1240368 12584twf.doc/006 玖、發明說明: 【發明所屬之技術領域】 本發明是有關於一種線路載板製程,且特別是有關 於一種線路載板製程,其應用由導電材質所製成之支撐基 板(support substrate)作爲製程初始層,並利用支撐基板 來製作出許多導電接點。 【先前技術】 覆晶連線技術(Flip Chip Interconnect Technology, 簡稱FC)是一種將晶片(die)電性連接至承載器(carder) 的封裝方法。覆晶連線技術(FC)主要是利用面陣列(area array)的方式,將多個晶片墊(die pad)配置於晶片之主 動表面(active surface )上,並在晶片墊上形成凸塊 (bump),接著將晶片翻覆(flip)之後,再利用這些凸塊 來分別電性及結構性連接晶片之晶片墊至承載器上的凸塊 墊(bump pad ),使得晶片可經由這些凸塊而電性連接至 承載器,並經由承載器之內部線路而電性連接至外界之電 子裝置。値得注意的是,由於覆晶連線技術(FC)可適用 於高腳數(High P,in Count)之晶片封裝體,並同時具有 縮小晶片封裝面積及縮短訊號傳輸路徑等諸多優點’彳吏胃 覆晶連線技術目前已廣泛地應用於晶片封裝領域’胃I0、 用覆晶接合技術之晶片封裝結構例如有覆晶球格陣 (Flip Chip / Ball Grid、Array,FC/BGA)及覆晶針格陣列 型(Flip Chip / Pin Grid Array,FC/PGA)等型態之晶片 封裝結構。 1240368 12584twf.doc/006 請參考第1圖,其繪示習知之~種覆晶球格陣列型 之電子封裝體的剖面示意圖。電子封裝體100包括線路載 板(circuit carrier) 110、多個凸塊120、晶片130及多個 銲球140。線路載板110具有一頂面112及對應之一底面 114,且線路載板110更具有多個凸塊墊(bump pad) 116a 及多個銲球墊(ball pad) 116b。此外,晶片130具有一主 動表面(active surface) 132及對應之一背面134,其中晶 片130之主動表面132係泛指晶片130之具有主動元件 (active device)(未繪示)的一面,並且晶片130更具有 多個晶片墊136,其配置於晶片130之主動表面132,用 以作爲晶片130之訊號輸出入的媒介,而這些凸塊墊116a 之位置係分別對應於這些晶片墊136之位置。另外,這些 凸塊120則分別電性及結構性連接這些晶片墊136之一至 其所對應之這些凸塊墊116a之一。並且,這些銲球140 則分別配置於這些銲球墊U6b上,用以電性及結構性地 連接至外界之電子裝置。 請同樣參考第1圖’習知之電子封裝製程乃是在完 成線路載板110之內部線路及接點116a、116b之後,再 將晶片130組裝於線路載板110之表面上,接著將一底膠 (underfill)150塡充於線路載板110之頂面112及晶片130 之主動表面132所圍成的空間,用以保護這些凸塊墊116a、 這些晶片墊136及這些凸塊120,並同時緩衝線路載板110 與晶片130在受熱時,線路載板11〇與晶片130之間所產 生熱應變(thermal strain)之不匹配的現象。因此,晶片 130之晶片墊136將可經由凸塊120而電性及結構性連接 1240368 12584twf.doc/006 至線路載板110之凸塊墊116a,再經由線路載板110之內 部線路而向下繞線(routing)至線路載板11〇之底面114 的銲球墊116b,最後經由銲球墊116b上之銲球140而電 性及結構性連接至外界之電子裝置。 就高密度線路佈線之線路載板的製程而言,習知技 術通常是利用增層法(build-up process)在一介電芯層 (dielectric core)之兩面分別形成一單一線路層,或是依 序形成多重線路層,並且利用鍍通孔道(Plated Through Hole,PTH)來電性連接兩個分別位於介電芯層之兩面的 線路層。然而,由於使用厚度較薄之介電芯層的線路載板 很容易受熱而發生翹曲(warp)的現象,所以線路載板之 介電芯層必須具有足夠的厚度,如此才能相對提供足夠的 結構強度,但這也導致介電芯層之厚度無法進一步地降 低。 除此之外,爲了在介電芯層上製作鍍通孔道(PTH) ’ 習知通常是利用鑽孔(drilling)的方式,在介電芯層上形 成微細尺寸的貫孔,接著電鍍一金屬層於貫孔之內壁’用 以電性連接兩個分別位於介電芯層之兩面的線路層。然 而,由於習知之鍍通孔道(PTH)的製程通常是利用鑽孔 來形成微細尺寸的貫孔’如此將導致線路載板之整體製{乍 成本的提高。此外,由於習知之鍍通孔道(PTH)的製程 已經無法有效降低鍍通孔道(PTH)之外徑,但是具有較 大外徑之鍍通孔道(PTH)將在電性上產生負面的影響’ 使得習知之鍍通孔道(PTH)已儼然成爲目前高佈線密度 (high layout density)之線路載板的設計瓶頸。 1240368 12584twf.doc/006 【發明內容】 因此,本發明之目的就是在提供一種線路載板製程, 用以製作出一具有高佈線密度的線路載板’並可有效地降 低線路載板之製作成本。 爲了達到本發明之目的,本發明提出一種線路載板 製程,包括:提供一支撐基板,其係由導電材質所製成, 而支撐基板係劃分爲一第一結構層及相互重疊之一第二結 構層;圖案化第一結構層,以形成一第一導電圖案,其具 有多個以陣列方式排列之第一導電接點;形成一絕緣圖案 於第二結構層及第一導電圖案之間所圍成的空間;形成一 多層內連線結構於絕緣圖案及第一導電圖案上,而多層內 連線結構具有一高密度內部線路,其連接於這些第一導電 接點,且內部線路具有多個接合墊,其位於多層內連線結 構之較遠離第一導電圖案的表面;最後移除至少局部之該 第二結構層。 由於本發明之線路載板製程乃是在一具有導電性、 高硬質性(high stiffness)、低熱膨脹係數(low CTE)及 高熱導性(high thermal conductivity)之支撐基板上製作 一具有高密度線路之多層內連線結構,接著移除局部之支 撐基板,而直接利用剩餘之支撐基板來形成多個導電接點 於線路載板之底部,而成爲一具有高密度線路但無介電芯 層之線路載板。此外,、本發明無須鍍通孔道、電鍍線及銲 罩層之製作,故可有效地降低線路載板之製作成本。 爲讓本發明之上述和其他目的、特徵和優點能更明 1240368 125 84twf. doc/006 顯易懂,下文特舉一較佳實施例’並配合所附圖式,作詳 細說明如下。 【實施方式】 請參照第2A〜2E圖’其依序繪示依照本發明一較佳 實施例之線路載板製程的剖面示意圖。 如第2A圖所示,提供一支撐基板202,其本身具有 可導電性、高硬質性(hiSh stiffness)、低熱膨脹係數(low CTE)及高熱導性(high thermal conductivity)等特性, 因此,支撐基板202之材質例如爲鐵、鈷、鎳、銅、鋁、 鈦、鎢、锆、鉻及該等之合金等,並且支撐基板202之表 面必須具有較高等級的平坦度(co-planarity),以利於後 續製程在支撐基板202之表面上製作微細線路之多層內連 線結構(如第2D圖之標號214)。此外,爲了有助於淸楚 地說明本實施例,支撐基板202可劃分爲一第一結構層204 及相互重疊之一第二結構層206。 如第2B圖所示,例如以微影(photolithography)等 方式’圖案化支撐基板202之第一結構層204 (見於第2A 圖)’以开>成一第一導電圖案(conductive pattern ) 208, 其中第一導電圖案208係可構成多個第一導電接點21〇, 其例如以陣列方式排列。 如第2C圖所示,例如以印刷(print)等方式,將絕 緣材料塡入第二結構層206及第一導電圖案208之間,因 而开/成絕緣圖案(dielectric pattern ) 212。在本實施例 中’可將絕緣材料塡入第二結構層206及第一導電圖案208 1240368 12584twf.doc/006 之間所圍成的空間,以形成一絕緣圖案212,其係爲第一 導電圖案208之負片圖案,並與第一導電圖案208相互嵌 合’其中絕緣材料係可採用具有高玻璃轉換溫度(Tg)及 低熱膨脹係數(CTE)等之材料,例如環氧樹脂(epoxy resin)、聚醯胺樹脂(PI resin)、BT樹脂、苯(並)環丁 烯(BenzoCycloButene , BCB )、聚矽酸鹽 (poly(silSequioxane))、聚對二甲苯基(parylene )、聚芳 魅(poly(aryl ether)s)、聚降冰片稀(p〇iy(norb〇rnene))、 聚苯基Qt喔晰(p〇iy(phenyl qUinoxaiine)s)。 如第2D圖所示,例如以增層法(build-up process), 形成一多層內連線結構214於第一導電圖案208及絕緣圖 案212上。多層內連線結構214包括圖案化之多個導線層 214a、至少一介電層214b及多個導電盲孔214c,其中這 些導線層214a係依序重疊於第一導電圖案208及絕緣圖 案212之上,而每一介電層214b則配置於兩相鄰之導線 層214a之間,且這些導電盲孔214c係分別貫穿這些介電 層214b之一,而電性連接至少二導線層214a,且這些導 線層214a及這些導電盲孔214c係共同構成一內部線路, 其係形成多個接合墊216於多層內連線結構214之表面, 其中這些接合墊216係可由導線層214a所形成,或是由 導電盲孔214c所形成,而第2D圖之接合墊216係以後者 作爲代表,即以導電盲孔214c來作爲接合墊216。此外, 導線層214a之材質例如爲銅、鋁及該等之合金,而介電 層214b之材質係可爲氮化砂(silicon nitride)及氧化石夕 (silicon oxide)等,或是具有高玻璃轉換溫度(Tg)及 1240368 12584twf.doc/006 低熱膨脹係數(low CTE)的材料,例如環氧樹脂、聚醯 胺樹脂(PI resin )、BT樹脂、苯(並)環丁烯 (BenzoCycloButene , BCB ) 聚石夕酸鹽 (poly(silSeqUi〇xane))、聚對二甲苯基(parylene)、聚芳 魅(poly(aryl ether)s)、聚降冰片稀(p〇iy(n〇rb〇rnene))、 聚苯基丨逢喔啦(p〇ly(phenyl quin〇xaHne)s)。 如第2D圖所示,例如以硏磨(p〇lish )或蝕刻 (etching)等方式,移除第二結構層2〇6,因而暴露出這 些第一導電接點210,而完成線路載板2〇〇之製作。 請參考第3圖,其繪示第2E圖之線路載板應用於接 合一晶片的剖面示意圖。在本實施例中,晶片302係經由 覆晶接合(flip chip bonding)的方式,即經由多個導電凸 塊304而連接至線路載板200之這些接合塾216,並塡入 一底膠306至線路載板200及晶片302之間,而成爲一晶 片封裝體。値得注意的是,晶片302除了經由覆晶接合方 式電性連接至線路載板200以外,亦可經由打線接合(wire bonding)的方式電性連接至線路載板200,但後者並未繪 示於實施例之圖式。此外,爲了提高晶片封裝體之散熱效 能及增加其結構強度,更可額外地增加一支撐層(stiffner) 308於線路載板200上並環繞晶片302,並且將一散熱片 (heat spreader) 310貼附在晶片302及支撐層308上。 爲了便於1C晶片或其他電子元件以表面黏著技術 (Surface Mount Technology,SMT)之方式組裝至本實施 例之線路載板200,或是便於線路載板200以表面黏著技 術(SMT)之方式組裝至下一層級之線路載板(未繪示), 1240368 12584twf.doc/006 請參考第4A〜4C圖及下文,其中第4A〜4C圖依序繪示 本發明較佳實施例之線路載板,其接合墊及導電接點之表 面上額外形成金屬層的剖面示意圖。 如第4A圖所示,其係接續第2D圖,爲了提供後續 電鍍第一金屬層222之用,可移除局部之第二結構層206 (見於第2D圖),而形成一電鍍種子層218。値得注意的 是,此處亦可直接完全移除第二結構層206,接著再例如 以電鍍的方式,全面地形成一導電層於第一導電圖案208 及絕緣圖案212之表面來作爲上述之電鍍種子層218。 如第4B圖所示,形成一罩幕圖案402於電鍍種子層 上218,其暴露出這些第一導電接點210,並經由電鍍種 子層218分別在這些第一導電接點210之表面上電鍍形成 一第一金屬層222,其中第一金屬層222例如是一銲料層 (solder layer )或鎳金層(Ni/Au layer )。値得注意的是, 在本實施例中,於形成第一金屬層222的同時,亦可經由 電鍍種子層218及多層內連線結構214之電性相連的內部 線路,而分別在這些接合墊216之表面上電鍍形成第二金 屬層224,其中第二金屬層224亦例如是一銲料層或鎳金 層。 如第4C圖所示,在形成這些第一金屬層222及這些 第二金屬層224之後,移除罩幕圖案402及暴露出之電鍍 種子層218。 爲了讓第2E圖之第一導電接點210可以向下突出, 請參考第5A、5B圖,其繪示本發明較佳實施例之線路載 板,其導電接點製作成向下突出的剖面示意圖。 12 1240368 12584twf.doc/006 如第5A圖所示,接續第2D圖,形成一罩幕圖案226 於第二結構層206之較遠離多層內連線結構214的一面, 而罩幕圖案226具有多個罩幕層228,其中這些罩幕層228 之位置係分別對應於這些第一導電接點210之位置。 如第5B圖所示,例如以蝕刻的方式,移除第二結構 層206之未受到罩幕圖案226所覆蓋的部分,而形成一第 二導電圖案230,其具有多個第二導電接點232,而這些 第二導電接點232分別連接對應之第一導電接點210,使 得這些第一導電接點210可分別經由這些第二導電接點 232而結構性地向外延伸,並且這些第一導電接點210及 這些第二導電接點232更可分別構成一類似球狀之導電接 點,用以提供作爲連接下一層級之電子載板的接點。値得 注意的是,爲了在這些第二導電接點232之底部形成表面 保護層,可直接利用先前之罩幕層228 (即殘留之罩幕圖 案226)來作爲表面保護層,因而省略掉習知之許多道製 作表面保護層之步驟。1240368 12584twf.doc / 006 发明, Description of the invention: [Technical field to which the invention belongs] The present invention relates to a circuit carrier board process, and in particular to a circuit carrier board process, and its application is made of a conductive material for a support A support substrate is used as an initial layer in the manufacturing process, and a plurality of conductive contacts are fabricated using the support substrate. [Previous Technology] Flip Chip Interconnect Technology (FC for short) is a packaging method for electrically connecting a die to a carder. The flip-chip connection technology (FC) mainly uses an area array to arrange a plurality of die pads on an active surface of a wafer and form bumps on the wafer pad. ), And then flip the wafer, and then use these bumps to electrically and structurally connect the wafer pad of the wafer to the bump pad on the carrier, so that the wafer can be electrically charged through these bumps. It is electrically connected to the carrier, and is electrically connected to the external electronic device through the internal circuit of the carrier. It should be noted that because the flip-chip connection technology (FC) can be applied to high-pin (High P, in Count) chip packages, it also has many advantages such as reducing the chip packaging area and shortening the signal transmission path. Stomach flip chip connection technology has been widely used in the field of chip packaging. Stomach I0, chip packaging structures using flip chip bonding technology such as Flip Chip / Ball Grid, Array (FC / BGA) and Flip Chip / Pin Grid Array (FC / PGA) and other types of chip package structure. 1240368 12584twf.doc / 006 Please refer to FIG. 1, which is a schematic cross-sectional view of a conventional electronic package with a crystal ball grid array type. The electronic package 100 includes a circuit carrier 110, a plurality of bumps 120, a chip 130, and a plurality of solder balls 140. Carrier circuit board 110 having a top surface 112 and bottom surface 114 corresponding to one, and the line having a plurality of carrier plate 110 more bump pads (bump pad) 116a and a plurality of solder ball pads (ball pad) 116b. In addition, the chip 130 has an active surface 132 and a corresponding back surface 134, wherein the active surface 132 of the chip 130 refers to the side of the chip 130 with an active device (not shown), and the chip the wafer having a plurality of pads 130 more 136 disposed on active surface 130 of the wafer 132 to the wafer 130 as the output signal of the medium, and the position of these lines 116a bump pads 136 respectively correspond to the position of the pad on the wafers. In addition, the bumps 120 are electrically and structurally connected to one of the wafer pads 136 to one of the corresponding bump pads 116a, respectively. In addition, the solder balls 140 are respectively disposed on the solder ball pads U6b, and are used to electrically and structurally connect to external electronic devices. Please refer to FIG. 1 as well. The conventional electronic packaging process is to complete the internal circuit and contacts 116a, 116b of the circuit carrier board 110, and then assemble the chip 130 on the surface of the circuit carrier board 110, and then attach a primer (underfill) 150 fills the space enclosed by the top surface 112 of the circuit carrier board 110 and the active surface 132 of the chip 130 to protect the bump pads 116a, the wafer pads 136, and the bumps 120, and buffer at the same time When the circuit substrate 110 and the chip 130 are heated, the thermal strain generated between the circuit substrate 110 and the chip 130 is mismatched. Therefore, the wafer pad 136 of the chip 130 can be electrically and structurally connected through the bump 120 to the bump pad 116a of the circuit carrier board 110 and then downward through the internal circuit of the circuit carrier board 110. The solder ball pad 116b is routed to the bottom surface 114 of the circuit carrier board 110, and finally is electrically and structurally connected to the external electronic device through the solder ball 140 on the solder ball pad 116b. As far as the manufacturing process of high-density circuit wiring circuit boards is concerned, the conventional technology usually uses a build-up process to form a single circuit layer on both sides of a dielectric core layer, or Multiple circuit layers are sequentially formed, and two circuit layers located on both sides of the dielectric core layer are electrically connected by using a plated through hole (PTH). However, since the circuit carrier board using a thinner dielectric core layer is easily heated and warped, the dielectric core layer of the circuit carrier board must have a sufficient thickness so as to relatively provide sufficient Structural strength, but this also results in that the thickness of the dielectric core layer cannot be further reduced. In addition, in order to make plated through holes (PTH) on the dielectric core layer, it is common practice to use drilling to form micro-sized through holes in the dielectric core layer, and then electroplating a metal Layered on the inner wall of the through hole is used to electrically connect two circuit layers respectively located on two sides of the dielectric core layer. However, since the conventional PTH process usually uses drilling to form micro-sized through holes', this will lead to an overall manufacturing of the circuit carrier board, which will increase the cost. In addition, the conventional PTH process has been unable to effectively reduce the outside diameter of the plated through hole (PTH), but a plated through hole (PTH) with a larger outside diameter will have a negative impact on electrical properties. ' As a result, the conventional plated through hole (PTH) has become a design bottleneck of the current high layout density circuit carrier board. 1240368 12584twf.doc / 006 [Summary of the invention] Therefore, the object of the present invention is to provide a circuit carrier board manufacturing process for producing a circuit carrier board with high wiring density, and can effectively reduce the production cost of the circuit carrier board. . To achieve the object of the present invention, the present invention provides a carrier circuit board manufacturing process, comprising: providing a support substrate, which are made of conductive material-based, and the supporting substrate are divided into a first structural layer and a second one of the overlapping Structural layer; patterning the first structural layer to form a first conductive pattern having a plurality of first conductive contacts arranged in an array; forming an insulating pattern between the second structural layer and the first conductive pattern The enclosed space; a multilayer interconnect structure is formed on the insulation pattern and the first conductive pattern, and the multilayer interconnect structure has a high-density internal circuit connected to these first conductive contacts, and the internal circuit has A plurality of bonding pads are located on the surface of the multilayer interconnect structure farther away from the first conductive pattern; and finally, at least a part of the second structural layer is removed. Because the circuit carrier board manufacturing process of the present invention is to make a circuit with high density on a supporting substrate with conductivity, high stiffness, low CTE, and high thermal conductivity Multi-layer interconnect structure, then remove part of the support substrate, and directly use the remaining support substrate to form multiple conductive contacts at the bottom of the circuit carrier board, and become a high-density circuit without a dielectric core layer. Line carrier board. In addition, the present invention does not require the fabrication of plated through-holes, plating lines, and solder mask layers, so it can effectively reduce the production cost of circuit substrates. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, 1240368 125 84twf. Doc / 006 will be described in detail below with reference to a preferred embodiment ′ and the accompanying drawings. [Embodiment] Please refer to Figs. 2A to 2E ', which sequentially show a schematic cross-sectional view of a manufacturing process of a circuit board according to a preferred embodiment of the present invention. As shown in FIG. 2A, a support substrate 202 is provided, which has characteristics such as conductivity, high rigidity (hiSh stiffness), low thermal expansion coefficient (low CTE), and high thermal conductivity. Therefore, the support The material of the substrate 202 is, for example, iron, cobalt, nickel, copper, aluminum, titanium, tungsten, zirconium, chromium, and alloys thereof, and the surface of the supporting substrate 202 must have a higher level of co-planarity. In order to facilitate subsequent processes, a multilayer interconnect structure (such as reference numeral 214 in FIG. 2D) of a fine circuit is fabricated on the surface of the support substrate 202. In addition, in order to help explain the present embodiment clearly, the supporting substrate 202 may be divided into a first structure layer 204 and a second structure layer 206 overlapping each other. As shown in FIG. 2B, for example, the first structural layer 204 (see FIG. 2A) of the supporting substrate 202 is patterned by photolithography or the like to form a first conductive pattern 208, The first conductive pattern 208 may constitute a plurality of first conductive contacts 21, which are arranged in an array manner, for example. As shown on FIG. 2C, for example, printing (print), etc., into the insulating material Chen 206 and the second structural layer between the first conductive pattern 208, because the on / into the insulating pattern (dielectric pattern) 212. In this embodiment, an insulating material may be inserted into the space enclosed by the second structure layer 206 and the first conductive pattern 208 1240368 12584twf.doc / 006 to form an insulating pattern 212, which is a first conductive material. The negative pattern of the pattern 208 is mutually fitted with the first conductive pattern 208. The insulating material may be a material having a high glass transition temperature (Tg) and a low thermal expansion coefficient (CTE), such as epoxy resin. , PI resin, BT resin, BenzoCycloButene (BCB), poly (silSequioxane), parylene, polyaromatic ( poly (aryl ether) s), polynorbornene (poryn (norbornene)), polyphenyl Qt oxalan (poyy (phenyl qUinoxaiine) s). As shown in FIG. 2D, a multilayer interconnection structure 214 is formed on the first conductive pattern 208 and the insulation pattern 212, for example, by a build-up process. The multilayer interconnection structure 214 includes a plurality of patterned wire layers 214a, at least one dielectric layer 214b, and a plurality of conductive blind holes 214c. The wire layers 214a sequentially overlap the first conductive pattern 208 and the insulating pattern 212. Each of the dielectric layers 214b is disposed between two adjacent wire layers 214a, and the conductive blind holes 214c respectively penetrate one of the dielectric layers 214b, and are electrically connected to at least two wire layers 214a, and The wire layers 214a and the conductive blind holes 214c together form an internal circuit, which forms a plurality of bonding pads 216 on the surface of the multilayer interconnection structure 214. The bonding pads 216 can be formed by the wire layer 214a, or The conductive blind hole 214c is formed, and the bonding pad 216 in FIG. 2D is represented by the latter, that is, the conductive blind hole 214c is used as the bonding pad 216. In addition, the material of the wire layer 214a is, for example, copper, aluminum, and alloys thereof, and the material of the dielectric layer 214b may be silicon nitride, silicon oxide, or the like, or it may have high glass. Conversion temperature (Tg) and 1240368 12584twf.doc / 006 materials with low thermal expansion coefficient (low CTE), such as epoxy resin, polyimide resin (PI resin), BT resin, benzene (benzo) cyclobutene (BenzoCycloButene, BCB ) Poly (silSeqUi〇xane), parylene, poly (aryl ether) s, polynorbornane (p〇iy (n〇rb〇rnene) )), Polyphenyl 丨 every oh la (p〇ly (phenyl quin〇xaHne) s). As shown in FIG. 2D, the second structure layer 206 is removed by, for example, honing or etching, so that these first conductive contacts 210 are exposed, and the circuit carrier board is completed. 2000 production. Please refer to FIG. 3, which is a schematic cross-sectional view of the circuit carrier board of FIG. 2E applied to a wafer. In this embodiment, the chip 302 is connected to the bonding pads 216 of the circuit carrier 200 through a plurality of conductive bumps 304 via flip chip bonding, and a primer 306 to Between the circuit substrate 200 and the chip 302, a chip package is formed. It should be noted that in addition to the chip 302 being electrically connected to the circuit carrier 200 through a flip-chip bonding method, the chip 302 may also be electrically connected to the circuit carrier 200 through wire bonding, but the latter is not shown. The drawing in the embodiment. In addition, in order to improve the heat dissipation efficiency of the chip package and increase its structural strength, a stiffner 308 can be additionally added on the circuit substrate 200 and surrounds the chip 302, and a heat spreader 310 can be attached. Attached to the wafer 302 and the support layer 308. In order to facilitate the assembly of the 1C chip or other electronic components to the circuit carrier board 200 of the present embodiment by means of Surface Mount Technology (SMT), or to facilitate the assembly of the circuit carrier board 200 to SMT by means of surface mount technology (SMT) The next level of circuit board (not shown), 1240368 12584twf.doc / 006 Please refer to Figures 4A to 4C and the following. Among them, Figures 4A to 4C sequentially show the circuit board of the preferred embodiment of the present invention. A schematic cross-sectional view of an additional metal layer formed on the surfaces of the bonding pads and the conductive contacts. As shown in FIG. 4A, FIG. 2D connection system which, in order to provide a first subsequent metal plating layer 222, the second structural layer may be removed partially of 206 (see FIG. 2D), to form a plating seed layer 218 . Zhi is noteworthy that, completely removed or directly where the second structural layer 206, for example, followed by electroplating manner, a conductive layer is formed on the entire surface of the first conductive pattern 208 and the insulating pattern 212 of the above as Electroplated seed layer 218. As shown in FIG. 4B, a mask pattern 402 is formed on the plating seed layer 218, which exposes the first conductive contacts 210, and is plated on the surfaces of the first conductive contacts 210 through the plating seed layer 218, respectively. A first metal layer 222 is formed. The first metal layer 222 is, for example, a solder layer or a nickel / gold layer (Ni / Au layer). It should be noted that, in this embodiment, while the first metal layer 222 is formed, internal wirings electrically connected through the plating seed layer 218 and the multilayer interconnection structure 214 may be separately provided on these bonding pads. A second metal layer 224 is formed on the surface of 216 by electroplating. The second metal layer 224 is also a solder layer or a nickel-gold layer, for example. As shown in FIG. 4C, after the first metal layers 222 and the second metal layers 224 are formed, the mask pattern 402 and the exposed plating seed layer 218 are removed. In order to allow the first conductive contact 210 in FIG. 2E to protrude downward, please refer to FIGS. 5A and 5B, which illustrate a circuit carrier board according to a preferred embodiment of the present invention. schematic diagram. 12 1240368 12584twf.doc / 006 As shown in FIG. 5A, following the 2D drawing, a mask pattern 226 is formed on the side of the second structure layer 206 that is farther from the multilayer interconnect structure 214, and the mask pattern 226 has more A mask layer 228, wherein the positions of the mask layers 228 correspond to the positions of the first conductive contacts 210, respectively. As shown in FIG. 5B, for example, a portion of the second structural layer 206 that is not covered by the mask pattern 226 is removed by etching to form a second conductive pattern 230 having a plurality of second conductive contacts. 232, and the second conductive contacts 232 are respectively connected to the corresponding first conductive contacts 210, so that the first conductive contacts 210 can extend structurally outwardly through the second conductive contacts 232, respectively, and the first A conductive contact 210 and the second conductive contacts 232 can respectively constitute a ball-shaped conductive contact for providing a contact for connecting to the next-level electronic carrier board. It should be noted that in order to form a surface protective layer on the bottom of these second conductive contacts 232, the previous mask layer 228 (ie, the remaining mask pattern 226) can be directly used as the surface protective layer, so the practice is omitted. There are many known steps to make a surface protective layer.
爲了提供電路設計上的彈性,或符合電路設計上的 需求,如第2B圖所示,可在形成第一導電圖案208之後, 更選擇性地將一或多個埋設式被動元件(embedded passive component) 24〇,其例如以其背面來黏著至第二結構層206 的方式,配置於第二結構層206及這些第一導電接點210 之間所圍成的空間。接著’如第2C圖所示,在形成絕緣 圖案212於第二結構層206及第一導電圖案208之間所圍 成的空間時,絕緣圖案212將包覆埋設式被動元件240, 但暴露出埋設式被動元件240之多數個接點,其將在第2D 13 1240368 12584twf.doc/006 圖之步驟中,電性連接至多層內連線結構214之內部線路。 因此,如第3圖所示,埋設式被動元件240將存在於圖式 之晶片封裝結構內。 綜上所述,本發明之線路載板製程具有下列優點: (1) 本發明乃是利用較薄及剛性較高的支撐基板來 取代習知之介電芯層,故可有效地薄化線路載板之整體厚 度,並直接利用支撐基板來製作導電接點,以製作出一無 介電芯層之線路載板。 (2) 本發明係可以增層法(build-up process)形成 一多層內連線結構於支撐基板之一表面,故可獲得較高密 度線路及接點之線路載板。 (3) 相較於習知之在介電芯層的兩面分別形成一多 層內連線結構,本發明僅僅形成單一多層內連線結構於支 撐基板之一表面,故可有效地減少線路之繞線長度,以增 加電氣性能。 (4) 相較於習知之利用電鍍線(plating line)來電 鍍形成微間距凸塊、銲料層或金屬表面保護層(例如鎳金 層)於線路載板之接合墊上,本發明可於製程中可直接利 用具導電性之支撐基板來作爲電鍍種子層,故可提升線路 載板之內部線路的線路密度。 (5) 如第5A、5B圖所示,本發明更可直接利用這 些簞幕層228來作爲這些第二導電接點之表面保護層’而 無須額外地形成表面保護層之相關製程。 (6) 當本發明經由第二導電接點來延伸第一導電接 點時,可直接利用這些第二導電接點來將線路載板連接至 1240368 12584twf.doc/006 下一層級之線路載板,例如一印刷電路板,而無須再額外 地製作導電球或導電凸塊於這些第一導電接點之表面。 雖然本發明已以較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍內,當可作些許之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者爲準。 【圖式簡單說明】 第1圖繪示習知之一種覆晶球格陣列型之電子封裝 體的剖面示意圖。 第2A〜2E圖依序繪示依照本發明一較佳實施例之線 路載板製程的剖面示意圖。 第3圖繪示第2E圖之線路載板應用於接合一晶片的 剖面示意圖。 第4A〜4C圖依序繪示本發明較佳實施例之線路載 板,其接合墊及導電接點之表面上額外形成金屬層的剖面 示意圖。 第5A、5B圖繪示本發明較佳實施例之線路載板,其 導電接點製作成向下突出的剖面示意圖。 【圖式標示說明】 100 :電子封裝體 110 :線路載板 112 :頂面 114 :底面 15 1240368 12584twf.doc/006 116a :凸塊墊 116b :銲球墊 120 :凸塊 130 :晶片 132 :主動表面 134 :背面 136 ·_晶片墊 140 :銲球 150 :底膠 200 :線路載板 2 0 2 ··支撑基板 204 :第一結構層 206 :第二結構層 208 :第一導電圖案 210 :第一導電接點 212 :絕緣圖案 214 :多層內連線結構 214a :導線層 214b :介電層 214c :導電盲孔 216 :接合墊 218 :電鍍種子層 220 :罩幕圖案 222 :第一金屬層 224 :第二金屬層 1240368 12584twf.doc/006 226 :罩幕圖案 228 :罩幕層 230 :第二導電圖案 232 :第二導電接點 240 :埋設式被動元件 302 :晶片 304 :導電凸塊 306 :底膠 308 :支撐層 310 :散熱片In order to provide circuit design flexibility or meet circuit design requirements, as shown in FIG. 2B, after forming the first conductive pattern 208, one or more embedded passive components can be more selectively 24 °, which is arranged in a space enclosed between the second structure layer 206 and the first conductive contacts 210 in a manner that the back surface is adhered to the second structure layer 206, for example. Next, as shown in FIG. 2C, when the space enclosed by the insulating pattern 212 between the second structural layer 206 and the first conductive pattern 208 is formed, the insulating pattern 212 will cover the buried passive device 240, but will be exposed. Most of the contacts of the buried passive component 240 will be electrically connected to the internal lines of the multilayer interconnect structure 214 in the step of FIG. 2D 13 1240368 12584twf.doc / 006. Therefore, as shown in FIG. 3, embedded passive components 240 present in the formula of the chip package structure of FIG. In summary, the circuit carrier board manufacturing process of the present invention has the following advantages: (1) The present invention uses a thinner and more rigid support substrate to replace the conventional dielectric core layer, so the circuit carrier can be effectively thinned. The overall thickness of the board, and directly using the supporting substrate to make conductive contacts to make a circuit carrier board without a dielectric core layer. (2) The present invention can form a multi-layer interconnect structure on a surface of a supporting substrate by a build-up process, so that a circuit carrier board with higher density circuits and contacts can be obtained. (3) Compared with the conventional formation of a multilayer interconnect structure on both sides of the dielectric core layer, the present invention only forms a single multilayer interconnect structure on one surface of the support substrate, so it can effectively reduce the winding of the circuit. Wire length to increase electrical performance. (4) Compared with the conventional use of a plating line to form a micro-pitch bump, a solder layer or a metal surface protection layer (such as a nickel-gold layer) on a bonding pad of a circuit substrate, the present invention can be used in the manufacturing process. The conductive support substrate can be directly used as the plating seed layer, so the circuit density of the internal circuits of the circuit carrier board can be improved. (5) As shown in Figs. 5A and 5B, the present invention can directly use the curtain layer 228 as the surface protection layer of the second conductive contacts' without the need for an additional process of forming a surface protection layer. (6) When the present invention extends the first conductive contact via the second conductive contact, the second conductive contact can be directly used to connect the circuit carrier board to the 1240368 12584twf.doc / 006 next-level circuit carrier board For example, a printed circuit board, there is no need to additionally make conductive balls or conductive bumps on the surfaces of these first conductive contacts. Although the present invention has been disclosed in the preferred embodiment as above, it is not intended to limit the present invention. Any person skilled in the art can make some modifications and retouching without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be determined by the scope of the attached patent application. [Brief Description of the Drawings] FIG. 1 is a schematic cross-sectional view of a conventional flip chip array type electronic package. Figures 2A to 2E sequentially show cross-sectional schematic diagrams of a line carrier board manufacturing process according to a preferred embodiment of the present invention. FIG. 3 is a schematic cross-sectional view of the circuit substrate of FIG. 2E applied to a wafer. Figures 4A to 4C sequentially show schematic cross-sectional schematic diagrams of an additional metal layer formed on the surfaces of the bonding pads and the conductive contacts of the circuit carrier board according to the preferred embodiment of the present invention. Figures 5A and 5B are schematic cross-sectional views of the circuit carrier board of the preferred embodiment of the present invention, the conductive contacts of which are made to protrude downward. [Illustration of diagrammatic labeling] 100: electronic package 110: circuit board 112: top surface 114: bottom surface 15 1240368 12584twf.doc / 006 116a: bump pad 116b: solder ball pad 120: bump 130: wafer 132: active Surface 134: Back side 136._Chip pad 140: Solder ball 150: Primer 200: Circuit carrier board 2 02.Support substrate 204: First structural layer 206: Second structural layer 208: First conductive pattern 210: No. A conductive contact 212: an insulation pattern 214: a multilayer interconnect structure 214a: a wire layer 214b: a dielectric layer 214c: a conductive blind hole 216: a bonding pad 218: a plating seed layer 220: a mask pattern 222: a first metal layer 224 : Second metal layer 1240368 12584twf.doc / 006 226: mask pattern 228: mask layer 230: second conductive pattern 232: second conductive contact 240: buried passive element 302: wafer 304: conductive bump 306: Primer 308: Support layer 310: Heat sink
1717