TWI239662B - A method of making high power light emitting diode and the product made therefrom - Google Patents

A method of making high power light emitting diode and the product made therefrom Download PDF

Info

Publication number
TWI239662B
TWI239662B TW93107296A TW93107296A TWI239662B TW I239662 B TWI239662 B TW I239662B TW 93107296 A TW93107296 A TW 93107296A TW 93107296 A TW93107296 A TW 93107296A TW I239662 B TWI239662 B TW I239662B
Authority
TW
Taiwan
Prior art keywords
emitting diode
light
semiconductor layer
power light
type semiconductor
Prior art date
Application number
TW93107296A
Other languages
Chinese (zh)
Other versions
TW200532937A (en
Inventor
Dung-Sing Wuu
Ray-Hua Horng
Original Assignee
Univ Nat Chunghsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chunghsing filed Critical Univ Nat Chunghsing
Priority to TW93107296A priority Critical patent/TWI239662B/en
Application granted granted Critical
Publication of TWI239662B publication Critical patent/TWI239662B/en
Publication of TW200532937A publication Critical patent/TW200532937A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A method of making a high-power light-emitting diode comprises the steps of (A) providing a sapphire substrate having an epitaxy crystal, and a first substrate having an intermediate film made of a material that can be dissociated by a laser beam, the first substrate is made of a material that can be transmitted by the laser beam, (B) adhering the epitaxy crystal to the intermediate film by an adhesive, (C) thinning the sapphire substrate to a predetermined thickness below 50 mum, (D) irradiating the first substrate by laser to dissociate the intermediate film for separating the first substrate and the sapphire substrate, and (E) removing the adhesive by etching. The method of this invention can make a high-power light-emitting diode comprising a sapphire substrate having an epitaxial surface, a back light surface opposite to the epitaxial surface, and a predetermined thickness below 50 mum, and an epitaxy crystal forming on the epitaxial surface of the sapphire substrate.

Description

1239662 玖、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發光二極體(Light Emitting Diode),特別是指一種製作高功率發光二極體的方法及其 5 製品。 【先前技術】 由於發光二極體具有體積小之優勢,因此已被廣泛應 用於顯示器背光模組、通訊、電腦、交通號誌及玩具等消 費市場。 10 而針對藍光發光二極體而言,由於藍光的能隙 (energy bandgap)較大所需激發能高,因此施加於藍光發 光二極體之驅動電流(driving current)值也相對提高。 當提供於藍光發光二極體上的注入電流(injection cur rent)值越大時,所產生的累積熱能也相對地增加,因 15 此,將因為無法散熱而影響輸出功率(output power)值。 為了解決有關發光二極體亮度不夠的問題,科學家們從數 個方面來提高元件的亮度,包括由蟲晶技術(epitaxial process technology)、晶粒製程技術(chip process technology)及封裝技術(package process technology) 20 等方面來著手。其中,在磊晶技術方面主要盡量提昇施體 (donor)及受體(acceptor)的濃度,並設法減低發光層 (active layer)的差排密度(dislocation density)。由 於提高發光層中的受體濃度並不容易,特別是在寬能隙氮 化鎵(GaN)系統有其難度。同時由於藍寶石基板與氮化鎵 1239662 材料存在相當大的晶格不匹配,因此設法減低發光層中的· 差排密度之技術並不容易突破。 參閱圖1 ’ 一種習知發光二極體1,可產生一波長較 短的藍光光源。該發光二極體丨包含:一具有一磊晶面m 5 及一相反於該磊晶面111的背光面112的藍寶石 (sapphire)元件基板Π、一形成在該磊晶面ηι上的GaN 蠢晶體12、一形成在該背光面112上的反射膜13、一連 接於該反射膜13的貼合膜14,及一連接於該貼合膜14的 Si散熱基板15。 10 該GaN蠢晶體12自該磊晶面111向遠離該磊晶面111 的方向依序具有一 N-type半導體層121、一局部覆蓋該 N-type半導體層121的發光層122、一覆蓋該發光層122 的P-type半導體層123、一形成該N-type半導體層121 上的第一接觸電極124,一及形成於該p—type半導體層 15 123上的第二接觸電極125。 其中,該sapphire元件基板η是被薄化(thinning) 達介於80 μπι至100 μπι的厚度。 然而,藍光發光二極體散熱不易的主要原因在於,一 般所使用的商業化磊晶基板多為熱傳導率(thermal 20 conductivity)較低,且厚度是介於430 μπι至380 μπι的 藍寶石基板。而為了解決散熱問題,該藍寶石元件基板u 在經薄化處理之後,仍然無法解決該發光二極體1在注入 電流持續增加後,由於該藍寶石元件基板n熱傳導率低, 累積過多熱能所造成的低光輸出功率(light output 1239662 power)等問題。一般傳統的藍光發光二極體的輸出功率大 約在庄入電流達75 mA時已呈飽和(saturation)狀態。因 此,當注入電流持續增加不但無法使藍光發光二極體的光 輸出功率(亦即發光亮度)提昇,反而會因為造成過多的累 積熱能而降低藍光發光二極體的光輸出功率。 因此,如何尋求解決藍光發光二極體的散熱問題,是 研九開發藍光發光二極體的相關業者所需克服的一大難 題。 【發明内容】 因此,本發明之目的,即在提供一種製作高功率發光 —極體的方法。 本發明之另一目的,即在提供一種高功率發光二極 體。 本發明製作高功率發光二極體的方法,包含以下步 驟: (A) 提供一具有一磊晶體的藍寶石基板,及一具有一 中間膜的第一基板,該第一基板是由一可被一雷 射光(laser)穿透的材料所製成,且該中間膜是由 一可被邊雷射光分解的材料所製成; (B) 利用一第一貼合膜黏合具有該磊晶體的藍寶石基 板及具有該中間膜的第一基板; (C) 將邊藍寶石基板研磨達一小於5〇叩的預定厚度; (D) 利用該雷射光照射該第一基板裂解(diss〇ciate) 該中間膜的材料,以分離該第一基板及具有該磊 1239662 晶體的藍寶石基板;及 (E)以一蝕刻(etching)移除該第一貼合膜。 另外,本發明高功率發光二極體,包含:一藍寶石基 板及一磊晶體。 該藍寶石基具有一磊晶面及一相反於該磊晶面的背 光面。該藍寶石基板的一預定厚度是小於5〇 μιη。 該蠢晶體是形成在該藍寶石基板之磊晶面上的。 ίο 本發明之功效在於提供一種光輸出功率在較高的注 入電流值才呈飽和狀態的高功率發光二極體。 【實施方式】 參閱圖2,本發明製作高功率發光二極體的方法,包 含以下步驟: (Α)提供一具有一磊晶體的藍寶石基板,及一具有一1239662 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a light emitting diode, and particularly to a method for manufacturing a high power light emitting diode and its 5 products. [Previous technology] Due to its small size, light-emitting diodes have been widely used in consumer markets such as display backlight modules, communications, computers, traffic signs, and toys. 10 For blue light emitting diodes, the driving current applied to the blue light emitting diodes is relatively increased because the energy bandgap of the blue light is large and the excitation energy is high. When the injection cur rent value provided to the blue light emitting diode is larger, the cumulative thermal energy generated is also relatively increased. Therefore, the output power value will be affected due to the inability to dissipate heat. In order to solve the problem of insufficient brightness of light-emitting diodes, scientists have improved the brightness of components from several aspects, including epitaxial process technology, chip process technology, and package process. technology) 20 and other aspects. Among them, in the epitaxial technology, the concentration of the donor and the acceptor is mainly increased as much as possible, and the dislocation density of the active layer is reduced. Because it is not easy to increase the acceptor concentration in the light emitting layer, especially in the wide band gap gallium nitride (GaN) system, it is difficult. At the same time, due to the considerable lattice mismatch between the sapphire substrate and the gallium nitride 1239662 material, it is not easy to break through the technology of reducing the differential density in the light-emitting layer. Referring to FIG. 1 ′, a conventional light emitting diode 1 can generate a blue light source with a short wavelength. The light emitting diode includes: a sapphire element substrate having an epitaxial plane m 5 and a backlight surface 112 opposite to the epitaxial plane 111, and a GaN chip formed on the epitaxial plane η. The crystal 12, a reflective film 13 formed on the backlight surface 112, a bonding film 14 connected to the reflective film 13, and a Si heat dissipation substrate 15 connected to the bonding film 14. 10 The GaN stupid crystal 12 has an N-type semiconductor layer 121, a light-emitting layer 122 partially covering the N-type semiconductor layer 121, and a light emitting layer 122 partially covering the N-type semiconductor layer 121 in a direction away from the epitaxial plane 111. The P-type semiconductor layer 123 of the light-emitting layer 122, a first contact electrode 124 forming the N-type semiconductor layer 121, and a second contact electrode 125 formed on the p-type semiconductor layer 15 123. The sapphire element substrate η is thinned to a thickness between 80 μm and 100 μm. However, the main reason for the difficulty of heat dissipation of blue light-emitting diodes is that the commonly used commercial epitaxial substrates are mostly sapphire substrates with a low thermal 20 conductivity and a thickness between 430 μm and 380 μm. In order to solve the problem of heat dissipation, the sapphire element substrate u cannot be resolved after the light emitting diode 1 continues to increase after the thinning process, due to the low thermal conductivity of the sapphire element substrate n and the accumulation of excessive thermal energy. Low light output power (light output 1239662 power) and other issues. Generally, the output power of a conventional blue light-emitting diode is already saturated when the inrush current reaches 75 mA. Therefore, when the injection current continues to increase, not only the light output power of the blue light emitting diode (ie, light emission brightness) cannot be improved, but also the light output power of the blue light emitting diode will be reduced due to excessive accumulated heat energy. Therefore, how to find a solution to the heat dissipation problem of blue light emitting diodes is a major problem that Yanjiu has to overcome in order to develop blue light emitting diodes. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a high-power light-emitting polar body. Another object of the present invention is to provide a high-power light emitting diode. The method for manufacturing a high-power light-emitting diode according to the present invention includes the following steps: (A) providing a sapphire substrate having an epitaxial crystal, and a first substrate having an intermediate film; Laser light is made of material, and the intermediate film is made of a material that can be decomposed by edge laser light; (B) a first bonding film is used to bond the sapphire substrate with the epitaxial crystal And a first substrate having the intermediate film; (C) grinding the edge sapphire substrate to a predetermined thickness of less than 50 叩; (D) irradiating the first substrate with the laser light to dissocate the intermediate film Material to separate the first substrate and the sapphire substrate with the Lei 1239662 crystal; and (E) remove the first bonding film by an etching. In addition, the high-power light-emitting diode of the present invention includes a sapphire substrate and an epitaxial crystal. The sapphire substrate has an epitaxial surface and a reflective surface opposite to the epitaxial surface. A predetermined thickness of the sapphire substrate is less than 50 μm. The stupid crystal is formed on the epitaxial surface of the sapphire substrate. The effect of the present invention is to provide a high-power light-emitting diode whose light output power is saturated only at a high injection current value. [Embodiment] Referring to FIG. 2, the method for manufacturing a high-power light-emitting diode according to the present invention includes the following steps: (A) providing a sapphire substrate having an epitaxial crystal, and a substrate having a

射光穿透的材料所製成,且該中間膜是由一可被 15 該雷射光分解的材料所製成; (Β)利用一第一貼合膜黏合具有該磊晶體的藍寶石基 板及具有該中間膜的第一基板; 一小於50 μπι的預定厚度; 一基板裂解該中間膜的材 (C) 將該藍寶石基板研磨達一 (D) 利用该雷射光照射該第一 基板及具有該磊晶體的藍寶石 料,以分離該第一 基板;及 (Ε)以一 以一蝕刻移除該第一貼合膜。 適用於本發明之方法的該 一基板是由選自於下列 1239662 所構成之群組的材料所製成··藍寶石、石英(quartz)、玻 璃(^1838)、氮化鋁(3111111丨11111111^1:1^(16)、碳化矽(3丨1“仙 carbld幻及氧化辞(zinc oxide)。在一具體實施例中,該 第一基板是由藍寶石所製成。 適用於本發明之方法的該中間膜是由選自於下列所 構成之群組的氮化物(nitride)所製成:氮化鎵(GaN)、氮 化銦(InN)、氮化銦鎵(InGaN)、氮化鋁鎵(A1GaN)、氮化 鋁銦(AlInN)及氮化鋁銦鎵(A1InGaN)。在一具體實施例 中,該氮化物是氮化鎵。值得在此一提的是,本發明之該 中間膜更可由下列所構成之群組的化合物(c〇mp〇und)所 製成:氧化辞(ZnO)、磷化銦(InP)、砷化鎵(GaAs)、硫化 鎘(CdS)及硒化鋅(ZnSe)。 適用於本發明之方法的該第一貼合膜是由至少一選 自於下列所構成之群組的材料所製成:旋塗式玻璃(spin onglass ;簡稱 S0G)、金(Au)、錫(Sn)、鉑(Pt)、銀(Ag)、 銘(A1)、鋼(In)、錯(Pb)及含有金的合金(al loy)。在一 具體實施例中,該第一貼合膜是由旋塗式玻璃所製成。值 得一提的是,該第一貼合膜可以是具有兩不同材質之金屬 層,例如一 Au層及一 Sn層(Au-Sn),也可以是一 Pb層及 一 Sn 層(Pb-Sn)。 適用於本發明之方法的該雷射光的波長是介於19〇 nm 至550 nm。值得一提的是,產生該雷射光的裝置可以是一 由下列所構成之群組的發光裝置:一準分子雷射(excimer laser)及一固態激發雷射(diode-pumped sol id state 1239662 laser)。目前已商業化的準分子雷射之波長則有:193 nm、 248nm、308 nm及351 nm,而已商業化的固態激發雷射之 波長有:266 nm、355 nm及532。前面所提及的波長範圍 (190 nm至550 nm),是可以藉由微調其發光裝置而取得。 在一具體實施例中,該雷射光的波長是使用由固態激發雷 射所產生的355 nm之雷射光。 較佳地,於該步驟(C)後更依序包含一步驟(c,)及一 步驟(C )’且该藍寶石基板具有一連接該蟲晶體的蟲晶面 及一相反於该蠢晶面的背光面。該步驟(C’)是於背光面上 形成一反射膜(ref lector)。該步驟(C’,)是利用一第二貼 合膜黏合一供散熱(heat dispassion)用的第二基板及該 具有反射膜的藍寶石基板。 較佳地,該反射膜是由至少一選自於下列所構成之群 組的金屬材料所製成··銀(Ag)、金(au)、鋁(Ai)、鈦(Ti)、 鉑(Pt)、銦(In)、鈀(Pd)及此等之一組合。在一具體實施 例中,該金屬材料是銀及鈦,該反射膜由該背光面向遠離 該背光面的方向依序具有一第一金屬層及一第二金屬 層,该第一及第二金屬層是分別由鈦及銀所製成。 較佳地,本發明之方法的該反射膜是具有至少一介電 體(dielectric),該介電體具有一高介電材料層及一低介 電材料層。在一具體實施例中,該高介電材料層是二氧化 鈦(Tioo,該低介電材料層是二氧化矽(Si〇2)。 適用於本發明之方法的該第二基板是由選自於下列 所構成之群組的材料所製成:⑨(Si)、銅(Cu)、含銅之合 10 1239662 金、鎢鉬合金(tungsten-molybdenum)、矽化鉬(M〇Si)及 矽化鎢(WSi)。在一具體實施例中,該第二基板是由石夕所 製成。值得在此一提的是,本發明之方法的該第二基板可 以是由電鍍銅所製成的一個散熱基板,亦可以是由一電鑛 銅合金所製成的一個散熱基板,藉以改善殘留應力及發光 二極體長期可靠度。 適用於本發明之方法的該第二貼合膜是由至少一選 自於下列所構成之群組的金屬材料所製成:旋塗式玻璃 (S0G)、金(Au)、錫(Sn)、鋁(A1)、鉑(Pt)、銦(in)、銀 (Ag)、鈹(Be)及含金之合金。在一具體實施例中,該第二 貼合膜是由旋塗式玻璃所製成。 較佳地,本發明之方法的該磊晶體自該藍寶石基板向 返離a亥藍寶石基板的方向依序具有一第一型半導體層 (semiconductor layer)、一覆蓋該第一型半導體層的發 光層及一覆蓋該發光層的第二型半導體層。在一具體實施 例中,該第一型半導體層是一 N型半導體層(簡稱N—type 半導體層),該第二型半導體層是一 p型半導體層(簡稱 P-type半導體層),且該磊晶體是由一具有至少一羾B族 元素的氮化物所製成。 較佳地,於該步驟(E)後更包含一步驟(Γ),利用一微 影蝕刻(photol i thography)製程分別於該Ν型半導體層及 違Ρ型半導體層上形成―第—接觸電極及—第二接觸電極 以完成該步驟(Ε,)。值得—提的是,本發明之該步驟(Ε,) 雖’、、、:是實加在w亥步驟⑻後。❻是熟知此技術領域之相關 1239662 人士皆知’該第一接觸電極及該第二接觸電極亦可在該步, 驟(A)時已具備於該磊晶體上。 藉由本發明之方法可製作出一高功率發光二極體。本 發明之高功率發光二極體包含:一藍寶石基板及一磊晶 5 體〇 該藍寶石基具有一磊晶面及一相反於該磊晶面的背 光面。該藍寶石基板的一預定厚度是小於50 μιη。 该蟲晶體是形成在該藍寶石基板之磊晶面上。 在本發明之高功率發光二極體中,該磊晶體自該藍寶 石基板向遠離該藍寶石基板的方向依序具有一第一型半 導體層、一局部覆蓋該第一型半導體層的發光層及一覆蓋 該發光層的第二型半導體層。較佳地,該第一型半導體層 是一 Ν型半導體層,該第二型半導體層是一 ρ型半導體 層,該磊晶體是由一具有至少一 m Β族元素的氮化物所製 成。更佳地,該磊晶體更具有一形成在該Ν型半導體層上 的第一接觸電極,及一形成在該ρ型半導體層上的第二接 觸電極。 較佳地,本發明之高功率發光二極體更包含一形成在 該藍寶石基板之背光面的反射膜。 較佳地,本發明之高功率發光二極體的該反射膜是由 至少一選自於下列所構成之群組的金屬材料所製成:銀、 金、鋁、鈦、鉑、銦、鈀及此等之一組合。在一具體實施 例中,該金屬材料是銀及鈦,該反射膜由該背光面向遠離 該背光面的方向依序具有一第一金屬層及一第二金屬 12 1239662 層’該第一及第二金屬層是分別由鈦及銀所製成。 較佳地,本發明之高功率發光二極體的該反射膜是具 有至少一介電體,該介電體具有一高介電材料層及一低介 電材料層。在一具體實施例中,該高介電材料層是二氧化 鈦’該低介電材料層是二氧化矽。 較佳地,本發明之高功率發光二極體更包含有一連接 於該反射膜的貼合膜及一連接於該貼合膜的散熱用基板。 適用於本發明之高功率發光二極體的該貼合膜是由 至少一選自於下列所構成之群組的金屬材料所製成:旋塗 式玻璃、金、錫、鋁、鉑、銦、銀、鈹及含金之合金。在 一具體實施例中,該貼合膜是由旋塗式玻璃所製成。 適用於本發明之高功率發光二極體的該散熱基板是 由選自於下列所構成之群組的材料所製成:矽、銅、含銅 之合金、鎢鉬合金、矽化鉬及矽化鎢。在一具體實施例中, 5亥散熱基板是由石夕所製成。 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之兩個具體實施例的詳細說明中,將可 清楚的說明。 在本發明被詳細描述之前,要注意的是,在以下的說 明中’類似的元件是以相同的編號來表示。 〈具體實施例一〉 首先’提供一具有一 GaN磊晶體的藍寶石元件基板, 及一具有可被一 355 nm雷射光分解的GaN中間膜的藍寶 石暫時基板。其中,該GaN磊晶體自該藍寶石元件基板向 13 1239662 遠離該藍寶石元件基板的方向依序具有一 N-type半導體 層、一覆蓋該N-type半導體層的發光層及一覆蓋該發光 層的P-type半導體層。 將一 SOG貼合膜以熱壓法(thermal-pressure bonding)貼合該GaN磊晶體及該GaN中間膜後,進一步地 利用化學機械研磨(chemical mechanical pol ish ;簡稱 CMP)法薄化(thinning)該藍寶石元件基板,使該藍寶石元 件基板具有一 30 μιπ的厚度。 於該CMP法薄化後,依序於該藍寶石元件基板下表面 形成一 Ti層及一 Ag層的金屬反射膜(Ti/Ag金屬反射 膜),並將另一旋塗式玻璃貼合膜以熱壓法貼合該Ti/Ag 金屬反射膜及一 S i散熱基板。然後,藉由該3 5 5 nm雷射 光分解該GaN中間膜以分離該藍寶石元件基板及該藍寶石 暫時基板。後續,並進一步地藉由微影蝕刻製程分別於該 N-type半導體層及該P-type半導體層上形成一第一接觸 電極及第二接觸電極以完成本發明之高功率發光二極 體。在該具體實施例一中,該355 nm雷射光是使用商業 化的固態激發雷射光。 參閱圖3及圖4,藉由本發明之該具體實施例一的方 法所製作而得的高功率發光二極體,是可產生一波長介於 400 nm至500 nm的藍光光源。該具體實施例一之高功率 發光二極體包含:一具有一磊晶面21及一相反於該磊晶 面21的背光面22的藍寶石元件基板2、一形成在該磊晶 面21上的GaN磊晶體3、一形成在該背光面22上的Ti/Ag 14 !239662 金屬反射膜4、一連接於該Ti/Ag金屬反射膜4的旋塗式 破璃貼合膜5,及一連接於該旋塗式玻璃貼合膜5的Si散 熱基板6。 該藍寶石元件基板2具有一 30 μιη的厚度。 該GaN磊晶體3自該磊晶面21向遠離該磊晶面21的 方向依序具有一 N-type半導體層31、一局部覆蓋該 type半導體層31的發光層32、一覆蓋該發光層32的 P-type半導體層33、一形成該N-type半導體層31上的 第一接觸電極34, 一及形成於該p-tyPe半導體層33上的 第二接觸電極35。 該Ti/Ag金屬反射膜4具有一連接於該背光面22的 Ti層41,及一連接於該Ti層41的Ag層42。 &lt;具體實施例二〉 本發明之高功率發光二極體的一具體實施例二的製 作方法,大致上是與該具體實施例一相同。其不同處在 於’利用一由介電材料所製成的反射膜取代該具體實施例 一的該T i /Ag金屬反射膜。 參閱圖5及圖6,因此,藉由本發明之該具體實施例 二的方法所製作而得的高功率發光二極體,大致上是與該 具體實施例一相同。其不同處在於,該具體實施例一中的 Ti/Ag金屬反射膜4是被一介電反射膜7所取代。 該介電反射膜7具有複數介電體71。每一介電體71 具有一 Ti〇2 層 711 及一 Si〇2 層 712。 參閱圖7,在一發射波長為460 nm (驅動電流為20 mA) 15 1239662 之藍光發光二極體結構中,由輸出功率分析結果可得,本 發明之高功率發光二極體具有較高的輸出功率(約π mW)。相較於傳統的發光二極體的輸出功率,在大約9 _ 處已達飽和。這是由於本發明之高功率發光二極體具有厚 度僅為30 μιη的元件基板,因此使注入電流在持續增加時 所產生的累積熱能之問題大大減少,而提昇了其輸出功率 值並得到高亮度的發光效率。 值得在此一提的是,本發明之高功率發光二極體仍可 藉由其他的幾何設計或電路設計來增加其發光亮度(圖未 示)。例如以下所述: 一、 於該P-type半導體層33及第二接觸電極35上 形成一均勻的透明導電玻璃(例如:氧化錮錫;IT〇玻璃), 藉以將注入電流分佈較為均勻並增加由p—type半導體層 33傳遞出來的藍光出光量,以避免發生電流擁擠現象 (current crowding) ° 二、 於該P-type半導體層33的上表面實施一粗化 (surface texturing)製程,藉以提高臨界反射角度,增 加出光效率(1 ight extracting efficiency),以提昇發 光亮度。 三、 於該P-type半導體層33的上表面局部區域提供 一阻抗源(current blocking),藉該阻抗源平均分散注入 電流以提昇發光亮度。 綜上所述’本發明之製作高功率發光二極體的方法及 其製品,具有散熱效果佳、輸出功率高、飽和電流值大, 16 1239662 及使用壽命長等特點,確實朗本發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明中請二利 範圍及發明說明書内容所作之簡單的等效變化與修飾,皆 應仍屬本發明專利涵蓋之範圍内。 【圓式簡單說明】 圖1是一正視示意圖’說明-種習知發光二極體之細 部結構; 10 15 20 圖2是-流程圖’說明本發明製作高功率發光二極體 的方法; 圖3是—正視示意圖’說明本發明高功率發光二極體 之一具體實施例一; 圖4疋《玄圖3之局部放大剖面示意圖,說明該具體實 施例-中的- Ti/Ag金屬反射膜的細部結構; 圖5是—正視示意圖’說明本發明高功率發光二極體 之一具體實施例二; 圖6是該圖5之局部放大判 |双A 〇丨】面不意圖,說明該具體實 施例二中的一介電反射膜的細部結構;及 圖7是一電流/輸出功率圖,比較本發明高功率發夫 二極體及該習知發光二極體的輸出功率,其中,菱形空心 標示代表本發明之高功率發朵― 千赞九一極體,正方形空心標示 表該習知之發光二極體。 17 1239662 【圖式之主要元件代表符號簡單說明】 *·**«*»*&lt; ……藍寶石元件基板 …Ti/Ag金屬反射膜 1 *#***»&lt; ……蠢晶面 41*......... …Ti層 22…… …···背光面 42•…&quot; …Ag層 3......... ……GaN麻日曰體 5………… …旋塗式玻璃貼合膜 31…… ……N-type半導體層 6........... …Si散熱基板 32…… ......發光層 7............ …介電反射膜 33…… ……P-type半導體層 71…&quot;…· …介電體 34…… ……第一接觸電極 711……· •••Ti〇2 層 35…… ……第二接觸電極 712……· •••Si〇2 層 18The transmitted light is made of a material, and the intermediate film is made of a material that can be decomposed by 15 of the laser light; (B) a sapphire substrate with the epitaxial crystal and a A first substrate of the intermediate film; a predetermined thickness of less than 50 μm; a substrate cracking the material of the intermediate film (C) grinding the sapphire substrate to one (D) irradiating the first substrate with the laser light and having the epitaxial crystal Sapphire material to separate the first substrate; and (E) removing the first bonding film with an etch. The substrate suitable for the method of the present invention is made of a material selected from the group consisting of the following 1239662. Sapphire, quartz, glass (1838), aluminum nitride (3111111 丨 11111111 ^ 1: 1 ^ (16), silicon carbide (3 丨 1 "carbld magic and zinc oxide). In a specific embodiment, the first substrate is made of sapphire. The method applicable to the present invention The intermediate film is made of nitride selected from the group consisting of: gallium nitride (GaN), indium nitride (InN), indium gallium nitride (InGaN), aluminum nitride Gallium (A1GaN), aluminum indium nitride (AlInN), and aluminum indium gallium nitride (A1InGaN). In a specific embodiment, the nitride is gallium nitride. It is worth mentioning here that the intermediate of the present invention The film can be made of the following compounds (compom): oxide (ZnO), indium phosphide (InP), gallium arsenide (GaAs), cadmium sulfide (CdS), and selenide Zinc (ZnSe) The first bonding film suitable for the method of the present invention is made of at least one material selected from the group consisting of: spin coating Spin onglass (S0G for short), gold (Au), tin (Sn), platinum (Pt), silver (Ag), Ming (A1), steel (In), wrong (Pb) and alloys containing gold ( al loy). In a specific embodiment, the first bonding film is made of spin-on glass. It is worth mentioning that the first bonding film may be a metal layer having two different materials, such as An Au layer and a Sn layer (Au-Sn), or a Pb layer and a Sn layer (Pb-Sn). The wavelength of the laser light suitable for the method of the present invention is between 19 nm and 550 nm It is worth mentioning that the device for generating the laser light may be a light emitting device consisting of an excimer laser and a diode-pumped sol id state 1239662 laser). The wavelengths of commercially available excimer lasers are: 193 nm, 248 nm, 308 nm, and 351 nm, and the wavelengths of commercialized solid-state excitation lasers are: 266 nm, 355 nm, and 532. The mentioned wavelength range (190 nm to 550 nm) can be obtained by fine-tuning its light emitting device. In a specific embodiment, the thunder The wavelength of the light is a laser light of 355 nm generated by a solid-state excited laser. Preferably, after step (C), a step (c,) and a step (C) 'are included in this order, and the sapphire The substrate has a worm crystal surface connected to the worm crystal and a backlight surface opposite to the stupid crystal surface. In this step (C '), a reflective film is formed on the backlight surface. In this step (C ',), a second substrate for heat dispassion and a sapphire substrate with a reflective film are bonded by a second bonding film. Preferably, the reflective film is made of at least one metal material selected from the group consisting of: silver (Ag), gold (au), aluminum (Ai), titanium (Ti), platinum ( Pt), indium (In), palladium (Pd), and combinations thereof. In a specific embodiment, the metal material is silver and titanium, and the reflective film has a first metal layer and a second metal layer in order from the backlight facing away from the backlight surface, and the first and second metals The layers are made of titanium and silver, respectively. Preferably, the reflective film of the method of the present invention has at least one dielectric, the dielectric having a layer of a high dielectric material and a layer of a low dielectric material. In a specific embodiment, the high dielectric material layer is titanium dioxide (Tioo, and the low dielectric material layer is silicon dioxide (SiO2). The second substrate suitable for the method of the present invention is selected from the group consisting of Made of materials from the following groups: osmium (Si), copper (Cu), copper-containing alloy 10 1239662 gold, tungsten-molybdenum (tungsten-molybdenum), molybdenum silicide (MoSi), and tungsten silicide ( WSi). In a specific embodiment, the second substrate is made of Shi Xi. It is worth mentioning that the second substrate of the method of the present invention may be a heat sink made of electroplated copper. The substrate may also be a heat-dissipating substrate made of an electric ore copper alloy to improve the residual stress and the long-term reliability of the light-emitting diode. The second bonding film suitable for the method of the present invention is made of at least one selected Made of metal materials from the following groups: spin-on glass (S0G), gold (Au), tin (Sn), aluminum (A1), platinum (Pt), indium (in), silver ( Ag), beryllium (Be), and gold-containing alloys. In a specific embodiment, the second bonding film is made of spin-on glass Preferably, the epitaxial crystal of the method of the present invention has a first type semiconductor layer and a first type semiconductor layer in order from the sapphire substrate to the direction away from the a sapphire substrate. A light-emitting layer and a second-type semiconductor layer covering the light-emitting layer. In a specific embodiment, the first-type semiconductor layer is an N-type semiconductor layer (referred to as an N-type semiconductor layer), and the second-type semiconductor layer is A p-type semiconductor layer (referred to as a P-type semiconductor layer), and the epitaxial crystal is made of a nitride having at least one 羾 B element. Preferably, a step is included after the step (E). (Γ), forming a first contact electrode and a second contact electrode on the N-type semiconductor layer and the P-type semiconductor layer using a photolithography process to complete the step (E,). It is worth mentioning that although the step (E,) of the present invention is actually added after the step 亥, it is known to those who are familiar with this technical field that 1239662 knows that the first contact electrode and The second contact electrode can also be At this step, step (A) is already provided on the epitaxial crystal. A high-power light-emitting diode can be produced by the method of the present invention. The high-power light-emitting diode of the present invention includes: a sapphire substrate and an epitaxial Crystal 5 body. The sapphire substrate has an epitaxial surface and a backlight surface opposite to the epitaxial surface. A predetermined thickness of the sapphire substrate is less than 50 μm. The worm crystal is formed on the epitaxial surface of the sapphire substrate. In the high-power light-emitting diode of the present invention, the epitaxial crystal sequentially has a first-type semiconductor layer, a light-emitting layer partially covering the first-type semiconductor layer, and a direction away from the sapphire substrate in a direction away from the sapphire substrate. A second type semiconductor layer covering the light emitting layer. Preferably, the first type semiconductor layer is an N-type semiconductor layer, the second type semiconductor layer is a p-type semiconductor layer, and the epitaxial crystal is made of a nitride having at least one m-B element. More preferably, the epitaxial crystal further has a first contact electrode formed on the N-type semiconductor layer, and a second contact electrode formed on the p-type semiconductor layer. Preferably, the high-power light-emitting diode of the present invention further includes a reflective film formed on the backlight surface of the sapphire substrate. Preferably, the reflective film of the high-power light-emitting diode of the present invention is made of at least one metal material selected from the group consisting of: silver, gold, aluminum, titanium, platinum, indium, palladium And one of these combinations. In a specific embodiment, the metal material is silver and titanium, and the reflective film has a first metal layer and a second metal 12 1239662 layer in sequence from the backlight facing away from the backlight surface. The two metal layers are made of titanium and silver, respectively. Preferably, the reflective film of the high-power light-emitting diode of the present invention has at least one dielectric body, the dielectric body having a high-dielectric material layer and a low-dielectric material layer. In a specific embodiment, the high dielectric material layer is titanium dioxide 'and the low dielectric material layer is silicon dioxide. Preferably, the high-power light-emitting diode of the present invention further includes a bonding film connected to the reflective film and a heat-dissipating substrate connected to the bonding film. The bonding film suitable for the high-power light-emitting diode of the present invention is made of at least one metal material selected from the group consisting of: spin-on glass, gold, tin, aluminum, platinum, indium , Silver, beryllium and gold-containing alloys. In a specific embodiment, the bonding film is made of spin-on glass. The heat dissipation substrate suitable for the high-power light-emitting diode of the present invention is made of a material selected from the group consisting of silicon, copper, copper-containing alloy, tungsten-molybdenum alloy, molybdenum silicide, and tungsten silicide . In a specific embodiment, the heat sink substrate is made of Shi Xi. The foregoing and other technical contents, features, and effects of the present invention will be clearly explained in the following detailed description of two specific embodiments with reference to the drawings. Before the present invention is described in detail, it is to be noted that in the following description, 'similar elements are represented by the same reference numerals. <Specific Embodiment 1> First, a sapphire element substrate having a GaN epitaxial crystal and a sapphire temporary substrate having a GaN interlayer film that can be decomposed by a 355 nm laser light are provided. Wherein, the GaN epitaxial crystal has an N-type semiconductor layer, a light-emitting layer covering the N-type semiconductor layer, and a P covering the light-emitting layer in order from the sapphire element substrate to a direction away from the sapphire element substrate. -type semiconductor layer. After a SOG bonding film is bonded to the GaN epitaxial crystal and the GaN interlayer film by thermal-pressure bonding, it is further thinned by a chemical mechanical polishing (CMP) method. The sapphire element substrate has a thickness of 30 μm. After the CMP method is thinned, a Ti layer and an Ag layer metal reflective film (Ti / Ag metal reflective film) are sequentially formed on the lower surface of the sapphire element substrate, and another spin-coated glass bonding film is used to The Ti / Ag metal reflective film and an Si heat-dissipating substrate are bonded by hot pressing. Then, the GaN intermediate film is decomposed by the 3 5 5 nm laser light to separate the sapphire element substrate and the sapphire temporary substrate. Subsequently, a first contact electrode and a second contact electrode are respectively formed on the N-type semiconductor layer and the P-type semiconductor layer by a lithography etching process to complete the high-power light-emitting diode of the present invention. In the first embodiment, the 355 nm laser light is a commercial solid-state excitation laser light. Referring to FIG. 3 and FIG. 4, the high-power light-emitting diode manufactured by the method according to the first embodiment of the present invention is a blue light source capable of generating a wavelength between 400 nm and 500 nm. The high-power light-emitting diode of the first embodiment includes: a sapphire element substrate 2 having an epitaxial plane 21 and a backlight surface 22 opposite to the epitaxial plane 21; GaN epitaxy 3, a Ti / Ag 14 formed on the backlight surface 22! 239662 metal reflective film 4, a spin-coated glass-breaking bonding film 5 connected to the Ti / Ag metal reflective film 4, and a connection A Si heat radiation substrate 6 on the spin-on glass bonding film 5. The sapphire element substrate 2 has a thickness of 30 μm. The GaN epitaxial crystal 3 has an N-type semiconductor layer 31, a light-emitting layer 32 partially covering the type semiconductor layer 31, and a light-emitting layer 32 in order from the epitaxial plane 21 in a direction away from the epitaxial plane 21. A P-type semiconductor layer 33, a first contact electrode 34 formed on the N-type semiconductor layer 31, and a second contact electrode 35 formed on the p-tyPe semiconductor layer 33. The Ti / Ag metal reflective film 4 has a Ti layer 41 connected to the backlight surface 22, and an Ag layer 42 connected to the Ti layer 41. &lt; Specific Embodiment 2> The manufacturing method of a specific embodiment 2 of the high-power light emitting diode of the present invention is substantially the same as the specific embodiment 1. The difference is that a T i / Ag metal reflective film of the first embodiment is replaced with a reflective film made of a dielectric material. Referring to Fig. 5 and Fig. 6, therefore, the high-power light-emitting diode produced by the method of the second specific embodiment of the present invention is substantially the same as the first specific embodiment. The difference is that the Ti / Ag metal reflective film 4 in the first embodiment is replaced by a dielectric reflective film 7. The dielectric reflection film 7 includes a plurality of dielectric bodies 71. Each dielectric body 71 has a Ti02 layer 711 and a Si02 layer 712. Referring to FIG. 7, in a blue light emitting diode structure having an emission wavelength of 460 nm (driving current is 20 mA) 15 1239662, it can be obtained from the output power analysis result that the high power light emitting diode of the present invention has a higher Output power (about π mW). Compared with the output power of conventional light-emitting diodes, saturation has been reached at about 9 °. This is because the high-power light-emitting diode of the present invention has an element substrate with a thickness of only 30 μm, so that the problem of cumulative thermal energy generated when the injection current is continuously increased is greatly reduced, and its output power value is improved and high. Luminous efficiency of brightness. It is worth mentioning here that the high-power light-emitting diode of the present invention can still increase its light-emitting brightness by other geometric designs or circuit designs (not shown). For example, the following: 1. A uniform transparent conductive glass (eg, tin oxide; IT0 glass) is formed on the P-type semiconductor layer 33 and the second contact electrode 35, so that the injected current can be more uniformly distributed and increased. The amount of blue light emitted by the p-type semiconductor layer 33 to avoid current crowding ° Second, a surface texturing process is implemented on the upper surface of the P-type semiconductor layer 33 to improve Critical reflection angle to increase light extraction efficiency (1 ight extracting efficiency) to improve luminous brightness. 3. An impedance source is provided at a local area on the upper surface of the P-type semiconductor layer 33, and the injected current is evenly dispersed by the impedance source to improve the luminous brightness. In summary, the method and product of the present invention for manufacturing a high-power light-emitting diode have the characteristics of good heat dissipation effect, high output power, large saturation current value, 16 1239662, and long service life, etc., and indeed the purpose of the present invention . However, the above are only the preferred embodiments of the present invention. When the scope of implementation of the present invention cannot be limited by this, that is, the simple equivalent changes made according to the scope of the invention and the contents of the description of the invention, and Modifications should still fall within the scope of the invention patent. [Circular type brief description] FIG. 1 is a schematic front view 'Explanation-Detailed structure of a conventional light-emitting diode; 10 15 20 Figure 2 is-Flow chart' illustrating a method for manufacturing a high-power light-emitting diode according to the present invention; 3Yes—a schematic view of the front view 'illustrates a specific embodiment 1 of the high-power light-emitting diode of the present invention; FIG. FIG. 5 is a schematic view of a front view illustrating a specific embodiment 2 of the high-power light-emitting diode of the present invention; FIG. 6 is a partial magnification judgment of FIG. 5 | Double A 〇】] is not intended to illustrate the specific The detailed structure of a dielectric reflective film in the second embodiment; and FIG. 7 is a current / output power diagram comparing the output power of the high-power hair-emitting diode of the present invention and the conventional light-emitting diode, in which the diamond shape The hollow sign represents the high-powered development of the present invention-the Qianzan 910 pole, and the square hollow sign indicates the conventional light-emitting diode. 17 1239662 [Brief description of the main component representative symbols of the drawing] * · ** «*» * &lt; ...... Sapphire element substrate ... Ti / Ag metal reflective film 1 * # *** »&lt; …… Stupid surface 41 * .........… Ti layer 22 ……… ·· Backlight surface 42 •… &quot;… Ag layer 3 ......... GaN GaN sun body 5 …… ......… spin-on glass laminating film 31 …… …… N-type semiconductor layer 6 ...... ...... Si heat sink substrate 32 ......… light emitting layer 7. ..... ...... Dielectric reflective film 33 ... ...... P-type semiconductor layer 71 ... &quot; ... ... dielectric 34 ... ... first contact electrode 711 ... ... • • • Ti〇2 layer 35 ... …… Second contact electrode 712 ... ••• Si〇2 layer 18

Claims (1)

1239662 法,其中,該氮化物是氮化鎵。 6. 如申請專利範圍第1項之製作古 ’ 、 衣作回功率發光二極體的方 法,其中,該第一貼合膜是由 疋Φ至J _選自於下列所構成 之群組的材料所製成:旋塗式玻璃、金、錫、翻、銀、 紹、銦、鉛及含有金的合金。 7. 如申請專利範圍第6項之製作高功率發光二極體的方 法’其十,該第-貼合膜是由旋塗式玻璃所製成。 8·如申請專利範圍第1項之製作高功率發光二極體的方 法八中,5亥雷射光的波長是介於19〇⑽至⑽。 9.如申請專利範圍第8項之製作高功率發光二極體的方 法,其中,該雷射光的波長是355 nm。 10·如申請專利範圍第丨項之製作高功率發光二極體的方 套於°亥步驟(c)後更依序包含一步驟(c,)及一步驟 (c ),該藍寶石基板具有一連接該磊晶體的磊晶面及一 相反於该磊晶面的背光面,該步驟(。,)是於背光面上形 ^一反射膜,該步驟(cn)是利用一第二貼合膜黏合一供 政熱用的第二基板及該具有反射膜的藍寶石基板。 士申叫專利fe圍第1 0項之製作高功率發光二極體的方 ^其中,該反射膜是由至少一選自於下列所構成之群 組的金屬材料所製成··銀、金、鋁、鈦、鉑、銦、鈀及 此等之一組合。 申叫專利範圍第11項之製作高功率發光二極體的方 /、中’该金屬材料是銀及鈦,該反射膜由該背光面 向m離該背光面的方向依序具有一第一金屬層及一第二 20 丄 23%62 法,ι中,作尚功率發光二極體的方 膜是具有至少_介電體, 有—u電材制* —低介電材制。 I、 .如申請專利範圍第丨3 法,其中,該高介電材料層i ;:r極體的方 層是二氧化石夕。 疋—乳化鈦,該低介電材料 15. π:==?,功率發光二一 材料所製成·、夕、銅、::二:下列所構成之群組的 及石夕化鶴。 、’° °金、鶴翻合金、石夕化鉬 16. 如申請專利範圍第15項 法,其中,哕m θ 作间功率發先二極體的方 ^苐一基板疋由矽所製成。 π.如申請專利範圍第10項 法,其中,該第二貼合膜是由=力率發光二極體的方 之群組的金屬材料所繁成.方〉、一選自於下列所構成 麵、銅、銀、鈹及含金之场 如申請專利範圍第17項 法,其令,該第二貼合膜彳 率發光二極體的方 10 , φ ^ ^ Μ疋由旋塗式破璃所製成。 1 9·如申請專利範圍第丨 法,兮石 、之1作南功率發光二極體的方 其中’《晶體自該藍寶石基 半導體層的發光層及一覆罢 ; &quot; 谩δ亥發光層的第 層0 板的方向依序具有-第1半導體層、 半導艚屉66旅止昆Ώ _ 设皿^弟一型 半導體 21 1239662 20·如申請專利範圍第19項之製作高功率發光二極體的方 法’其中,該第—型半導體層是-N型半導體層,該第 -型半導體層是一 P型半導體層,該磊晶體是由一具有 至少一 m B族元素的氮化物所製成。 21·如中請專利範圍第2〇項之製作高功率發光二極體的方 於該步驟⑻後更包含—步·,),利用—微影餘刻 :裎分別於該Η半導體層及該p型半導體層上形成— 第接觸電極及一第二接觸電極以完成該步驟(Ε,)。 2 . —種高功率發光二極體,包含: 凰貝石基板,具有一磊晶面及一相反於該磊晶面 的背光面1藍寶石基板的一預定厚度是小於5〇咖;及 形成在該藍寶石基板之磊晶面上的磊晶體。 申明專利範圍第22項之高功率發光二極體,其中,哕 猫曰曰體自該藍寶石基板向遠離該藍寶石基板的方向依序 具有一第一型半導體層、一局部覆蓋該第一型半導體層 的發光層及一覆蓋該發光層的第二型半導體層。 士申叫專利範圍第2 3項之高功率發光二極體,其中,兮 第型半導體層是一 Ν型半導體層,該第二型半導體展 疋Ρ里半導體層,該磊晶體是由一具有至少一冚β族元 素的氮化物所製成。 70 25. =申請專利範圍第24項之高功率發光二極體,其中,該 蟲晶體更具有一形成在該Ν型半導體層上的第—接觸電 極,及-形成在該Ρ型半導體層上的第二接觸電極。 26. 如申請專利範圍帛22J員之高功率發光二極體,更包含— 22 1239662 乂成在σ亥監寶石基板之背光面的反射膜。 戈申明專利範圍第2 6項之高功率發光二極體,其中,兮 :::是由至少一選自於下列所構成之群組的金屬材料 衣、•銀、金、紹、在太、銷、鋼、把及此等之—虹合。 28. 如申請專利範圍第27j員之高功率發光二極體,其中,口_ 金屬材料是銀及鈦,該反射膜由該背光面向遠 : :的=向依序具有—第—金屬層及―第:金屬層,該第 —及第二金屬層是分別由鈦及銀所製成。 29. 如申請專利範圍第26項之高功率.發光二極體, =射膜是具有至少-介電體’該介電體具有—高介料 料層及一低介電材料層。 饥^申請專利範圍第29項之高功率發光二極體,其中,該 31·::::枓:是:氧化鈦,該低介電材料層是二氧化石夕。 • ° Μ #靶圍第26項之高功率發光二極體,更包含有 :::於該反射膜的貼合膜及-連接於該貼合膜的散熱 32.如申請專利範圍第31 貼合膜是由至少_選 所製成··旋塗式破璃 含金之合金。 項之高功率發光二極體,其中,該 自於下列所構成之群組的金屬材料 、金、錫、鋁、鉑、銦、銀、鈹及 33. 其中,該 如申請專利範圍第32項 只 &lt; 呵功率發光二極體 貼合膜是由旋塗式破螭所製成。 3 4 ·如申請專利範圍第31 散熱基板是由選自於 項之高功率發光二極體,其中,該 下列所構成之群組的材料所製成·· 23 1239662 矽、銅、含銅之合金、鎢鉬合金、矽化鉬及矽化鎢。/ 3 5.如申請專利範圍第34項之高功率發光二極體,其中,該 散熱基板是由矽所製成。1239662 method, wherein the nitride is gallium nitride. 6. For example, the method of making ancient light-emitting diodes for clothing and power recovery as described in the first patent application scope, wherein the first bonding film is selected from the group consisting of 疋 Φ to J _ Made of materials: spin-on glass, gold, tin, flip, silver, shaw, indium, lead and alloys containing gold. 7. According to the method of manufacturing a high-power light-emitting diode according to item 6 of the patent application, the tenth, the first lamination film is made of spin-coated glass. 8. As in the eighth method of manufacturing a high-power light-emitting diode in the scope of the patent application, the wavelength of the 5H laser light is between 19 ° to ⑽. 9. The method for manufacturing a high-power light-emitting diode according to item 8 of the patent application scope, wherein the wavelength of the laser light is 355 nm. 10. If the square sleeve for producing high-power light-emitting diodes according to item 丨 of the patent application scope includes a step (c) and a step (c) in sequence after step (c), the sapphire substrate has a Connecting the epitaxial surface of the epitaxial crystal and a backlight surface opposite to the epitaxial surface, the step (.,) Is to form a reflective film on the backlight surface, and the step (cn) is to use a second bonding film A second substrate for heating and a sapphire substrate with a reflective film are bonded. Shishen called the patent for the high-power light-emitting diode of item 10 of the patent ^^, where the reflective film is made of at least one metal material selected from the group consisting of: silver, gold , Aluminum, titanium, platinum, indium, palladium and combinations thereof. The application of the patent claims No. 11 for the production of high-power light-emitting diodes. The metal material is silver and titanium, and the reflective film has a first metal in order from the backlight facing m away from the backlight surface. Layer and a second 20 丄 23% 62 method, in which, the square film used as a high-power light-emitting diode is at least _ dielectric, made of u electrical materials *-low dielectric materials. I. As in the third method of the patent application, wherein the square layer of the high-dielectric material layer i;: r pole body is SiO2.疋 —Emulsified titanium, the low-dielectric material 15. π: == ?, power luminescence material made of two materials: xi, copper, and xi: two groups: and Shixi Chemical Crane. , '° ° gold, crane turning alloy, molybdenum stone 16. As the 15th method in the scope of patent application, 哕 m θ is used as the power to send the square of the diode 苐 苐 a substrate 疋 made of silicon . π. According to the tenth method of the scope of patent application, wherein the second bonding film is made of a metal material of a group of squares of a power-emitting light emitting diode. Square>, one selected from the following constituent surfaces, For copper, silver, beryllium, and gold-containing fields, such as the 17th method in the scope of patent application, the order of the second lamination film of the light-emitting diode 10, φ ^ ^ Μ 疋 by spin-coating glass breaking production. 1 9 · If the patent application method No. 丨, Xi Shi, No. 1 is a South-power light-emitting diode, which is "the crystal from the sapphire-based semiconductor layer of the light-emitting layer and a layer; &quot; The direction of the 0th layer of the board is in order-the first semiconductor layer, the semiconducting drawer 66, and the traveling semiconductor. _Setup ^ first-type semiconductor 21 1239662 20 · If the application for the scope of the patent No. 19 of the production of high-power light-emitting two Method of a polar body 'wherein the first type semiconductor layer is an -N type semiconductor layer, the first type semiconductor layer is a P type semiconductor layer, and the epitaxial crystal is made of a nitride having at least one m group B element production. 21 · As mentioned above, the method of making a high-power light-emitting diode in the patent scope No. 20 includes -step ·,) after this step, and uses-lithography: 刻 separately on the Η semiconductor layer and the A first contact electrode and a second contact electrode are formed on the p-type semiconductor layer to complete the step (E,). 2. A high-power light-emitting diode, comprising: a phoenix substrate, having an epitaxial surface and a backlight surface opposite to the epitaxial surface; a predetermined thickness of the sapphire substrate is less than 50; and formed on An epitaxial crystal on the epitaxial surface of the sapphire substrate. The high-power light-emitting diode of claim 22 of the patent scope, in which the tortoiseshell body sequentially has a first-type semiconductor layer from the sapphire substrate in a direction away from the sapphire substrate, and partially covers the first-type semiconductor Layer of a light emitting layer and a second type semiconductor layer covering the light emitting layer. Shishen called the high-power light-emitting diodes of the 23rd patent range, in which the first type semiconductor layer is an N-type semiconductor layer, the second type semiconductor exhibits a semiconductor layer, and the epitaxial crystal is composed of Made of at least one hafnium beta element nitride. 70 25. = The high-power light-emitting diode of the 24th scope of the patent application, wherein the worm crystal further has a first contact electrode formed on the N-type semiconductor layer, and-formed on the P-type semiconductor layer Second contact electrode. 26. If the scope of application for patents is 22J members of high-power light-emitting diodes, it also contains — 22 1239662 reflective film formed on the backlight surface of the σHaijian gem substrate. Ge Shenming's patent No. 26 of the high-power light-emitting diodes, among them, Xi ::: is made of at least one metal material selected from the group consisting of: • silver, gold, Shao, Zai Tai, Pins, steels, handles and all these-Honghe. 28. For example, the high-power light-emitting diode of the 27th member of the scope of the patent application, wherein the metal material is silver and titanium, and the reflective film is far from the backlight:: == sequentially has-the-metal layer and ―No .: metal layer, the first and second metal layers are made of titanium and silver, respectively. 29. For example, the high-power. Light-emitting diode of item 26 of the scope of patent application, the emitter film has at least-a dielectric body, and the dielectric body has a-high dielectric material layer and a low dielectric material layer. The high-power light-emitting diode of the 29th patent application scope, wherein the 31 · :::: 枓: is: titanium oxide, and the low-dielectric material layer is silica. • ° Μ #The high-power light-emitting diode of the target area No. 26, further includes :: a lamination film on the reflective film and-a heat sink connected to the lamination film. The composite film is made of at least a selection of spin-coated broken glass containing gold alloy. Item of high-power light-emitting diode, wherein the metal material from the group consisting of, gold, tin, aluminum, platinum, indium, silver, beryllium, and 33. Among them, such as the scope of the patent application No. 32 Only &lt; luminescent diode bonding film is made by spin coating. 3 4 · If the 31st heat sinking substrate of the scope of patent application is made of high-power light-emitting diodes selected from the above, among which the following groups of materials are made ... 23 1239662 Silicon, copper, copper-containing Alloy, tungsten molybdenum alloy, molybdenum silicide and tungsten silicide. / 3 5. The high-power light-emitting diode according to item 34 of the patent application scope, wherein the heat dissipation substrate is made of silicon. 24twenty four
TW93107296A 2004-03-18 2004-03-18 A method of making high power light emitting diode and the product made therefrom TWI239662B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93107296A TWI239662B (en) 2004-03-18 2004-03-18 A method of making high power light emitting diode and the product made therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93107296A TWI239662B (en) 2004-03-18 2004-03-18 A method of making high power light emitting diode and the product made therefrom

Publications (2)

Publication Number Publication Date
TWI239662B true TWI239662B (en) 2005-09-11
TW200532937A TW200532937A (en) 2005-10-01

Family

ID=37007504

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93107296A TWI239662B (en) 2004-03-18 2004-03-18 A method of making high power light emitting diode and the product made therefrom

Country Status (1)

Country Link
TW (1) TWI239662B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423470B (en) * 2008-08-13 2014-01-11 Epistar Corp A method of manufacturing a high thermal-dissipation light-emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423470B (en) * 2008-08-13 2014-01-11 Epistar Corp A method of manufacturing a high thermal-dissipation light-emitting element

Also Published As

Publication number Publication date
TW200532937A (en) 2005-10-01

Similar Documents

Publication Publication Date Title
US20190189838A1 (en) Semiconductor light emitting device including a window layer and a light-directing structure
KR101438818B1 (en) light emitting diode
TWI242891B (en) Method for manufacturing vertical GaN light emitting diode
TWI284431B (en) Thin gallium nitride light emitting diode device
US8309377B2 (en) Fabrication of reflective layer on semiconductor light emitting devices
TW541732B (en) Manufacturing method of LED having transparent substrate
TW200412679A (en) GaN-based LED vertical device structure and the manufacturing method thereof
US9530930B2 (en) Method of fabricating semiconductor devices
JP2008091862A (en) Nitride semiconductor light emitting device, and manufacturing method of nitride semiconductor light emitting device
KR100916366B1 (en) Supporting substrates for semiconductor light emitting device and method of manufacturing vertical structured semiconductor light emitting device using the supporting substrates
TWI246786B (en) Substrate-free flip chip light emitting diode and manufacturing method thereof
US7118930B1 (en) Method for manufacturing a light emitting device
KR20090105462A (en) Vertical structured group 3 nitride-based light emitting diode and its fabrication methods
JP4904150B2 (en) Method for manufacturing light emitting device
KR20090106294A (en) vertical structured group 3 nitride-based light emitting diode and its fabrication methods
TWI239662B (en) A method of making high power light emitting diode and the product made therefrom
Horng et al. High‐power GaN light‐emitting diodes with patterned copper substrates by electroplating
TW201121109A (en) Method for fabricating light emitting diode chip
TW200834977A (en) Method of making high brightness vertical light-emitting diodes and structure made thereby
TW200414558A (en) High brightness light emitting diode and its manufacturing method
KR20070006239A (en) Method for preparing light emitting diode device
KR20090103217A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
TW200418198A (en) Light emitting diode and method of making the same