TWI245124B - Method of measuring patch cord length for a LAN cable tester - Google Patents

Method of measuring patch cord length for a LAN cable tester Download PDF

Info

Publication number
TWI245124B
TWI245124B TW92135308A TW92135308A TWI245124B TW I245124 B TWI245124 B TW I245124B TW 92135308 A TW92135308 A TW 92135308A TW 92135308 A TW92135308 A TW 92135308A TW I245124 B TWI245124 B TW I245124B
Authority
TW
Taiwan
Prior art keywords
jumper
lan
line
display unit
tester
Prior art date
Application number
TW92135308A
Other languages
Chinese (zh)
Other versions
TW200424532A (en
Inventor
Gerald W Renken
Original Assignee
Ideal Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ideal Ind filed Critical Ideal Ind
Publication of TW200424532A publication Critical patent/TW200424532A/en
Application granted granted Critical
Publication of TWI245124B publication Critical patent/TWI245124B/en

Links

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Small-Scale Networks (AREA)

Abstract

A LAN tester has display and remote units each having a connector jack attached to an adapter board for connection to the plug of a patch cord. Both the display and remote units have circuits which are capable of measuring the phase between a drive signal voltage and the corresponding coupled or reflected signal due to the drive signal. Scattering parameters for the mated connector pairs and the patch cord itself are measured during a field calibration. A computer in one or both of the tester units stores the measured scattering parameters and uses the scattering parameters to move the reference plane to any desired location along the patch cord. Setting the reference plane at one end of the patch cord enables the length of the path cord to be determined by measuring the frequency difference between adjacent maxima of a plot of input impedance versus frequency.

Description

1245124 玖 '發明說明: 【發明所屬之技術領域】 區域網路(Local Area Network,LAN)配線是用來連接諸如個人電腦、 列表機和傳真機之類的設備,這些設備之間使用高速數位信號來傳輸資 料。這種類型的高性能之配線有時候被稱作、、通信纜線〃。由於一間辦公室 裡有著許多台電腦、電腦檔案伺服器、列表機和傳真機,區域網路(lan) 配線將所有這些設備交聯到一個通信網路裡。區域網路(lan)配線經設 計以支援在這個網路裡所有的個別構件之間的通信。 圖1所示為區域網路(LAN)配線一舉例簡化的圖示。圖1示出了該 區域網路(LAN)配線(其配線的絕大部份是配置在建物的牆壁裡),是如 何用來將某人桌上的個人電腦1連接到通信室裡的檔案伺服器2。在牆壁 裡的鏡線3的最大長度不得超過90公尺。牆壁插孔連接器4經用來連接從 電腦和檔案伺服器到區域網路(LAN)配線的連接線5。 配線(Cabling ):在「區域網路(LAN )配線」這個名詞裡,配線(Cabling ) 是重要的字,因為配線包括了纜線3本身,以及裝到區域網路(LAN)纜 線上的連接器4。因此,區域網路(LAN)配線的性能取決於連接器以及 纜線。 安裝(Installation):技術人員安裝區域網路(LAN)配線作為新設線 路的一部份,或是在現有的結構裡進行區域網路(LAN)性能升級的一部 份。在這兩種情況裡,技術人員將區域網路(LAN)纜線3通過牆壁裡拉 線’然後再在纜線的兩端安裝連接插孔4。然後,這些插孔再按入到牆面 1245124 插孔固定面板裡,安裝工作即告完成。 然而’技術人員會經要求配合使用經調校的測試裝備來測試每一條區 域網路(LAN)配線的連通。這個測試對工程承包單位證明,該配線從信 號貫通的立場來說是已經正確地安裝完成。手提式區域網路(LAN)測試 器經用來進行這些測試。這類的測試器用一系列不同類型的信號驅動該配 線’並且從所收到的信號進行的量測,來決定該配線是否能夠以預先制訂 的資訊速率支持電信信號。 該等區域網路(LAN)測試器將每一次測試的結果記錄,並且在稍後 時間’列印出一份測試文件顯示該線路通過或不通過。線路接通技術人員 才能獲得工資。如果有線路不通,技術人員必須重新測試,且時常必須更 換沒有正確安裝或安裝不確定的連接器。技術人員必須繼續進行測試及改 正’直到所有線路均接通為止。 區域網路測試器(LANTesters):區域網路(LAN)測試器是尚稱先進 的手持型測試系統,就美國電信工業同業工會(TIA)第6類(Category 6) 配線來說,該等手持型測試系統可以用一系列的涵蓋了 1〜25〇兆赫的頻率 來測試區域網路(LAN)線路。圖2示出了一典型的區域網路(LAN)測 試器6,其帶有一測試適配器電路板7連接到該區域網路(LAN)測試器。 該測試適配器電路板包括一測試插孔連接器8。這個測試適配器的目的是 在該區域網路(LAN)測試器與即將受測的區域網路(LAN)線路之間提 供一連接介面。 該測試插孔8使得該區域網路(LAN)測試器6能以一條跳線9連接 1245124 到該區域· (LAN)料(如圖3和® 4巾卿)。跳線典獅長度為二 公尺或大約代。這錄度使得技術人M能在進行職作神,方便地將 區域網路(LAN)測試器連接到牆壁插孔4。 標準(Standards):技術人員配合參考電信工業同業工會的標準來測試 他們女裝的線路。在美國,這個標準是由美國電信工業同業工合(BA) 所制訂的。在歐洲,這個標準是由國際標準組織(IS〇)所制訂的。當測試 一線路時,技術人員先瞭解即將受測的是哪一種類型,以及相對應的量測 值限制的標準,是採用TIA呢?還是採用iso呢? 然後,對線路進行測試,並且將量測結果與指定標準的限制值進行比 對。如果量測值沒有超過限制值,該線路即通過。如果不通過,那麼,技 術人員必須應要求繼續在不通過的線路上工作,直到通過為止。通常,這 意味著重新安裝連接器到纜線的兩端上。 標準線路名詞解釋(Standard Link Definitions):圖5示出了簡化形式 的標準永久線路,使用90米的區域網路(LAN)纜線,在一建物的牆壁裡 穿繞,或是在天花板裡穿繞。牆壁插孔接到配線的兩端,係用來將該線路 與在電信室裡的裝備連接,以及連接到在辦公室裡的區域網路的個別器 材’比方說’電腦或列表機等。TIA和ISO指定永久線路最大長度為9〇 公尺。 線路測試(LinkTesting):圖6示出了區域網路(LAN)測試器是如何 檢查一線路的性能。當測試一線路時(這個步驟在這一行裡稱射擊 (Shooting) —線路),需要兩台區域網路(LAN)測試器(如圖示)。技 1245124 術人員將區域網路(LAN)測試器6A的一顯示器端接到該線路的一端, 而將區域網路(LAN)測試器6B的遠端識別器端接到該線路的另一端。 由於該區域網路(LAN)測試器顯示器端有-顯示螢幕來顯示測試量測結 果,技術人員從該顯示器端「射發」該線路,從那裏控制測試,以及觀看 測試結果。 在測試期間,首先,-台單元將測試信號送到該線路的一端,而此時 二台單元同時在量測結果。然後,角色互換,信號的傳送與信號的量測在 該線路的相對端處進行。當測試完成時,該遠端識別器單元將其數據量測 檔送到顯示器單元供最後的處理並且儲存在該顯示器單元裡。每一次測試 的限制值(由選_鮮職定的)經應關量據組錢定該線路是 否不能通過該合格測試。 標準線路(Standard Links):美國電信工業同業工會(ΉΑ)和國際標 準組織(iso)均界定了兩種類型的區域網路(LAN)線路,即頻道線路 與永久線路。每一種線路均在下面有示及敘述。 頻道線路(Channel Link):頻道線路包括區域網路(LAN)線路和跳線, 如圖7中所示,但不包括連接到頻道測試適配器電路板7A。頻道線路量測 路徑包括在牆壁裡穿繞的線路3、在牆壁上相嚙合的連接器對,以及跳線 而且經假設域表該最_、完整的電信_雜能,其亦個跳線將個 人電腦與檔案伺服器相互連接。由於在這個路徑裡配線的長度較長該頻 道線路的測試限定值並不如在永久線路測試時那樣嚴苛。 永久線路(Permanent Link):永久線路包括線路3,加上在牆壁插孔上 1245124 相嚙合的連接器對,但是,它不包括跳線(如圖8中所示)。它也不包括與 該永久線路測試適配器電路板7B的連接。該永久線路測試僅評估在牆壁 裡的繞線’在牆壁上的連接器插孔,插入到這些插孔裡的插頭,以及接搭 到這些插頭的每—個二公分的線段。該永久線路測試主要是代表在牆壁裡 的線路配線本身驗能。如此—來,永久線制試限定健成了要通過線 路合格的最高量測限定值。 其結果,技術人員經常被告知,如果他們檢查的線路未能通過永久線 路測試,就把區域網路(LAN)測試器的限定值改到頻道線路限定值並且 重測。如果該頻道測試通過,則該線路可被認為是在這些條件下合格。 現在,我們要來討論技術人員在對他們所安裝的區域網路(LAN)配 線進行符合相_ TIA或ISO量酬試限定值賴試時所面對的幾個測試 上問題。技術人貞㈣試他安裝的線路是通過永久線路制限定值或是頻 道線路量麻紐。細假設麟人M 6經魏製行了麟裝備必要的 調校步驟,才進行區域網路(LAN)合格測試,_保該區域網路(lan) 測試器最大的量測精確度。 盘久線路測訧閉籲: 1.永久線路適配器的結構:請注意看習用工藝的永久線路測試適配器7B (如圖8中所示)。請記住,永久線路包含了在牆壁裡穿繞的纔線加 上在牆壁插孔上㈣合的連接器對,但是,它不包括跳線的絕大部份。 永久線路適配器(PLA’s)通常的製作方法是將一條跳線截成兩半,然 後將跳線截斷處兩端的每-端銲_在該永久線路職適配器殼體裡 1245124 的一印刷電路板(PCB)。這些印刷電路板經設計僅造成非常微小的信 號連貫問題,因此,它們的影響是微不足道的。 2·永久線路測試壽命:由於跳線必須進入到永久線路適配器(PLA)殼體 裡,產生的機械力撓曲,因此,永久線路適配器(PLA)是有著有限的 測試壽命的。當跳線已經撓曲超過了其最大數目的撓曲次數,就必須要 更換。當這件事發生時,整個永久線路適配器(PLA)都必須要更換。 此外,為了最大的測試準確度,在顯示器端的永久線路適配器(PLA) 和在遠端識別器端的永久線路適配器(PLA)均需要更換。 3·專用的永久線路適配器(PLA):區域網路(LAN)測試器通常對每一 條受測的永久線路使用一專用的PLA。這是因為該跳線的迴路以及傳導 線的特性在整個PLA量測結果會是一個重要的部份。安裝技術人員有 必要注意他(她)所測試的是哪一條線路、是誰配的線,以及要使用哪 一種較佳的PLA型式。 4·相匹配的永久線路適配器(PLA)組:通常,技術人員會使用一組與用 在該線路上的鏡線製造商所供應同一類型的永久線路適配器(pla,s)。 如果該線路是由X供應商所製造的配線(也就是說,纜線加上連接器), 那麼,就會使用X供應商的跳線製作的永久線路適配器(PLA)用來進 行合格測試。 5·永久線路適配器(PLA)成本··對線路安裝商來說,永久線路適配器 (PLA)會是高成本的項目,通常一組兩件要4〇〇美元或更高。如果區 域網路(LAN)配線安裝測試公司有多組的安裝人員,而每一組安裝人 1245124 貝都需要好幾組不同供應商指定的永久線路適配器(PLA),這個經常 需用的器材成本會非常高。這成本來自裝在塑膠殼體裡專用的印刷電路 板,其構成永久線路適配器(PLA)的結構,該pLA再連接到區域網 路(LAN)測試器。 6·水久線路適配器(PLA)的串音:此外,隨著區域網路認證朝向了更高 的頻率邁進(高過25〇祕),作為量測系統的—部份,永久線路適配 器(PLA)的性能麟更闕鍵性。隨著辭的增加,在永久線路適配 裔(PLA)連接祕板裡介於導線對間所量測的串音或是缺少了隔離變 成一個嚴重的問題。當隔離缺少的情形超過了一侧鍵的程度,該區域 網路(LAN)測試器就無法量測該配線對到對的隔離,因為它無法“看 見通過其上的自身永久線路適配器戶斤產生的串音。 發月提供了這侧題的解決之道。這解決之道是在該測試適配器電路 吏用有著也且實的隔離特性的連接器。然後再將該測試適配器電路 、】冑著與在該適配器電路板上的連接器相4合的連接器的一 跳線。 、挑適配器(PLA)參考平面調校:永久線路適配器的最後一個問 θ 心考平面位置。永久線路調校的目的是將所有永久線路量測值 對照到峨跳線的一已知的點上。進一步言之,永久線路量測參考平 面經计异㈣這她設定在麵線的端部,距離該齡上插孔2公分 處。經過這個調校,來自 ㈢桃線的所有效應均被從該永久線路量測移除 了。用來界定並且設定這個參考平面在這個點上_校步驟可涉及取一 1245124 最初的一組永久線路調校數據,並且最終將它對照到這個所希望的參考 平面。 頻道線路測詖閜顥: 1·頻道線路適配器:請注意看圖7中所示的頻道線路測試適配器7A。請 記住’該頻道線路包括線路(亦即,在牆壁裡穿繞的纜線加上在牆壁插 孔上相嚙合的連接器對)以及跳線,但是,它不包括在頻道測試適配器 電路板上的插頭或插孔。頻道線路適配器(CLA,S)是藉著將一 90度的 連接器安裝到CLA殼體裡的印刷電路板上,加上適當的隔離而製作成 的。該90度的連接器經選擇以在與用來進行頻道線路合格檢測的跳線 相配合時提供重要的對到對隔離。 2·頻道線路適配器(CLA)測試壽命:與永久線路測試適配器比較起來, 頻道線路適配器有著更長的測試壽命,因為低成本可更換的跳線之使用 解決了跳線機械力撓曲問題。安裝在CLA裡的印刷電路板上的連接器 隨著連接器上的接點上合金的脫落最終將磨損。無論如何,頻道線路適 配器的測試壽命被認為是長過永久線路適配器的測試壽命。 3·專用的頻道線路適配器(CLA):在測試頻道線路時,區域網路(LAN) 測試器也要使用專用的頻道線路適配器(CLA),因為在頻道線路適配 器的印刷電路板上使用了低串音、高隔離的連接器8。 4.相匹配的頻道線路適配器(CLA)組:由於在CLA殼體裡的印刷電路 板(PCB)上安裝了高隔離的9〇度印刷電路板連接器,所以從定義上 來說’使用的是相匹配的頻道線路適配器組。然而,當與永久線路適配 12 1245124 =(A)比較時’在CLA裡可以使用任何類型的跳線,只要該跳線 是符合供該受測線路使用的配線類別的規定。 5·頻道線路適配器(CLA)的成本:頻道線路適配器(cla)的成本比永 久線路適配器(PLA)的成本低,因為它們可以使用任何符合的跳線來 連接到並且測試該頻道線路。 6·頻道線路適配器(CLA)的串音:由於在…模組殼體裡使用了低串 音連接器,頻道線路對到對隔離是較優於永久線路的對到對隔離。 7·頻道線路適配器(CLA)參考平面調校:舰線路適配器的最後一個問 題也就是量測參考平面位置的問題。尤其,頻道線路量測參考平面是設 定在該跳線的端點處亦即在該跳線的輸入端處(如圖7中所示)。有了 這個調校,來自跳線輸入連接器(亦即在測試器端的插頭)的所有影響 均從頻道線路量測除去了。 虽域網路CLAN)線路眚測問題總結: 從前面的討論,與頻道線路適配器(CLA)比較,永久線路量測需要 使用個別組的永久線路適配器(PLA),就下面幾個方面而言,其增加了幾 項不希望的成本:1)永久線路適配器(PLA)本身;2)專用的PLA組的 數目;以及3)由於跳線繞曲疲勞而致的有限之PLA測試壽命。另外,和 頻道線路適配器比較,永久線路適配器還有著更大的將對到對串音降到最 低度的麻煩。 【先前技術】 本案所屬的技術領域十分新穎,除申請人同時已於美國已提出之下述 13 1245124 申請案外,並無先前技術存在。 1美國專利申請案(序號60/432,858,2002年12月12日送件) 2美國專利申請案(序號1〇/317,555,2002年12月12日适件) 【發明内容】 為了這些理由,在本發明裡提供了一種調校/量測方法,該方法 的在: …、目 1完全地免除永久線路測試適配器; 2·降低區域網路(LAN)量測的經常性支援成本; 3·增進信號貫通性; 4·增加區域網路(LAN)線路在300MHz以上頻率的量測準確度; 5·提供一種裝置,使用頻道適配器及低成本的跳線來量測永久線路·,以及 6·提供一種用以量測一跳線的實際長度的裝置。 相位·· 在對本發明的測試方法作說明之前,我們必須先討論相位問題。量測 相位的能力是本發明的區域網路(LAN)測試器的一個重要特點。也就是 說’除了置測振幅’本發明的手持型區域網路(LAN)測試器還可以量測 相位。這個能力使得該測試器能夠在即將接受量測的區域網路(LAN)線 路上一特定點處設定一置測參考平面。最原始的調校參考平面可以被設定 在沿著該線路上一個容易設定、量測、定義以及執行的點處。 另外,相位也使得該測試器可以將這個原始的調校參考平面以及所有 的與其關聯的區域網路(LAN)線路量測值在進行該區域網路(LAN)線 1245124 路測試期間的任何時間移動到另一個新的參考平面位置。進一步十之,有 了相位資料’顯示器端和遠端識別器端可各自將相位參考平面從在該頻道 線路適配器印刷電路板裡,移動通過配合頻道線路適配器(cla)輸出相 唾合的連接器對,並且向下沿著該跳線的全長,向上達牆麵孔處相喷^ 的連接器對移動到如圖9中所示的四個可能的位置中之任何一個位置。相 位參考平面的鶴使得本發明_期_使用—頻道線路適配器(〔A) 與低成本的跳線來進行永久線路量測。 簡而言之,本發明的方法涉及了對每—條跳線加上在跳線的每_端上_ 相喃合的連接n對進行其整體散射參數St的量測時之雛步驟(如圖1〇 中所不)。每-條跳線的散射參數SB可以從該跳線已知的特徵而得到。這 個參數,連同總散射參數矩P車St使得可以計算在該跳線兩端上械合的連 接器對的舖參數SA和se。有了已知_婦合連接輯&和&以及該 跳線SB的散射矩陣,該參考平面可被移動到沿著該跳線,從在區域網路 (LAN)測試器裡,到任何地方,以進行永久線路或者頻道線路測試。 【實施方式】 € 本發明的區域網路(LAN)測試系統的示意圖示在圖9中有示。該測 試系統包括-手持式顯示器單元10,一手持式遠端識別器單元12,以及跳 線⑴14與跳線(II) 16。每-條跳線包含在其一端打上的插頭⑴i4A、 16A,該實際的縵線14B、16B,以及在其另一端打上的插頭(II)i4c、i6C。 該顯示器單兀10有一頻道線路適配器電路板18,在其上安裝有一連接器 插孔(I) 20。該插孔係曝露到該顯示器單元的外部。插孔2〇可接受一跳 15 1245124 線的插頭14A或16A,以構成一相嚙合的連接器對d)。當、、射擊〃(即产 查)一線路時,該跳線的其他插頭14C、16C與接搭到在牆壁裡穿繞的線 路24的一牆壁上插孔22相嚙合。同樣地,該遠端識別器14有一頻道線路 適配器電路板26,在其上安裝有一連接器插孔(n) 28。這兩個連接器2〇 和28最好同為90度的連接器,其帶有對到對隔離。一幻_45美規插孔戋 一 Siemon (席蒙公司)出品的供較高頻率使用的teiTa jack是合適的。插孔 28接受跳線(II)的插頭16A以構成相唾合的連接器對(I〗)。當、、射擊" (即、約—線路時,跳線⑻16的_ 16C連接到線路24的端頭 上-牆壁上插孔3G。該顯示器單元與遠端識廳單元包含適當的高頻及電 子線路用以測試該線路。另外,該顯示器單元還有由使用者引動的開關, 用以開始及控制該等職魏’以及—齡轉所有適當的數據連通到使 用者。另外’該顯不||單元還有-電腦處理器用以進行下面所述的計算, 以及記憶體將量測的散射參數及其他數據儲存起來。 該區域網路(LAN)職纽的㈣如下述。首先,必齡現場賴 示器單元、綱識別H單元以及兩舰線進魏場調校。這雛的目的乃 是藉著個任何兩條跳線,配合-套頻道線路適_連接_顯示器與遠 端識顧單元上(如圖H)中所示),來設定顯示器與遠端識顧單元一量 測參考平面。該兩條跳線連同打在其兩端上的_模_樣的插躺由同一製 造商製造,但兩條跳線的長度不必相同。 散射參數: 由於該顯示器單元與該遠端識別器單元可量測相位,該跳線組,即跳 1245124 線本身連__端插頭可以藉著使用—散射參數(_、'〔s〕參數Ο測 1其頻率而量測或瞭解其特徵。在出廠前作的調校,在該頻道適配器印刷 電路板上的量測參考平面會被調到與在該頻道線路適配器電路板18、26上 的9〇度連接器插孔2〇、28的輸入相等。 : L將跳線14連接到顯示器單元與遠端識別器單元之間; 2·像這樣連接好後,量測該跳線(1) 14的全部四個散射參數,包括在每_ 一個頻道線路適配器電路板18、26處的該相嚙合的連接器對2〇、14A 和 28、14C ; 3·將跳線(I) 14全部量測的散射數據〔St〕1儲存; 4·將跳線(Π) 16連接到顯示器單元與遠端識別器單元之間; 5·像這樣連接好後,量測該跳線(II) 16的全部四個散射參數,包括在每 一個頻道線路印刷電路板18、26處的該相喊合的連接器對2〇、16C和 28、16A。 · 6·將跳線(Π) 16的全部量測之散射數據〔sT〕2儲存; : 1·就每一條跳線來說,其散射矩陣的構成元素是一組簡單的等式或名气 其已知的公式如下: 17 12451241245124 Description of the invention: [Technical field to which the invention belongs] Local Area Network (LAN) wiring is used to connect devices such as personal computers, list machines and fax machines, and high-speed digital signals are used between these devices To transfer data. This type of high-performance wiring is sometimes referred to as communication cables. Because there are many computers, computer file servers, list machines, and fax machines in an office, a LAN cable connects all of these devices into one communication network. LAN wiring is designed to support communication between all individual components in this network. Figure 1 shows a simplified diagram of an example of a local area network (LAN) wiring. Figure 1 shows how the local area network (LAN) wiring (most of the wiring is arranged in the wall of the building) is used to connect a personal computer 1 on someone's desk to a file in the communication room Server 2. The maximum length of the mirror line 3 in the wall must not exceed 90 meters. The wall jack connector 4 is used to connect a connection cable 5 from a computer and a file server to a local area network (LAN) wiring. Cabling: In the term "LAN wiring", cabling is an important word because wiring includes cable 3 itself and the connection to the LAN cable器 4。 4. Therefore, the performance of local area network (LAN) wiring depends on the connector and the cable. Installation: A technician installs local area network (LAN) wiring as part of a new installation line, or performs a LAN performance upgrade in an existing structure. In both cases, the technician pulls a local area network (LAN) cable 3 through a wall 'and then installs connection jacks 4 at both ends of the cable. Then, press these jacks into the wall 1245124 jack fixing panel, and the installation is complete. However, technicians will be required to test the connectivity of each local area network (LAN) wiring in conjunction with calibrated test equipment. This test proves to the engineering contractor that the wiring has been correctly installed from the standpoint of signal penetration. A portable local area network (LAN) tester is used to perform these tests. This type of tester drives the wiring ' with a series of different types of signals and measurements from the received signals determine whether the wiring can support telecommunications signals at a predetermined information rate. These local area network (LAN) testers record the results of each test and print a test file at a later time 'indicating that the line passed or failed. Only technicians who are connected to the line can be paid. If there is a line failure, the technician must retest and often must replace connectors that are not properly installed or have uncertain installations. The technician must continue to test and correct 'until all lines are connected. LAN Testers: LAN Testers are still known as advanced handheld test systems. As far as Category 6 wiring is concerned, these handhelds The type test system can test a local area network (LAN) line with a range of frequencies ranging from 1 to 25 MHz. Figure 2 shows a typical local area network (LAN) tester 6 with a test adapter circuit board 7 connected to the local area network (LAN) tester. The test adapter circuit board includes a test jack connector 8. The purpose of this test adapter is to provide a connection interface between the local area network (LAN) tester and the area network (LAN) line to be tested. The test jack 8 enables the local area network (LAN) tester 6 to connect 1245124 to the area (LAN) material with a jumper 9 (see Figures 3 and 4). The length of the jumper is two meters or about a generation. This recording allows Technician M to work as a master, and easily connect a local area network (LAN) tester to the wall jack 4. Standards: Technicians cooperate with the standards of the telecommunications industry trade unions to test their women's clothing lines. In the United States, this standard was developed by the American Telecommunications Industry and Industry Association (BA). In Europe, this standard was developed by the International Standards Organization (IS0). When testing a line, the technician first knows what type is being tested, and the corresponding measurement limit standard. Is TIA used? Or use iso? Then, test the line and compare the measurement result with the limit value of the specified standard. If the measured value does not exceed the limit value, the line passes. If it fails, the technician must continue to work on the line that does not pass until required. Usually, this means reinstalling the connectors on both ends of the cable. Standard Link Definitions: Figure 5 shows a simplified form of a standard permanent line, using a 90-meter LAN cable, running through the walls of a building, or through the ceiling Around. The wall jack is connected to both ends of the wiring, and is used to connect the line with equipment in the telecommunications room, as well as individual devices 'for example' computers or listing machines connected to the local area network in the office. TIA and ISO specify a maximum permanent line length of 90 meters. Link Testing: Figure 6 shows how a LAN tester checks the performance of a line. When testing a line (this step is called Shooting-line in this line), two LAN testers (as shown) are required. A technician 1245124 terminates a display of the local area network (LAN) tester 6A to one end of the line, and terminates a remote identifier of the local area network (LAN) tester 6B to the other end of the line. Since the LAN tester has a display screen on the display side to show the test measurement results, the technician "emit" the line from the display side, control the test from there, and view the test results. During the test, first, the unit sends a test signal to one end of the line, and at this time the two units are measuring the result at the same time. Then, the roles are reversed, and signal transmission and signal measurement are performed at the opposite end of the line. When the test is complete, the remote identifier unit sends its data measurement file to the display unit for final processing and storage in the display unit. The limit value of each test (determined by the candidate) can be used to determine whether the line fails the pass test according to the amount of money. Standard Links: The United States Telecommunications Industry Association (ΉΑ) and the International Standards Organization (ISO) have defined two types of local area network (LAN) lines, namely channel lines and permanent lines. Each line is shown and described below. Channel Link: The channel link includes a local area network (LAN) line and a jumper, as shown in FIG. 7, but does not include a connection to the channel test adapter circuit board 7A. The channel line measurement path includes a line 3 running through the wall, a pair of connectors that mesh on the wall, and a jumper, and the hypothetical domain table should be the most complete, complete telecommunications, and miscellaneous energy. The personal computer and the file server are interconnected. Because the length of the wiring in this path is longer, the test limit of this channel line is not as severe as in the permanent line test. Permanent Link: Permanent Link includes Line 3, plus the 1245124 mating connector pair on the wall jack, but it does not include jumpers (as shown in Figure 8). It also does not include a connection to the permanent line test adapter circuit board 7B. This permanent line test only evaluates the wiring in the wall, the connector jacks on the wall, the plugs plugged into these jacks, and every two centimeters of wire segments that connect to these plugs. This permanent line test mainly represents the energy verification of the line wiring itself in the wall. So-come, the permanent line test limit becomes the highest measurement limit value to pass the line. As a result, technicians are often told that if the line they check fails the permanent line test, they change the limit of the LAN tester to the limit of the channel line and retest. If the channel test passes, the line can be considered qualified under these conditions. Now, we are going to discuss several testing problems that technicians face when performing compliance testing on their installed local area network (LAN) cables. The technician tested whether the line he installed was through the permanent line limit value or the frequency of the line. It is assumed that the Lin Ren M 6 has performed the necessary adjustment steps of the Lin equipment before the LAN network qualification test was performed, and the maximum measurement accuracy of the LAN tester is guaranteed. Panjiu Line Test: 1. Structure of Permanent Line Adapter: Please pay attention to the permanent line test adapter 7B (as shown in Figure 8). Keep in mind that a permanent line includes a pair of wires routed through the wall plus a connector pair mated to the wall jack, but it does not include the vast majority of jumpers. Permanent line adapters (PLA's) are usually made by cutting a jumper in half, and soldering each end of the jumper at each end. A printed circuit board (PCB) of 1245124 ). These printed circuit boards are designed to cause very small signal coherence issues, so their impact is negligible. 2. Permanent line test life: Since the jumper must enter the permanent line adapter (PLA) housing, the mechanical force generated by it is deflected, so the permanent line adapter (PLA) has a limited test life. When the jumper has flexed beyond its maximum number of flexes, it must be replaced. When this happens, the entire permanent line adapter (PLA) must be replaced. In addition, for maximum test accuracy, the permanent line adapter (PLA) on the display side and the permanent line adapter (PLA) on the remote identifier side need to be replaced. 3. Dedicated permanent line adapter (PLA): A local area network (LAN) tester usually uses a dedicated PLA for each permanent line under test. This is because the characteristics of the loop and the conductor of the jumper will be an important part of the overall PLA measurement result. It is necessary for the installation technician to pay attention to which line he or she is testing, who uses it, and which better PLA type to use. 4. Matching set of permanent line adapters (PLA): Usually, a technician will use a set of permanent line adapters (pla, s) of the same type as those supplied by the mirror line manufacturer used on the line. If the wiring is made by the X vendor (that is, the cable plus the connector), then a permanent line adapter (PLA) made by the X vendor's jumper is used for compliance testing. 5. Permanent Line Adapter (PLA) Costs · For line installers, permanent line adapters (PLA) can be costly items, usually $ 400 or more in a set of two. If the local area network (LAN) wiring installation test company has multiple sets of installers, and each set of installers requires 1,245,124 shells, several sets of permanent line adapters (PLAs) specified by different vendors are required. very high. This cost comes from a dedicated printed circuit board housed in a plastic case that forms the structure of a permanent line adapter (PLA), which is then connected to a local area network (LAN) tester. 6. Crosstalk of Mizuhisa Line Adapter (PLA): In addition, with the certification of the local area network moving towards higher frequencies (above 25 °), as part of the measurement system, the permanent line adapter (PLA) The performance of) is more key. With the increase of words, the crosstalk measured between the pair of wires or the lack of isolation in the permanent line adapter (PLA) connection secret plate becomes a serious problem. When the lack of isolation exceeds the level of one side key, the LAN tester cannot measure the isolation of the wiring pair, because it cannot "see" generated by its own permanent line adapter. Fayue provided a solution to this problem. The solution is to use a connector with solid isolation characteristics in the test adapter circuit. Then, hold the test adapter circuit. A jumper of the connector that is mated with the connector on the circuit board of the adapter. Pick the adapter (PLA) reference plane adjustment: The last question of the permanent line adapter is the location of the examination plane. The permanent line adjustment The purpose is to compare all the measured values of the permanent line to a known point of the E-jump line. Furthermore, the reference plane for the measurement of the permanent line is calculated differently, which is set at the end of the upper line, away from the age. Jack 2 cm. After this adjustment, all effects from the Tao line are removed from the permanent line measurement. It is used to define and set this reference plane at this point. The calibration step may involve 1245124 The first set of permanent line calibration data, and finally it is compared to this desired reference plane. Channel line measurement: 1. Channel line adapter: Please note the channel line test shown in Figure 7 Adapter 7A. Remember that the channel line includes the line (that is, a cable running in the wall plus a pair of connectors that engage on the wall jack) and a jumper, but it is not included in the channel test The plug or jack on the adapter circuit board. The channel line adapter (CLA, S) is made by installing a 90-degree connector to the printed circuit board in the CLA housing and adding proper isolation. The 90-degree connector is selected to provide important pair-to-pair isolation when mated with jumpers used for channel line compliance testing. 2. Channel Line Adapter (CLA) Test Life: Compared to a permanent line test adapter The channel line adapter has a longer test life, because the use of low-cost replaceable jumpers solves the problem of mechanical deflection of the jumpers. It is installed on the printed circuit board in the CLA The connector will eventually wear out as the alloy on the connector comes off. In any case, the test life of the channel line adapter is considered to be longer than that of the permanent line adapter. 3. Dedicated channel line adapter (CLA) : When testing the channel line, the LAN tester should also use the dedicated channel line adapter (CLA), because the low-crosstalk, high-isolation connector 8 is used on the printed circuit board of the channel line adapter. 4. Matching Channel Line Adapter (CLA) group: Since a highly isolated 90 degree printed circuit board connector is installed on the printed circuit board (PCB) in the CLA housing, by definition, 'used is Matching channel line adapter set. However, when compared with permanent line adaptation 12 1245124 = (A) 'any type of jumper can be used in the CLA, as long as the jumper is compatible with the wiring for the line under test Provision of categories. 5. The cost of the channel line adapter (CLA): The cost of the channel line adapter (cla) is lower than the cost of the permanent line adapter (PLA) because they can use any compliant jumper to connect to and test the channel line. 6. Crosstalk of Channel Line Adapter (CLA): Due to the use of low crosstalk connectors in the module housing, pair-to-pair isolation of channel lines is better than pair-to-pair isolation of permanent lines. 7. Channel Line Adapter (CLA) Reference Plane Adjustment: The last problem of the ship line adapter is measuring the position of the reference plane. In particular, the channel line measurement reference plane is set at the end of the jumper, that is, at the input of the jumper (as shown in Figure 7). With this adjustment, all effects from the jumper input connector (that is, the plug on the tester side) are removed from the channel line measurement. Although the summary of the problem of CLAN) line measurement: From the previous discussion, compared with the channel line adapter (CLA), permanent line measurement requires the use of a separate set of permanent line adapters (PLA). In terms of the following aspects, It adds several undesirable costs: 1) the permanent line adapter (PLA) itself; 2) the number of dedicated PLA groups; and 3) the limited PLA test life due to jumper winding fatigue. In addition, compared with channel line adapters, permanent line adapters have a greater problem of minimizing pairing crosstalk. [Prior Art] The technical field to which this case belongs is very novel. Except for the following 13 1245124 application that the applicant has also filed in the United States, no prior art exists. 1 US patent application (serial number 60 / 432,858, filed on December 12, 2002) 2 US patent application (serial number 10 / 317,555, applicable on December 12, 2002) [Summary of the Invention] For these reasons, in The present invention provides a calibration / measurement method. The method includes the following steps: 1. Eliminate permanent line test adapters completely; 2. Reduce the cost of regular support for LAN measurement; 3. Improve Signal penetrability; 4. Increase the measurement accuracy of the frequency of the local area network (LAN) lines above 300MHz; 5. Provide a device to measure permanent lines using channel adapters and low-cost jumpers, and 6. Provide A device for measuring the actual length of a jumper. Phase ... Before describing the test method of the present invention, we must first discuss the phase issue. The ability to measure phase is an important feature of the local area network (LAN) tester of the present invention. That is to say, "in addition to measuring the amplitude," the handheld LAN tester of the present invention can also measure the phase. This capability enables the tester to set a measurement reference plane at a specific point on the LAN line to be measured. The original calibration reference plane can be set at a point along the route that is easy to set, measure, define, and perform. In addition, the phase also allows the tester to transfer the original calibration reference plane and all associated LAN measurement values at any time during the test of the LAN line 1245124 Move to another new reference plane position. Further, with the phase information, the display and remote identifier can each move the phase reference plane from the printed circuit board of the channel line adapter, and move the connector to match the output of the channel line adapter (cla). Right, and along the full length of the jumper, the connector pairs sprayed up to the wall face are moved to any one of the four possible positions as shown in FIG. 9. The crane of the phase reference plane enables the present invention to make permanent line measurements using the channel line adapter ([A) and low-cost jumpers. In short, the method of the present invention involves the initial steps of measuring the overall scattering parameter St of each jumper plus the connected n pairs on each end of the jumper (such as (Not shown in Figure 10). The scattering parameter SB of each jumper can be obtained from the known characteristics of the jumper. This parameter, together with the total scattering parameter moment P, St, makes it possible to calculate the paving parameters SA and se of the connector pairs that are mechanically coupled at both ends of the jumper. With the known _Wohe Link Series & and & and the scattering matrix of the jumper SB, the reference plane can be moved along the jumper, from within a LAN tester, to any Place for permanent line or channel line tests. [Embodiment] A schematic diagram of a local area network (LAN) test system of the present invention is shown in FIG. 9. The test system includes a handheld display unit 10, a handheld remote identifier unit 12, and jumper ⑴14 and jumper (II) 16. Each jumper contains plugs ⑴i4A, 16A on one end, the actual 缦 wires 14B, 16B, and plugs (II) i4c, i6C on the other end. The display unit 10 has a channel line adapter circuit board 18 on which a connector jack (I) 20 is mounted. The jack is exposed to the outside of the display unit. The jack 20 can accept a jumper 15 1245124 wire plug 14A or 16A to form a mating connector pair d). When shooting a line, the other plugs 14C, 16C of the jumper mesh with a wall jack 22 that is connected to a line 24 that runs through the wall. Similarly, the remote identifier 14 has a channel line adapter circuit board 26 on which a connector jack (n) 28 is mounted. The two connectors 20 and 28 are preferably both 90 degree connectors with pair-to-pair isolation. One magic _45 US standard jack 戋 One high-frequency teiTa jack from Siemon is suitable. The jack 28 accepts the plug 16A of the jumper (II) to form a coherent connector pair (I). When, shooting " (ie, about-line, the _ 16C of jumper ⑻16 is connected to the end of line 24-jack on the wall 3G. The display unit and remote hall unit contain appropriate high frequency and electronics The line is used to test the line. In addition, the display unit also has a switch that is actuated by the user to start and control these jobs. The unit also has a computer processor to perform the calculations described below, and the memory stores the measured scattering parameters and other data. The local network (LAN) role is as follows. First, the Bing site The display unit, the unit H and the two ship lines enter Weichang for calibration. The purpose of this chick is to use any two jumpers to cooperate with the set of channel lines. (As shown in Figure H) to set a measurement reference plane between the display and the remote recognition unit. The two jumpers are made by the same manufacturer along with the _like inserts on both ends, but the two jumpers need not be the same length. Scattering parameters: Because the display unit and the far-end identifier unit can measure the phase, the jumper group, that is, the 1245124 line itself connected to the __ end plug, can be used by using-the scattering parameter (_, '[s] parameter 0 Measure 1 for its frequency and measure or understand its characteristics. For the calibration made before shipment, the measurement reference plane on the channel adapter printed circuit board will be adjusted to 9 on the channel line adapter circuit boards 18, 26. 〇 Degree connector jacks 20 and 28 have the same input.: L Connect jumper 14 between the display unit and the remote identifier unit; 2. After connecting like this, measure the jumper (1) 14 All four scattering parameters, including the mating connector pairs 20, 14A and 28, 14C at each channel line adapter circuit board 18, 26; 3. All jumpers (I) 14 are measured Scattering data [St] 1 is stored; 4. Connect the jumper (Π) 16 between the display unit and the remote identifier unit; 5. After connecting like this, measure all of the jumper (II) 16 Four scattering parameters, including the phase at each channel line printed circuit board 18, 26 The pair of connectors are called 20, 16C and 28, 16A. 6. Store the scattered data [sT] 2 of all the measurements of jumper (Π) 16; 1: 1. For each jumper, its The constituent elements of a scattering matrix are a set of simple equations or fame. The known formula is as follows: 17 1245124

相喃合的 相喃合的 連接器對 跳線 連接器對Mated mated connector pair jumper connector pair

blT^rj[sTd^b2T 就一 2出線埠的例子,設卜只 c = 3.108米/秒 設相嚙合的區域網路(LAN)連接器對A矩陣入力值為-[SA] SAls] 0.0400+0.01 •j SA1j2 = 0.3-0.1 -j SA2,1 : = SA12 SA2 2 = SA} 1 SA】,〗=0.04 - O.Oli SA = SAU SAU、 、SA21 SA22> f0.04 + 0.01i 0.3 -O.li ) SA — ^ 0.3-O.li 0.04-0碼 det__A = SAy · SA2>2 - SA12 · SA21blT ^ rj [sTd ^ b2T is an example of a 2-out port. Let c = 3.108 m / s. Set the meshing force of the meshing LAN connector to the A matrix.-[SA] SAls] 0.0400 +0.01 • j SA1j2 = 0.3-0.1 -j SA2,1: = SA12 SA2 2 = SA} 1 SA], [= 0.04-O.Oli SA = SAU SAU,, SA21 SA22 > f0.04 + 0.01i 0.3- O.li) SA — ^ 0.3-O.li 0.04-0 code det__A = SAy · SA2 > 2-SA12 · SA21

跳線矩陣-丨SB](設該線為一完美的匹配) L = =2 米設F = =600 MHz,N\ T = 0.75 a = 0.002 F: = 600 · 106 NV P = 0.75 18 1245124Jumper Matrix-SB] (Let this line be a perfect match) L = = 2 m Set F = = 600 MHz, N \ T = 0.75 a = 0.002 F: = 600 · 106 NV P = 0.75 18 1245124

_ 2.71-F ~c*NVP_ 2.71-F ~ c * NVP

γ = a + β · j φ = y*L φ = 4χ1〇-3+33.51ί SBn SB = =0 sb12 = :e^ sb21= 一 sb22 = o ,SBn sb12] ( 0 - 0.498-0.863Π SB _ Isb21 sb22J 0.498-0.863i 0 , det_B = SBj! · SB2 2 · SBi 2 · SB2 j 相嚙合的區域網路(LAN)連接器對A矩陣出力-[Sdh (注意與[SA]的關φ 係) SCi,i = SA2,2 SCi,2 = SA2,i SC2J = SA]52 SC2,2 = SAisi sc,, SC2>1 scu、 CA — ,0·04 +O.Oli 0·3 - O.li ' SC2,2> — ^ 0.3-O.li 0.04-O.Oli, sc = 供參考γ = a + β · j φ = y * L φ = 4χ1〇-3 + 33.51ί SBn SB = = 0 sb12 =: e ^ sb21 = one sb22 = o, SBn sb12] (0-0.498-0.863Π SB _ _ Isb21 sb22J 0.498-0.863i 0, det_B = SBj! · SB2 2 · SBi 2 · SB2 j The meshing area network (LAN) connector produces a matrix A- [Sdh (note the relationship with [SA]) SCi, i = SA2,2 SCi, 2 = SA2, i SC2J = SA] 52 SC2,2 = SAisi sc ,, SC2 > 1 scu, CA —, 0.04 + O.Oli 0 · 3-O.li ' SC2,2 > — ^ 0.3-O.li 0.04-O.Oli, sc = for reference

0.04 - O.Oli 0.3-O.li 0.3 - O.li " 0.04 + 0.01^0.04-O.Oli 0.3-O.li 0.3-O.li " 0.04 + 0.01 ^

det_C = Sq 丨· SC2 2 - SC12 · SC21 2. 就一可接受的精確程度來說,該跳線的特性阻抗ZG為已知數,且其非 常好的最接近的近似值可被認為是ZG=100 Ohms。 3. 該跳線的電氣長度應為已知。該長度可由該測試器的製造商來指定,或 者,它可藉由區域網路(LAN)測試器加以量測。 19 1245124 4.就一可接受的精確度來說,該跳線的每一端處相嚙合的插孔和插頭的散 射矩陣可被認定是一樣的。 5·這麼一來,使用上述丨〜4可信的假設,以及對跳線(j) 14量測的總散 射矩陣〔ST〕!,該跳線的每一端處相嚙合的插孔及插頭的散射矩陣即 可解得。 6·有了該相嚙合的連接器對的散射矩陣以及跳線(j) 14的散射矩陣,該 量測參考平面可經移動通過在該印刷電路板上相嚙合的連接器對。這個 參考平面位置是為了進行一頻道線路測試所必要的;或者,該參考平面 可經沿著該跳線再向下移動到距離該牆壁插孔1或2公分内,以便進行 一永久線路量測。 7·然後,使用該跳線(II) 16取得同樣的一組量測值和計算值。 8·該二相嚙合的連接器對的散射參數經儲存以供整天進行測試,或一直到 另一跳線經選定,到了那時候,要重覆現場的調校步驟。 該一散射參數矩陣可以用線性代數的計算來求得該相嚙合的區域網路 (LAN)頻道連接器散射矩陣的構成元素。在這一組的計算裡,我們假設 了該相喃合的連接||對的-組散射參數,依照既有的公式,藉由將該相响 合的連接ϋ對的散射矩陣與該跳線傳送線的散射矩陣相加即可計算出總散 射矩陣〔ST〕。 然後’有了〔ST〕作為、、已知的”最後量測的結果,以及有了該跳線 傳輸線的假設值,即上述的假設值2和3,加上假設值4,其假設該二相嚙 合的連接11對_的散射贿,雜式解得了該㈣合連接器對的散射矩 20 1245124 陣〔sA〕的構成元素。 該程式解得了並且异出了〔Sa〕相同的值,亦即在該總矩陣〔^〕 最初的計算裡所假值。難計算確認了鮮式的正碟性。 現在,讓我們轉而來考慮本發明的相位量測的實施例,本發明的區域 網路(LAN)測試器量測了兩個信號之間的關係,因為它測試了符合已發 行的區域網路(LAN)配線性能標準_域網路(LAN)配線。由該測試 器所量測的信號關係為數值大小之比,且包括介於該二信號之間的相位關 係。要注意献’目冑細討論的這個她制是介於娜動信號電壓與 由於該同-個驅動健所產生姆應的藕合的或反射的電壓之間的相位。 這兩個信齡藉由統時或魏場_校步驟樣得某_特定的參考平面 處所量測而得之。 相位差可經顯示在同樣頻率的兩個正弦波信號之間。在圖u中所示的 圖示裡’ V—Drive (實線)對應進入到該區域網路(LAN)配線裡的驅動信 號。VJVieas (虛線)即將由該區域網路(LAN)測試器量測最終的信號。 要注思的疋,V—Meas的振幅是V—Drive的振幅的百分之四十。此外, VJVieas落後V—Drive 30度的相位。vj>ive與VJVieas之間的這個落後相 位關係也可以在該圖示裡看到。 若V_Meas對V一Drive的比已經計算出,那麼,我們可以計算(舉個例 說)相對於在一區域網路(LAN)緵線對上的驅動信號,以及出現在另一 區域網路(LAN )導線對上的藕合的串音信號的串音項。當 V一R=VJVIeas/V-Drive的比經計算時,丨V—R|,亦即V_R的值 21 1245124 =|V—R|=|V—Meas|/|V—Drive|=0.4/l-0=0.4,因此,丨V—R|=0.4。 在該二信號之間的相位務必要使用該二信號中的一個當作相位參考來 加以計算。在這個實施例裡,VJDrive信號經定義為參考信號。那麼,我 們就說,V—Meas的相位關係為落後該參考信號v一Drive 30度的相位。由 於涉入了一個相位角,V—R的比=V__Meas/V-Drive為一複數,即有一相對 應的振幅|V一R|以及相位角0_r=_3〇度。在角上的負號表示 落後VJDrive 30度的相位。因此,v_R=〇 4z_3〇度。 另外,相位也可以從兩個方形波信號的時間關係來加以計算,其法乃鲁 藉著計算該二方形波信號的二相對應的邊緣之間的時間差。這在圖12中有 示,在該圖示裡,該二信號由左到右行進。注意看,在圖12裡,該二方形 波VJVfeas和VJDrive,VJVieas的前緣落後參考的V_Drive方形波的前緣 達該時間差At。這個時間差可經用來計算該二信號之間的相位,其法乃拿 -以鋪率運行的-精準的參考時鐘Fd〇ck來將At對綱進行對比。 Td〇Ck=l/Fci〇Ck 則介於這兩個方形波之間的相位φ — R (單位:度)為: g (|)一& = 360><〇^/1^)度 該相位量測線路決定了M的值,並且輪出相對於介於兩個方形波 _ eas和V_Drive之間相位的一信號。本發明的區域網路([他)測試 器使用一可程式化的閘陣列來量測At。 該區域網路(LAN)測試器可量測相位’其必須要參考一量測參考平 面,詳如下述。 1.首先設定量測參考平面-在進行調校時,其相位量魏力允許該區域 22 1245124 網路(LAN)測試器在沿著即將受測的區域網路(LAN)線路的一指定 的點處設定(或稱、、界定〃)一量測參考平面。這個參考平面(在出廠 前調校步驟裡所界定的),可經設定在沿著該線路的任何一點處,以允 許既簡單地又方便地進行量測。調校步驟在圖13中有示。 在該顯示器端及遠端識別器端上的參考平面的位置是在出廠前初步調 校時依照圖13中所示的步驟界定或設定的。帶有短路、開路以及接有 其他接線的插頭經依序加到在該頻道線路適配器上的插孔。將每一個插 頭插到插孔,記下掃過的頻率量測值。從這些量測到的數據(其包括相 位資料),該顯示器端或遠端識別器端將其參考平面設定在CLA印刷電 路板上以虛線示出的從外往插孔裡看的點處。有了設定在這個點上的參 考平面,相位資料也使得它可以被從這個點在該跳線上往上或往下移 動。 2·移動該量測參考平面—在跳線進行現場調校之後,在進行線路測試 時,相位也可以讓區域網路(LAN)測試器輕易地移動這原來的調校參 考平面。相位使得該原來的參考平面在區域網路(LAN)線路測試期間 的任何時間被移動到-新的參考平面位置。特定言之,有了相位資料, 顯不器端及/或遠端識別端的每一個可以將它們的相位參考平面從 該頻道線路適配器PCB裡,移動通過該相喃合的連接器對在該以輸 出處,而在該跳線的任何一點,直到牆壁出線插孔處相唾合的連接器 對’進入到在圖9中所示的四個可能位置的任一個裡。 2a.使用在跳線進行現場調校時對該相喃合的連接器對所量測及所計算的 23 1245124 娜’可以進行參考平面在該頻道線路適配器馳 1到2通職㈣合的連接器組(在圖Η中有示)。這個步驟設定了對 頻道線路測試的參考平面。 沈.料平面棚15中所示的2向下移_ 3,參考平面從_向下移動 疋使用〔s〕-在現場調校期間量測而得的參數數據以及供跳線計算的 數據而遂行的。 請注意,跳線上從2移動向下到3希望的長度^是以實際的長度單 位对來表示的’即LLine (單位:时)必須要被轉換到等量的電氣相位長魯 度(單位:度)。 在跳線調校躺,猶的、稱行魏度,(爾)是奴量麻得的。 從這個值,我們可以用下列算式計算出相對應的從2移動到3的電氣相 位長度0Une : X36〇xf)/_Xc)度 / 吋 式中: c=光在自由空間裡的速度=1 1811><1〇10吋/秒 _ f一號頻率(皁位Hertz,赫) 接著,我們用下式計算出0Line (單位:度): 必 une=LLinex(36〇xf)/_pxc)度 對照這個公式,跳線參考平面從2移動到3可在圖16中看到。 量測而得的區_路〇^〇_數_鑛通過相私的連接器對, 利用〔S21〕_ectorpair數據(如圖14中所示)從i移動到2。彔照圖b,其 24 1245124 不出了跳線長度(單位:对)是如何換算成等量的跳線電氣相位長度(單 位·度),圖16說明了這些名詞,利用下面的公式:det_C = Sq 丨 · SC2 2-SC12 · SC21 2. To an acceptable degree of accuracy, the characteristic impedance ZG of this jumper is a known number, and its very close approximation can be considered as ZG = 100 Ohms. 3. The electrical length of this jumper should be known. The length can be specified by the tester's manufacturer, or it can be measured by a local area network (LAN) tester. 19 1245124 4. For an acceptable accuracy, the scattering matrix of mating jacks and plugs at each end of the jumper can be considered the same. 5. In this way, use the above-mentioned credible assumptions and the total scattering matrix [ST] measured on jumper (j) 14! The scattering matrices of the mating jacks and plugs at each end of the jumper can be solved. 6. With the scattering matrix of the mating connector pair and the scattering matrix of jumper (j) 14, the measurement reference plane can be moved through the mating connector pair on the printed circuit board. This reference plane position is necessary for a channel line test; or, the reference plane can be moved down the jumper to within 1 or 2 cm of the wall jack for a permanent line measurement . 7. Then use this jumper (II) 16 to get the same set of measured and calculated values. 8. The scattering parameters of the two-phase mating connector pair are stored for testing throughout the day, or until another jumper is selected. At that time, repeat the on-site adjustment steps. The scattering parameter matrix can be calculated by linear algebra to obtain the constituent elements of the meshing area network (LAN) channel connector scattering matrix. In this set of calculations, we assume that the coupled connection || pair of-scattering parameters, according to the existing formula, by the scattering matrix of the connected connected pair and the jumper Add the scattering matrices of the transmission lines to calculate the total scattering matrix [ST]. Then 'has [ST] as, the known ”final measurement result, and the hypothetical values of the jumper transmission line, that is, the hypothetical values 2 and 3 above, plus the hypothetical value 4, which assumes the two Scattering bridging of 11 pairs of intermeshing connections, the heterogeneous solution of the scattering moment of the coupled connector pair 20 1245124 element of the array [sA]. This program solves and differs from [Sa] the same value, also That is, the false value in the initial calculation of the total matrix [^]. It is difficult to calculate and confirm the freshness. Now let us consider the embodiment of the phase measurement of the present invention and the regional network of the present invention. The LAN tester measures the relationship between the two signals, as it tests the compliance with the published local area network (LAN) wiring performance standards_Local Area Network (LAN) wiring. Measured by this tester The signal relationship is the ratio of the numerical values and includes the phase relationship between the two signals. It should be noted that this system discussed in detail is between the dynamic signal voltage and the same driver. The phase between the resulting coupled or reflected voltages. The two signal ages are obtained by measuring the time at a certain reference plane using the system time or the Wei field _ calibration steps. The phase difference can be displayed between two sine wave signals of the same frequency. In Figure u In the picture shown, 'V-Drive (solid line) corresponds to the drive signal entering the local area network (LAN) wiring. VJVieas (dashed line) is about to measure the final signal by the local network (LAN) tester It should be noted that the amplitude of V-Meas is forty percent of the amplitude of V-Drive. In addition, VJVieas is 30 degrees behind V-Drive. The backward phase relationship between vj> ive and VJVieas is also It can be seen in this diagram. If the ratio of V_Meas to V-Drive has been calculated, then we can calculate (for example) the driving signal relative to a LAN pair. And the crosstalk term of the combined crosstalk signal appearing on another pair of LAN wires. When V-R = VJVIeas / V-Drive ratio is calculated, V-R | The value of V_R 21 1245124 = | V—R | = | V—Meas | / | V—Drive | = 0.4 / l-0 = 0.4, therefore, V—R | = 0.4. The phase between the signals must be calculated using one of the two signals as a phase reference. In this embodiment, the VJDrive signal is defined as the reference signal. Then, we say that the phase relationship of V-Meas is backward The reference signal v_Drive has a phase of 30 degrees. Since a phase angle is involved, the ratio of V-R = V__Meas / V-Drive is a complex number, that is, there is a corresponding amplitude | V_R | and a phase angle 0_r = _30 degrees. A minus sign in the corner indicates a phase 30 degrees behind VJDrive. Therefore, v_R = 4 ° _30 °. In addition, the phase can also be calculated from the time relationship between two square wave signals. The method is to calculate the time difference between the two corresponding edges of the two square wave signals. This is shown in Figure 12, in which the two signals travel from left to right. Note that in Figure 12, the leading edge of the two square waves VJVfeas and VJDrive, the leading edge of VJVieas is behind the leading edge of the reference V_Drive square wave by the time difference At. This time difference can be used to calculate the phase between the two signals. The method is to compare the At pair with the accurate reference clock Fdock, which runs at a spread rate. Td〇Ck = l / Fci〇Ck is the phase between these two square waves φ — R (unit: degree) is: g (|)-& = 360 > < 〇 ^ / 1 ^) degree This phase measurement circuit determines the value of M and turns out a signal relative to the phase between the two square waves _eas and V_Drive. The local area network ([he]) tester of the present invention uses a programmable gate array to measure At. The local area network (LAN) tester can measure the phase. It must refer to a measurement reference plane, as described below. 1. First set the measurement reference plane-when adjusting, its phase quantity allows the area 22 1245124 LAN (LAN) tester to run on a designated line along the area network (LAN) line to be tested. A measurement reference plane is set (or called, defined) at the point. This reference plane (defined in the calibration steps before leaving the factory) can be set at any point along the line to allow for simple and convenient measurements. The calibration procedure is shown in Figure 13. The positions of the reference planes on the display end and the remote identifier end are defined or set according to the steps shown in FIG. 13 during initial adjustment before shipment. Plugs with short circuits, open circuits, and other wiring are sequentially added to the jacks on the channel line adapter. Insert each plug into the jack, and note down the frequency measurement. From these measured data (which includes phase information), the display or remote identifier end sets its reference plane at the point of the CLA printed circuit board as seen from the outside looking into the jack. With the reference plane set at this point, the phase data also allows it to be moved up or down from this point on the jumper. 2. Move the measurement reference plane—After the jumper is adjusted in the field, the phase can also allow the local area network (LAN) tester to easily move the original adjustment reference plane when performing the line test. The phase allows the original reference plane to be moved to a new reference plane location at any time during a LAN test. In particular, with the phase data, each of the display end and / or the remote identification end can move their phase reference planes from the channel line adapter PCB through the phased connector pair to the At the output, and at any point in the jumper, until the coherent connector pair at the wall outlet jack 'enters any one of the four possible locations shown in FIG. 9. 2a. Measured and calculated 23 1245124 na using the coupled connector when performing on-site adjustment of the jumper. The reference plane can be connected on the channel line adapter 1 to 2 Device group (shown in Figure Η). This step sets the reference plane for channel line testing. Shen. 2 moves down _ 3 shown in the material plane shed 15 and the reference plane moves down from _. Use [s]-the parameter data measured during the field calibration and the data for jumper calculation. Then. Please note that the jumper moves from 2 down to 3 the desired length ^ is expressed in actual length unit pairs, that is, LLine (unit: hour) must be converted to an equivalent amount of electrical phase longness (unit: degree). Lying on the jumper to adjust, he is still called Weidu, and he is numb. From this value, we can use the following formula to calculate the corresponding electrical phase length 0Une from 2 to 3: X36〇xf) / _ Xc) degrees / inch In the formula: c = speed of light in free space = 1 1811 > < 1010 inches / second_ f No. 1 frequency (Hertz, Hertz) Then, we calculate 0Line (unit: degree) using the following formula: une = LLinex (36〇xf) / _ pxc) degree control With this formula, the jumper reference plane is moved from 2 to 3 as can be seen in Figure 16. The measured area_path 〇 ^ 〇_ 数 _mine is moved from i to 2 using the [S21] _ectorpair data (as shown in Figure 14) through the private connector pair. According to Figure b, its 24 1245124 shows how the jumper length (unit: pair) can be converted into the equivalent jumper electrical phase length (unit · degree). Figure 16 illustrates these terms, using the following formula:

^Patchcord = ^UP ^UP S2lp S22P^ 就一合理地說來相當適配的跳線來說,這個式子可寫成: ΓΟΊ Ο 〇 若跳線的特徵阻抗z0p不等於z〇,00hms,則跳線Siip^S22p不等於 零’我們用標準傳導線理論以非零值來代換計算。 最後,參考平面2而量測的區域網路(LAN)纜線數據代到平面3,通 過使用〔S〕Patchcord ’即跳線散射矩陣。 從這個矩陣大家可以看到,對一嚙合度很好的跳線來說(這是很平常 的)’在Sn和S22相嘴合的連接器對的項並沒有效應。對該相嚙合的連接 器對散射矩陣唯一的效應是加了相位項ejdLine。 因此,藉者里測或4曰疋而已知的該跳線NVp,該量測參考平面可被移 動通過在頻道線路適配器電路板上的該相嚙合的連接器對,並且下到該跳 線從平面2距離指定的吋數處,在該相嚙合的連接器對的輸出處。 現在,讓我們轉到該測試器組更詳細的說明,圖17和圖18爆炸的圖 示示出了該網路測試整體的實際結構,並且示出了它的印刷電路板是如何 安裝到殼體裡。圖示的測試器是一顯示器單元10。大家應當知道,遠端識 別器單元與這是相似的。該測試器有一殼體,其包括一前封蓋32與一後封 25 1245124 s後封蓋界定了-插座或孔穴3δ用以接受並且安裝—頻道線路適 配益印刷電路板37。在該殼體裡有一數位式控制模組%其驅動並控制一 類比式激勵/量測模組40。該二模組均製作到印刷電路板裡,並且在本說 明書裡將被稱作t數位化電路板、'類比式電路板該類比式電路板 4〇包括-連接器&在其底側面上。這個連接器以可鬆開方式通過在該後 封蓋裡孔穴36的底部處的—開口 43與在該頻道線路適配器上的一相唾合 的連接器接搭。觸優先反射率計(T〇R) Μ的量繼力是由—第三個別 的模組所提供的。在圖17裡所示的其他組件包括—pCMaA卡座你,一 通用序列傳輸介面(_埠Μ以及—相埠5G。這些是安裝在該數位 化電路板38上…彩色顯示器單元52和一鍵盤%係安裝在該前封蓋幻 上或前封蓋32裡。該殼體實際的結構之更進一步詳細内容在美國專利申請 序號_63,81G (2GG1年5月22日收件;標題 '用以量測魏與網路的帶 有可更換賴組裝置〃)巾有敘述及有圖示,該專辦請案的揭示經納入本 說明書中供參考。 圖19的數位化控制電路方塊圖中示出了該數位化控制模組%的整體 功能。該數位化電路板係由一高速中央處理器(CPU) 56所控制,而該 由女裝在该測试器裡的韌體所驅動。該測試器裡還裝有幾個記憶區塊(圖 未示),以及一隨機存取記憶體(RAM) 58,一小腳座快閃記憶體6〇,以 及一大腳座快閃記憶體62。該測試器或可藉著使用通用序列傳輸介面 (USB) 48,或是藉著一連接到中央處理器56的串列介面連接%連通一 外部個人電腦(PC)。快閃記憶體或網路卡64可經安裝到該測試器裡,其 26 ^245124 通過該PCMCIA區塊46連接到中央處理器。這些記憶卡可被用來儲存額 外的測試結果,或是上載新的韌體到中央處理器。連接到或是從CPU連接 出的連接包括鍵盤54、彩色顯示器52、一揚聲器麥克風66、一立即時間 鐘68以及溫度感測器70以隨著溫度增加而補償類比式電路板的性能。 最重要的是通過I/O匯流排72與類比式電路板40的連通。這個匯流排 是以一個別區塊示出,因為它將控制指令從該數位化電路板38連繫到該類 比式電路板40,而且它把量測的數據從類比式電路板送回,供儲存在顯示 器單元裡,以及供顯示在彩色顯示器52上。 圖20的區域網路(LAN)測試器類比式電路方塊圖示出了在類比式電 路板40上主要的功能區。為了簡潔的目的,其他的區塊經省略了。該類比 式電路板產生一組連續地變化的低頻(LF)及高頻(RF)信號,其經通過 使用類比式電路板上的信號開關延滞積層74加到區域網路(LAN)配線的 一經選擇的連接器對。該同一延滯積層將即將量測的返回信號從另一個經 選擇的區域網路(LAN)纜線導線對帶回到該類比式電路板裡。然後,該 類比式電路板上的電路區塊將該返回測試信號加以整理,並且量測它的相 對於該加給的驅動信號的特徵。低頻(LF)量測包括纜線電容、長度、導 線直流電阻、線材的分佈及延滯。與這些低頻信細聯的電路區塊經由關 聯的註記符號來表示。 請注意,在該方塊圖裡有幾處地方標示了、、qMUX是胍卿· (多工器)的簡稱’其為-開關裝置,將幾個不同信號的—輸人傳導到一 經選擇的㈣雜。賴細路順H喃比絲雜觀了好賴 27 1245124 (夕工益)’因為它是_個四頻道_試伽,能酬試受測的區域網路 (LAN)纜線的兩個可能是四條導線對的線材。這些多工器(MUX)是用 來傳導信號的路由以及頻道對頻道的信號隔離。 電路區塊76、78是為了示出rs-485區塊,其中一個區塊是為了通信, 另一個區塊是為了區域網路(LAN)介面與閘陣列和量測IC8〇的連通,以 及為了在該類比式電路板上直流電力控制及電力的管理。 另外,該類比式電路板40也量測纜線的串音的高頻(Rp)參數、返回 損失及衰減。更進-步言之,該類比式電路板量測經高頻(Rp)驅動信號 的振巾田/7割的返回信號振幅的比率。在該單摘比式電路板裡,加了線路 以量測相對於送出職經選擇的導線對上的高頻(Rp)驅動信號的返回測 試信號的相位。 高頻驅動器82透過高頻信號開關繼電器74從高頻合成器科送出一信 號到-對區域祕(LAN)麟導線上。娜動信朗時也送到回路損失 橋86 〇 這樣造成的測試信號透過該同一組高頻繼電器74進到該測試器裡,並 且通過該回路損失橋86送到高舰合區塊88。在這裡,它與局部振靈器 (LO)信號混合’並且被轉成測試中頻(ip)信號。 如同前面所提到的,該高頻驅動信號亦經送入到回路損失橋86。如圖 2〇中所示,該送入到回路損失橋的驅動信號進入到混合器沾裡,並且被 轉成-相位參考中頻(IF)信號。所有與區域網路(LAN)量測關聯的信 號都與這個相位參考中頻(IF)信號比對,以取得該量測信號的相位。 28 1245124 一旦該參考中頻(IF)及測試中頻(IF)信號經產生之後,它們會被送 到相位偵知器90,以及參考及測試振幅偵知器92和94。該相位偵知器區 塊90將相位資料送入到閘陣列及量測icgo。來自參考及測試振幅偵知器^ Patchcord = ^ UP ^ UP S2lp S22P ^ For a reasonably reasonably suitable jumper, this formula can be written as: ΓΟΊ Ο 〇 If the characteristic impedance of the jumper z0p is not equal to z〇, 00hms, then jump The line Siip ^ S22p is not equal to zero 'We use the standard conduction line theory to replace the calculation with a non-zero value. Finally, the LAN data measured with reference to plane 2 is substituted into plane 3 by using [S] Patchcord ', which is a jumper scattering matrix. From this matrix, we can see that for a jumper with good meshing (which is very common), the term of the connector pair where Sn and S22 meet is not effective. The only effect this mating connector has on the scattering matrix is the addition of the phase term ejdLine. Therefore, by borrowing or measuring the NVp of the jumper, the measurement reference plane can be moved through the mating connector pair on the channel line adapter circuit board, and down to the jumper from Plane 2 is a specified number of inches away from the output of the mating connector pair. Now, let ’s move to a more detailed description of the tester group. The exploded diagrams of FIGS. 17 and 18 show the actual structure of the network test as a whole, and show how its printed circuit board is mounted to the case. In the body. The tester shown is a display unit 10. You should know that the remote identifier unit is similar to this. The tester has a housing, which includes a front cover 32 and a rear cover 25 1245124 s. The rear cover defines-a socket or hole 3δ for receiving and installing-a channel line fitting printed circuit board 37. There is a digital control module in the housing which drives and controls an analog excitation / measurement module 40. The two modules are made into a printed circuit board, and will be referred to as a "t-digitized circuit board" and an "analog circuit board" in this specification. The analog circuit board 40 includes-a connector & on its bottom side. . This connector releasably passes through an opening 43 at the bottom of the cavity 36 in the rear cover to mate with a mating connector on the channel line adapter. The quantitative relay of the Touch Priority Reflectance Meter (TOR) is provided by a third module. The other components shown in Figure 17 include-pCMaA card connector, a universal serial transmission interface (_Port M and-phase port 5G. These are mounted on the digitized circuit board 38 ... color display unit 52 and a keyboard The% is installed on the front cover or the front cover 32. Further details of the actual structure of the housing are in US Patent Application Serial No. 63,81G (Received on May 22, 2GG1; title 'Used' In order to measure Wei and the network with replaceable Lai group device 〃) there are descriptions and diagrams, the disclosure of this special application is incorporated in this manual for reference. Figure 19 Block diagram of digitized control circuit The overall function of the digitized control module is shown. The digitized circuit board is controlled by a high-speed central processing unit (CPU) 56 and is driven by the women's firmware in the tester. The tester also contains several memory blocks (not shown), as well as a random access memory (RAM) 58, a small foot flash memory 60, and a large foot flash memory 62. The tester can be used either by using the Universal Serial Interface (USB) 48 or by A serial interface connection to the central processing unit 56 and an external personal computer (PC). A flash memory or network card 64 can be installed in the tester, and 26 ^ 245124 passes through the PCMCIA block 46 Connected to CPU. These memory cards can be used to store additional test results or upload new firmware to the CPU. Connections to or from the CPU include keyboard 54, color display 52, The speaker microphone 66, an immediate time clock 68, and the temperature sensor 70 compensate for the performance of the analog circuit board as the temperature increases. The most important thing is the communication with the analog circuit board 40 through the I / O bus 72. This The bus is shown in a separate block because it connects control instructions from the digitized circuit board 38 to the analog circuit board 40, and it sends the measured data back from the analog circuit board for storage In the display unit, and for display on the color display 52. The block diagram of the analog circuit of the LAN tester of Fig. 20 shows the main functional areas on the analog circuit board 40. For the sake of brevity The other blocks are omitted. The analog circuit board generates a set of continuously changing low-frequency (LF) and high-frequency (RF) signals, which are added by using the delay switch 74 on the analog circuit board. A selected pair of connectors to a local area network (LAN) wiring. The same delay build-up layer brings the return signal to be measured from another selected local area network (LAN) cable wire pair back to the analog Circuit board. Then, the circuit block on the analog circuit board sorts the return test signal and measures its characteristics relative to the driving signal applied. Low frequency (LF) measurement includes cable capacitance, Length, DC resistance of wires, distribution and delay of wires. Circuit blocks associated with these low-frequency letters are represented by associated annotation symbols. Please note that there are several places in the block diagram where qMUX is the abbreviation of guan guan (multiplexer), which is-a switching device that conducts several different signals-input to a selected ㈣ miscellaneous. Lai Xilushun, Hannah Bissi had a look at Lai 27 1245124 (Xi Gongyi) 'Because it is _ a four channel _ test Gamma, can test the two possibilities of the tested LAN cable It is a wire of four wire pairs. These multiplexers (MUX) are used to conduct signal routing and channel-to-channel signal isolation. Circuit blocks 76 and 78 are for showing the rs-485 block, one of which is for communication, and the other is for the connection of the LAN interface with the gate array and measurement IC80, and for DC power control and power management on this analog circuit board. In addition, the analog circuit board 40 also measures the high-frequency (Rp) parameters, return loss, and attenuation of the crosstalk of the cable. Going one step further, this analog circuit board measures the ratio of the amplitude of the return signal of the vibration field / 7-cut signal that is driven by a high-frequency (Rp) drive signal. In this single-cut-ratio circuit board, a line is added to measure the phase of the return test signal with respect to the high-frequency (Rp) drive signal sent on the selected pair of conductors. The high-frequency driver 82 sends a signal from the high-frequency synthesizer section through the high-frequency signal switching relay 74 to the LAN line. Nadox also sent it to the loop loss bridge 86. The test signal thus caused entered the tester through the same set of high-frequency relays 74 and was sent to the Gao Jianhe block 88 through the loop loss bridge 86. Here it is mixed 'with the local oscillator (LO) signal and converted into a test intermediate frequency (ip) signal. As mentioned before, the high-frequency driving signal is also sent to the loop loss bridge 86. As shown in Fig. 20, the drive signal sent to the loop loss bridge enters the mixer and is converted into a phase reference intermediate frequency (IF) signal. All signals associated with a local area network (LAN) measurement are compared with this phase reference intermediate frequency (IF) signal to obtain the phase of the measurement signal. 28 1245124 Once the reference intermediate frequency (IF) and test intermediate frequency (IF) signals are generated, they are sent to the phase detector 90 and the reference and test amplitude detectors 92 and 94. The phase detector block 90 sends phase data to the gate array and measures icgo. From reference and test amplitude detector

92、94的出力被送到類比到數位(A to D)多工器96,然後再送到A to D 轉換器98。從這裡,該振幅比信號經送到該閘陣列及量測積體電路(IC) 80。 該閘陣列及量測IC80完成在測試與參考中頻(IF)信號之間的相位, 以及它們振幅的比的計算,以結算出量測複雜的數字之代表值。來自IC8〇 的出力經放到類比I/O匯流排72上,其連通該數位化電路板38。因此,該 測試單元的相位量測功能是由該數位化電路板控制的,但是,是在該類比 式電路板上量測以及計算的。然後,量測結果再從類比式電路板帶到數位 化電路板。 圖21的區域網路(LAN)測試器相位量測方塊圖示出了這項功能在一 相位量測系統階層情形。這個方塊圖也示出了該類比式電路板上振幅比的 計算。I/O匯流排72將控制信號從該數位化電路板帶到該類比式電路板, 它也同時將測試信號的相位和振幅帶到該數位化電路板。一旦測試信號被 送到該顯示板,它可被儲存在該記憶體裡或以彩色圖像形式顯示,圖示在 顯示螢幕52上。 關於量測速度,測試器的架構經設計使得區域網路(LAN)纜線導線 對可被來自該顯示器單元10或遠端識別器單元12的高頻信號驅動。所有 其他未經驅動的線路則會被同時地通過在每一個單元裡的類比式電路板上 29 1245124 的多工器線路連接到該量測線路。該項設計特點提供了大大地減少的測試 時間,而仍能提供測試信號振幅和相位的量測。 現在,我們要把注意力制討論前面所述的方法以及裝備如何能夠被 用來量測跳線的實際長度。下面這個步驗述了—應關,其或可用以準 確地求出區域網路(LAN)現場測試器所使用跳線的實際長度。如同前面 所轉的’虽區域網路(LAN)現場測試器被用來檢查商用的或住家的區 域網路(LAN)配_ ’要伽鱗親脑區_路(LAN)現場測試 器與制的配線。該跳線的實際長度,以及與電氣連接長度有關的影響, 必須要被包_這魏路的量繼。在職任何崎_之前,該現場測 試器務必要經過調H部份作是在工廠裡進行的,以作為該 現場測試器製程裡-個必要的步驟1二個嫩步驟,亦即在測試區_ 路(LAN)配線線路之前在現場進行的調校,則與區域網路仏你)測試 器的跳線有關。在進行現場雛時,每一條跳線都有其線上損失(或稱‘衰 減”)和回傳損失的特徵。 跳線的實際長度也可以在進行現場調校期間很容易地就被求出,其法 乃是將跳線的另-端接搭-短路負載或—開路負載,以不同的頻率掃過該 跳線。隨著掃過的頻率,該現場測試器即可量測出在該參考平面處看入: 跳線的入力阻抗,看入到跳線的入力阻抗振幅丨&丨的量測,該區域網 路(LAN)現場測試器即可求出該跳線的實際長度。 圖22不出了接搭一短路接頭的跳線之等同的迴路。圖幻示出了接搭 一開路接頭的跳線之等同的迴路。這兩種迴路模式將在下面展開 ° j 1245124 出跳線的實際長度的理論裡被用來計算出結果。 圖24示出了區域網路(LAN)現場測試器顯示器軍元1〇與遠端識別 器單元㈣線對在進行現場調校的一部份時,經連接以量測該跳線實際長 度。為了討論的目的,我們假設圖示的顯示_跳線14經連接在區域網 路(LAN)現場職⑽顯示器單元⑴與遠端識聰單元η之間。當跳 線實際長度麵示器單元量辦,該遠猶聰單元藉著賴電氣開關將 -短路或-開路接職到舰域網路(LAN)配線的每—_上。 隨著頻率的掃過,顯示料元1G量測在參考平面處看人到舰線Μ 的入力阻抗’該人力阻抗圖表(在圖25中所示)示出了—條實際長度為2 公尺的跳狀具代祕的人力阻抗麵率_表。該2公尺的實際長度是 技術人員們讀區細路(LAN)喊鱗進魏場職魏龍域網路 (LAN)配線線路進行認證時最常用的跳線之具代表性的長度。大家應當 知道,本說明書提到該2公尺的跳線長度僅是為了說明的目的。當然,在 此之前,我們是不知道實際長度的。 不論技術人員量測的是接搭了開路負載或是短路負載的跳線之入力回 傳才貝失’在其結果的入力阻抗振幅圖表裡的二極大值會以頻率清晰地界 定,很快速地上升到極大值,然後很快速地在二極大值之間下降到近乎零。 請注意,看入到跳線的入力阻抗的振幅丨Zin |的強度,在圖25中所示的圖 表裡,就高達150MHz的頻率來說,達到l〇,〇〇〇 ohms或更高的值。 這個步驟的重點在於,該二極大值從一個尖銳的極大值“尖頂,,到另 一個尖銳的極大值“尖頂”正好是距離一個半波長,這個原理就開路傳輪 31 1245124 線或短路傳輸線來說都是適用的。由於跳線就是傳輸線,這個原理也對跳 線適用。此外,:^個原理就所有的有著較小或中等程度的線上損失的跳線 和傳輸線都是適用的。 在圖25中所示的關聯的模式圖表在任何一條沒有按照其特徵阻抗心。^ 接搭的傳輸線或跳線來說就會發生。然而,在阻抗振幅圖表裡的極大值, 在跳線接搭了開路負載或短路負載時就會更清晰地被界定了。 跳線實際長度的計算如下所述。跳線實際長度L-乃是直接地與在入 力阻抗振幅圖裡二極大值之間的頻率差Δί有關。在量測了這個頻率差之 後,該顯示器單元從下列算式計算出Lc(>rd : Ι^^ = λ/2 = (ΝνΡ*(〇/(Δί^2)公尺 式中’ NVP為跳線的標稱行進速度,其為一常數。NVp的值是如前述 的稍早在現場進行的調校時,由該顯示器單元所求出的。 c是光在真空裡的行進速度,3 X 1〇8公尺/秒 △f是在入力阻抗振幅圖裡二極大值之間的頻率差。 在這個實施例裡,從圖示裡Μ=54ΜΗζ = 54 X 1〇6。 從跳線的量測,NVP = 0.72 Lcord=(0.72*3*108)/(2*54 X 106)公尺 Lcord = (216)/(108)公尺=2 公尺 然後,在該遠端識別器單元就跳線長度進行的調校期間,要重覆這個 步驟。在這個實施例裡,該遠端識別器單元會驅動這個跳線,且該顯示器 單元會在開路或短路負載決定導線對。然後,該遠端識別單元會藉著同樣 32 1245124 的十#求出這條跳_實際長度。 曰 竭對開路或是短路的跳線均是顧的,因為所有的必要條件就 、圖裡—極大值之間的頻率差Af,以及跳線的NVP的值(這個值是 兩見易進行的調板時所求出的)。用這個方法來求取跳線實際長度並不 要使用π全無衰減的傳輸線或完全無衰減的跳線。另外,這個步驟也適 用在有著巾度或低度線上衰減的真實存在的跳線。 ia官本發明的較佳的實施例已如上所述及圖示,内行人應當知道,在 不者離下Η中轉利細”的料情形下,可對鮮實施顺成改變及 修改或變更。 【圖式簡單說明】 圖1為-區域網路(LAN)配線之一示意的圖示,其連接一工作區與 一電信室; 圖2為-習用工藝區域網路(Lan)測試器之一圖示,其有〆測試適 配器與測試插孔; 圖3及圖4不出了習用工藝區域網路測試器連接一跳線; 圖5示出了一標準90公尺線路; 圖6不出了用區域網路仏賴)測試器以測試(在這一行裡稱、、射擊,,) —線路; 圖7示出了一頻道線路結構; 圖8示出了一永久線路結構; 圖9示出了神_咖轉㈣軸目位的移動; 33 1245124 圖ίο示出了本發明的區域網路(LAN)測試器· 圖11為本發_區_路(LAN)職轉㈣—驅動錢以及由測 試器量得的一結果的信號; 圖12為本發明的顯示器單元裡相位量測電路的—示意的圖示; 圖13示出了依照本發明在出廠前進行調校期間設定該量測參考平面情 形; 圖14不出了該參考平面移動通過一相唾合的連接器對情形; 圖15示出了依照本發明該參考平面移動下到跳線情形。 圖16不出了圖9所tf的在點2處參考平面是如何與圖9所示的在點3 處參考平面相關聯; 圖17係本發曰月的區域網路(LAN)測試器顯示器單元的一爆炸的透視 IS3 · 撞], 圖18係該測試器單元的底側面的一爆炸的透視圖; 圖I9係本發日月的區域網路(LAN)測試器單元的數位化控制電雜的 一方塊圖; 圖20係本發明的類比式電路板的一方塊圖; 圖21係本發明的相位量測的一詳細的方塊圖; 圖22為跳線接搭一短路接頭的一迴路圖,· 圖23為跳線接搭一開路接頭的一迴路圖; 為區域’路(LAN) #核H的顯*11單元與遠端識別器單元連接 到一起用以量測跳線的實際長度之實際配置圖示; 34 1245124 圖25為入力阻抗對頻率的一圖表。The outputs of 92 and 94 are sent to the analog to digital (A to D) multiplexer 96, and then to the A to D converter 98. From here, the amplitude ratio signal is sent to the gate array and measurement integrated circuit (IC) 80. The gate array and measurement IC80 complete the calculation of the phase between the test and the reference intermediate frequency (IF) signal and the ratio of their amplitudes to settle the representative value of the complex measurement. The output from IC80 is put on the analog I / O bus 72, which communicates with the digitized circuit board 38. Therefore, the phase measurement function of the test unit is controlled by the digitized circuit board, but it is measured and calculated on the analog circuit board. The measurement results are then taken from the analog circuit board to the digitized circuit board. The phase measurement block diagram of the LAN tester in Figure 21 shows this function at the phase measurement system level. This block diagram also shows the calculation of the amplitude ratio on this analog board. The I / O bus 72 brings the control signal from the digitized circuit board to the analog circuit board, and it also brings the phase and amplitude of the test signal to the digitized circuit board at the same time. Once the test signal is sent to the display panel, it can be stored in the memory or displayed as a color image, shown on the display screen 52. Regarding the measurement speed, the structure of the tester is designed so that the pair of local area network (LAN) cables can be driven by high-frequency signals from the display unit 10 or the remote identifier unit 12. All other undriven lines are simultaneously connected to the measurement line through the multiplexer line 29 1245124 on the analog circuit board in each unit. This design feature provides greatly reduced test time while still providing measurement of the test signal amplitude and phase. We will now focus our attention on the methods described previously and how the equipment can be used to measure the actual length of the jumper. The following steps describe this-it should be off, or it can be used to accurately determine the actual length of the jumper used by a local area network (LAN) field tester. As mentioned before, "Although the local area network (LAN) field tester is used to check the commercial or residential local area network (LAN) configuration_ ' Wiring. The actual length of the jumper, as well as the effects related to the length of the electrical connection, must be covered by this amount of Wei Road. Before serving any Saki _, the on-site tester must be adjusted in H factory to be performed in the factory as a necessary step in the process of the on-site tester 1 two tender steps, that is, in the test area _ (LAN) wiring before the on-site adjustment is related to the jumper of the LAN tester. When performing on-site chicks, each jumper has its own characteristics of line loss (or 'attenuation') and return loss. The actual length of the jumper can also be easily determined during the on-site adjustment. The method is to connect the other end of the jumper to a short-circuit load or an open-circuit load and sweep the jumper at different frequencies. With the swept frequency, the field tester can measure the reference Looking at the plane: the input impedance of the jumper, the amplitude of the input impedance of the jumper, and the local network (LAN) field tester can determine the actual length of the jumper. There is no equivalent circuit of the jumper connected to a short-circuit connector. The figure shows the equivalent circuit of the jumper connected to an open-circuit connector. The two circuit modes will be expanded below. J 1245124 Jumper The actual length theory is used to calculate the results. Figure 24 shows a part of the on-site calibration of the LAN field tester display Jun 10 and the remote identifier unit ㈣ pair When connected, measure the actual length of the jumper. For discussion For the purpose, we assume that the display_jumper 14 shown in the figure is connected between the local field display unit ⑴ on the local area network (LAN) and the remote intelligent unit η. When the actual length of the jumper The Yuanyucong unit connects-short circuit or-open circuit to each of the LAN wiring of the ship via the electrical switch. As the frequency sweeps, the display material 1G is measured at the reference plane. The input impedance of the person to the ship line M 'This human impedance chart (shown in Figure 25) shows a jump-shaped, secretive human impedance facet table with an actual length of 2 meters. The 2 meter The actual length is the representative length of the most commonly used jumper for technical personnel to read the area's fine road (LAN) call into the Weichang field Weilong area network (LAN) wiring line for authentication. You should know that this manual provides The length of the jumper up to 2 meters is only for the purpose of illustration. Of course, before this, we did not know the actual length. Whether the technician measured the jumper with open load or short load The force return amplitude is the result of the input impedance amplitude chart. The second maximum value of is clearly defined by the frequency, it rises quickly to the maximum value, and then quickly drops to almost zero between the two maximum values. Please note that the amplitude of the input impedance of the jumper is seen 丨 Zin | The intensity in the graph shown in Fig. 25 reaches a value of 10,000,000 ohms or higher for frequencies up to 150 MHz. The point of this step is that the two maxima change from a sharp maxima The value "spike," to another sharp maximum "spike" is exactly one and a half wavelength away. This principle is applicable to open transmission wheels 31 1245124 lines or short-circuit transmission lines. Since jumpers are transmission lines, this principle also applies to jumpers. In addition, the following principles are applicable to all jumpers and transmission lines with small or moderate line losses. The associated pattern diagram shown in FIG. 25 does not follow the characteristic impedance center in any one of them. ^ Occurs for overlapping transmission lines or jumpers. However, the maximum value in the impedance amplitude chart is more clearly defined when the jumper is connected to an open or short load. The calculation of the actual jumper length is described below. The actual length of the jumper L- is directly related to the frequency difference Δί between the two maxima in the input impedance amplitude graph. After measuring this frequency difference, the display unit calculates Lc (> rd from the following formula: ^^ = λ / 2 = (ΝνΡ * (〇 / (Δί ^ 2) meters where NVP is the jump The nominal travel speed of the line is a constant. The value of NVp is obtained by the display unit when the adjustment was performed on-site earlier as described above. C is the travel speed of light in a vacuum, 3 X 10m / s △ f is the frequency difference between the two maxima in the input impedance amplitude chart. In this example, M = 54MΗζ = 54 X 106 from the figure. The amount from the jumper Measured, NVP = 0.72 Lcord = (0.72 * 3 * 108) / (2 * 54 X 106) meters Lcord = (216) / (108) meters = 2 meters Then, jump at the remote identifier unit This step is repeated during the adjustment of the line length. In this embodiment, the remote identifier unit drives the jumper, and the display unit determines the wire pair in an open or shorted load. Then, the remote The terminal identification unit will find the actual length of this jumper by the ten # of the same 32 1245124. It means that all jumpers that are open or short-circuited are taken care of, because all necessary The frequency difference Af between the figure and the maximum value, and the value of the NVP of the jumper (this value is obtained during the easy-to-see adjustment of the board). Use this method to find the actual length of the jumper Do not use a π transmission line with no attenuation or a jumper with no attenuation. In addition, this step is also applicable to a real existing jumper with attenuation or low line attenuation. The preferred embodiment of the present invention has been As mentioned above and illustrated, the insider should know that without changing the circumstances of the company, the company can implement changes or modifications or alterations to fresh food. [Simplified description of the drawing] Figure 1 is- A schematic diagram of one of the local area network (LAN) wiring, which connects a work area to a telecommunications room; Figure 2 is a diagram of a conventional process LAN tester, which includes a test adapter and a test Jack; Figures 3 and 4 do not show a jumper connected to the conventional process LAN tester; Figure 5 shows a standard 90-meter line; Figure 6 does not show the use of a LAN tester) Test (called in this line, shooting ,,)-line; Figure 7 shows a frequency Road line structure; Fig. 8 shows a permanent line structure; Fig. 9 shows the movement of the God-Café axis; 33 1245124 Fig. 8 shows a local area network (LAN) tester of the present invention. 11 is a signal for driving the job of the local area network (LAN)-driving money and a result measured by the tester; Fig. 12 is a schematic diagram of the phase measurement circuit in the display unit of the present invention; Fig. 13 FIG. 14 shows a situation where the measurement reference plane is set during calibration before delivery according to the present invention; FIG. 14 does not show the situation where the reference plane moves through a phase-coupled connector pair; The reference plane moves down to the jumper situation. Figure 16 does not show how the reference plane at point 2 in tf shown in Figure 9 is related to the reference plane at point 3 shown in Figure 9; Figure 17 shows the local area network (LAN) tester display of the present month A exploded perspective of the unit IS3 · impact], Figure 18 is a perspective view of an explosion of the bottom side of the tester unit; Figure I9 is a digital control circuit of the local area network (LAN) tester unit Figure 20 is a block diagram of the analog circuit board of the present invention; Figure 21 is a detailed block diagram of the phase measurement of the present invention; Figure 22 is a circuit of a jumper connected to a short-circuit connector Figure, · Figure 23 is a loop diagram of a jumper with an open-circuit connector; it is a LAN's (LAN) #core H display * 11 unit and the remote identifier unit are connected together to measure the actual jumper Actual configuration diagram of length; 34 1245124 Figure 25 is a graph of input impedance vs. frequency.

3535

Claims (1)

1245124 拾、申請專利範圍: 1· 一種區域網路(LAN)配線測試系統,其包含·· 跳線(I)與跳線(II),每一條跳線在插頭(I)與插頭(π)處作收; 一手持型顯示器單元與一手持型遠端識別器單元,前述單元的每一件包 括通過前述跳線以及一即將受測的區域網路(LAN )線路用來彼此之間 相互傳送及接收一經選擇頻率的波形裝置; 該手持型顯示器單元包括一插孔用以接受前述跳線中的一條上的插 頭,前述插孔與插頭定義了一相嚙合的連接器對(G; 該手持型遠端識別器單元包括一插孔用以接受前述跳線中的另一條上 的插頭,前述插孔與插頭定義了 一相嚙合的連接器對(n); 相位量測裝置用以量測在顯示器單元裡或在遠端識別器單元裡的相 位,以及用以在該跳線的一端處設定一參考平面; 用以在前述參考平面看入該跳線以量測該入力阻抗的裝置; 用以量測在入力阻抗振幅圖裡二極大值之間的頻率差的頻率對阻抗 的關係的裝置;以及 用以依照Le()rd==(NVP*c)/(Af^2)公尺的算式計算該跳線長度的裝置。 2· —種用以量測區域網路(LAN)配線測試器使用的跳線的方法,在一個 有著一顯示器單元和一遠端識別器單元,以及有著已知長度^和“的 跳線(I)與跳線(II)的這類型的區域網路(LAN)配線測試系統裡, 該二跳線的每-條在其兩端打有插頭j與插頭π,以及該顯示器單元與 該遠端識別H單元的每-财_插孔肋接受_跳線插頭,當連接時, 36 1245124 插頭與插孔包含了一扣齒合的連接器對,該顯示器單元與該遠端識別 时單元的母一個有著通過前述跳線以及一即將受測的區域網路 線路用來彼此之間相互傳送及接收 一經選擇頻率的波形之裝置;此種用 以i測一跳線的長度的方法,其包含下述步驟: 將該跳線連接該顯示器單元與該遠端識別器單元; 求出該跳線的標稱行進速度NVP ; 在該顯示器單元和該遠端識別器單元,相繼在該跳線的線對的每一條 上,製作一開路或短路的接頭; 以不同的頻率掃過該跳線的波形; 在該跳線的一端處在一參考平面看入該跳線以量測該入力阻抗; 量測在入力阻抗振幅圖裡二極大值之間的頻率Δ£的頻率對阻抗的關 係;以及 依照Le()rd = (NVP*c)/(Afic2)公尺的算式計算該跳線的長度。 3. —種用以求出配合一區域網路(LAN)現場測試器的顯示器單元和遠端 識別器單元使用的一跳線的實際長度的方法,其包含下述步驟: 將該跳線連接該顯示器單元與該遠端識別器單元; 求出該跳線的標稱行進速度NVP ; 在該顯示器單元和該遠端識別器單元,相繼在該跳線的線對的每一條 上’製作一開路或短路的接頭; 以不同的頻率掃過該跳線的波形; 在一參考平面看入該跳線以量測該入力阻抗; 37 1245124 量測在入力阻抗振幅圖裡二極大值之間的頻率Af的頻率對阻抗的關 係;以及 依照!^_!=(奶^*(〇/(^俨2)公尺的算式計算該跳線的長度。1245124 Scope of patent application: 1. A local area network (LAN) wiring test system, including: jumper (I) and jumper (II), each jumper is in the plug (I) and plug (π) A hand-held display unit and a hand-held remote identifier unit, each of the aforementioned units including the aforementioned jumper and an area network (LAN) line to be tested for transmitting to each other And receiving a waveform device with a selected frequency; the handheld display unit includes a jack for receiving a plug on one of the jumpers, and the jack and the plug define a mating connector pair (G; the handheld Type remote identifier unit includes a jack for receiving a plug on the other of the aforementioned jumpers, and the jack and the plug define a mating connector pair (n); a phase measuring device for measuring The phase in the display unit or in the remote identifier unit and a reference plane set at one end of the jumper; a device for looking into the jumper in the aforementioned reference plane to measure the input impedance; use Device for measuring the frequency-to-impedance relationship between the frequency difference between the two maximum values in the input impedance amplitude graph; and a formula for calculating according to Le () rd == (NVP * c) / (Af ^ 2) meters Device for calculating the length of the jumper 2. A method for measuring the jumper used in a LAN wiring tester, which has a display unit and a remote identifier unit, and a known In this type of local area network (LAN) wiring test system of the jumper (I) and jumper (II) lengths, each of the two jumpers has a plug j and a plug π at both ends. , And the display unit and the remote identification H unit each receive a _ jack rib to accept a jumper plug. When connected, the 36 1245124 plug and jack contains a snap-fit connector pair. The display unit A device with the mother of the remote identification unit has a device for transmitting and receiving a waveform of a selected frequency to each other through the aforementioned jumper and a network cable to be tested; Method of wire length, including the following steps: connect the jumper to the Indicator unit and the remote identifier unit; find the nominal travel speed NVP of the jumper; on the display unit and the remote identifier unit, make one on each of the pair of the jumper wires one after the other Open or shorted connector; Sweep the waveform of the jumper at different frequencies; Look at the jumper at a reference plane at one end of the jumper to measure the input impedance; Measure in the input impedance amplitude chart The relationship between the frequency Δ £ between the maximum values and the impedance; and the length of the jumper is calculated according to the formula of Le () rd = (NVP * c) / (Afic2) meters. 3. A method to find out A method for matching the actual length of a jumper used with a display unit of a local area network (LAN) field tester and a remote identifier unit includes the following steps: connecting the jumper to the display unit and the remote identification Device; find the nominal travel speed of the jumper NVP; on the display unit and the remote identifier unit, make an open or shorted connector on each of the pairs of the jumper; The frequency of the waveform across the jumper In a reference plane looking into the jumper to measure the impedance in force; 371245124 measured in the mechanical impedance in FIG amplitude frequency Af between two maxima of impedance relationships; and in accordance with! ^ _! = (Milk ^ * (〇 / (^ 俨 2) meters) calculate the length of the jumper. 3838
TW92135308A 2002-12-12 2003-12-12 Method of measuring patch cord length for a LAN cable tester TWI245124B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US43285802P 2002-12-12 2002-12-12

Publications (2)

Publication Number Publication Date
TW200424532A TW200424532A (en) 2004-11-16
TWI245124B true TWI245124B (en) 2005-12-11

Family

ID=35912858

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92135308A TWI245124B (en) 2002-12-12 2003-12-12 Method of measuring patch cord length for a LAN cable tester

Country Status (2)

Country Link
CN (1) CN100520418C (en)
TW (1) TWI245124B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7903746B2 (en) * 2007-07-26 2011-03-08 International Business Machines Corporation Calibrating parameters in a storage subsystem with wide ports
US9535150B1 (en) * 2015-06-12 2017-01-03 Rohde & Schwarz Gmbh & Co. Kg Method for calibrating a cable and respective measuring device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977773A (en) * 1997-08-15 1999-11-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Non-intrusive impedance-based cable tester
US6285653B1 (en) * 1998-09-11 2001-09-04 Fluke Corporation Method and apparatus to measure far end crosstalk for the determination of equal level far end crosstalk
US6433558B1 (en) * 1999-05-13 2002-08-13 Microtest, Inc. Method for diagnosing performance problems in cabling
CN1149402C (en) * 2001-04-30 2004-05-12 宝山钢铁股份有限公司 High-voltage fault discharge on-line monitoring system

Also Published As

Publication number Publication date
CN100520418C (en) 2009-07-29
CN1723395A (en) 2006-01-18
TW200424532A (en) 2004-11-16

Similar Documents

Publication Publication Date Title
TWI284467B (en) Hand-held tester and method for local area network cabling
US6847213B2 (en) Hand-held tester and method for local area network cabling
US7193422B2 (en) Patch panel system
US7856709B2 (en) Method for high-frequency tuning an electrical device
US6015314A (en) Electric watt-hour meter adapter
US10551422B2 (en) Method of evaluating device including noise source
US7511508B2 (en) Fixture characteristic measuring device, method, program, recording medium, network analyzer, and semiconductor test device
Leone Radiated susceptibility on the printed-circuit-board level: Simulation and measurement
TWI245124B (en) Method of measuring patch cord length for a LAN cable tester
Li et al. A new technique for high frequency characterization of capacitors
CN109240873A (en) A kind of memory signal testing plate
US6998853B2 (en) Patchcord length measurement for LAN testers
KR20230170949A (en) IC noise tolerance detection device and IC noise tolerance detection method
EP1573342B1 (en) Patchcord length measurement for a lan testers
US7088110B1 (en) System and method for determining S-parameters of a connected structure
Barnes et al. Development of a pogo pin assembly and via design for multi-gigabit interfaces on automated test equipment
WO2003007002A3 (en) Interface apparatus for integrated circuit testing
Sercu et al. Accurate de-embedding of the contribution of the test boards to the high-frequency characteristics of backplane connectors
US20210364576A1 (en) Use of Standing Wave Ratio Measurements for Interconnect Testing
Paulter A fast and accurate method for measuring the dielectric constant of printed wiring board materials
US11782073B2 (en) Probe extension system, measurement system and probe extension method
EP2237377B1 (en) Instrument having oblique mounted terminal posts
Spang et al. Response of a magnetic loop probe to the current and voltage on a microstrip line
JP3360592B2 (en) Modular jack connector and wiring system using the same
WO2005066644A1 (en) Measurement connector for test device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees