 4 了刀別得到四組χ方向與四組γ 袓# _ & # 万向的位移。配合四 組先纖位移計A—bA—2、α—3、α—4,四 Β-2 - η a 、—維光學讀頭β-1、 3、Β-4及一個二維光栅刻度尺 坂C,我們便可以 J245878 得知雙軸雙轴工作平台在動作時 才所產生的十三個幾 動誤差。 轉 前述四組光纖位移計A]、A_2、a_3、A],可以使 用都普卜勒位移計,而組二維光學讀頭H U U、 可以量測二維訊號,故可以使用二維光檢測器⑽ pSP) ’或雷射四象儀得知。 前述十三個幾何轉動誤差說明如下,由於雙轴工作平The u center is on the dual-axis working platform. When the platform moves, four groups of optical fiber displacement meters D 丄 Z, A-3, A-4 can get the change in the Z axis direction; four groups of two R4 ^ r eight, choose the first master B-hB-2, B -3, B 4 After cutting, get four sets of χ direction and four sets of γ 袓 # _ &# universal displacement. With four sets of fiber displacement meters A-bA-2, α-3, α-4, four B-2-η a, -dimensional optical reading head β-1, 3, B-4 and a two-dimensional grating scale Saka C, we can know J245878 that the twelve or several movement errors produced by the two-axis and two-axis working platform only occur when it moves. The four sets of optical fiber displacement meters A], A_2, a_3, and A] can be used. Doppler displacement meters can be used, while the two-dimensional optical read head HUU can measure two-dimensional signals, so two-dimensional optical detectors can be used. ⑽ pSP) 'or Laser Four Imager. The aforementioned thirteen geometric rotation errors are explained as follows.

台,軸會有六個自由度的產生,而雙軸工作平台可以向X 軸方向與Y方向移動’會產生十二個自由度與―個乂軸 與Y軸的垂直度誤差,共十三個幾何轉動誤差,其分別 如下所述: 、 (1 )線性誤差: a 線性疋位誤差(Linear Positioning Error ) b) 水平直度誤差(Side toSideStraightnessErr〇r) c) 垂直度誤差(Upt〇D〇wnStraightnessEH〇r) (a )俯仰度誤差(Pitch Error ) (b)偏搖度誤差(Yaw]Error) (O橫轉度誤差(R〇UErr〇r) 當本發明的雙輛工作平台帶動二維刻度尺沿X方向 寸由一維光學讀頭B-1、B-2、B-3、B-4在X方向的讀 1245878 值,即可計算出平台的十三個幾何轉動誤差,其列述如下 δλχ) · X軸移動時,X軸所產生的直度誤差 δχ(χ)=Εχ(〇Α) 2. lb) : Υ軸移動時,Υ軸所產生的直度誤差 δν(γ)=Εν(〇Β) ε (χ): :X軸移動時,X軸所產生的角度誤差 ε {y). : Y軸移動時,Y軸所產生的角度誤差 Ez{〇Bf)-E(〇B) ,W: ,w · :χ軸移動時,γ軸所產生的角度誤差 >(χ):Platform, the axis will have six degrees of freedom, and the two-axis working platform can move to the X-axis direction and Y-direction 'will produce twelve degrees of freedom and the verticality error between the y-axis and the Y-axis, a total of thirteen The geometric rotation errors are as follows: (1) Linear errors: a Linear Positioning Error b) Side toSideStraightnessErr〇c) Verticality error (Upt〇D〇) wnStraightnessEH〇r) (a) Pitch Error (bitch) Error (Yaw) Error (O yaw error (R〇UErr〇r) When the two working platforms of the present invention drive two-dimensional The scale along the X direction is read by the 1D optical read heads B-1, B-2, B-3, and B-4 in the X direction to read the 1245878 value. The 13 geometric rotation errors of the platform can be calculated. The following is δλχ) · When X-axis moves, the straightness error δχ (χ) = Eχ (〇Α) 2. lb): When the 时 -axis moves, the straightness error δν (γ) of the Υ-axis = Εν (〇Β) ε (χ):: X-axis angular error ε {y). X-axis angular error Ez {〇 Bf) -E (〇B), W:, w ·: Angular error caused by the γ axis when the x-axis moves > (χ):

Ex(〇Af)-Ex(〇A) 6. £Xy): :Y軸移動時,X轴所產生的角度誤差 Ez{AC/y0)-Ez{AC) (y) y〇 :(y):Ex (〇Af) -Ex (〇A) 6. £ Xy):: Angle error Ez {AC / y0) -Ez {AC) (y) y〇: (y) :

Ez{〇B/y0)-Ez(〇B) y〇 7. : X軸移動時,Z軸所產生的角度誤差 Χχ):Ez {〇B / y0) -Ez (〇B) y〇 7.: When the X-axis moves, the angular error caused by the Z-axis (Xχ):

Ex(〇A)-Ex(BC) y〇 ε. (y): Y軸移動時,z軸所產生的角度誤差 1245878 1245878 Sy(x). :(水 SAOB)~Ex(〇B/y()) y〇 9· ” / : X 輛 h 私動時,Y軸所產生的直度誤差 ιο·~Μ· 6^x)-Ey(〇Ayx〇Sz(x) _ &動時,X軸所產生的直度誤差 δ^)^Εχ(〇Β)+γε^ ll/zW : χ . #動時,Z軸所產生的直度誤差 《(χ)Κ〇^)+χ〇5(χ) 12. : y 矛夕動時,z軸所產生的直度誤差 S^y)^E2(〇Byysx(y) 13. · v λ» , 車由:H Y軸的垂直度誤差 axy^sM+^x(y)~y^z(y)-Ex(AC)J/ 本發明需使用各項光學組件,現就各項組件加以說明 h光纖位移計h、a—2、h、h:利用光纖的特性,㈣ 待測物體表面與光纖之間的距離。Ex (〇A) -Ex (BC) y〇ε. (Y): When the Y axis moves, the angular error generated by the z axis is 1245878 1245878 Sy (x) .: (water SAOB) ~ Ex (〇B / y ( )) y〇9 · ”/: Straightness error of the Y axis when X cars h move privately ιο · ~ Μ · 6 ^ x) -Ey (〇Ayx〇Sz (x) _ & When moving, X Straightness error δ ^) ^ Eχ (〇Β) + γε ^ ll / zW: χ. #When moving, the straightness error of the Z axis is ((χ) Κ〇 ^) + χ〇5 ( χ) 12.: When y is moving, the straightness error S ^ y) ^ E2 (〇Byysx (y) 13. · v λ », by vehicle: HY verticality error axy ^ sM + ^ x (y) ~ y ^ z (y) -Ex (AC) J / The present invention requires the use of various optical components, and the components will now be described. h Optical fiber displacement meter h, a-2, h, h: use The characteristics of the fiber, 的 the distance between the surface of the object to be measured and the fiber.

2·二維光學讀頭B-1、B-2、、B 4 ·可同時提供X輛: 向與Y軸方向的二維移動情訊號。 3·二維光柵刻度尺平板C ··藉由其移 呀形,可以使二 、、隹光學讀頭讀出X軸方向與Y軸方向一 【圖式簡單說明】 私動情訊號 12 1245878 凊參閱以下有關本發明一較佳實施例之詳 、…5兄明及其 附圖,將可進一步瞭解本發明之技術内容及其目的功气· 關該實施例之附圖為·· 有 圖一為本發明的應用例圖。 【主要元件符號說明】 A-1、' A-3、A-4光纖位移計 B~1、3、B-4 二維光學讀頭 C二維光柵刻度尺平板2 · Two-dimensional optical read heads B-1, B-2, and B 4 · Can provide X vehicles at the same time: Two-dimensional movement signal in the direction of Y axis. 3 · Two-dimensional grating scale flat plate C ·· With its shape, the two, 隹 optical read heads can read the X-axis direction and Y-axis direction [Simplified illustration of the drawing] Private motion signal 12 1245878 凊 See The following details of a preferred embodiment of the present invention, ... 5 brothers and their drawings, will further understand the technical content and purpose of the present invention. The drawings related to this embodiment are as follows. Application example of the present invention. [Description of main component symbols] A-1, 'A-3, A-4 fiber displacement meters B ~ 1, 3, B-4 Two-dimensional optical read head C Two-dimensional grating scale plate

1313

Claims (1)

1245878 拾、申請專利範圍· i. 一種線性雙軸幾何誤差之量測裝置,其組成係包括· 四組光纖位移計,當平台移動時,用來量蜊χ軸與 Y軸方向的變化位移; 四組二維光學讀頭,當平台移動時,用來量 方向的變化位移; 台上; 個 二維光柵刻度尺平板,係固定在 雙軸 工作平 前述將四組光纖位移計與四 、、戶予,碩分別 放置於二維光柵刻度尺平板上,藉 積田四組一維光學讀頭 可以精確的讀取出雙軸工作平台x方向與γ方向的移 動值’而四組光纖位移計可以精確的讀取出雙轴工作平 台Ζ方向的移動值’也可以由光纖位移計上得知雙轴工 作平台的傾斜度。 申明專利把圍第丨項所述之_種線性雙軸幾何誤差 之里測裝置,並中今—給止 八f 3 一維光學碩頭係可使用二維光檢 測器。 光學讀頭係可使用雷射四象 申用專利乾圍第1項所述之_種線性雙軸幾何誤差 之量測裝置,其中該二 儀。 範圍第1項所述之-種線性雙軸幾何誤差 ^罝,其中該光纖位移計係可使用都普卜勒位 14 1245878 移計。 5.如申請專利範圍第1項所述之一種線性雙軸幾何誤差 之量測裝置,其中該四組二維光學讀頭和二維光柵刻 度尺平板可組合成一格子編碼器。 151245878 Patent application scope i. A linear biaxial geometric error measurement device, its composition system includes four groups of optical fiber displacement meters, which are used to measure the change in displacement of the x-axis and y-axis of the clam when the platform moves; Four sets of two-dimensional optical read heads are used to measure the change in displacement when the platform is moved; on the table; two two-dimensional grating scale plates are fixed to a biaxial working plane. Toyo, Shuo was placed on the two-dimensional grating scale plate, and the four sets of one-dimensional optical reading heads of Jitian could accurately read the movement values of the x-axis and γ-direction of the two-axis working platform. Accurately read out the movement value of the two-axis work platform in the Z direction. The inclination of the two-axis work platform can also be obtained from the fiber displacement meter. The patent states that the linear measuring device of linear biaxial geometric error described in item 丨 is described, and it is used today to give eight f 3 one-dimensional optical master head system can use two-dimensional optical detector. The optical read head can use the linear biaxial geometric error measurement device described in item 1 of the Four-Laser Laser Application Patent, which is the second instrument. A linear biaxial geometric error described in the first item of the range ^, wherein the fiber displacement meter can use a Doppler position 14 1245878 shift meter. 5. A linear biaxial geometric error measurement device as described in item 1 of the scope of the patent application, wherein the four sets of two-dimensional optical read heads and two-dimensional grating scale plates can be combined into a grid encoder. 15
TW93119554A 2004-06-30 2004-06-30 Device for measuring linear dual axis geometric tolerances TWI245878B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93119554A TWI245878B (en) 2004-06-30 2004-06-30 Device for measuring linear dual axis geometric tolerances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93119554A TWI245878B (en) 2004-06-30 2004-06-30 Device for measuring linear dual axis geometric tolerances

Publications (2)

Publication Number Publication Date
TWI245878B true TWI245878B (en) 2005-12-21
TW200600749A TW200600749A (en) 2006-01-01

Family

ID=37191257

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93119554A TWI245878B (en) 2004-06-30 2004-06-30 Device for measuring linear dual axis geometric tolerances

Country Status (1)

Country Link
TW (1) TWI245878B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113211186A (en) * 2021-05-26 2021-08-06 上海理工大学 Rotating shaft corner positioning error detection method of five-axis numerical control machine tool rotary table

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10365370B2 (en) * 2016-10-31 2019-07-30 Timothy Webster Wear tolerant hydraulic / pneumatic piston position sensing using optical sensors
CN109631757B (en) * 2018-12-13 2020-11-03 珠海博明软件有限公司 Grating scale calibration method and device and visual detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113211186A (en) * 2021-05-26 2021-08-06 上海理工大学 Rotating shaft corner positioning error detection method of five-axis numerical control machine tool rotary table

Also Published As

Publication number Publication date
TW200600749A (en) 2006-01-01

Similar Documents

Publication Publication Date Title
CN109458958B (en) Calibration method for center position of rotary table in four-axis vision measurement device
CN109357631B (en) Measuring system center calibration method based on laser displacement sensor
CN104625880B (en) A kind of five-axis machine tool cutter-orientation and the synchronous testing agency of point of a knife point site error
CN109341546B (en) Light beam calibration method of point laser displacement sensor at any installation pose
CN109520420B (en) Method for determining space coordinates of rotary center of rotary table
CN101419045A (en) Three-dimensional coordinate measuring machine for parallel multi knuckles
CN103791868B (en) A kind of space nominal volume based on virtual ball and scaling method thereof
Brand et al. Development of a special CMM for dimensional metrology on microsystem components
Chao et al. Extrinsic calibration of a laser displacement sensor in a non-contact coordinate measuring machine
CN108507466A (en) The method that three-dimensional precise information is obtained using two-dimentional line laser scanner
CN108801146A (en) A kind of lathe five degree of freedom error measuring means and error model method for building up
CN109253710B (en) Calibration method for zero error of A axis of REVO measuring head
CN110449988A (en) A kind of method of five-axis machine tool balance staff eccentricity rapid survey
CN1789901A (en) Three-coordinate calibrating and measuring instrument
Han et al. A review of geometric error modeling and error detection for CNC machine tool
CN113091653B (en) Device and method for measuring angle freedom degree error of linear guide rail based on pentaprism
Park et al. A new optical measurement system for determining the geometrical errors of rotary axis of a 5-axis miniaturized machine tool
CN208720994U (en) A kind of lathe five degree of freedom error measuring means
TWI245878B (en) Device for measuring linear dual axis geometric tolerances
CN110640546B (en) Measured gear rotation axis measuring method for large gear measurement beside machine
TWI717162B (en) Multi-axis machining device and compensation method thereof
JP2008089541A (en) Reference for measuring motion error and motion error measuring device
Li et al. A high-speed in situ measuring method for inner dimension inspection
JP2008524576A (en) Sequential multi-probe method for straightness measurement of straight rulers
CN110017803A (en) A kind of REVO gauge head B axle error of zero scaling method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees