TWI242523B - Hybrid vehicle - Google Patents

Hybrid vehicle Download PDF

Info

Publication number
TWI242523B
TWI242523B TW093113632A TW93113632A TWI242523B TW I242523 B TWI242523 B TW I242523B TW 093113632 A TW093113632 A TW 093113632A TW 93113632 A TW93113632 A TW 93113632A TW I242523 B TWI242523 B TW I242523B
Authority
TW
Taiwan
Prior art keywords
engine
motor
power
speed
load
Prior art date
Application number
TW093113632A
Other languages
Chinese (zh)
Other versions
TW200427608A (en
Inventor
Takashi Tsutsumizaki
Masahiro Kuroki
Kunihiko Tanaka
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003169898A external-priority patent/JP4094492B2/en
Priority claimed from JP2003169899A external-priority patent/JP3929938B2/en
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of TW200427608A publication Critical patent/TW200427608A/en
Application granted granted Critical
Publication of TWI242523B publication Critical patent/TWI242523B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

To obtain a required power efficiently without strengthening a suspension and a frame. In a hybrid vehicle having an engine and a motor, a first control unit gradually increases a motor power PM with an increase in engine speed Ne as shown by a line LM1 until the engine speed Ne exceeds a first rotational speed N1. After the engine speed Ne exceeds the first rotational speed N1, the first control unit gradually decreases the motor power PM with an increase in engine speed Ne so that the composite power as the sum of the engine power PE and the motor power PM does not exceed a maximum power PE m of the engine.

Description

1242523 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種具有引擎和作為動力源的馬 合動力車輛。 【先前技術】 在本領域中已經公知的是,混合動力車輛用來 消耗並抑制由於排放有害物而帶來的污染。該混 輛能將引擎動力和馬達動力一起傳遞到驅動輪, 在兩輪車輛上,而且也能用在三輪或四輪車輛上 的混合動力車輛上,當節流開口角度增力Π以把引 高到預定速度或更高時,馬達開始使一個曲柄軸 而增加該曲柄軸的輸出扭矩(例如,參見專利文 另外,混合動力車輛具有通過利用馬達來輔助 構,從而減少了燃料消耗,同時抑制了由於排放 導致的污染(例如,參見專利文獻2 )。通過吸入 燃料組成的空氣-燃料混合物並使空氣-燃料混合 室内燃燒,引擎產生動力。在把空氣-燃料混合物 室的過程中,進氣閥打開,而在把廢氣從燃燒室 程中,排氣閥打開。 在專利文獻2中公開的混合動力車輛為四輪車 車輛的行駛條件,該車輛只由馬達或只由引擎, 達和引擎兩者來驅動。不僅在減速或者停車而且 速度行駛(巡航行駛)過程中,通過操作馬達對電 在恒定速度行駛過程中,引擎驅動驅動輪,同時 312/發明說明書(補件)/93-08/931〗3632 達的混 減少燃料 合動力車 並不僅用 。在兩輪 擎速度提 旋轉,從 獻1 )。 引擎的結 有害物而 由空氣和 物在燃燒 吸到燃燒 中排出過 輛,根據 或者由馬 也在恒定 池充電。 驅動發電 1242523 機來對電池充電。 (專利文獻1 ) 第2 0 0 ◦ - 1 0 3 3 8 4日本專利公開文件(第0 0 1 4和0 以及圖 2和圖1 4 ) (專利文獻2 ) 第Η E I 1 1 - 2 2 0 8 0 8號日本專利公開文件(第0 0 1 4 段,以及圖6 ) 【發明内容】 在這種混合動力車輛中,馬達動力作為輔助動力 的最大動力因此設定成較高動力。因此,可採用具 額定動力的馬達。然而,在許多情況下,這種具有 定動力的馬達在尺寸和重量上較大。結果,當在這 主體上安裝馬達時,帶來的問題是,彳艮難設計馬達 需要對主體框架增強。在這樣情況下,有可能增加 本和製造成本。另外,從有效利用能量的觀點來看 提高對馬達的有效利用。 因此,本發明的第一目的是提供一種混合動力車 有效地獲得需要的動力,而不需對懸吊或框架進行 在如具有較高工作速度型引擎並採用可變氣門正 統之兩輪混合動力車輛的混合動力車輛中,有這樣 性,即進氣閥和排氣閥均可以重疊方式打開。如果 量較大,則在燃燒室内的廢氣可返回到進氣管,或 在缸體内。因此,可能的是,要吸入到燃燒室内的 燃料混合物量可降低。在這種情況下,必須增加燃 312/發明說明書(補件)/93-08/93113632 0 7 1 段, 和 0 0 1 9 ,車輛 有較大 較大額 種車輛 ,同時 設計成 ,需要 輛,可 加強。 時系 的可能 該重疊 可停留 空氣- 料噴射 6 1242523 量,以得到需要的引擎動力,從而使燃料消耗增力Π 。具體 地說,當引擎處於較低負載狀態時,節流閥的開口角度較 小,同時在下一個進氣衝程中要吸入的新的空氣-燃料混合 物體積變小。因此,上述的返回到進氣管或停留在缸體内 的廢氣的負面效應變大。 因此,本發明的第二個目的是提供一種混合動力車輛, 可避免在預定的負載區域中燃料消耗的增力口 ,以降低總的 燃料消耗。 根據申請專利範圍第1項之發明,提供一種能把來自引 擎(如在第一較佳實施例中的引擎2 0 )的引擎動力(如在 第一較佳實施例中的引擎動力ΡΕ )和來自馬達(如在第一 較佳實施例中的馬達2 1 )的馬達動力(如在第一較佳實施 例中的馬達動力Ρ Μ )結合傳遞到驅動輪(如在第一較佳實 施例中的後輪W R )的混合動力車輛,該混合動力車輛具有 根據所述引擎的引擎速度(如在第一較佳實施例中引擎速 度N e )來控制所述馬達動力的第一控制裝置(如在第一較 佳實施例中的第一控制單元7 );其中所述第一控制裝置控 制所述馬達,從而使作為所述引擎動力和所述馬達動力之 和的合成動力(如在第一較佳實施例中合成動力P C )小於 或等於所述引擎的最大動力(如在第一較佳實施例中的最 大動力P E )。 根據這種混合動力車輛,在引擎速度較低而合成動力不 超過引擎最大動力的引擎速度範圍内,馬達輔助引擎。當 引擎動力隨著引擎速度增加而增加從而導致合成動力超過 7 312/發明說明書(補件)/93-08/93113632 1242523 引擎最大動力時,馬達動力減小或無效。這樣,馬達輔助 引擎,從而使合成動力不超過引擎的最大動力。因此,可 採用具有較低額定動力的馬達。結果,馬達可在尺寸上減 小,並且當在車輛主體上安裝馬達時,有效地確保了馬達 的安裝空間。另外,不需要改變主體框架,從而降低了製 造成本。 根據申請專利範圍第2項之發明,提供一種能把來自引 擎的引擎動力和來自馬達的馬達動力結合傳遞到驅動輪的 混合動力車輛,所述混合動力車輛具有根據所述引擎的引 擎速度來控制所述馬達動力的第一控制裝置;其中所述第 一控制裝置控制所述馬達,從而隨著所述引擎速度增加而 增加所述馬達動力,直到所述引擎速度達到第一轉速(如 在第一較佳實施例中第一轉速N 1 ),同時在所述引擎速度 超過所述第一轉速後,隨著所述引擎速度增加而降低所述 馬達動力。 根據這種混合動力車輛,由感測器探測的引擎速度和預 先記錄在控制裝置中的引擎速度(第一轉速)相互比較, 如果感測器探測到的引擎速度小於或等於第一轉速,則控 制裝置隨著引擎速度增加而增加馬達動力。因此,可在不 超過第一轉速的引擎速度範圍内提高加速性能。相反地, 如果感測器探測到的引擎速度超過第一轉速,則控制裝置 隨著引擎速度增加而降低馬達動力。因此,可在超過第一 轉速的引擎速度範圍内,作為引擎動力和馬達動力之和的 合成動力可被保持在適當值。 312/發明說明書(補件)/93-08/93113632 1242523 根據申請專利範圍第2項的申請專利範圍第3項之發 明,所述第一控制裝置控制所述馬達,從而使作為所述引 擎動力和所述馬達動力之和的合成動力小於或等於所述引 擎的最大動力,並且在所述引擎速度超過所述第一轉速 後,接近所述最大動力。 在這種混合動力車輛中,第一轉速設定為比引擎動力變 為最大值的第二轉速較小的值。在從第一轉速到第二轉速 的引擎速度範圍内,馬達動力隨著引擎速度增加而減少。 此時,對馬達進行控制,以便使合成動力在不超過引擎最 大動力的極限内變大。因此,可採用具有較低額定動力的 馬達。 根據申請專利範圍第4項之發明,提供一種把來自引擎 (如在第二較佳實施例中的引擎2 0 )的引擎動力和來自馬 達(如在第二較佳實施例中的馬達2 1 )的馬達動力傳遞至 驅動輪(如在第二較佳實施例中的後輪W R )的混合動力車 輛,所述混合動力車輛具有控制所述引擎和所述馬達的第 二控制裝置(如在第二較佳實施例中的第二控制單元 7 a );其中所述引擎具有第一負載區域(如在第二較佳實施 例中的第一負載區域F L A )和第二負載區域(如在第二較佳 實施例中的第二負載區域S L A ),在第一負載區域,燃料消 耗(如在第二較佳實施例中的燃料消耗F C )大致與在所述 引擎上負載成正比變化,而在第二負載區域,隨著負載減 少而在燃料消耗上的減小小於在所述第一負載區域的情 況;以及當在所述引擎上的負載落入到第二負載區域時, 312/發明說明書(補件)/93-08/93113632 1242523 所述第二控制裝置將所述馬達作為發電機操作,而當在所 述引擎上的負載落入到所示第一負載區域時,所述第二控 制裝置將所述馬達作為動力裝置操作。 根據這種混合動力車輛,通過切換馬達的操作模式來改 變引擎的負載區域,以避免引擎在燃料消耗增加的負載區 域内操作。也就是說,當引擎在第二負載區域操作時,馬 達作為發電機,從而增加引擎上的負載,因此把引擎的負 載區域變化到第一負載區域。可利用由馬達發電得到的電 能,以輔助引擎。 根據申請專利範圍第5項之發明,該第二負載區域包括 引擎在較低負載下以較高速度操作之負載區域。 利用這種結構,在引擎以高速在較低負載下操作的條件 下,通過第二控制裝置,引擎的負載區域變換到第一負載 區域。因此,可避免在正常行駛過程中引擎在第二負載區 域内操作。 【實施方式】 (發明之實施模式) 下面參照附圖來詳細描述本發明的較佳實施例。 如圖1所示,根據第一和第二較佳實施例的混合動力車 輛為兩輪車輛或摩托車,該混合動力車輛具有在該車輛前 部支撐前輪WF的前叉1。該前又1可轉動地支撐在頭管2 上,並可通過操作轉向柄3來轉向。下管4從該頭管2向 後和向下延伸,中間框架5從下管4的下端大致水平向後 延伸。另外,後架6從該中間框架5的後端向後和向上延 10 312/發明說明書(補件)/93-08/93113632 1242523 伸。這樣,頭管2、下管4、中間框架5和後架6構成了主 體框架1 0。包括電源的動力單元1 1在其一端(前端)可 轉動地支撐在主體框架1 0上。作為驅動輪的後輪W R可轉 動地安裝到動力單元1 1的另一端(後端)。該動力單元1 1 通過安裝到後架6上的後減震器1 2而在其後部懸掛,從而 使動力單元1 1可圍繞樞軸擺動。另外,主體框架1 0覆蓋 有主體罩1 3。操作者的座墊1 4在其後部固定到主體罩1 3 的上表面。在座墊1 4的前側,作為操作者腳踏板的踏板 1 5形成在主體罩1 3的中間部上。 如圖3所示,第一動力單元1 1包括作為内燃機的引擎 2 0,用於藉由燃燒可燃之空氣-燃料混合物而得到能量。另 外,作為動力裝置或發電機的馬達2 1同軸設置在引擎2 0 的曲柄軸2 2上,無段自動變速系統(C V T ) 2 3連接到曲柄 軸2 2上。來自引擎2 0和馬達21中至少一個的輸出經過 C V T 2 3和曲柄軸2 2傳遞到後輪W R。 參見圖2,引擎2 0包括經過連桿2 4連接到曲柄軸2 2上 的活塞2 5,其中該曲柄軸2 2具有在車輛的側向延伸的軸。 活塞2 5可滑動地與形成在氣缸體2 6内的氣缸2 7配合。該 氣缸體2 6設計成氣缸2 7的軸在大致平行於車輛縱向的方 向延伸。氣缸蓋2 8固定到氣缸體2 6的前端表面。燃燒空 氣-燃料混合物的燃燒室2 0 a由氣缸蓋2 8、氣缸2 7和活塞 2 5來形成。 氣缸蓋2 8帶有進氣閥和排氣閥(未示出),這兩個閥用 於控制空氣-燃料混合物進入到燃燒室2 0 a或從燃燒室2 0 a 11 3 12/發明說明書(補件)/93-08/93113632 1242523 中排出,同時氣缸蓋28還帶有火星塞29。通過支撐在氣 缸蓋2 8上的凸輪軸3 0的旋轉來打開或關閉進氣閥或排氣 閥。從動鏈輪3 1固定到凸輪軸3 0的一端,而主動鏈輪3 2 固定到曲柄軸2 2上。無端凸輪環鏈3 3繞在從動鏈輪31 和主動鏈輪3 2之間。因此,凸輪軸3 0可隨著曲柄軸2 2 一起旋轉。另外,冷卻引擎2 0的水泵3 4設置在凸輪軸3 0 的一端。水泵3 4具有與凸輪軸3 0 —體形成的旋轉軸3 5。 因此,當凸輪軸3 0旋轉時,水泵3 4可進行操作。 水泵3 4具有與旋轉軸3 5 —起旋轉的轉子3 6和構成定 子的外殼3 8。多個磁鐵3 7設置在轉子3 6的内圓周上,同 時多個磁鐵3 9也設置在外殼3 8的内表面上,從而輔助轉 子3 6的旋轉。在轉子3 6和外殼3 8之間限定了 一空間。該 空間作為壓力室41,該壓力室41用於利用安裝在轉子3 6 上的葉輪4 0來對冷卻水加壓。該冷卻水從水栗3 4的一端 的入口 4 2引入到壓力室4 1内,並從水泵3 4另一端的出口 4 3排放到引擎2 0。恒溫器4 4設置在出口 4 3的上游,從而 根據冷卻水的溫度來間歇地使冷卻水流動停止。該恒溫器 4 4包括密封件4 5、設置在密封件4 5内的蠟4 6和對密封件 4 5進行偏壓的彈簀4 7。當隨著蠟4 6溫度升高而膨脹時, 密封件4 5壓向彈簧4 7而移動,從而確保冷卻水通過。 馬達21設置在定子殼體49上,該定子殼體49與支撐 曲柄軸2 2的曲柄軸箱4 8的側端連接。該馬達2 1為外轉子 型馬達,其定子帶有線圈51,該線圈51包括固定到定子 殼體4 9上的齒5 0和纏繞在齒5 0上的導線。該馬達21包 12 312/發明說明書(補件)/93-08/93113632 1242523 括固定到曲柄軸2 2上的轉子5 2。該轉子5 2具有大致為圓 筒狀,從而可環繞在定子的外圓周上。磁鐵5 3設置在轉子 5 2的内圓周表面上。冷卻馬達2 1的風扇5 4安裝到轉子5 2 上。當風扇5 4隨著曲柄軸2 2的旋轉而轉動時,冷卻空氣 可從穿過定子殼體4 9的罩5 5側面5 5 a而形成的空氣入口 而引入。 馬達2 1作為啟動引擎2 0或輔助引擎2 0增加動力的動 力裝置,同時也作為把曲柄軸2 2的旋轉變換成電能並把該 電能充到蓄電池(圖2中沒有示出)中的充電器(發電機)。 控制馬達2 1的P W Μ (脈衝調變)信號輸入到端子5 6,同時 可再生的電能從端子5 6輸出。詳如後述,馬達2 1具有比 安裝在這種類型普通混合動力車輛上馬達的小的最大動 力。 定子殼體4 9帶有探測轉子5 2轉速的轉子感測器5 7。當 轉子5 2旋轉時,該轉子感測器5 7輸出周期性的脈衝信號。 該轉子5 2帶突起,該突起周期性地沿著旋轉方向設置,以 輸出該脈衝信號。由於轉子5 2隨著曲柄軸2 2而旋轉,而 不管馬達2 1的操作模式,因此曲柄軸2 2的轉速,即引擎 速度Ne可利用轉子感測器57探測到。 用來把曲柄軸2 2的旋轉傳遞到後輪W R的C V T 2 3為皮 帶型C V T,該C V T包括主動皮帶輪5 8、從動皮帶輪6 2和繞 在主動皮帶輪5 8和從動皮帶輪6 2之間的無端V型皮帶 6 3。主動皮帶輪5 8連接到伸出到曲柄軸箱4 8夕卜的曲柄軸 2 2的另一端。該從動皮帶輪6 2通過離心式離合器6 1安裝 13 312/發明說明書(補件)/93-08/93113632 1242523 到從動軸6 0上,其中該從動軸6 0可轉動地支撐於變速箱 5 9上。從動軸6 0與曲柄軸2 2平行延伸。 主動皮帶輪5 8包括固定到曲柄軸2 2上的固定半皮帶輪 5 8 a和藉由離心機構5 8 b可沿曲柄軸2 2軸向滑動的可動半 皮帶輪5 8 c。無端V型皮帶6 3與彼此相對的固定半皮帶輪 5 8 a和可動半皮帶輪5 8 c之間的槽配合。 另一方面,從動皮帶輪6 2包括固定半皮帶輪6 2 a和可 動半皮帶輪6 2 b,其中該固定半皮帶輪6 2 a可旋轉地安裝 到從動軸6 0上,而可動半皮帶輪6 2 b藉由彈簧6 4在從動 軸60的軸向朝固定半皮帶輪62a偏壓。無端V型皮帶63 與形成在彼此相對的固定半皮帶輪6 2 a和可動半皮帶輪 6 2 b之間的槽配合。 當曲柄軸2 2的轉速增加時,離心力被施加到主動皮帶 輪5 8上離心機構5 8 b的離心重量上,從而使可動半皮帶輪 5 8 c朝固定半皮帶輪5 8 a滑動。結果,形成在固定半皮帶 輪5 8 a和可動半皮帶輪5 8 c之間的槽的寬度減少了與可動 半皮帶輪5 8 c滑動量對應的量。因此,主動皮帶輪5 8和無 端V型皮帶6 3之間的接觸位置向主動皮帶輪5 8外侧的徑 向而移動,從而在主動皮帶輪5 8的無端V型皮帶6 3的纏 繞直徑增加。與之相關,在從動皮帶輪6 2的固定半皮帶輪 6 2 a和可動半皮帶輪6 2 b之間形成的槽的寬度也增加。這 樣,無端V型皮帶6 3的纏繞直徑可根據曲柄軸2 2的轉速 連續變化,藉此,C V T 2 3可根據曲柄軸2 2的旋轉而自動 和以無段方式來改變齒輪比。 14 312/發明說明書(補件)/93-08/93〗13632 1242523 該C V Τ 2 3的變速箱5 9帶有與起動腳踏板連接的腳踏板 軸6 6和根據踩踏操作起動腳踏板把腳踏板軸6 6的轉動傳 遞到曲柄軸2 2上的腳踏啟動器6 7。 另夕卜,減速齒輪系6 9位於後輪W R的C V Τ 2 3和軸6 8之 間。該減速齒輪系6 9具有容納在齒輪箱7 0中的齒輪71 和7 2,其中齒輪箱7 0側向連接到變速箱5 9的後端,從而 把從動軸6 0的旋轉傳遞到與之平行的軸6 8上。 在第一較佳實施例中,圖3顯示出的第一控制單元7控 制引擎2 0和馬達2 1。該第一控制單元7為具有CPU (中央 處理單元)、R Ο Μ (唯讀記憶體)和R A Μ (隨機存取記憶體) 的第一控制裝置。該第一控制單元7輸入來自用於探測節 流開口角度的節流開口角度感測器8、車輛速度感測器9 和轉子感測器5 7的探測信號,並把預定的控制信號輸出到 驅動馬達2 1的驅動電路和操作引擎2 0上火星塞2 9的點火 裝置7 3 (見圖2 )上。在該較佳實施例中,第一控制單元 7通過利用作為參數的引擎速度N e來控制馬達2 1 (見圖 4 )。更具體地說,來自馬達2 1的動力隨著引擎速度N e增 加而增力。,直到引擎速度N e達到預定的轉速,而在引擎速 度N e超過預定轉速後,來自馬達21的動力隨著引擎速度 N e進一步增力口而減少。 蓄電池7 4為通過放電而把電能提供到馬達2 1上的電能 供應裝置。例如,蓄電池7 4可以是錄金屬混合動力電池。 通過在馬達2 1中發電而得到的再生能量可把電能充到蓄 電池74上。另外,在該混合動力車輛中,電能可從外部充 15 312/發明說明書(補件)/93-08/93113632 1242523 電器7 5充到蓄電池7 4。當僅通過馬達2 1發電而得到的再 生能量充入到蓄電池7 4中的量不足時,外部充電器7 5用 於附加地從插座等中把電能充到蓄電池7 4。外部充電器7 5 可以是混合動力車輛的部件,或者需要的話,也可以是可 拆卸地安裝到混合動力車輛上的獨立裝置。 下面參照圖4來描述第一較佳實施例中第一控制單元7 對引擎2 0和馬達2 1的控制。在圖4中,水平軸表示引擎 速度N e( r p m ),而垂直轴表示曲柄軸2 2的制動馬力P S( k W ) 和制動扭矩T ( N. m )。另外,線L Μ 1表示馬達動力Ρ Μ,而 線LM2表示馬達21的輸出扭矩ΤΜ。該線LE1表示引擎動 力ΡΕ,而線LE2表示引擎20的輸出扭矩ΤΕ。線LC1表示 引擎動力ΡΕ和馬達動力ΡΜ之和的合成動力PC。 如圖4中線LE1所示,引擎動力PE隨著引擎速度Ne增 加而從較低的空轉速度N 0 (例如3 0 0 0 r p m到4 0 0 0 r p m )逐 漸增加。當引擎速度N e超過第一轉速N1到達第二轉速N 2 (例如7 5 0 0 r ρ πι到8 5 0 0 r p in )時,就得到了最大動力P E m。 如線LE2所示,引擎20的輸出扭矩TE在比第二轉速N2 低的引擎速度Ne處具有最大值。在該引擎20中,不進行 汽缸的停止操作。 如L Μ1所示,馬達動力Ρ Μ隨著引擎速度N e增加而從較 低的空轉速度N 0逐漸增加,直到引擎速度N e達到第一轉 速N1,並在引擎速度N e超過第一轉速N1時,接著就逐漸 減少。如線L Μ 2所示,隨著引擎速度N e的增力口 ,馬達2 1 的輸出扭矩TM幾乎沒有變化,直到引擎速度Ne達到第一 16 312/發明說明書(補件)/93-08/93113632 1242523 轉速N1,並在引擎速度Ne超過第一轉速N1後,接 減少。在引擎速度Ne達到第二轉速N2前,馬達2 1 動力PM和輸出扭矩TM變為零。 如線L C 1所示,隨著從較低空轉速度N 0到第一 4 的引擎速度N e的增力σ ,通過用馬達動力P Μ來輔助 擎動力ΡΕ而得到的複合動力PC也增加。在從第一 到第二轉速N2的範圍内,引擎動力PE增力〇 ,但馬 P Μ逐漸地隨著引擎速度N e增加而成反比減少。因 合成動力PC在該轉速範圍内增加很少量或者幾乎; 加。另外,馬達動力PM在引擎速度Ne到達第二轉 前變成零,其中在該第二轉速N2,引擎動力PE變 動力PEm。結果,合成動力PC沒有超過引擎20的 力 P E in 〇 在第一控制單元7中設定馬達動力PM的過程包4 如,對引擎速度Ne乘以預定係數。在這種情況下, 數包括在從較低空轉速度N 0到第一轉速N 1範圍内 逐漸增加的係數和在比第一轉速N 1更大的範圍内4 逐漸減少的係數。此等係數預先儲存在第一控制單 ROM内。該第一控制單元7通過利用作為位址的引 Ne來搜索ROM,以得到需要的係數。逐漸增加的係 預定值,從而比第一轉速N 1較大的引擎速度範圍内 動力變成比引擎20的最大動力PEm小,同時接近該 力 P E in。 第一轉速N1大致與引擎速度N e對應,其中該引 312/發明說明書(補件)/93-08/93 Π 3632 著逐漸 的馬達 專速N1 增力口引 轉速Ν1 達動力 此,該 F增 速Ν2 成最大 最大動 i 5例 預定係 採用的 长用白勺 元 7的 擎速度 數具有 的合成 最大動 擎速度 17 1242523 藉由操作節流閥手控拉紐(未示出)從空轉狀態下對車輛 加速而得到增力σ 。例如,該第一轉速N1與第二轉速N 2的 7 0 %到8 0 %範圍内的引擎速度對應。通過用這種方式來設定 第一轉速,可提高比第一轉速Ν 1較低的引擎速度範圍(在 較低引擎速度範圍或中等引擎速度範圍)内的加速性能。 如果該第一轉速設定成比上述給定值大,則合成動力可不 期望地輕易超過引擎20的最大動力ΡΜ。在圖4中,在第 一轉速Ν 1的馬達動力Ρ Μ對應於馬達2 1的最大動力P M ill。 安裝在混合動力車輛上的馬達2 1只需要具有足以輔助 處於較低引擎速度範圍和中等引擎速度範圍内的引擎2 0 的動力。因此,具有比安裝到該類型其他混合動力車輛上 馬達最大動力較小的最大動力的馬達可作為馬達2 1。結 果,該馬達2 1可在尺寸和重量上減少,並也可在驅動效率 (電子到機械轉換效率)和發電效率(機械到電子轉換效 率)上提高。 下面參照圖5和6來描述馬達21的驅動效率和發電效 率的第一具體實例。在圖5和圖6中,水平軸表示馬達轉 速(r p m ),而垂直軸表示輸出電流(A )。另外,虛線示出 了驅動效率曲線,而雙點劃線示出了發電效率曲線。圖5 表示作為在該較佳實施例中混合動力車輛中採用的、較低 動力馬達2 1的實例的、具有0 . 6 k W最大動力的馬達的驅動 效率(線E S Μ1 )和發電效率(線E S Μ 2 )。對於此,圖6表 示具有3 k W最大動力的馬達的驅動效率(線E L Μ 1 )和發達 效率(線ELM2)。在圖6中,藉由輸入與具有0.6kW最大 18 3 12/發明說明書(補件)/93-08/93113632 1242523 動力的馬達的相同電流而得到驅動效率,而藉由輸出與具 有0 . 6 k W最大動力的馬達的相同電流而得到發電效率。 在圖5所示的效率圖中,從線ESM1和發電效率曲線中 可以知道,在4 0 0 0 r p in處的驅動效率大約為7 7 %。另外, 從線E S Μ 2和發電效率曲線中可以知道,在4 0 0 0 r p m處的發 電效率大約為3 5 %。同樣地,在6 0 0 0 r p ni處的驅動效率大 約為6 5 %,而在6 0 0 0 r p m處的發電效率大約為7 5 %。另外, 在7000 rpm處的發電效率大約為60%,而在7000rpm處的 發電效率大約為85% 。 相反地,在圖6所示的效率圖中,從線E L Μ1和發電效 率曲線中可以知道,在4 0 0 0 r p in處的驅動效率大約為6 0 %。 另夕卜,從線ELM2和發電效率曲線中可以知道,在4 0 0 0 rpm 處的發電效率大約為5 0 %。同樣地,在6 0 0 0 r p m處的驅動 效率大約為5 5 %,而在6 ◦ 0 0 r p in處的發電效率大約為5 3 %。 另外,在7 0 0 0 r p m處的驅動效率大約為4 0 %,而在7 0 0 0 r p m 處的發電效率大約為6 0 °/〇。 在比較具有較低額定動力的馬達(見圖5 )和具有較高 額定動力的馬達(見圖6 ),當把提供相同電流以驅動馬達 時,具有較低額定動力馬達的驅動效率比具有較高額定動 力馬達的較高。另外,當通過發電得到相同電流時,具有 較低額定動力馬達的發電效率比具有較高額定動力馬達的 較高。也就是說,通過採用具有在動力極限附近範圍内的 較低額定動力的馬達,驅動效率和發電效率均可得到提 高。特別是,即使在較低轉速時,具有較低額定動力的馬 19 3丨2/發明說明書(補件)/93-08/93113632 1242523 達可得到驅動效率和發電效率的較大有效值。 下面描述包括具有較低額定動力馬達的混合動力車輛 的操作。 當啟動混合動力車輛中引擎2 0以啟動行駛時,轉子感 測器5 7輸出隨著轉子5 2旋轉而產生的周期性信號,並將 該周期信號提供給第一控制單元7。該第一控制單元7通 過利用該來自轉子感測器5 7的周期性信號輸入來計算引 擎速度N e。該第一控制單元7把上述計算的當前引擎速度 N e與儲存在R Ο Μ内的第一轉速N 1進行比較。如果當前的 引擎速度N e小於或等於第一轉速Ν1,則第一控制單元7 把PWM信號輸出到馬達21上,從而隨著引擎速度Ne增加 而逐漸增加馬達動力P W。馬達2 1根據該P W Μ信號來輔助 引擎20。 更具體地說,當通過由曲柄軸2 2的旋轉而使凸輪軸3 0 轉動、進而操作進氣和排氣閥、從而把空氣-燃料混合物吸 入到引擎2 0的燃燒室2 0 a内時,第一控制單元7把預定定 時的控制信號輸出到點火裝置7 3,以點燃燃燒室2 0 a内的 空氣-燃料混合物。因此,活塞2 5可通過上述的空氣-燃料 燃燒來在氣缸2 7内滑動運動。活塞2 5的直線運動轉換成 曲柄轴2 2的旋轉運動。另一方面,第一控制單元7把電能 從蓄電池7 4中經過端子5 6供應到線圈5 1,從而使轉子5 2 旋轉。因此,曲柄軸2 2的旋轉可通過旋轉轉子5 2來輔助。 由馬達2 1輔助的曲柄軸2 2的旋轉經過C V T 2 3和減速齒輪 系69而傳遞到軸68,從而使後輪WR旋轉。此時,混合動 20 312/發明說明書(補件)/93-08/93113632 1242523 力車輛的動力成為圖4中線L C1示出的合成動力P C。 當通過操作者來操作節流閥手控拉鈕以增加引擎速度 N e日夺,以及由轉子感測器5 7探測到的引擎速度N e超過第 一轉速N1時,第一控制單元7把P W Μ信號輸出到馬達2 1, 從而隨著引擎速度N e的增力〇而逐漸減少馬達動力Ρ Μ。根 據該ΡΜ信號,馬達21輔助引擎20。此時,隨著引擎速度 N e增力口,馬達動力Ρ Μ逐漸減少,從而在比第一轉速Ν1較 大的引擎速度範圍内的合成動力PC變化比小於或等於第 一轉速Ν1引擎速度範圍内的變化小。另外,在引擎速度 N e達到第二轉速N 2前,從第一控制單元7到馬達2 1的命 令值輸出變為零,從而停止了馬達2 1的操作(旋轉)。因 此,通過只來自較高引擎速度N e的引擎2 0的動力來驅動 混合動力車輛。 在該混合動力車輛中,採用了具有抑制最大動力PMm的 馬達2 1,同時第一控制單元7控制馬達2 1,從而使合成動 力P C不超過引擎2 0的最大動力P E m。因此,混合動力車 輛的最大動力可維持在恰當的值。另外,由於不需要具有 較大額定動力的馬達,於是不需要對主體框架1 0和包括制 動器的懸吊增強,從而減輕了重量。因此,可利用傳統主 體框架以降低設計成本和製造成本。另外,該車輛主體可 在重量上降低,同時可有效地確保馬達2 1的安裝空間。此 外,馬達2 1的驅動效率和發電效率比具有較高額定動力的 馬達的要高,從而減少了燃料消耗。 另外,馬達2 1輔助來自處於引擎2 0的較低速度範圍(較 21 312/發明說明書(補件)/93-08/93113632 1242523 低轉速範圍)和中等速度範圍(中等轉速範圍)内的引擎 2 0的動力。因此,即使利用較小節流閥手控拉鈕的操作 量,也能得到較高加速性能,從而可縮短達到目標車輛速 度的時間間隔。當第一控制單元7控制馬達2 1、從而在比 第一轉速N 1較大的較高速度範圍内制動後,可由馬達2 1 實現發電,即再發電,則進一步降低了燃料消耗。 混合動力車輛可以是三輪車輛或四輪車輛,而不是圖1 所示的兩輪車輛或摩托車。 第一控制單元7可計算引擎20的實際引擎動力和最大 動力之間的偏差,並控制來自馬達2 1的動力,從而使該偏 差變為零。另外,第一控制單元7可通過把引擎動力PE 乘以預定係數來計算來自馬達2 1的目標動力。此時,需要 在第一控制單元7的ROM中儲存以下兩個係數,即在不大 於第一轉速N 1的引擎速度時逐漸增加的係數和在大於第 一轉速N 1的引擎速度時逐漸減少的係數。 接著,圖7中表示第二較佳實施例。在第二較佳實施例 中的動力單元1 1 a包括作為内燃機的引擎2 0,該内燃機通 過燃燒空氣-燃料混合物來得到動力。另外,作為動力裝置 或發電機的馬達2 1同軸設置在引擎2 0的曲柄軸2 2上,同 時無段自動變速系統2 3 ( C V 丁)連接到曲柄軸2 2上。來自 引擎2 0和馬達2 1中至少之一的輸出經過C V T 2 3傳遞到後 輪W R。此外,蓄電池7 4連接到馬達2 1上。當馬達21作 為動力裝置時,該蓄電池7 4用於把電能提供到馬達2 1上, 或者當馬達2 1作為發電機時,該蓄電池7 4用再生的動力 22 312/發明說明書(補件)/93-08/93113632 1242523 充電。引擎2 0和馬達2 1由作為第二控制裝置的第二控制 單元7 a來控制。 由空氣和燃料組成的空氣-燃料混合物經過進氣管1 6吸 入到引擎2 0内,然後在引擎2 0内燃燒。節流閥1 7用於控 制吸入到引擎2 0内的空氣量,該節流閥1 7可旋轉地設置 在進氣管1 6内。節流閥1 7根據由操作者操作的節流閥手 控拉紐(未示出)的操作量來旋轉。喷射燃料的噴射器1 8 和探測在進氣管1 6内真空度的真空度感測器1 9設置在節 流閥1 7和引擎2 0之間。當節流閥手控拉鈕的操作量較大 時,節流閥1 7的打開角度也大,從而經過進氣管1 6進入 的空氣量較大,同時由真空度感測器1 9探測到的進氣真空 度於是就較小。因此,吸入到引擎2 0内的空氣和燃料量很 大。相反地,當節流閥手控拉紐的操作量較小時,節流閥 1 7的打開角度也小,從而經過進氣管1 6進入的空氣量較 小,同時由真空度感測器1 9探測到的進氣真空度於是就較 大。因此,吸入到引擎2 0内的空氣和燃料量很小。 定子殼體4 9帶有用於探測轉子5 2轉速的轉子感測器 5 7。由於轉子5 2隨著曲柄軸2 2旋轉,於是可利用轉子感 測器5 7來探測引擎轉速N e。 用於在中央控制引擎2 0和馬達2 1的第二控制單元7a 為具有CPU (中央處理單元)、ROM (唯讀記憶體)和RAM (隨機存取記憶體)的第二控制裝置。該第二控制單元7 a 輸入來自探測節流閥1 7的打開角度的節流開口感測器(未 示出)、真空度感測器1 9和轉子感測器5 7的探測信號,並 23 312/發明說明書(補件)/93-08/93113632 1242523 把預定控制信號輸出到馬達2 1和點火裝置7 3的驅動電路 上,其中點火裝置7 3用於操作引擎2 0上的火星塞2 9。第 二控制單元7 a包括根據引擎2 0的進氣真空度來計算在引 擎2 0上的負載的裝置、根據來自轉子感測器5 7的探測信 號來計算引擎速度Ne的裝置、通過把引擎速度Ne乘以預 定係數來計算制動馬力PS的裝置、確定上述在引擎2 0上 的負載是否落入在如後詳述的第二負載區域SLA内的裝 置,以及根據由上述確定裝置的確定結果把馬達2 1的操作 模式切換成動力裝置模式或發電機模式的裝置。 在具有第二較佳實施例中上述結構的混合動力車輛操 作中,馬達21用於在啟動引擎2 0時使曲柄軸2 2旋轉。通 過使曲柄軸2 2旋轉,活塞2 5可滑動地在氣缸2 7内運動, 同時,通過曲柄軸2 2的旋轉,凸輪軸3 0借助於正時鏈條 3 3而旋轉。通過旋轉凸輪軸3 0,進氣閥和排氣閥以預定的 時間打開和關閉。當操作者操作節流閥手控拉鈕的打開在 進氣管1 6内的節流閥1 7之情況下,根據節流閥1 7打開角 度量的空氣被吸入到引擎2 0的燃燒室2 0 a内。此時,第二 控制單元7 a通過把進入量乘以預定空氣-燃料比率來計算 燃料喷射量,以從噴射器1 8中喷射此計算量的燃料。因 此,要吸入的空氣與燃料混合,從而得到空氣-燃料混合物。 吸入到燃燒室2 0 a内的空氣-燃料混合物被活塞2 5壓縮 並接著由火星塞2 9點燃。通過空氣-燃料混合物的燃燒, 活塞25朝曲柄軸22返回,從而使曲柄軸22旋轉。結果, 在曲柄軸2 2產生制動馬力P S。該制動馬力P S大致與吸入 24 312/發明說明書(補件)/93-08/93113632 1242523 到燃燒室2 0 a内的空氣-燃料混合物的體積,即燃料消耗 F C成正比。 經過C V T 2 3和減速齒輪系6 9,曲柄軸2 2的旋轉傳遞到 6 8軸,從而使後輪W R旋轉。當排氣閥打開時,在燃燒後 的空氣-燃料混合物作為廢氣從燃燒室2 0 a内排出。 當引擎2 0為較高工作速度型以及進氣閥和排氣閥由可 變氣門正時系統操作時,出現了這樣情況,即進氣閥和排 氣閥均打開,也就是說,出現了重疊。如果該重疊量較大, 則在燃燒後的排氣可返回到進氣管1 6内,或者可停留在氣 缸2 7内,在這種情況下,在接下來的進氣衝程中的要吸入 到燃燒室2 0 a内的空氣-燃料混合物的體積減少,從而制動 馬力P S降低。因此,必須吸入增加的空氣-燃料混合物(燃 料)量,以得到需要的制動馬力PS,從而制動馬力PS和 燃料消耗FC之間的正比例關係不能保持。 下面具體參見圖8,描述制動馬力PS和燃料消耗FC之 間的關係以及制動馬力P S和平均有效壓力Μ E P之間關係。 在圖8中,水平軸表示制動馬力PS(kW)或基本上與之成 正比的平均制動有效壓力Β Μ E P ( k P a )。垂直軸表示平均有 效壓力Μ E P ( k P a )和燃料消耗F C ( g / h )。 線L Μ P表示平均有效壓力Μ E P。如線L Μ P所示,該平均 有效壓力MEP隨著制動馬力PS增加而減少。平均有效壓力 Μ E P由泵損耗Ρ Μ E P和機械損耗F Μ E P組成,其中泵損耗Ρ Μ E P 由通過節流閥1 7對吸入到引擎2 0内的空氣流限制而產 生,而機械損耗FMEP由曲柄軸22的牽引阻力而形成。機 25 3 12/發明說明書(補件)/93-08/93113632 1242523 械損耗FMEP基本上為常數,而與制動馬力PS無關 損耗Ρ Μ E P隨著制動馬力P S增加而減少。 相對地,燃料消耗F C隨著制動馬力P S增加而趨 加。如虛線L F C i所示,最初,燃料消耗F C需要以 率隨著制動馬力PS增力口而增力口 。然而,如線LFCr 燃料消耗F C實際上具有這樣的特徵,即它在中間負 和較大負載區域大致與制動馬力PS成正比,同時在 載區域,燃料消耗FC變得比最初燃料消耗較大。在 述中,第一負載區域F L A由制動馬力P S大於或等於 (如0 . 8 k W到0 . 9 k W )的負載區域限定,同時特定 耗(即在燃料消耗FC中隨著制動馬力PS的變化) 恒定的,從而在引擎2 0上的負載和燃料消耗F C大 比關係。相反地,第二負載區域S L A由制動馬力P S 述預定量的負載區域來限定,同時特定燃料消耗隨 馬力P S增力口而增加,從而使在引擎2 0的負載和燃 F C不成正比關係。 第二負載區域SLA與這樣的狀態對應,即在較高 節流閥1 7設定為接近完全打開節流開口角度的打f 度,同時該區域為在接下來進氣衝程中廢氣留在氣 内的區域,因此,要吸入氣缸2 7内的新空氣-燃料 的量減少。在第二負載區域SLA中,需要比在線性 線L F C i )情況中燃料消耗較多的燃料消耗F C(見線 使燃料消耗增力口。 為了應對這種情況,第二控制單元7 a控制操作λ 312/發明說明書(補件)/93-08/931】3632 ,但泵 於增 恒定速 所示 , 載區域 較低負 下面描 預定量 燃料消 大致是 致成正 小於上 著制動 料 >肖耗 速度, 干1角 缸27 混合物 ί似(見 LFCr), t第一 26 1242523 負載區域FLA中而不是在第二負載區域SLA的引擎20和馬 達2 1。也就是說,當制動馬力P S落入到第二負載區域S L A 時,該第二控制單元7 a向馬達2 1的驅動電路輸出控制信 號,以把馬達2 1的操作模式切換成發電機模式。當馬達 2 1啟動產生電能時,在引擎2 0的負載增力π以落入到第一 負載區域F L A内。此時,燃料消耗F C臨時增力σ。然而,儲 存在蓄電池7 4内的由馬達2 1產生的電能在後面用於操作 作為動力裝置的馬達2 1,從而輔助引擎2 0的旋轉。結果, 燃料消耗F C完全降低。 下面參見圖9所示的第二具體實例來更詳細描述這種效 果。圖9示出了引擎速度N e設定為3 0 ◦ 0 r p m的情況中燃料 消耗F C,該空氣-燃料比設定成1 4 . 7,而混合動力車輛以 2 0 k m / h操作1小時,之後以5 0 k ni / h操作1小時。在圖9 中,水平軸表示制動馬力P S ( k W )或平均制動有效壓力Β Μ E P (k P a ),而垂直軸表示燃料消耗F C ( g / h )。 在現行技術的情況,如點A1所示,即混合動力車輛在 2 0 km/h下操作,同時不改變引擎20的負載,制動馬力PS 大約為0 . 3 k W,而燃料消耗F C為2 4 5 g / h。如當A 2所示, 在混合動力車輛以5 0 k in / h下操作,制動馬力P S大約為 1 . 2 k W,且燃料消耗F C為4 2 0 g / h。結果,在現行技術中整 個燃料消耗為6 6 5 g / h。 相對地,在第二較佳實施例中的第二控制單元7a操作 作為發電機的馬達2 1,從而提高在引擎2 0上的負載。例 如,當馬達2 1用作發電機,同時車輛速度保持在2 0 k m / h, 27 312/發明說明書(補件)/93-08/93 Π 3632 1242523 在引擎2 0上的負載增力口對應於制動馬力P S為Ο . 5 k W的 量。這樣在負載上的增加對應於沿著線L F C r的點A 1到A 3 的變化。在點A 3,燃料消耗F C為3 2 0 g / h。這樣,在混合 動力車輛以2 0 k m / h行駛的過程中,當馬達2 1作為發電機 時,燃料消耗F C增力口了 7 5 g / h。假定馬達2 1的發電效率 為0 . 8 1,則儲存在蓄電池7 4内由馬達2 1產生的電能變為 0 . 4 k W ° 在以5 0 k m / h行駛的情況中,儲存在蓄電池7 4内的0 . 4 k W 的電能用來使馬達2 1旋轉,從而輔助引擎2 0。在馬達2 1 的驅動效率為0 . 8 1時,通過提供0 . 4 k W的電能,由馬達 2 1產生0 . 3 2 k W的輸出。也就是說,當制動馬力P S保持在 點A2時,在引擎20上的負載從在50km/h處的制動馬力 P S減少0 . 3 2 k W,該0 . 3 2 k W由馬達2 1輔助而產生。因此, 需要得到在50km/h的引擎20上的負載可減少到對應於在 點A4處制動馬力PS的負載。結果,燃料消耗FC降低到 3 3 2 g / h。這樣,當該混合動力車輛保持5 0 k m / h的行駛速度 時,在馬達2 1的輔助下,引擎20的燃料消耗FC減少88g/h。 結果,當通過從馬達2 1發電增加在引擎2 0上負載的情 況中,整個的燃料消耗F C變為6 5 2 g / h。該燃料消耗F C對 應於在不通過發電增加負載的情況中傳統燃料消耗?(:(= 6 6 5 g / h )的大約9 8 %。這樣,燃料消耗F C可比現有技術改 善大約2 %。需要注意的是,上述特定值僅僅是示意性的, 可根據車輛類型和行駛條件而變化。 如上所述,混合動力車輛具有第一負載區域FLA和第二 28 312/發明說明書(補件)/93-08/93113632 1242523 負載區域SLA,其中在第一區域,燃料消耗FC大致與制動 馬力PS和在引擎20上的負載成正比,而在第二區域,不 滿足這種比例關係,同時需要的燃料消耗FC增加。在該混 合動力車輛中,當制動馬力PS落入到該第二負載區域SLA 時,該第二控制單元7 a操作作為發電機的馬達2 1,從而 提高在引擎20上的負載,因此維持在第一負載區域FLA 内的引擎2 0和馬達2 1白勺負載區域。根據制動馬力P S,第 二控制單元7 a切換馬達2 1的操作模式,從而改變在引擎 20上的負載,於是可避免在第二負載區域SLA上的引擎20 的操作。在通過馬達2 1的發電過程中,燃料消耗F C臨時 增力σ 。然而,通過利用由該發電而產生的電能來輔助引擎 2 0,整個燃料消耗F C可降低。這樣導致的結果是,在整個 負載區域中的燃料消耗FC可得到抑制。另夕卜,當第二負載 區域SLΑ設定為引擎2 0在較低負載下以較高速度旋轉的負 載區域,行駛的感覺得到改善。 下面描述控制在引擎2 0上負載的過程的實例。 通過從制動馬力P S中減去馬達2 1的動力分佈,在第二 較佳實施例中的第二控制單元7 a計算在引擎2 0上的負 載,並確定上述計算的負載是否落入在第一負載區域FLA 或第二負載區域SLA中。當在引擎20的負載落入在第一負 載區域F L A時,在沒有變化情況下操作引擎2 0,同時操作 作為動力裝置的馬達2 1以輔助引擎2 0。輔助引擎2 0的馬 達2 1的輸出設定為小於或等於在第二負載區域S L A中需要 的制動馬力PS和制動馬力PS最大值之間的差。這樣設定 29 312/發明說明書(補件)/93-08/93113632 1242523 的原因是,通過馬達2 1的輔助來阻止在引擎2 0上 落入到第二負載區域SLA内。相反地,當在引擎20 載落入到該第二負載區域S L Α中時,馬達2 1作為發 作。通過來自馬達21發電而增加的引擎2 0上的負 成這樣的值,通過該值,合成的引擎負載落入到第 區域FLA内,也就是說,該值大於或等於對應於在 在引擎20上負載的制動馬力PS和在第一負載區域 制動馬力PS的最小值之間的差。 該混合動力車輛可以是包括較高工作速度型引擎 三輪或四輪車輛。特別是,該混合動力車輛適合於 ATV (全地形車)、雪車和PWC (個人水艇)。 (發明效果) 根據申請專利範圍第1項,馬達輔助引擎,從而 助的引擎動力不超過引擎最大動力。因此,可採用 低額定動力的馬達。結果,車輛主體可在重量上減 時馬達的安裝空間可有效地保證。另外,馬達的驅 和發電效率可提高,從而降低了燃料消耗。 根據申請專利範圍第2項,當引擎速度小於或等 轉速時,該馬達動力隨著引擎速度增加而增力Γ7 ,從 低引擎速度和中間引擎速度下加速性能可得到提高 提高了反應特徵。相反,當引擎速度超過第一轉速 達動力隨著引擎速度增加而減少,從而可避免額外 的產生。另外,車輛主體可在重量上減少,同時馬 裝空間也得到有效地保證。 312/發明說明書(補件)/93-08/93113632 的負載 上的負 電機操 載設定 一負載 發電前 FLA内 20的 跑車、 使被輔 具有較 小,同 動效率 於第一 而在較 ,因此 時,馬 輔助力 達的安 30 1242523 根據申請專利範圍第3項,第一控制裝置控制 而使合成動力變得較大,在引擎動力極限内但不 動力。因此,可採用具有較低額定動力的馬達。 輛主體可在重量上減少,同時馬達的安裝空間也 保證。 根據申請專利範圍第4項,當在操作中引擎負 入到第二負載區域内時,在該引擎上的負載增加 一負載區域内操作引擎。雖然燃料消耗臨時增加 免在該第二負載區域内的燃料消耗上的增力〇 ,同 用來自馬達發電得到的電能以輔助引擎,可減少 載區域上的燃料消耗。結果,整個燃料消耗可降 根據申請專利範圍第5項,在第二負載區域, 擎。因此,降低了整個燃料消耗,同時改善了行 覺。 【圖式簡單說明】 圖1為根據本發明較佳實施例的混合動力車輛 明側視圖, 圖2為在第一或第二較佳實施例中混合動力車 或第二動力單元的水平剖面圖; 圖3為在第一較佳實施例中混合動力車輛的方 圖4為在第一較佳實施例中與引擎速度有關的 和制動扭矩的曲線, 圖5為在第一較佳實施例中具有較低額定動力 驅動效率和發電效率的曲線; 312/發明說明書(補件)/93-08/93113632 馬達,從 超過最大 結果,車 得到有效 載區域落 ,以在第 ,但可避 時通過利 在第一負 低。 不操作引 驶上的感 的局部透 輛中第一 塊圖, 制動馬力 的馬達的 31 1242523 圖6為在第一較佳實施例中具有較高額定動力的馬達的 驅動效率和發電效率的曲線; 圖7為表示在第二較佳實施例中混合動力車輛概略的方 塊圖; 圖8為在第二較佳實施例中制動馬力或平均制動有效壓 力與平均有效壓力或燃料消耗之間的關係的曲線圖; 圖9為燃料消耗和制動馬力或平均制動有效壓力之間的 關係的曲線圖,該曲線圖表示在較佳實施例中燃料消耗的 降低。 (元件符號說明) 1 前叉 2 頭管 3 轉向柄 4 下管 5 中間框架 6 後架 7 第一控制單元 7 a 第二控制單元 8 節流開口角度感測器 9 車輛速度感測器 10 主體框架 1 1 動力單元 11a 動力單元 12 後減震器 32 312/發明說明書(補件)/93-08/93113632 1242523 13 主體罩 14 座墊 15 踏板 16 進氣管 17 節流閥 18 噴射器 19 真空感測器 2 0 引擎 2 0a 燃燒室 2 1 馬達 2 2 曲柄軸 23 無段自動變速系統(CVT ) 2 4 連桿 2 5 活塞 2 6 氣缸體 27 氣缸 28 氣缸蓋 29 火星塞 3 0 凸輪軸 3 1 從動鏈輪 3 2 主動鏈輪 3 3 無端凸輪環鏈 34 水泵 3 5 旋轉軸 331242523 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a horse-powered vehicle having an engine and a power source. [Prior Art] It is well known in the art that hybrid vehicles are used to consume and suppress pollution caused by the emission of harmful substances. The hybrid vehicle can transmit engine power and motor power to the driving wheels together. It can also be used on two-wheeled vehicles and hybrid vehicles on three- or four-wheeled vehicles. When it reaches a predetermined speed or higher, the motor starts to make a crankshaft and increase the output torque of the crankshaft (for example, see the patent document. In addition, hybrid vehicles have the use of a motor to assist the structure, thereby reducing fuel consumption while suppressing Pollution caused by emissions (see, for example, Patent Document 2). By inhaling the air-fuel mixture composed of fuel and burning the air-fuel mixture chamber, the engine generates power. In the process of charging the air-fuel mixture chamber, the air intake The valve is opened, and the exhaust valve is opened while exhausting the exhaust gas from the combustion chamber. The hybrid vehicle disclosed in Patent Document 2 is a running condition of a four-wheeled vehicle that is driven only by a motor or only an engine Both are driven. Not only during deceleration or stopping, but also during speed (cruising), the electric power is constantly changed by operating the motor. During speed driving, the engine drives the driving wheels, and at the same time 312 / Invention Manual (Supplement) / 93-08 / 931〗 3632 is not only used for hybrid fuel-reduction hybrid vehicles. The speed of the two-wheel engine is increased. ). The engine ’s knots are harmful, and the air and materials are burned and burned out of the car, according to or by the horse is also charged in the constant pool. Drive the 1242523 generator to charge the battery. (Patent Document 1) No. 2 0 0 ◦-1 0 3 3 8 4 Japanese Patent Publication (Nos. 0 0 1 4 and 0 and Figs. 2 and 1 4) (Patent Document 2) No. EI 1 1-2 2 Japanese Patent Publication No. 0 8 0 (paragraph 0 01 14 and FIG. 6) [Summary] In this hybrid vehicle, the maximum power of the motor power as the auxiliary power is therefore set to a higher power. Therefore, a motor with a rated power can be used. However, in many cases, such a motor with constant power is larger in size and weight. As a result, when the motor is mounted on the main body, there is a problem that it is difficult to design the motor, and the main body frame needs to be reinforced. In such cases, it is possible to increase cost and manufacturing costs. In addition, from the viewpoint of efficient use of energy, the effective use of the motor is improved. Therefore, a first object of the present invention is to provide a hybrid vehicle that efficiently obtains the required power without the need to suspend or frame the two-wheeled hybrid with a variable-speed orthodox engine, such as a higher-speed engine In a hybrid vehicle of the vehicle, there is a property that both the intake valve and the exhaust valve can be opened in an overlapping manner. If the amount is large, the exhaust gas in the combustion chamber can be returned to the intake pipe or in the cylinder. Therefore, it is possible that the amount of fuel mixture to be drawn into the combustion chamber can be reduced. In this case, paragraph 312 / Invention Specification (Supplement) / 93-08 / 93113632 0 7 1 and 0 0 19 must be added, and the vehicle has a larger and larger amount of vehicles. At the same time, it is designed to require vehicles Can be strengthened. The possibility of time series can overlap the air-fuel injection 6 1242523 to obtain the required engine power, thereby increasing fuel consumption. Specifically, when the engine is in a low load state, the opening angle of the throttle valve is small, and at the same time, the volume of the new air-fuel mixture to be taken in during the next intake stroke becomes smaller. Therefore, the above-mentioned negative effects of the exhaust gas returning to the intake pipe or staying inside the cylinder become larger. Therefore, a second object of the present invention is to provide a hybrid vehicle, which can avoid a fuel booster in a predetermined load region to reduce the total fuel consumption. According to the invention in the first scope of the patent application, an engine power (such as the engine power PE in the first preferred embodiment) and an engine power (such as the engine 20 in the first preferred embodiment) are provided. Motor power (such as the motor power PM in the first preferred embodiment) from the motor (such as the motor 21 in the first preferred embodiment) is combined and transmitted to the driving wheels (such as in the first preferred embodiment) Rear-wheel WR), a hybrid vehicle having a first control device that controls the motor power according to the engine speed of the engine (such as the engine speed Ne in the first preferred embodiment) The first control unit 7) as in the first preferred embodiment; wherein the first control device controls the motor so that the combined power (as in the first In a preferred embodiment, the synthetic power PC) is less than or equal to the maximum power of the engine (such as the maximum power PE in the first preferred embodiment). According to this hybrid vehicle, the motor assists the engine in a range of engine speeds where the engine speed is low and the synthetic power does not exceed the maximum power of the engine. When the engine power increases as the engine speed increases, resulting in synthetic power exceeding 7 312 / Invention Specification (Supplement) / 93-08 / 93113632 1242523, the motor power decreases or becomes ineffective. In this way, the motor assists the engine so that the synthetic power does not exceed the maximum power of the engine. Therefore, a motor with a lower rated power can be used. As a result, the motor can be reduced in size, and when the motor is mounted on the vehicle body, the mounting space of the motor is effectively secured. In addition, there is no need to change the main frame, thereby reducing manufacturing costs. According to the invention in claim 2 of the patent application scope, a hybrid vehicle capable of combining the engine power from an engine and the motor power from a motor to drive wheels is provided. The hybrid vehicle has a control according to the engine speed of the engine. A first control device for the motor power; wherein the first control device controls the motor so as to increase the motor power as the engine speed increases until the engine speed reaches a first speed (as in the first In a preferred embodiment, the first speed N 1), and after the engine speed exceeds the first speed, the power of the motor is reduced as the engine speed increases. According to this hybrid vehicle, the engine speed detected by the sensor and the engine speed (first speed) previously recorded in the control device are compared with each other. If the engine speed detected by the sensor is less than or equal to the first speed, then The control increases motor power as the engine speed increases. Therefore, acceleration performance can be improved within an engine speed range that does not exceed the first rotation speed. Conversely, if the engine speed detected by the sensor exceeds the first rotation speed, the control device reduces the motor power as the engine speed increases. Therefore, in the engine speed range exceeding the first rotation speed, the combined power, which is the sum of the engine power and the motor power, can be maintained at an appropriate value. 312 / Invention Specification (Supplement) / 93-08 / 93113632 1242523 According to the invention in the patent application scope item 3 in the patent application scope item 2, the first control device controls the motor to make the engine power The combined power of the sum of the motor power is less than or equal to the maximum power of the engine, and approaches the maximum power after the engine speed exceeds the first rotation speed. In such a hybrid vehicle, the first rotation speed is set to a value smaller than the second rotation speed at which the engine power becomes maximum. In the engine speed range from the first speed to the second speed, the motor power decreases as the engine speed increases. At this time, the motor is controlled so that the synthetic power becomes larger within the limit of the maximum power of the engine. Therefore, a motor with a lower rated power can be used. According to the invention in the fourth scope of the patent application, an engine power from an engine (such as the engine 20 in the second preferred embodiment) and a motor (such as the motor 21 in the second preferred embodiment) are provided. ) The motor power is transmitted to a driving vehicle (such as the rear wheel WR in the second preferred embodiment) of a hybrid vehicle having a second control device (such as in The second control unit 7 a) in the second preferred embodiment; wherein the engine has a first load area (such as the first load area FLA in the second preferred embodiment) and a second load area (such as in the The second load area SLA in the second preferred embodiment). In the first load area, the fuel consumption (such as the fuel consumption FC in the second preferred embodiment) changes approximately in proportion to the load on the engine. In the second load region, the decrease in fuel consumption as the load decreases is smaller than in the first load region; and when the load on the engine falls into the second load region, 312 / Invention Specification (Supplement) / 93 -08/93113632 1242523 The second control device operates the motor as a generator, and when a load on the engine falls into the first load region shown, the second control device operates the motor Operate as a power unit. According to this hybrid vehicle, the load area of the engine is changed by switching the operation mode of the motor to prevent the engine from operating in the load area where the fuel consumption increases. That is, when the engine is operating in the second load area, the motor acts as a generator, thereby increasing the load on the engine, thus changing the load area of the engine to the first load area. The power generated by the motor can be used to assist the engine. According to the invention in claim 5 of the patent application scope, the second load region includes a load region where the engine operates at a higher speed at a lower load. With this structure, the load area of the engine is changed to the first load area by the second control device under the condition that the engine is operated at a high speed and a low load. Therefore, the engine can be prevented from operating in the second load area during normal driving. [Embodiment] (Embodiment Mode of the Invention) Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. As shown in FIG. 1, the hybrid vehicle according to the first and second preferred embodiments is a two-wheeled vehicle or a motorcycle having a front fork 1 supporting a front wheel WF at the front of the vehicle. The front 1 is rotatably supported on the head pipe 2 and can be steered by operating the steering handle 3. The lower tube 4 extends rearwardly and downwardly from the head tube 2 and the middle frame 5 extends substantially horizontally rearward from the lower end of the lower tube 4. In addition, the rear frame 6 extends rearwardly and upwardly from the rear end of the intermediate frame 5 10 312 / Invention Specification (Supplement) / 93-08 / 93113632 1242523. In this way, the head pipe 2, the lower pipe 4, the middle frame 5 and the rear frame 6 constitute the main body frame 10. A power unit 11 including a power source is rotatably supported on the main body frame 10 at one end (front end) thereof. A rear wheel W R as a driving wheel is rotatably mounted to the other end (rear end) of the power unit 11. The power unit 11 is suspended at the rear by a rear shock absorber 12 attached to the rear frame 6, so that the power unit 11 can swing about a pivot. The main body frame 10 is covered with a main body cover 13. The seat cushion 14 of the operator is fixed to the upper surface of the main body cover 1 3 at the rear portion thereof. On the front side of the seat cushion 14, a pedal 15 serving as an operator's foot pedal is formed on the middle portion of the main body cover 13. As shown in FIG. 3, the first power unit 11 includes an engine 20 as an internal combustion engine for obtaining energy by burning a combustible air-fuel mixture. In addition, a motor 21 serving as a power unit or a generator is coaxially disposed on a crank shaft 22 of an engine 20, and a stepless automatic transmission system (CVT) 2 3 is connected to the crank shaft 22. The output from at least one of the engine 20 and the motor 21 is transmitted to the rear wheel W R through C V T 2 3 and the crank shaft 2 2. Referring to Fig. 2, the engine 20 includes a piston 25 connected to a crankshaft 22 through a connecting rod 24, wherein the crankshaft 22 has a shaft extending laterally of the vehicle. The piston 25 is slidably engaged with the cylinder 27 formed in the cylinder block 26. The cylinder block 26 is designed such that the axis of the cylinder 27 extends in a direction substantially parallel to the longitudinal direction of the vehicle. The cylinder head 28 is fixed to the front end surface of the cylinder block 26. A combustion chamber 20 a for burning an air-fuel mixture is formed by a cylinder head 28, a cylinder 27 and a piston 25. The cylinder head 28 has an intake valve and an exhaust valve (not shown), which are used to control the entry of the air-fuel mixture into or from the combustion chamber 2 0 a 11 3 12 / Instruction Manual (Supplement) / 93-08 / 93113632 1242523, and the cylinder head 28 also has a spark plug 29. The intake or exhaust valve is opened or closed by the rotation of the camshaft 30 supported on the cylinder head 28. The driven sprocket 31 is fixed to one end of the cam shaft 30, and the driving sprocket 3 2 is fixed to the crank shaft 22. The endless cam ring chain 3 3 is wound between the driven sprocket 31 and the driving sprocket 32. Therefore, the cam shaft 30 can rotate with the crank shaft 2 2. A water pump 34 for cooling the engine 20 is provided at one end of the camshaft 30. The water pump 34 has a rotating shaft 35 formed integrally with the cam shaft 30. Therefore, when the camshaft 30 rotates, the water pump 34 can be operated. The water pump 34 has a rotor 36 which rotates together with the rotation shaft 35, and a casing 38 which constitutes a stator. A plurality of magnets 37 are provided on the inner circumference of the rotor 36, and a plurality of magnets 39 are also provided on the inner surface of the housing 38, thereby assisting the rotation of the rotor 36. A space is defined between the rotor 36 and the housing 38. This space serves as a pressure chamber 41 for pressurizing the cooling water using an impeller 40 mounted on the rotor 36. The cooling water is introduced into the pressure chamber 41 from the inlet 4 2 at one end of the water chestnut 34, and is discharged to the engine 20 from the outlet 4 3 at the other end of the water pump 34. The thermostat 4 4 is provided upstream of the outlet 4 3 to stop the cooling water flow intermittently according to the temperature of the cooling water. The thermostat 4 4 includes a seal member 4 5, a wax 4 6 provided in the seal member 4 5, and an impulse 47 that biases the seal member 4 5. When the wax 46 increases in temperature and expands, the seal 45 moves against the spring 47, thereby ensuring the passage of cooling water. The motor 21 is provided on a stator case 49 which is connected to a side end of a crank shaft case 48 which supports the crank shaft 22. The motor 21 is an outer rotor type motor, and its stator is provided with a coil 51 including a tooth 50 fixed to the stator case 49 and a wire wound around the tooth 50. The motor 21 includes 12 312 / Invention Specification (Supplement) / 93-08 / 93113632 1242523 including a rotor 5 2 fixed to a crank shaft 2 2. The rotor 52 has a substantially cylindrical shape so that it can surround the outer circumference of the stator. The magnet 5 3 is provided on the inner circumferential surface of the rotor 5 2. A fan 5 4 of the cooling motor 21 is attached to the rotor 5 2. When the fan 54 is rotated in accordance with the rotation of the crank shaft 22, cooling air may be introduced from an air inlet formed through a side 5 5a of the cover 5 5 of the stator case 49. The motor 21 is used as a power device for starting the engine 20 or assisting the engine 20 to increase power. At the same time, it is also used to convert the rotation of the crank shaft 2 2 into electrical energy and charge the electrical energy into a battery (not shown in FIG. 2) for charging (Generator). The PWM (pulse modulation) signal of the control motor 21 is input to the terminal 56, and at the same time, the renewable electric energy is output from the terminal 56. As described in detail later, the motor 21 has a smaller maximum power than a motor mounted on an ordinary hybrid vehicle of this type. The stator housing 49 is provided with a rotor sensor 57 which detects the speed of the rotor 52. When the rotor 5 2 rotates, the rotor sensor 57 outputs a periodic pulse signal. The rotor 52 is provided with protrusions which are periodically arranged along the rotation direction to output the pulse signal. Since the rotor 5 2 rotates with the crank shaft 22 regardless of the operation mode of the motor 21, the rotation speed of the crank shaft 22, that is, the engine speed Ne can be detected by the rotor sensor 57. The CVT 2 3 used to transmit the rotation of the crank shaft 2 2 to the rear wheel WR is a belt-type CVT. The CVT includes a driving pulley 58, a driven pulley 62, and a winding around the driving pulley 58 and the driven pulley 62. Between endless V-belts 6 3. The driving pulley 58 is connected to the other end of the crank shaft 2 2 protruding to the crank case 4 8. The driven pulley 6 2 is mounted via a centrifugal clutch 6 1 13 312 / Invention Specification (Supplement) / 93-08 / 93113632 1242523 to the driven shaft 60, wherein the driven shaft 60 is rotatably supported by a speed change Boxes 5 to 9 on. The driven shaft 60 extends parallel to the crank shaft 22. The driving pulley 5 8 includes a fixed half pulley 5 8 a fixed to the crank shaft 2 2 and a movable half pulley 5 8 c slidable in the axial direction of the crank shaft 2 2 by a centrifugal mechanism 5 8 b. The endless V-belt 63 is fitted with a groove between a fixed half pulley 5 8 a and a movable half pulley 5 8 c opposite to each other. On the other hand, the driven pulley 62 includes a fixed half pulley 6 2 a and a movable half pulley 6 2 b, wherein the fixed half pulley 6 2 a is rotatably mounted on the driven shaft 60 and the movable half pulley 6 2 b is biased toward the fixed half-pulley 62a in the axial direction of the driven shaft 60 by the spring 64. The endless V-belt 63 cooperates with a groove formed between the fixed half pulley 6 2 a and the movable half pulley 6 2 b facing each other. When the rotation speed of the crank shaft 22 is increased, the centrifugal force is applied to the centrifugal weight of the centrifugal mechanism 5 8 b on the driving pulley 5 8, thereby moving the movable half pulley 5 8 c toward the fixed half pulley 5 8 a. As a result, the width of the groove formed between the fixed half pulley 5 8 a and the movable half pulley 5 8 c is reduced by an amount corresponding to the sliding amount of the movable half pulley 5 8 c. Therefore, the contact position between the driving pulley 58 and the endless V-belt 63 is moved radially to the outside of the driving pulley 58, so that the winding diameter of the endless V-belt 63 of the driving pulley 58 is increased. In connection with this, the width of the groove formed between the fixed half pulley 6 2 a and the movable half pulley 6 2 b of the driven pulley 62 is also increased. In this way, the winding diameter of the endless V-belt 63 can be continuously changed according to the rotation speed of the crank shaft 22, whereby the C V T 2 3 can automatically and steplessly change the gear ratio according to the rotation of the crank shaft 22. 14 312 / Invention Manual (Supplement) / 93-08 / 93〗 13632 1242523 The gearbox 5 of the CV Τ 2 3 has a pedal shaft 6 connected to the starting pedal 6 6 and the starting pedal according to the pedaling operation The plate transmits the rotation of the pedal shaft 6 6 to the pedal starter 6 7 on the crank shaft 2 2. In addition, the reduction gear train 69 is located between the CV T 2 3 of the rear wheel W R and the shaft 68. The reduction gear train 69 has gears 71 and 72 housed in a gear box 70, where the gear box 70 is laterally connected to the rear end of the gearbox 59, thereby transmitting the rotation of the driven shaft 60 to It is parallel to the axis 6 8. In the first preferred embodiment, the first control unit 7 shown in Fig. 3 controls the engine 20 and the motor 21. The first control unit 7 is a first control device having a CPU (Central Processing Unit), ROM (Read Only Memory), and RAM (Random Access Memory). The first control unit 7 inputs detection signals from a throttle opening angle sensor 8, a vehicle speed sensor 9, and a rotor sensor 57 for detecting a throttle opening angle, and outputs a predetermined control signal to The drive circuit of the drive motor 21 and the ignition device 7 3 (see FIG. 2) that operates the spark plug 29 on the engine 20. In this preferred embodiment, the first control unit 7 controls the motor 2 1 by using the engine speed N e as a parameter (see FIG. 4). More specifically, the power from the motor 21 increases as the engine speed Ne increases. Until the engine speed N e reaches a predetermined speed, and after the engine speed N e exceeds the predetermined speed, the power from the motor 21 decreases as the engine speed N e further increases. The battery 74 is an electric power supply device that supplies electric power to the motor 21 by discharging. For example, the battery 74 may be a metal-recorded hybrid battery. The regenerative energy obtained by generating electricity in the motor 21 can charge the electric energy to the storage battery 74. In addition, in this hybrid vehicle, electric energy can be externally charged 15 312 / Invention Specification (Supplement) / 93-08 / 93113632 1242523 The electric appliance 7 5 is charged to the battery 74. When the amount of regenerative energy obtained by generating electricity only by the motor 21 is insufficient to charge the battery 74, the external charger 75 is used to additionally charge electric energy to the battery 74 from a socket or the like. The external charger 7 5 may be a component of the hybrid vehicle or, if necessary, a stand-alone device detachably mounted on the hybrid vehicle. The control of the engine 20 and the motor 21 by the first control unit 7 in the first preferred embodiment is described below with reference to FIG. 4. In FIG. 4, the horizontal axis represents the engine speed Ne (r p m), and the vertical axis represents the braking horsepower P S (k W) and the braking torque T (N.  m). In addition, the line L M1 represents the motor power PM, and the line LM2 represents the output torque TM of the motor 21. The line LE1 represents the engine power PE, and the line LE2 represents the output torque TE of the engine 20. Line LC1 represents a synthetic power PC that is the sum of engine power PE and motor power PM. As shown by the line LE1 in FIG. 4, the engine power PE gradually increases from a lower idling speed N 0 (for example, 3 0 0 r p m to 4 0 0 0 r p m) as the engine speed Ne increases. When the engine speed Ne exceeds the first rotation speed N1 and reaches the second rotation speed N 2 (for example, 7500 r ρ π to 8500 r p in), the maximum power P E m is obtained. As shown by line LE2, the output torque TE of the engine 20 has a maximum value at an engine speed Ne lower than the second rotation speed N2. In this engine 20, the cylinder stop operation is not performed. As shown by L M1, the motor power PM gradually increases from a lower idling speed N 0 as the engine speed Ne increases, until the engine speed Ne reaches the first rotational speed N1, and exceeds the first rotational speed N1 at the engine speed Ne. At N1, it gradually decreases. As shown by line L M 2, as the engine speed Ne increases, the output torque TM of the motor 2 1 hardly changes until the engine speed Ne reaches the first 16 312 / Invention Specification (Supplement) / 93-08 / 93113632 1242523 Speed N1, and then decreases after the engine speed Ne exceeds the first speed N1. Before the engine speed Ne reaches the second rotation speed N2, the motor 2 1 power PM and the output torque TM become zero. As shown by the line L C1, with the increase in force σ from the lower idling speed No to the first 4 engine speed Ne, the composite power PC obtained by assisting the engine power PE with the motor power PM is also increased. In the range from the first to the second rotation speed N2, the engine power PE increases by 0, but the horse PM gradually decreases inversely as the engine speed Ne increases. Because the synthetic PC increases in this speed range by a small amount or almost; plus. In addition, the motor power PM becomes zero before the engine speed Ne reaches the second revolution, and at this second rotation speed N2, the engine power PE becomes the power PEm. As a result, the synthetic power PC does not exceed the force P E in of the engine 20. The process of setting the motor power PM in the first control unit 7 is, for example, multiplying the engine speed Ne by a predetermined coefficient. In this case, the number includes a coefficient that gradually increases in a range from the lower idling speed N 0 to the first rotation speed N 1 and a coefficient that gradually decreases in a range larger than the first rotation speed N 1. These coefficients are stored in the first control sheet ROM in advance. The first control unit 7 searches the ROM by using the address Ne as the address to obtain the required coefficients. It gradually increases to a predetermined value so that the power in an engine speed range larger than the first rotation speed N 1 becomes smaller than the maximum power PEm of the engine 20 while approaching the force P E in. The first rotation speed N1 roughly corresponds to the engine speed N e, wherein the induction 312 / invention specification (supply) / 93-08 / 93 Π 3632 follows the gradual motor special speed N1 booster opening rotation speed N1 to reach the power. The F Increase the speed N2 into the maximum maximum movement i 5 cases of the system used in the long-term use of the engine speed of 7 yuan has a combined maximum dynamic engine speed of 17 1242523 by operating the throttle manually controlled knob (not shown) from idling Accelerate the vehicle in the state to obtain a boost σ. For example, the first speed N1 corresponds to an engine speed in the range of 70% to 80% of the second speed N2. By setting the first rotation speed in this way, acceleration performance in an engine speed range (in a lower engine speed range or a medium engine speed range) lower than the first rotation speed N 1 can be improved. If the first rotation speed is set larger than the above-mentioned given value, the synthetic power may undesirably easily exceed the maximum power PM of the engine 20. In FIG. 4, the motor power PM at the first rotation speed N 1 corresponds to the maximum power P M ill of the motor 21. The motor 21 installed on the hybrid vehicle need only have sufficient power to assist the engine 2 0 in the lower engine speed range and the middle engine speed range. Therefore, a motor having a maximum power smaller than the maximum power of a motor mounted on other hybrid vehicles of this type can be used as the motor 21. As a result, the motor 21 can be reduced in size and weight, and can also be improved in driving efficiency (electronic-to-mechanical conversion efficiency) and power generation efficiency (mechanical-to-electronic conversion efficiency). A first specific example of the driving efficiency and the power generation efficiency of the motor 21 will be described below with reference to Figs. 5 and 6. In Figs. 5 and 6, the horizontal axis represents the motor speed (r p m), and the vertical axis represents the output current (A). In addition, a dotted line shows a driving efficiency curve, and a two-dot chain line shows a power generation efficiency curve. FIG. 5 shows an example of a lower power motor 21, which has 0.  Drive efficiency (line ESM1) and power generation efficiency (line ESM2) of a 6 kW maximum power motor. In this regard, FIG. 6 shows the driving efficiency (line ELM 1) and developed efficiency (line ELM2) of a motor having a maximum power of 3 kW. In Figure 6, by inputting and having 0. 6kW max 18 3 12 / Invention Specification (Supplement) / 93-08 / 93113632 1242523 The same current of the motor with the power to get the driving efficiency, and the output and  6 k W maximum power of the motor with the same current to get power generation efficiency. In the efficiency diagram shown in Figure 5, it can be known from the line ESM1 and the power generation efficiency curve that the driving efficiency at 4 00 r p in is approximately 77%. In addition, it can be known from the line E S M 2 and the power generation efficiency curve that the power generation efficiency at 4 000 r p m is about 35%. Similarly, the driving efficiency at 60000 r p ni is approximately 65%, and the power generation efficiency at 6 000 r p m is approximately 75%. In addition, the power generation efficiency at 7000 rpm is about 60%, and the power generation efficiency at 7000 rpm is about 85%. In contrast, in the efficiency chart shown in FIG. 6, it can be known from the line ELM1 and the power generation efficiency curve that the driving efficiency at 4 00 r p in is about 60%. In addition, it can be known from the line ELM2 and the power generation efficiency curve that the power generation efficiency at 4000 rpm is about 50%. Similarly, the driving efficiency at 6 0 0 r p m is about 55%, and the power generation efficiency at 6 o 0 r p in is about 53%. In addition, the driving efficiency at 70,000 r p m is about 40%, and the power generation efficiency at 70,000 r p m is about 60 ° / 〇. When comparing a motor with a lower rated power (see FIG. 5) and a motor with a higher rated power (see FIG. 6), when the same current is provided to drive the motor, the driving efficiency of a motor with a lower rated power is higher than that of a motor with a lower rated power Higher rated power motors. In addition, when the same current is obtained through power generation, the power generation efficiency of a motor with a lower rated power is higher than that of a motor with a higher rated power. That is, by using a motor having a lower rated power in the vicinity of the power limit, both driving efficiency and power generation efficiency can be improved. In particular, even at a lower rotational speed, a horse having a lower rated power 19 3 丨 2 / Invention Specification (Supplement) / 93-08 / 93113632 1242523 can achieve a large effective value of driving efficiency and power generation efficiency. The operation of a hybrid vehicle including a lower rated power motor is described below. When the engine 20 in the hybrid vehicle is started to start running, the rotor sensor 57 outputs a periodic signal generated as the rotor 52 rotates, and supplies the periodic signal to the first control unit 7. The first control unit 7 calculates the engine speed Ne by using the periodic signal input from the rotor sensor 57. The first control unit 7 compares the calculated current engine speed N e with the first rotation speed N 1 stored in R 0 M. If the current engine speed Ne is less than or equal to the first rotation speed N1, the first control unit 7 outputs a PWM signal to the motor 21, thereby gradually increasing the motor power PW as the engine speed Ne increases. The motor 21 assists the engine 20 based on the PWM signal. More specifically, when the camshaft 30 is rotated by the rotation of the crankshaft 22, and the intake and exhaust valves are operated, the air-fuel mixture is drawn into the combustion chamber 20a of the engine 20 The first control unit 7 outputs a control signal at a predetermined timing to the ignition device 73 to ignite the air-fuel mixture in the combustion chamber 20a. Therefore, the piston 25 can be slid in the cylinder 27 by the above-mentioned air-fuel combustion. The linear motion of the piston 25 is converted into a rotational motion of the crank shaft 2 2. On the other hand, the first control unit 7 supplies electric energy from the battery 7 4 to the coil 51 through the terminal 56, thereby rotating the rotor 5 2. Therefore, the rotation of the crank shaft 22 can be assisted by rotating the rotor 5 2. The rotation of the crank shaft 22 assisted by the motor 21 is transmitted to the shaft 68 via the C V T 2 3 and the reduction gear train 69, thereby rotating the rear wheel WR. At this time, the power of the hybrid vehicle 20 312 / Invention Specification (Supplement) / 93-08 / 93113632 1242523 becomes the synthetic power PC shown by the line L C1 in FIG. 4. When the throttle valve manual control knob is operated by the operator to increase the engine speed N e and the engine speed N e detected by the rotor sensor 57 is higher than the first rotation speed N1, the first control unit 7 turns The PWM signal is output to the motor 21, thereby gradually reducing the motor power PM as the engine speed Ne increases. Based on the PM signal, the motor 21 assists the engine 20. At this time, as the engine speed Ne increases, the motor power PM gradually decreases, so that the synthetic power PC change ratio in an engine speed range larger than the first speed N1 is less than or equal to the first speed N1 engine speed range The change within is small. In addition, before the engine speed N e reaches the second rotation speed N 2, the command value output from the first control unit 7 to the motor 21 becomes zero, thereby stopping the operation (rotation) of the motor 21. Therefore, the hybrid vehicle is driven by the power of the engine 20 only from the higher engine speed Ne. In this hybrid vehicle, a motor 21 having a suppressed maximum power PMm is used, while the first control unit 7 controls the motor 21 so that the combined power P C does not exceed the maximum power P E m of the engine 20. Therefore, the maximum power of the hybrid vehicle can be maintained at an appropriate value. In addition, since a motor having a large rated power is not required, it is not necessary to reinforce the main body frame 10 and the suspension including the brake, thereby reducing the weight. Therefore, traditional mainframes can be used to reduce design and manufacturing costs. In addition, the vehicle body can be reduced in weight, and at the same time, an installation space for the motor 21 can be effectively secured. In addition, the driving efficiency and power generation efficiency of the motor 21 are higher than those of a motor having a higher rated power, thereby reducing fuel consumption. In addition, the motor 21 assists the engine from the lower speed range of the engine 2 0 (compared to 21 312 / Instruction Manual (Supplement) / 93-08 / 93113632 1242523 low speed range) and the medium speed range (medium speed range) 2 0 power. Therefore, even if the operation amount of the manual control knob of the throttle valve is small, high acceleration performance can be obtained, and the time interval to reach the target vehicle speed can be shortened. When the first control unit 7 controls the motor 21 so as to brake in a higher speed range larger than the first rotation speed N 1, power can be generated by the motor 21, that is, re-generation, which further reduces fuel consumption. The hybrid vehicle may be a three-wheeled vehicle or a four-wheeled vehicle, instead of a two-wheeled vehicle or a motorcycle as shown in FIG. 1. The first control unit 7 can calculate the deviation between the actual engine power and the maximum power of the engine 20 and control the power from the motor 21 so that the deviation becomes zero. In addition, the first control unit 7 may calculate the target power from the motor 21 by multiplying the engine power PE by a predetermined coefficient. At this time, the following two coefficients need to be stored in the ROM of the first control unit 7, namely, the coefficient that gradually increases when the engine speed is not greater than the first rotation speed N 1 and gradually decreases when the engine speed is greater than the first rotation speed N 1 Coefficient. Next, a second preferred embodiment is shown in FIG. 7. The power unit 11a in the second preferred embodiment includes an engine 20 as an internal combustion engine which obtains power by burning an air-fuel mixture. In addition, a motor 21, which is a power unit or a generator, is coaxially disposed on the crank shaft 22 of the engine 20, and a stepless automatic transmission system 23 (CV D) is connected to the crank shaft 22. The output from at least one of the engine 20 and the motor 21 is transmitted to the rear wheel W R through C V T 2 3. In addition, a battery 74 is connected to the motor 21. When the motor 21 is used as a power device, the battery 74 is used to supply electric power to the motor 21, or when the motor 21 is used as a generator, the battery 74 is used with regenerated power 22 312 / Invention Specification (Supplement) / 93-08 / 93113632 1242523. The engine 20 and the motor 21 are controlled by a second control unit 7a as a second control device. An air-fuel mixture consisting of air and fuel is sucked into the engine 20 through the intake pipe 16 and then burns in the engine 20. A throttle valve 17 is used to control the amount of air sucked into the engine 20, and the throttle valve 17 is rotatably provided in the intake pipe 16. The throttle valve 17 is rotated in accordance with an operation amount of a throttle manual control knob (not shown) operated by an operator. A fuel injector 18 and a vacuum sensor 19 which detects the degree of vacuum in the intake pipe 16 are provided between the throttle 17 and the engine 20. When the operation amount of the throttle manual control knob is large, the opening angle of the throttle valve 17 is also large, so that the amount of air entering through the intake pipe 16 is large, and at the same time, it is detected by the vacuum sensor 19 The resulting intake vacuum is then smaller. Therefore, the amount of air and fuel drawn into the engine 20 is large. On the contrary, when the operation amount of the throttle valve manual control knob is small, the opening angle of the throttle valve 17 is also small, so that the amount of air entering through the intake pipe 16 is small, and the vacuum sensor 19 The detected intake vacuum is then greater. Therefore, the amount of air and fuel drawn into the engine 20 is small. The stator housing 49 is provided with a rotor sensor 57 for detecting the rotation speed of the rotor 52. Since the rotor 5 2 rotates with the crank shaft 22, the rotor sensor 57 can be used to detect the engine speed N e. The second control unit 7a for centrally controlling the engine 20 and the motor 21 is a second control device having a CPU (Central Processing Unit), ROM (Read Only Memory) and RAM (Random Access Memory). The second control unit 7 a inputs detection signals from a throttle opening sensor (not shown) that detects an opening angle of the throttle valve 17, a vacuum sensor 19, and a rotor sensor 57, and 23 312 / Invention Manual (Supplement) / 93-08 / 93113632 1242523 Outputs the predetermined control signal to the drive circuit of the motor 21 and the ignition device 73, where the ignition device 73 is used to operate the spark plug on the engine 20 2 9. The second control unit 7a includes a device for calculating a load on the engine 20 based on an intake vacuum degree of the engine 20, a device for calculating an engine speed Ne based on a detection signal from the rotor sensor 57, and an engine A device for multiplying the speed Ne by a predetermined coefficient to calculate the braking horsepower PS, a device for determining whether the above-mentioned load on the engine 20 falls within the second load area SLA as described in detail later, and according to the determination result by the above-mentioned determining device A device that switches the operation mode of the motor 21 to a power plant mode or a generator mode. In the operation of the hybrid vehicle having the above structure in the second preferred embodiment, the motor 21 is used to rotate the crank shaft 22 when the engine 20 is started. By rotating the crankshaft 22, the piston 25 is slidably moved in the cylinder 27, and at the same time, by the rotation of the crankshaft 22, the camshaft 30 is rotated by the timing chain 33. By rotating the camshaft 30, the intake and exhaust valves are opened and closed at a predetermined time. When the operator operates the throttle valve manual control knob to open the throttle valve 17 in the intake pipe 16, the air according to the opening angle of the throttle valve 17 is sucked into the combustion chamber of the engine 20 Within 2 0 a. At this time, the second control unit 7a calculates the fuel injection amount by multiplying the intake amount by a predetermined air-fuel ratio to inject this calculated amount of fuel from the injector 18. Therefore, the air to be sucked is mixed with the fuel to obtain an air-fuel mixture. The air-fuel mixture drawn into the combustion chamber 20a is compressed by the piston 25 and then ignited by a spark plug 29. By the combustion of the air-fuel mixture, the piston 25 returns toward the crank shaft 22, thereby rotating the crank shaft 22. As a result, braking horsepower PS is generated at the crankshaft 22. The braking horsepower PS is approximately proportional to the volume of the air-fuel mixture, that is, the fuel consumption FC, which is drawn into 24 312 / Invention Specification (Supplement) / 93-08 / 93113632 1242523 into the combustion chamber 20a. After C V T 2 3 and the reduction gear train 6 9, the rotation of the crank shaft 2 2 is transmitted to the 6 8 shaft, thereby rotating the rear wheel W R. When the exhaust valve is opened, the burned air-fuel mixture is discharged as exhaust gas from the combustion chamber 20a. When the engine 20 is a higher working speed type and the intake and exhaust valves are operated by a variable valve timing system, a situation occurs in which both the intake and exhaust valves are open, that is, overlapping. If the overlap is large, the exhaust after combustion may return to the intake pipe 16 or may stay in the cylinder 27, in which case, the intake in the next intake stroke The volume of the air-fuel mixture into the combustion chamber 20a decreases, so that the braking horsepower PS decreases. Therefore, the increased amount of air-fuel mixture (fuel) must be drawn in to obtain the required braking horsepower PS, so that the proportional relationship between the braking horsepower PS and the fuel consumption FC cannot be maintained. 8, the relationship between the braking horsepower PS and the fuel consumption FC, and the relationship between the braking horsepower PS and the average effective pressure MEP will be described. In Fig. 8, the horizontal axis represents the braking horsepower PS (kW) or an average braking effective pressure BM E P (k P a) which is substantially proportional thereto. The vertical axis represents the average effective pressure M E P (k P a) and the fuel consumption F C (g / h). The line L MP represents the average effective pressure M EP. As shown by the line L MP, this average effective pressure MEP decreases as the braking horsepower PS increases. The average effective pressure M EP is composed of a pump loss PM EP and a mechanical loss PM EP, where the pump loss PM EP is generated by restricting the air flow drawn into the engine 20 through a throttle valve 17 and the mechanical loss FMEP It is formed by the traction resistance of the crank shaft 22. Machine 25 3 12 / Invention Specification (Supplement) / 93-08 / 93113632 1242523 The mechanical loss FMEP is basically constant, and has nothing to do with the braking horsepower PS. The loss P M E P decreases as the braking horse power PS increases. In contrast, the fuel consumption FC increases as the braking horsepower PS increases. As shown by the dotted line L F C i, initially, the fuel consumption F C needs to be increased at a rate with the brake horsepower PS boost port. However, the linear LFCr fuel consumption F C actually has the characteristics that it is approximately proportional to the braking horsepower PS in the middle negative and large load area, and in the load area, the fuel consumption FC becomes larger than the original fuel consumption. In the description, the first load area F L A is determined by the braking horsepower PS greater than or equal to (such as 0.  8 k W to 0.  9 k W), the load area is limited, and the specific consumption (that is, the change with the braking horsepower PS in the fuel consumption FC) is constant, so that the load on the engine 20 and the fuel consumption FC have a large relationship. Conversely, the second load area SLA is defined by a predetermined amount of load area of the brake horsepower PS, and at the same time the specific fuel consumption increases with the horsepower PS boost port, so that the load at the engine 20 is not proportional to the fuel FC. The second load area SLA corresponds to a state in which the throttle valve 17 is set to a degree f close to the fully opened throttle opening angle, and this area is where the exhaust gas remains in the air during the next intake stroke The area, therefore, the amount of fresh air-fuel to be drawn into the cylinder 27 is reduced. In the second load area SLA, a fuel consumption FC (see line to increase fuel consumption) is required more than in the case of the linear line LFC i). In order to cope with this situation, the second control unit 7 a controls the operation λ 312 / Invention Specification (Supplement) / 93-08 / 931] 3632, but the pump is shown in increasing constant speed, the load area is low and negative, and the predetermined amount of fuel consumption described below is roughly caused to be positive less than the brake material > Xiao Consumption speed, dry 1 angle cylinder 27 mixture (see LFCr), t 1 26 1242523 in the load area FLA instead of the engine 20 and the motor 2 1 in the second load area SLA. That is, when the braking horsepower PS drops When entering the second load area SLA, the second control unit 7 a outputs a control signal to the driving circuit of the motor 21 to switch the operation mode of the motor 21 to the generator mode. When the motor 21 starts to generate electric energy, At the load increase π of the engine 20 to fall into the first load area FLA. At this time, the fuel consumption FC temporarily increases the power σ. However, the electric energy generated by the motor 21 stored in the battery 74 is used later For operation as a power unit The motor 21 assists the rotation of the engine 20. As a result, the fuel consumption FC is completely reduced. This effect is described in more detail with reference to the second specific example shown in FIG. 9. FIG. 9 shows the engine speed N e setting The fuel consumption FC is 30 ◦ 0 rpm, and the air-fuel ratio is set to 1 4.  7, while the hybrid vehicle operates at 20 km / h for 1 hour, and then operates at 50 km / h for 1 hour. In FIG. 9, the horizontal axis represents the braking horsepower PS (k W) or the average effective braking pressure BM E P (k P a), and the vertical axis represents the fuel consumption F C (g / h). In the case of the current technology, as shown by point A1, that is, the hybrid vehicle is operating at 20 km / h without changing the load of the engine 20, the braking horsepower PS is about 0.  3 k W, and the fuel consumption FC is 24 5 g / h. As shown when A 2, operating at 50 k in / h in a hybrid vehicle, the braking horsepower PS is approximately 1.  2 k W, and the fuel consumption F C is 4 2 0 g / h. As a result, the total fuel consumption in the current technology is 665 g / h. In contrast, the second control unit 7a in the second preferred embodiment operates the motor 21 as a generator, thereby increasing the load on the engine 20. For example, when the motor 21 is used as a generator while the vehicle speed is maintained at 20 km / h, 27 312 / Invention Specification (Supplement) / 93-08 / 93 Π 3632 1242523 Load booster on the engine 20 Corresponds to the braking horsepower PS is 0.  5 k W. This increase in load corresponds to a change in points A 1 to A 3 along the line L F C r. At point A 3, the fuel consumption F C is 3 2 0 g / h. In this way, when the hybrid vehicle is traveling at 20 km / h, when the motor 21 is used as a generator, the fuel consumption F C power boost is 75 g / h. Assume that the power generation efficiency of the motor 21 is 0.  8 1, the electric energy generated by the motor 2 1 stored in the battery 7 4 becomes 0.  4 k W ° 0 0 stored in battery 7 4 when driving at 50 km / h.  4 kW of electrical energy is used to rotate the motor 21 to assist the engine 20. The driving efficiency at motor 2 1 is 0.  8 1 by providing 0.  4 k W of electricity, 0 by the motor 2 1.  3 2 k W output. That is, when the braking horsepower P S is maintained at the point A2, the load on the engine 20 is reduced from the braking horsepower P S at 50 km / h by 0.  3 2 k W, the 0.  3 2 k W is generated by the assistance of the motor 2 1. Therefore, it is necessary to obtain a load on the engine 20 of 50 km / h which can be reduced to a load corresponding to the braking horsepower PS at the point A4. As a result, the fuel consumption FC was reduced to 3 3 2 g / h. Thus, when the hybrid vehicle maintains a driving speed of 50 km / h, the fuel consumption FC of the engine 20 is reduced by 88 g / h with the assistance of the motor 21. As a result, in a case where the load on the engine 20 is increased by generating electricity from the motor 21, the entire fuel consumption F C becomes 6 5 2 g / h. Does this fuel consumption F C correspond to conventional fuel consumption without increasing the load by generating electricity? (: (= 6 65 g / h) is about 98%. In this way, the fuel consumption FC can be improved by about 2% compared to the prior art. It should be noted that the above specific values are only schematic and can be based on the type of vehicle and driving As described above, the hybrid vehicle has a first load area FLA and a second 28 312 / Invention Specification (Supplement) / 93-08 / 93113632 1242523 load area SLA, where the fuel consumption FC in the first area is approximately It is proportional to the braking horsepower PS and the load on the engine 20, and in the second region, this proportional relationship is not satisfied, and the required fuel consumption FC increases. In this hybrid vehicle, when the braking horsepower PS falls into the In the second load area SLA, the second control unit 7 a operates the motor 2 1 as a generator, thereby increasing the load on the engine 20. Therefore, the engine 20 and the motor 2 1 in the first load area FLA are maintained in white. Scoop load area. According to the braking horsepower PS, the second control unit 7a switches the operation mode of the motor 21 to change the load on the engine 20, so that the operation of the engine 20 on the second load area SLA can be avoided. During the power generation process by the motor 21, the fuel consumption FC temporarily increases σ. However, by using the electric energy generated by the power generation to assist the engine 20, the overall fuel consumption FC can be reduced. As a result, the entire load The fuel consumption FC in the region can be suppressed. In addition, when the second load region SLA is set to a load region where the engine 20 rotates at a higher speed at a lower load, the driving feeling is improved. The control described below is controlled by the engine An example of the process of loading on 20. By subtracting the power distribution of motor 21 from the braking horsepower PS, the second control unit 7a in the second preferred embodiment calculates the load on engine 20 and determines Whether the load calculated above falls in the first load area FLA or the second load area SLA. When the load in the engine 20 falls in the first load area FLA, the engine 20 is operated without change while operating as The motor 21 of the power unit assists the engine 20. The output of the motor 21 of the auxiliary engine 20 is set to be less than or equal to the braking horsepower PS and required in the second load area SLA. The difference between the maximum horsepower PS maximum value. The reason for setting 29 312 / Invention Manual (Supplement) / 93-08 / 93113632 1242523 is to prevent the engine 2 0 from falling to the second by the assistance of the motor 21 In the load area SLA. Conversely, when the engine 20 is loaded into the second load area SL A, the motor 21 is triggered. The negative value on the engine 20, which is increased by generating power from the motor 21, becomes such a value. By this value, the combined engine load falls within the FLA of the first region, that is, the value is greater than or equal to the minimum value of the braking horsepower PS corresponding to the load on the engine 20 and the braking horsepower PS corresponding to the first load region. The difference between. The hybrid vehicle may be a three-wheel or four-wheel vehicle including a higher operating speed type engine. In particular, the hybrid vehicle is suitable for ATV (All Terrain Vehicle), Snowmobile and PWC (Personal Water Boat). (Effects of the Invention) According to the first scope of the patent application, the motor assists the engine so that the power of the assisted engine does not exceed the maximum power of the engine. Therefore, a motor with a lower rated power can be used. As a result, the mounting space of the motor can be effectively secured when the vehicle body can be reduced in weight. In addition, the efficiency of motor drive and power generation can be improved, thereby reducing fuel consumption. According to item 2 of the scope of the patent application, when the engine speed is less than or equal to the speed, the motor power increases by Γ7 as the engine speed increases. The acceleration performance can be improved from the low engine speed and intermediate engine speed, and the response characteristics are improved. Conversely, when the engine speed exceeds the first speed, the power decreases as the engine speed increases, thereby avoiding additional production. In addition, the body of the vehicle can be reduced in weight, and the riding space is effectively guaranteed. 312 / Invention Manual (Supplement) / 93-08 / 93113632 The negative motor load on the load sets a sports car in FLA 20 before the load power generation, so that the auxiliary is smaller, the co-movement efficiency is higher than the first, Therefore, the horse-assisted Lida An 30 1242523 is controlled by the first control device to make the synthetic power larger, which is within the engine power limit but not power. Therefore, a motor with a lower rated power can be used. The body of the vehicle can be reduced in weight, and the installation space of the motor is also guaranteed. According to item 4 of the scope of the patent application, when the engine is loaded into the second load region during operation, the load on the engine is increased by one to operate the engine in the load region. Although the fuel consumption is temporarily increased to avoid the increase in fuel consumption in the second load region, the use of electric energy generated from the motor to assist the engine can reduce the fuel consumption in the load region. As a result, the entire fuel consumption can be reduced in the second load region according to item 5 of the patent application scope. As a result, the overall fuel consumption is reduced, while improving performance. [Brief description of the drawings] FIG. 1 is a side view of a hybrid vehicle according to a preferred embodiment of the present invention, and FIG. 2 is a horizontal sectional view of a hybrid vehicle or a second power unit in the first or second preferred embodiment. 3 is a square diagram of a hybrid vehicle in the first preferred embodiment; FIG. 4 is a curve related to engine speed and braking torque in the first preferred embodiment; and FIG. 5 is a graph in the first preferred embodiment. Curves with lower rated power drive efficiency and power generation efficiency; 312 / Invention Specification (Supplement) / 93-08 / 93113632 Motor, from exceeding the maximum result, the car gets the payload area to pass in the first but avoidable time The profit is low in the first negative. The first block diagram of a partially penetrated vehicle without a sense of operation on the pilot, 31 1242523 for a motor with brake horsepower Figure 6 is a curve of the driving efficiency and power generation efficiency of a motor with a higher rated power in the first preferred embodiment Figure 7 is a block diagram showing the outline of a hybrid vehicle in a second preferred embodiment; Figure 8 is a relationship between the braking horsepower or the average effective braking pressure and the average effective pressure or fuel consumption in the second preferred embodiment FIG. 9 is a graph showing the relationship between fuel consumption and braking horsepower or average braking effective pressure, the graph showing the reduction in fuel consumption in the preferred embodiment. (Description of component symbols) 1 front fork 2 head tube 3 steering handle 4 lower tube 5 middle frame 6 rear frame 7 first control unit 7 a second control unit 8 throttle opening angle sensor 9 vehicle speed sensor 10 main body Frame 1 1 Power unit 11a Power unit 12 Rear shock absorber 32 312 / Instruction manual (Supplement) / 93-08 / 93113632 1242523 13 Body cover 14 Seat cushion 15 Pedal 16 Intake pipe 17 Throttle valve 18 Ejector 19 Vacuum Sensor 2 0 Engine 2 0a Combustion chamber 2 1 Motor 2 2 Crankshaft 23 Continuously Variable Transmission (CVT) 2 4 Connecting rod 2 5 Piston 2 6 Cylinder block 27 Cylinder 28 Cylinder head 29 Mars plug 3 0 Camshaft 3 1 driven sprocket 3 2 driven sprocket 3 3 endless cam ring chain 34 water pump 3 5 rotating shaft 33

312/發明說明書(補件)/93-08/93113632 1242523 3 6 轉 子 37 磁 鐵 38 外 殼 39 磁 鐵 40 葉 輪 4 1 壓 力 室 42 入 口 43 出 π 45 密 封 件 4 6 蠟 47 彈 簧 48 曲 柄 軸 相 49 定 子 殼 體 50 齒 5 1 線 圈 52 轉 子 53 磁 鐵 54 風 扇 55 罩 55a 側 面 56 端 子 57 轉 子 感 測 器 58 主 動 皮 帶 輪 58a 固 定 半 皮 帶輪 312/發明說明書(補件)/93-08/93113632312 / Instruction of the Invention (Supplement) / 93-08 / 93113632 1242523 3 6 Rotor 37 Magnet 38 Housing 39 Magnet 40 Impeller 4 1 Pressure chamber 42 Inlet 43 Out π 45 Seal 4 6 Wax 47 Spring 48 Crankshaft phase 49 Stator housing Body 50 Tooth 5 1 Coil 52 Rotor 53 Magnet 54 Fan 55 Cover 55a Side 56 Terminal 57 Rotor Sensor 58 Driving Pulley 58a Fixed Half Pulley 312 / Invention Manual (Supplement) / 93-08 / 93113632

34 1242523 58b 離 心 機 構 58c 可 動 半 皮 帶 輪 59 變 速 々/Γ 相 60 從 動 軸 6 1 離 心 式 離 合 器 62 從 動 皮 帶 輪 62a 固 定 半 皮 帶 輪 62b 可 動 半 皮 帶 輪 63 無 端 V 型 皮 帶 64 彈 簧 66 腳 踏 板 軸 67 腳 踏 啟 動 器 68 軸 69 減 速 齒 輪 糸 70 齒 輪 箱 7 1 齒 輪 72 齒 輪 73 點 火 裝 置 7 4 畜 電 池 75 外 部 充 電 器 FC 燃 料 消 耗 N e 引 擎 速 度 N1 第 一 轉 速 PC 合 成 動 力 312/發明說明書(補件)/93-08/931 ] 363234 1242523 58b Centrifugal mechanism 58c Movable half pulley 59 Variable speed Γ / Γ phase 60 Driven shaft 6 1 Centrifugal clutch 62 Driven pulley 62a Fixed half pulley 62b Movable half pulley 63 Endless V-belt 64 Spring 66 Pedal shaft 67 Feet Pedal Starter 68 Shaft 69 Reduction Gear 70 Gear Box 7 1 Gear 72 Gear 73 Ignition Device 7 4 Animal Battery 75 External Charger FC Fuel Consumption N e Engine Speed N1 First Speed PC Synthetic Power 312 / Invention Manual (Supplement) / 93-08 / 931] 3632

35 1242523 PE 引擎動力 PEm 最大動力 PLA 第一負載區域 PM 馬達動力 SLA 第二負載區域 WF 前輪 WR 後輪35 1242523 PE engine power PEm maximum power PLA first load area PM motor power SLA second load area WF front wheel WR rear wheel

312/發明說明書(補件)/93-08/93113632 36312 / Invention Specification (Supplement) / 93-08 / 93113632 36

Claims (1)

1242523 拾、申請專利範圍 1 . 一種混合動力車輛 自馬達的馬達動力結合傳 有根據該引擎的引擎速度 置; 其中該第一控制裝置控 力和該馬達動力之和的合 動力。 2 . —種混合動力車輛, 馬達的馬達動力結合傳遞 根據所述引擎的引擎速度 裝置; 其中該第一控制裝置控 增力σ而增加該馬達動力, 並且在該引擎速度超過該 力口而降低該馬達動力。 3 .如申請專利範圍第2 控制裝置控制該馬達,從 力之和的合成動力小於或 該引擎速度超過該第一轉 4 . 一種混合動力車輛, 馬達的馬達動力結合傳遞 控制該引擎和該馬達動力 其中該引擎具有第一負 ,能將來自引擎的引擎動力和來 遞到驅動輪,該混合動力車輛具 來控制該馬達動力的第一控制裝 制該馬達,從而使作為該引擎動 成動力小於或等於該引擎的最大 能將來自引擎的引擎動力和來自 到驅動輪,該混合動力車輛具有 來控制所述馬達動力的第一控制 制該馬達,從而隨著該引擎速度 直到該引擎速度達到第一轉速; 第一轉速後,隨著該引擎速度增 項之混合動力車輛,其中該第一 而使作為該引擎動力和該馬達動 等於該引擎的最大動力,並且在 速後,接近該最大動力。 能將來自引擎的引擎動力和來自 到驅動輪,該混合動力車輛具有 的第二控制裝置; 載區域和第二負載區域,在第一 37 3 12/發明說明書(補件)/93-08/93113632 1242523 負載區域,燃料消耗大致與在該引擎上負載成正比變化, 而在第二負載區域,隨著負載的減少而在燃料消耗上的減 小小於在該第一負載區域的情況;以及 當在該引擎上的負載落入到第二負載區域時,該第二控 制裝置將所述馬達作為發電機操作,而當在該引擎上的負 載落入到該第一負載區域時,該第二控制裝置將所述馬達 作為動力裝置操作。 5 .如申請專利範圍第4項之混合動力車輛,其中該第二 負載區域包括該引擎在較低負載下以較高速度操作的負載 區域。 38 312/發明說明書(補件)/93-08/931136321242523 Patent application scope 1. A hybrid vehicle self-motor combined with the motor power of the engine is set according to the engine speed of the engine; wherein the first control device controls the combined power of the sum of the power of the motor. 2. A hybrid vehicle, wherein the motor power of the motor is combined with the transmission of the engine speed according to the engine; wherein the first control device controls the increase force σ to increase the motor power, and decreases when the engine speed exceeds the force port The motor is powered. 3. If the second control device of the scope of the patent application controls the motor, the combined power from the sum of the forces is less than or the engine speed exceeds the first revolution 4. A hybrid vehicle, the motor power of the motor is combined to control the engine and the motor The engine has a first negative force, and the engine power from the engine can be transferred to the driving wheels. The first control of the hybrid vehicle to control the motor power is to install the motor, so that the engine becomes motive power. Less than or equal to the maximum of the engine, the engine power from the engine and the drive wheels can be obtained, the hybrid vehicle has a first control system to control the motor power, so as to follow the engine speed until the engine speed reaches First speed; after the first speed, a hybrid vehicle with an increase in the engine speed, wherein the first makes the engine power and the motor power equal to the maximum power of the engine, and after the speed, approaches the maximum power power. The second control device that the hybrid vehicle has, including the engine power from the engine and the drive wheels, is included in the first 37 3 12 / Invention Specification (Supplement) / 93-08 / 93113632 1242523 in the load area, the fuel consumption changes approximately proportionally to the load on the engine, while in the second load area, the decrease in fuel consumption with the load decreases is less than in the first load area; and when When the load on the engine falls into the second load area, the second control device operates the motor as a generator, and when the load on the engine falls into the first load area, the second The control device operates the motor as a power device. 5. The hybrid vehicle according to item 4 of the patent application, wherein the second load area includes a load area where the engine operates at a higher speed at a lower load. 38 312 / Invention Specification (Supplement) / 93-08 / 93113632
TW093113632A 2003-06-13 2004-05-14 Hybrid vehicle TWI242523B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003169898A JP4094492B2 (en) 2003-06-13 2003-06-13 Hybrid vehicle
JP2003169899A JP3929938B2 (en) 2003-06-13 2003-06-13 Hybrid vehicle

Publications (2)

Publication Number Publication Date
TW200427608A TW200427608A (en) 2004-12-16
TWI242523B true TWI242523B (en) 2005-11-01

Family

ID=34525349

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093113632A TWI242523B (en) 2003-06-13 2004-05-14 Hybrid vehicle

Country Status (3)

Country Link
CN (1) CN1270915C (en)
MY (1) MY135692A (en)
TW (1) TWI242523B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8454470B2 (en) 2008-11-28 2013-06-04 Shen Yang Technologies Enterprise Co., Ltd. Power generating apparatus and method for assisting engine
TWI406782B (en) * 2006-04-26 2013-09-01 Vectrix Internat Ltd Vehicle with lockable tilt system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4215043B2 (en) * 2005-11-17 2009-01-28 トヨタ自動車株式会社 POWER OUTPUT DEVICE, VEHICLE MOUNTING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
CN103287426B (en) * 2010-12-29 2015-12-02 浙江钱江摩托股份有限公司 A kind of control setup of parallel mild hybrid power motorcycle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406782B (en) * 2006-04-26 2013-09-01 Vectrix Internat Ltd Vehicle with lockable tilt system
US8454470B2 (en) 2008-11-28 2013-06-04 Shen Yang Technologies Enterprise Co., Ltd. Power generating apparatus and method for assisting engine

Also Published As

Publication number Publication date
TW200427608A (en) 2004-12-16
MY135692A (en) 2008-06-30
CN1270915C (en) 2006-08-23
CN1572565A (en) 2005-02-02

Similar Documents

Publication Publication Date Title
US7145261B2 (en) Electric generator control method and apparatus, and vehicle equipped with such apparatus
US7110877B2 (en) Automatic engine shutdown apparatus
US7392870B2 (en) Power module driving control apparatus and hybrid vehicle
US7303504B2 (en) Power switchover apparatus for a hybrid vehicle
TWI288216B (en) Control apparatus for continuously variable transmission mechanism
US7520351B2 (en) Power control unit
KR100584227B1 (en) Hybrid vehicle
US7527111B2 (en) Driving device for hybrid vehicle, and hybrid vehicle incorporating the same
CA2508971C (en) Shift control apparatus for continuously variable transmission
US7475746B2 (en) Vehicular performance control system and method, and vehicle incorporating same
US20060289214A1 (en) Driving device for a hybrid vehicle, and a hybrid vehicle having the same
TW200523167A (en) Power unit structure for hybrid vehicle
JP6802378B2 (en) Vehicle
WO2019087450A1 (en) Saddle riding type vehicle
TWI242523B (en) Hybrid vehicle
JP2005104246A (en) Power unit structure for hybrid vehicle
JP4094492B2 (en) Hybrid vehicle
JP3929938B2 (en) Hybrid vehicle
JP3967309B2 (en) Power unit in a hybrid vehicle
JP2005104248A (en) Power unit in hybrid vehicle

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees