TWI237643B - Method for manufacturing PAN polymer electrolyte used for isolation membrane of secondary battery - Google Patents

Method for manufacturing PAN polymer electrolyte used for isolation membrane of secondary battery Download PDF

Info

Publication number
TWI237643B
TWI237643B TW091109990A TW91109990A TWI237643B TW I237643 B TWI237643 B TW I237643B TW 091109990 A TW091109990 A TW 091109990A TW 91109990 A TW91109990 A TW 91109990A TW I237643 B TWI237643 B TW I237643B
Authority
TW
Taiwan
Prior art keywords
electrolyte
polymer
pvdf
pan
secondary battery
Prior art date
Application number
TW091109990A
Other languages
Chinese (zh)
Inventor
Show-An Chen
Yuan-Jie Shiue
Ren-Jie Li
Bo-Sheng Wang
Original Assignee
Nat Science Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Science Council filed Critical Nat Science Council
Priority to TW091109990A priority Critical patent/TWI237643B/en
Application granted granted Critical
Publication of TWI237643B publication Critical patent/TWI237643B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention is a crosslinked colloid compound electrolysis protoplasmic membrane used for an isolated membrane between anode and cathode, which is composed of PAN polymer electrolyte membrane, PVdF polymer and liquid electrolyte. Wherein, crosslinked PAN polymer electrolyte is polymerized from AN monomer and crosslinked monomer with two PANs on the end; PVdF homopolymer is PVdF-co-HFP copolymer with 80% PVdF; and liquid electrolyte is nonaqueous solvent composed of solving metals of alkaline or alkaline earth metal. The present invention has characteristics of excellent conductivity and mechanical intensity and well paste property with anode and cathode board and industrial potential.

Description

1237643 案號 9Π09990 修正 五、發明說明彳1) 本發明係 材料中間隔離 膜係由交聯聚 質、聚偏二氟 ,兼具高離子 工及與極板貼 近年來電 筆記型電腦、 更輕更小,且 擁有。此種趨 氫電池以至鋰 量越來越大, 19 9 0 。鋰離子二次 LiNi02等結晶 使用多孔的PP 充滿於隔離膜 離子由正極活 由電解液之傳 晶格。放電機 鋰離子二 量密度為目前 化之潛力。但 全的問題,因 於二次 聯膠態 yacry 1 高分子 良機械 點’並 月異, 記事本 價,使 池工業 池。電 用之材 曰本成 為 L i Μ η 為石墨 作為隔 成離子 晶晶格 帶至負 機制相 向電容 電池之 態電解 次電池 指一種應用 膜構造的交 丙烯腈(P〇 1 乙烯(PVdF) 導電度、優 合性佳之特 子產品日新 手機、電子 價格趨於平 勢亦帶動電 離子二次電 而且電池使 年代初期, 電池之正極 粉末,負極 模或不織布 之孔隙中形 性物質之結 導將鋰離子 制則與充電 次電池具有 商品化二次 其使用的液 此經離子二 電池中,作 複合電解質 ο n i t r i 1 e , 、與液態電 強度、製程 且無電解液 可隨身攜帶 、數位式錄 得更多的消 之進步,由 池之體積越 料亦具環保 功的將鋰離 02、L i Μη204 或其他不規 離膜,非水 導電通路。 中移出進入 極並.進入負 反。 量,高電壓 冠,最具有 液會有泡漏 必須採用封 為正極與負極 膜,此電解質 PAN)膠態電解 解液組合而成 簡單、容易加 外漏之顧慮。 的電子商品如 放音機等不僅 費者可以輕鬆 鎳編電池、錄 來越小,電容 親和性。 子電池商品化 、L i C〇02、 則結晶的礙’ 系鋰鹽電解液 充電過程中鋰 電解液,再經 極活性物質之 之優點,故能 小型化、輕型 造成使用上安 裝緊密的金屬1237643 Case No. 9Π09990 Amendment V. Description of the invention 彳 1) The intermediate insulation film of the material of the present invention is made of cross-linked polymer and polyvinylidene fluoride, which has both high ion work and stick to the plate. Small and owned. Such hydrogen-producing batteries and even more and more lithium, 190.90%. Lithium ion secondary LiNi02 and other crystals Use porous PP to fill the separator. Ions pass from the positive electrode to the electrolyte through the crystal lattice. Discharger Lithium-ion binary density is the current potential. But the whole problem is due to the secondary colloidal yacry 1 polymer good mechanical point 'and the monthly changes, notepad prices make the industrial pool. The material used for electricity becomes Li Μ η. Graphite is used as the ion-separated ionic crystal lattice band to the negative mechanism. The state of the opposite capacitor battery. Electrolytic secondary battery refers to a kind of acrylonitrile (Polyethylene (PVdF)) with membrane structure. Special products with high degree of compatibility and good performance, such as the new mobile phones and the flattening of electronic prices, also drive the secondary charge of electric ions. In addition, in the early years, the positive powder of the battery, the negative mold of the battery, or the non-woven pores in the shape Lithium-ion battery and rechargeable secondary battery have the liquid used for the secondary use. This ion secondary battery is used as a composite electrolyte ο nitri 1 e, and liquid electric strength, process and no electrolyte can be carried around, digital Recorded more progress, the more the volume of the pool, the more environmentally friendly it will be lithium ion 02, Li Μ 204 or other irregular membranes, non-aqueous conductive pathways. Move out into the pole and enter the negative counter. Quantity , High voltage crown, the most fluid leakage will have to be sealed as a positive and negative membrane, this electrolyte PAN) gel electrolyte solution combination is simple and easy to add Missing concerns. The electronic products such as audio players can not only make it easier for consumers to record nickel batteries, the smaller the recording capacity, the better the capacitance. Commercialization of sub-batteries, Li C002, the obstacle to crystallization 'is a lithium salt electrolyte. Lithium electrolyte during the charging process, and then the advantages of extremely active materials, so it can be miniaturized and lightweight.

第7頁 1237643 案號 91109990 _Ά 曰 修正 五、發明說明(2) 、 外殼,此限制鋰離子二次電池小型化及薄型化之可能性, 故經高分子電池之觀念應運而生。 所謂鋰高分子電池就是將傳統鋰離子二次電池之隔離 膜以可吸納電解液的高分子電解質膜取代,使液態的電解 液被電解質膜吸收而不漏出。此外,藉高分子電解質膜之 黏著特性將正負極緊密接合使電池之組裝更加簡化,設計 亦更具多樣化。 8 0 年代初期,Armand 等人(U.S. Pat. Νο.4303748, 1 9 8 1 )提出以固態高分子薄膜取代液態電解液應用在電池 上的觀念。此類型高分子電解質由高分子與鋰鹽所組成, 稱為固態高分子電解質。當時所使用的高分子薄膜係以聚 氧乙烷(PEO)和聚氧丙烷(PPO)摻入鹼金族或鹼土族之電解 質鹽類的方式製備。雖然此固態高分子電解質膜具有相當 優異的機械強度,但其室溫導電度相當低,使得該電解質 並不具有應用於一般電池商品之潛力。固態高分子電解質 雖經多位研究人員之改進與改良卻仍然無法克服室溫導電 度過低的問題("Polymer Electrolytes",Fiona M.Gray, 1997, pages 37-44) o 為改善固態高分子電解質導電度不佳的問題,乃有在 高分子中加入塑化劑以提高電解質膜導電度之構想。此類 含有電解液之高分子電解質稱為膠態高分子電解質,有別 於固態高分子電解質。Chua等人(U.S. Pat. No.5240790, 1993)以PAN 高分子混入 r — 丁内酯(butyrolactone)與 鋰鹽形成導電度與液態電解液相近的電解質膜。但此電解Page 7 1237643 Case No. 91109990 _Ά Name Amendment V. Description of the Invention (2) The case, which limits the possibility of miniaturization and thinning of lithium ion secondary batteries, so the concept of polymer batteries came into being. The so-called lithium polymer battery is to replace the separator of the traditional lithium ion secondary battery with a polymer electrolyte membrane that can absorb the electrolyte, so that the liquid electrolyte is absorbed by the electrolyte membrane without leaking out. In addition, the positive and negative electrodes are tightly connected by the adhesive characteristics of the polymer electrolyte membrane, which simplifies the assembly of the battery and makes the design more diverse. In the early 1980s, Armand et al. (U.S. Pat. No. 4303748, 1 981) proposed the idea of replacing polymer electrolytes with liquid polymer electrolytes in batteries. This type of polymer electrolyte is composed of a polymer and a lithium salt, and is called a solid polymer electrolyte. The polymer film used at that time was prepared by incorporating polyethylene oxide (PEO) and polyoxypropane (PPO) into alkaline gold or alkaline earth electrolyte salts. Although this solid polymer electrolyte membrane has quite excellent mechanical strength, its room temperature conductivity is quite low, making this electrolyte not applicable to general battery products. Although solid polymer electrolytes have been improved and improved by many researchers, they still cannot overcome the problem of low conductivity at room temperature (" Polymer Electrolytes ", Fiona M. Gray, 1997, pages 37-44). The problem of poor conductivity of the molecular electrolyte is the idea of adding a plasticizer to the polymer to increase the conductivity of the electrolyte membrane. This kind of polymer electrolyte containing electrolyte is called colloidal polymer electrolyte, which is different from solid polymer electrolyte. Chua et al. (U.S. Pat. No. 5240790, 1993) mixed PAN polymer with r-butyrolactone and lithium salt to form an electrolyte membrane with conductivity similar to that of a liquid electrolyte. But this electrolysis

第8頁 1237643 五、發明說明 案號 91109990 (3) 年月曰_修正 質膜之機械強度不佳,長時間在5 0 °C以上會軟化,並不 符合實際上應用的需求。 美國Battery Engineering 公司Luying Sun 等人(U· S. Pa t. No. 5609974, 1997)提出以 PAN,丙烯酸 2-乙氧Page 8 1237643 V. Description of the invention Case No. 91109990 (3) Years and months _correction The mechanical strength of the plasma membrane is not good, and it will soften above 50 ° C for a long time, which does not meet the needs of practical applications. American Engineering Engineering Company Luying Sun et al. (U.S. Pat. No. 5609974, 1997) proposed PAN, acrylic acid 2-ethoxy

基乙_( 2_eth〇xyethyl acrylate),二甲基丙烯酸三(乙 二醇)醋(tri(ethylene glycol) dimethacrylate)三種單 體與電解液混合後加入偶氧雙異腈(A I B N )起始劑,再將上 述溶液塗佈成膜後加熱聚合形成具有化學交聯結構膠態電 解質膜,改善PAN電解質膜高溫軟化的缺點。但該電解質 膜的機械強度不佳,需以纖維狀填充物補強其機械強度。 此外a亥預+洛液黏度低不利於塗佈成膜,且形成的電解質 膜無法有效的與正負極板結合,使該電解質膜不易於電池 自動化生產。After mixing three monomers of ethyl ethoxylate (2_eth〇xyethyl acrylate) and tri (ethylene glycol) dimethacrylate with the electrolyte, add an oxybisisonitrile (AIBN) initiator, The solution is then applied to form a film and then heated and polymerized to form a colloidal electrolyte membrane with a chemically crosslinked structure, which improves the disadvantage of high temperature softening of the PAN electrolyte membrane. However, the mechanical strength of this electrolyte membrane is not good, and its mechanical strength needs to be reinforced with a fibrous filler. In addition, the low viscosity of OH ++ is not conducive to coating and film formation, and the formed electrolyte membrane cannot be effectively combined with the positive and negative electrode plates, making the electrolyte membrane difficult to be automated in battery production.

Bell Communications Research 公司 Gozdz 等人 (ϋ. S· Pat. No· 5418091; 5429891, 1995)提出一種以 聚偏一 l乙烯(PVdF)高分子為主體之多孔性膠態電解質膜 ,可以同時達到高導電度及高機械強度兩項要求。但是此 高分子電解膜在高溫下吸收電解液之能力會下降,而且制 膜過程複雜,不利於工業生產。 衣 曰本NEC 公司Amano 等人(U· S. Pat. ν〇· 6235433 2 0 0 1 )使用PVdF加入了丙烯醯(acryl0yl)系交聯膠熊解 質之預聚膠液’塗佈成膜後再加熱使預聚膠液聚合〜= ,此方式製備的電解質膜兼具PVdF電解知 度與丙稀醯膠態電解質之吸收電解液能力。'但‘稀酿‘,Bell Communications Research, Gozdz et al. (Ϋ.S. Pat. No. 5418091; 5429891, 1995) proposed a porous colloidal electrolyte membrane based on polyvinylidene (PVdF) polymer, which can achieve high conductivity at the same time. Requirements and high mechanical strength. However, the polymer electrolyte membrane's ability to absorb the electrolyte at high temperature will decrease, and the process of film formation is complicated, which is not conducive to industrial production. Yi Yueben NEC Company Amano et al. (U.S. Pat. Ν〇 · 6235433 2 0 0 1) used PVdF to add acrylic acryl (acryl0yl) cross-linked rubber degraded prepolymer glue 'coated to film The prepolymer glue solution is polymerized by heating ~ =. The electrolyte membrane prepared in this way has both PVdF electrolysis awareness and the ability of the acrylic gel colloid electrolyte to absorb the electrolyte. 'But ‘thin stuff’,

1237643 案號 91109990 A_η 曰 修正 五、發明說明(4) 分子之溶解度參數((5 )僅有9〜1 0,與一般鋰離子二次電 池常用的兩種高極性溶劑,碳酸乙烯酯(E C) 5 = 1 4. 7,碳 酸丙烯酯(P C ) (5 = 1 3 . 3相較,相差甚遠。因此該電解質膜 不能吸收多量的電解液,導電度因而較低,且經長時間使 用,電解液可能由電解質膜中被排出。 PAN高分子((5 =15.4)與EC及PC兩種溶劑有相近的溶 解度參數,以PAN高分子製作的電解質膜離子導電度可達4 X 1 0-3 S/cm以上,係目前膠態電解質中最高的(B. S c r 〇 s a t i , C h e m, Mater. V o 1. 5 3 8, page 6 , 1994)。 綜合上述習用技術,可歸納為下列缺點: 1 ·鋰離子二次電池使用的液態電解液會有洩漏之現象, 必須以緊密的金屬外殼加以封裝。 2 ·固態高分子電解質膜在室溫下導電度相當低。 3 ·膠態高分子電解質膜: (1 )機械強度差,高溫下易軟化 (2 )黏度低不利於塗佈成膜 (3) 高溫下吸收電解質的能力低 (4) 製膜過程複雜 (5 )與極板貼合性低 為解決上述問題,本發明乃提出一種膠態複合高分子 電解質膜’,係以交聯P A N膠態電解質為電解液之吸收體, 交聯PAN電解質以AN單體及具有兩個末端丙烯酸酯官能基 之交聯劑單體經共聚合而成。交聯劑單體兩個末端丙烯酸 酯官能基間以具有傳輸鋰離子功用並與電解液相容性佳的1237643 Case No. 91109990 A_η Revision V. Explanation of the invention (4) Molecular solubility parameter ((5) is only 9 ~ 10, which is the same as two kinds of highly polar solvents commonly used in general lithium ion secondary batteries, ethylene carbonate (EC) 5 = 1 4. 7, propylene carbonate (PC) (5 = 1 3.3. The difference is far away. Therefore, the electrolyte membrane cannot absorb a large amount of electrolyte, the conductivity is low, and after a long period of use, electrolysis The liquid may be discharged from the electrolyte membrane. PAN polymer ((5 = 15.4) has similar solubility parameters with the two solvents of EC and PC. The electrolyte membrane made of PAN polymer has an ion conductivity of 4 X 1 0-3 Above S / cm, it is the highest among the current colloidal electrolytes (B. S cr 〇sati, C hem, Mater. V o 1. 5 3 8, page 6, 1994). Based on the above conventional techniques, it can be summarized as the following shortcomings : 1 · The liquid electrolyte used in lithium ion secondary batteries will leak, and it must be sealed in a tight metal case. 2 · The solid polymer electrolyte membrane has relatively low conductivity at room temperature. 3 · Colloidal polymer Electrolyte membrane: (1) Poor mechanical strength, high temperature Softening (2) Low viscosity is not conducive to coating film formation (3) Low ability to absorb electrolytes at high temperature (4) Complex film forming process (5) Low adhesion to the plates To solve the above problems, the present invention proposes a glue State composite polymer electrolyte membrane 'is a cross-linked PAN colloidal electrolyte as the absorber of the electrolytic solution. The cross-linked PAN electrolyte is made by copolymerizing AN monomer and cross-linker monomer with two terminal acrylate functional groups. The cross-linking agent monomer has two end acrylate functional groups with a lithium ion transport function and good compatibility with the electrolyte

第10頁 1237643 案號 91109990 修正 五、發明說明(5) 乙二醇鏈段 力相當良好 入分子量5 〇% 以上的 )補強其機 膠態複合電 收於上述兩 (interpene 使用非水性 溶劑、内酉旨 屬鹽類而形 式(I )所示: 聯結,故此交聯膠態P A N電解質吸收電解液能 ,可以達到高分子主體重量之六倍以上。再加 〇 〇 〇以上之PVdF高分子均聚物或PVdF含量8 聚偏二氟乙稀-六氟丙烯共聚物(PVdF-co-HFP 械強度,製出兼具良好的機械強度及導電度之 解質膜,其製程簡單而深具工業化潛力。被吸 種高分子(PAN與PVdF)形成的互穿式網路 t r a t i n g n e t w 〇 r k, I P N )中之液·態電解液則是 溶劑:如環狀碳酸酯、非環狀碳酸酯、醯胺類 類溶劑、醚類溶劑等,溶解驗金族或驗土族金 成。交聯膠態PAN電解質之化學結構式如結構Page 10 1237643 Case No. 91109990 Amendment V. Description of the invention (5) The ethylene glycol segment force is quite good and the molecular weight is more than 50%) to reinforce its organic colloidal composite electricity received in the above two (interpene uses a non-aqueous solvent, internal The purpose is a salt and the form (I) shows: connection, so the cross-linked colloidal PAN electrolyte can absorb the electrolyte, which can reach more than six times the weight of the polymer body. Add more than 1,000 PVdF polymer homopolymerization Or PVdF content 8 Polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-co-HFP mechanical strength, to produce a decomposed film with good mechanical strength and electrical conductivity, the process is simple and has great industrial potential The liquid and state electrolytes in the interpenetrating network tratingnetw rk (IPN) formed by the adsorbed polymers (PAN and PVdF) are solvents: such as cyclic carbonates, non-cyclic carbonates, amidines Solvents, ether solvents, etc., dissolve gold test group or soil test group. The chemical structural formula of the cross-linked colloidal PAN electrolyte is as follows:

結構式⑴ (其中,R :為1〜4個碳的烴基,X=1〜1 0) 藉由本發明可以克服前文中所舉出之習用技術之各項Structural formula 其中 (wherein R: a hydrocarbon group of 1 to 4 carbons, X = 1 to 1 0) With the present invention, each of the conventional techniques listed in the foregoing can be overcome

第11頁 1237643 案號 91109990 ___η 曰 修正 五、發明說明(6) 缺點,詳細說明如下: L i Μη〇0, 、L i Cο0‘ 二次電池之正極材料為L i Μ η 0$ L i N i 02等;負極材料為鋰金屬、鋰合金、鋰離子嵌入物質 ,其中,鋰離子嵌入物質係為石墨、不規則結晶的碳材。 有機二次電池之導電高分子正極活性物質係為:摻雜態或 是非摻雜態的有機硫聚合物(0 r g a η 〇 s u 1 f u r、Page 111237643 Case No. 91109990 ___ η Amendment V. Description of Invention (6) Disadvantages are described in detail as follows: L i Μη〇0,, L i Cο0 'The positive electrode material of the secondary battery is L i Μ η 0 $ L i N i 02, etc .; the negative electrode material is lithium metal, lithium alloy, lithium ion intercalating substance, among which the lithium ion intercalating substance is graphite, irregularly crystalline carbon material. The conductive polymer positive electrode active materials of organic secondary batteries are: organic sulfur polymers (0 r g a η 〇 s u 1 f u r,

Organ〇sulfide Polymer ) 、 ?炎苯胺(polyaniline ) 、 ? 炎 11比洛(P 〇 1 y p y r r o 1 e )等,乃由化學聚合、電化學法聚合 或是在導電碳黑或石墨表面以化學法聚合成的導電高分子 -導電碳黑複合體。以上所述之正、負極材料均為粉末狀 ,因此製作電極極板時需藉由黏結劑將活性物質粉末黏結 成膜,常用黏結劑為PVdF、聚四氯乙烯(PTFE)等聚乙烯氟 化物。本發明複合膠態高分子電解質膜中含有P V d F高分子 與聚乙烯氟化物親和性良好,當預聚膠液塗佈於電極極板 上時兩者之高分子鏈將在界面形成糾纏使電解質膜與極板 具有良好的界面接著而緊密結合,此接著面不會因為浸泡 電解液而分離。 一般鋰離子電池之隔離膜因不具與電極接著良好的特 性,故需以金屬外殼封裝之外壓以幫助電極與隔離膜之密 合。本發明中的複合高分子電解質膜因為本身即可與電極 極板緊密接合,且電解液被P A N交聯高分子吸收於電解質 膜中不外漏,可以鋁箔袋封裝成卡片形電池,大幅降低電 池重量及體積。 對於具實用價值的高分子電解質膜而言,高度吸收電Organ〇sulfide Polymer),? Aniline (polyaniline),? Yan 11 Billow (P 0 1 y p y r r o 1 e) is a conductive polymer-conductive carbon black composite formed by chemical polymerization, electrochemical polymerization, or chemical polymerization on the surface of conductive carbon black or graphite. The above-mentioned positive and negative materials are powdery, so when making electrode plates, the active material powder needs to be bonded into a film by a binder. Common binders are polyvinyl fluorides such as PVdF and polytetrachloroethylene (PTFE). . The composite colloidal polymer electrolyte membrane of the present invention contains a PV d F polymer having good affinity with polyethylene fluoride. When the prepolymer glue is coated on the electrode electrode plate, the polymer chains of the two will form entanglement at the interface. The electrolyte membrane and the electrode plate have a good interface adhesion, and this adhesion surface will not be separated by immersion in the electrolyte. Generally, the separator of lithium-ion batteries does not have good characteristics of adhering to the electrodes. Therefore, it is necessary to use a metal case to encapsulate the external pressure to help the electrodes and the separator adhere to each other. The composite polymer electrolyte membrane in the present invention can be tightly bonded to the electrode electrode plate itself, and the electrolyte is absorbed by the PAN cross-linked polymer in the electrolyte membrane without leaking. The aluminum foil bag can be packaged into a card-shaped battery, which greatly reduces the battery. Weight and volume. For polymer electrolyte membranes with practical value, highly absorbed electricity

第12頁 1237643 案號 91109990 修正 五、發明說明(7) 解液能力,良 特性都是不可 並防止電解液 的加工特性; 簡化,降低電 大部分被提出 一項或前兩項 解質膜則能同 及PVdF高分子 與電極活性物 與電極極板間 到具有容易製 的特點。 固態南分 oxide),例如 屬鹽所組成(D Polymer, 14, Po1ymer . J· 7 成螺旋狀的高 成配位錯化合 電解質之導電 ,陽離子可與 並透過鏈段之 有導電性(G . 好的機械性質,及與極板間良好的界面接著 或缺的。高度吸收電解液能力可提高導電度 外漏;良好的機械強度使電解質膜具有優良 與電極間優良的界面接著讓電池製作及封裝 池生產成本,並使電池之設計更具靈活性。 的高分子電解質膜僅能滿足三種特性中之第 ,而很少能兼具三項特性的。而本發明之電 時具有P A N高分子優秀的電解液吸收能力, 之優良機械強度,並藉由電解質膜中的PVdF 質黏結劑聚乙烯氟化物之同質性使電解質膜 緊密結合。以上的特性可使在生產製造上達 備、封裝製程簡單、電池外觀設計更加靈活 子電解質一般由環氧烧基(polyalkylene 聚氧乙烷(PE0)、聚氧丙烷(PP0)與各類鹼金 .E. Fenton, J. M. Parker, P. V. Wright, 589, 1973; P. V. Wright, Br. ,319, 1 975 )。純PEO係一種結構規則整齊 分子,結晶度可達6 6 % ,當其與鹼金屬鹽形 物時,結晶度可以提高至7 0 % 。固態高分子 性依陽離子在高分子非結晶區之移動而達成 數個-CH2CH20-(E0)鏈段之氧原子交互作用, 螺動運動而移動,而使固態高分子電解質具 Perterson, P. Jacobsson, L. Μ. Torell,Page 121237643 Case No. 91109990 Amendment V. Description of the invention (7) The deliquescence ability and good characteristics are the processing characteristics of the electrolyte which can not prevent the electrolyte; simplify and reduce the electricity. It is compatible with PVdF polymer, electrode active material and electrode plate, so it has the characteristics of easy fabrication. The solid south oxide), for example, is composed of salt (D Polymer, 14, Po1ymer. J. 7) The conductivity of the helical high-complex dislocation compound electrolyte, and the cation can conduct electricity through and through the segment (G. Good mechanical properties, and good or bad interface with the electrode plate. High ability to absorb the electrolyte can improve conductivity leakage; good mechanical strength makes the electrolyte membrane have an excellent interface with the electrode. The production cost of the packaging pool makes the design of the battery more flexible. The polymer electrolyte membrane can only meet the first of the three characteristics, and rarely can have all three characteristics. The electricity of the present invention has a PAN polymer. Excellent electrolyte absorption capacity, excellent mechanical strength, and the close bonding of the electrolyte membrane by the homogeneity of the PVdF-based adhesive polyethylene fluoride in the electrolyte membrane. The above characteristics can be achieved in manufacturing and the packaging process is simple 2. The appearance design of the battery is more flexible. The electrolyte is generally composed of polyalkylene polyoxyethylene (PE0), polyoxypropane (PP0) and various basic gold. E. Fento n, JM Parker, PV Wright, 589, 1973; PV Wright, Br., 319, 1 975). Pure PEO is a regular and regular molecule with a crystallinity of 66%. When it is in the form of an alkali metal salt, The degree of crystallinity can be increased to 70%. The solid polymerizability depends on the movement of cations in the polymer amorphous region to achieve several -CH2CH20- (E0) segments of oxygen atoms interacting with each other, and the screw moves to move, so that Solid polymer electrolyte with Perterson, P. Jacobsson, L. Μ. Torell,

第13頁 1237643 案號 91109990 曰 修正 五、發明說明(8)Page 13 1237643 Case number 91109990 Amendment V. Description of invention (8)

Electrochim. Acta, 37, 1495, 1992)。但此種固態高 分子電解質之導電度不高,僅約10—8 S/cm,在100 °C左右 才接近有機電解液之導電度1 〇-3 S / cm,此類固態高分子電 解質尚未有實際的應用實例。既然離子係經由在非結晶區 内的移動予以導電,如何降低高分子結晶度即成為各方研 究的重點。 膠態高分子電解質因其在高分子主體吸收電解質液, 比固態高分子電解質有較高的導電度。又因為吸收電解質 液之故,柔軟的膠態高分子電解質比質地較硬的固態高分 子電解質對正、負極電極有更佳的貼合性,介面電阻亦比 較小。但膠態高分子電解質亦因吸收電解質液,致使其尺 寸安定性與機械強度相對的降低,於高溫或壓力下,電解 質容易軟化並導致電池之短路。 聚丙烯腈(PAN)系統膠態電解質係廣為研究的膠態電 解質系統之一。由於PAN高分子具有相當大的極性,其與 一般常用的高極性非水溶劑電解液均有相當良好的相容性 ,故PAN膠態電解質之導電性高。一般的PAN系電解液之製 作係將PAN高分子(分子量介於10, 000-1,000,000)溶於大 量的液態電解液,加入添加成分加熱攪拌均勻後,趁熱將 流動態PAN溶液塗佈成膜,冷卻後的PAN高分子膜呈現膠態 ,此類膠態電解質會因為在高溫或外力長時間作用而變形 ,用作電池隔離膜使用時有其安全性上的問題。 就高分子電池之應用觀點而言,固態高分子電解質與 膠態高分子電解質分別各有其機械強度與導電度方面之優Electrochim. Acta, 37, 1495, 1992). However, the conductivity of this solid polymer electrolyte is not high, only about 10-8 S / cm, and it is close to the conductivity of the organic electrolyte at about 100 ° C, which is about 10-3 S / cm. There are practical application examples. Since the ionic system conducts electricity by moving in the amorphous region, how to reduce the crystallinity of polymers has become the focus of research. The colloidal polymer electrolyte has higher conductivity than the solid polymer electrolyte because it absorbs the electrolyte liquid in the polymer body. Because of the absorption of the electrolyte liquid, the soft colloidal polymer electrolyte has better adhesion to the positive and negative electrodes than the solid polymer electrolyte with a harder texture, and the interface resistance is also smaller. However, the colloidal polymer electrolyte also absorbs the electrolyte fluid, which causes its size stability and mechanical strength to be relatively reduced. At high temperatures or pressures, the electrolyte is likely to soften and cause short circuits in the battery. The polyacrylonitrile (PAN) system colloidal electrolyte system is one of the most widely studied colloidal electrolyte systems. Because the PAN polymer has a relatively large polarity, it has a fairly good compatibility with commonly used high-polarity non-aqueous solvent electrolytes, so the PAN colloidal electrolyte has high conductivity. The general production of PAN-based electrolyte is to dissolve the PAN polymer (molecular weight between 10,000-1,000,000) in a large amount of liquid electrolyte, add the added ingredients, heat and stir well, and apply the flow PAN solution while it is hot. After forming the film, the cooled PAN polymer film is in a colloidal state. Such colloidal electrolytes will be deformed due to high temperature or external force for a long time, and they have safety problems when used as battery isolation films. From the perspective of the application of polymer batteries, solid polymer electrolytes and colloidal polymer electrolytes each have their excellent mechanical strength and electrical conductivity.

第14頁 1237643 __案號 91109990 ____ 五、發明說明(9) -§----- 缺點,而適用於高分子電地 者之間取得一平衡點。如在,=的高分子電解質必須在兩 高分子電解質之主要結構,巧分子主鏈上分別具有此兩類 此兩類電解質,即高機械強3此f型高分子電解質可兼具 本發明所提出膠態複合=與咼導電度之優點。 高機械強度,可應用於薄製巧分子電解質具有高導電度與 次電池,尤指鋰高分子二次二大電容量、高輸出密度之二 。 免池使用的高分子膠態電解質 本發明之高分子膠態電# 分子主體與非水性電解質、纟且成貝主要由具有交聯結構之高 交聯結構之高分子可緩ώ σσ _ 入過氧化物為起始齊卜以加=:=聯劑單體混合,加 〜 +目古彳卜與一聯处德i熱或光誘導方式共聚合合成而 付女ί ^ 3 Ϊ構^分子較不具有化學交聯結構高 分子有較尚^ ^女=性,以及更佳的機械強度。 將另一種父聯南分子,例如聚偏二氯乙烯(pvdF)、聚 環氧乙烧(PEO)、聚苯乙烯(ps)等,混入上述的單體與交 聯劑單體混合物中’將混合的膠態液體塗佈後再共聚合成 膜,可以形成具有互牙式網狀結構,如此結合不同高分子 特性,可達到進一步提高複合高分子之機械強度。 本發明採用兩個末端具有雙鏈、中間具有-ch2ch2o-鏈 段之交聯劑單體,例如:二曱基丙烯酸乙二醇酯 (ethylene glycol dimethacrylate, EGD),如結構式 (II)所示;或二曱基丙烯酸三甘醇酯(triethylene glycol dimethacrylate, TGD),如結構式(III)所示。選Page 14 1237643 __Case No. 91109990 ____ V. Description of the invention (9) -§ ----- Disadvantages, and for those who are suitable for polymer electric ground to achieve a balance. For example, the polymer electrolyte of = must be in the main structure of the two polymer electrolytes, and the two types of these two electrolytes are on the main chain of the molecule, that is, high mechanical strength. The f-type polymer electrolyte can have both of the present invention. The advantages of colloidal recombination and conductivity are proposed. High mechanical strength, which can be applied to thin-molecule molecular electrolytes with high conductivity and secondary batteries, especially lithium polymer secondary batteries with large capacity and high output density. Polymer-free colloidal electrolyte used in pool-free Polymer-based colloidal electrolyte of the present invention # The molecular body and the non-aqueous electrolyte, and the shellfish are mainly made of polymers with a highly cross-linked structure with a cross-linked structure. Σσ _ The oxide is the starting zibu and is mixed with the addition of =: = crosslinking agent monomers, plus ~ + mesh guobu and a combination of thermal or light-induced co-polymerization and synthesis. Macromolecules without chemical cross-linking structure have better properties and better mechanical strength. Mix another parent molecule, such as polyvinylidene chloride (pvdF), polyethylene oxide (PEO), polystyrene (ps), etc., into the above monomer and crosslinker monomer mixture. After the mixed colloidal liquid is coated and then copolymerized to form a film, a mutual tooth network structure can be formed. By combining different polymer characteristics, the mechanical strength of the composite polymer can be further improved. In the present invention, a crosslinker monomer having two chains at both ends and a -ch2ch2o- segment in the middle is used, for example: ethylene glycol dimethacrylate (EGD), as shown in structural formula (II) Or triethylene glycol dimethacrylate (TGD), as shown in structural formula (III). selected

第15頁 1237643 案號 91109990 #:_ 修正 五、發明說明(10) 擇中間具有E 0鏈段之交聯劑單體,係因E 0鏈段上氧原子之 未共用電子對可與氧離子形成配位鍵,可增加鹼金屬鹽 正、負離子之解離度。 〇 h3cvPage 15 1237643 Case No. 91109990 #: _ Amendment V. Explanation of the invention (10) The crosslinker monomer with the E 0 segment in the middle is selected because the unshared electron pair of the oxygen atom on the E 0 segment can interact with the oxygen ion The formation of coordination bonds can increase the dissociation degree of the positive and negative ions of the alkali metal salt. 〇 h3cv

ch2 〇 ch2 〇ch2 〇 ch2 〇

CH, 結構式(II) 〇CH, structural formula (II).

非水性電解質溶液由非水性有機溶劑與金屬鹽所構成 ,其可用作塑化劑。非水性有機溶劑係指具有高介電常數 及偶極距足以解離鹽類之有機溶劑,可為碳酸乙烯酯(EC) 、碳酸丙烯酯(P C )、碳酸丁烯酯(BC )、碳酸二甲基酯(DMC )、碳酸二乙基酯(D E C )等環狀與非環狀碳酸酯或其他有機 溶劑之混合液。其他有機溶劑可為二曱基乙烷(D Μ Ε )、二 曱基甲醯胺(DMF)、二甲亞楓(DMSO)、Τ - 丁内酯、Ν-甲基 四氫11比洛酮、醋類、内醋及低分子量醚等。溶解於非水溶Non-aqueous electrolyte solution is composed of non-aqueous organic solvent and metal salt, which can be used as plasticizer. Non-aqueous organic solvent refers to an organic solvent with a high dielectric constant and a dipole distance sufficient to dissociate salts. It can be ethylene carbonate (EC), propylene carbonate (PC), butene carbonate (BC), dimethyl carbonate A mixed solution of cyclic and acyclic carbonates such as DMC, diethyl carbonate (DEC) and other organic solvents. Other organic solvents can be dimethyl ethane (DME), dimethyl formamide (DMF), dimethyl sulfene (DMSO), T-butyrolactone, N-methyltetrahydro 11 pylonone , Vinegar, internal vinegar and low molecular weight ether. Soluble in non-water soluble

第16頁 1237643 案號 91109990 ^____η 修正 五、發明說明(11) 液電解質用作離子 LiPF6、LiSbF6、Li Li AsF6、LiCF3S03 2)3C > Li(C2F5S02)3( 物,此類電解質濃 本發明之向分 生產。可以將非水 應時加入,以 個 分成兩 電解質 内進行 使 的操作 子膠態 均為1 Μ 以上, 示其非 綜 由是, 池中, 合電解 、製程 為 態複合 步驟 溶液 吸收 用於 電壓 電解 ,不 依大 常適 合前 本發 作為 質膜 簡單 達到 電解 完成, ,再將 步驟。 電池之 範圍, 質,以 同鋰鹽 小排列 合應用 述,本 明之主 正極與 ,此電 、容易 上述目 質膜, 導體之金屬鹽為·· LiBF4、LiC104、 I、LiBr、LiCl、LiA1C14、LiSCN、 Li (CF3S02)2N、Li (C2F5S02)2N、Li(CF3S〇 :等,包含鋰鹽在内可以導電的鹽類化合 度通常為0. 2〜0. 3M。 子膠態電解質的製程簡單,適合工業化 性電解質溶液為單體之溶劑,於聚合反 步驟完成高分子膠態電解質之製備:或 即首先分別製備交聯高分子膜與非水性 交聯高分子膜浸潰於非水性電解質溶液 電解質不論為液態或膠態,均須有寬廣 以保障電池性質之穩定。本發明之高分 交聯PAN膠態電解質為例,其吸收濃度 電解液之分解電壓均在5V(vs. Li/Li + ) 為LiPF6 >LiBF4 >LiCF3S03 >LiC104,顯 於鋰高分子二次電池之應用。 發明確實克服了習用技術的各項缺點。 要目的,即在於提供一種應用於二次電 負極材料中間隔離膜構造的交聯膠態複 解質膜具高離子導電度、優良機械強度 加工及與極板貼合性佳之特點。 的,本發明是這樣實現的:一種交聯膠 係由交聯聚丙烯腈(PAN)膠態電解質、Page 16 1237643 Case No. 91109990 ^ ____ η Revision V. Description of the invention (11) Liquid electrolyte used as ions LiPF6, LiSbF6, Li Li AsF6, LiCF3S03 2) 3C > Li (C2F5S02) 3 Non-aqueous production. Non-aqueous can be added at the same time. The colloids of the operators are divided into two electrolytes so that the colloids are more than 1M, which shows that the non-comprehensive reason is that in the pool, the combined electrolysis and the process are state composite steps. Solution absorption is used for voltage electrolysis, and it is not suitable for the current hair as a plasma membrane to reach the completion of electrolysis, and then the steps. The battery range and quality are described in a small arrangement with the lithium salt. Electrical, easy to the above-mentioned membrane, the metal salt of the conductor is: LiBF4, LiC104, I, LiBr, LiCl, LiA1C14, LiSCN, Li (CF3S02) 2N, Li (C2F5S02) 2N, Li (CF3S〇: etc., including lithium The degree of combination of salts that can conduct electricity within the salt is usually 0.2 to 0.3 M. The process of the sub-colloid electrolyte is simple, suitable for industrialized electrolyte solutions as monomer solvents, and the polymer is completed in the reverse polymerization step. State electrolyte preparation: Or firstly prepare the crosslinked polymer film and non-aqueous crosslinked polymer film to be immersed in the non-aqueous electrolyte solution. The electrolyte, whether liquid or colloidal, must be broad to ensure the stability of battery properties. The invention of the high-segment cross-linked PAN colloidal electrolyte is taken as an example. The decomposition voltage of the electrolyte at the absorption concentration is 5V (vs. Li / Li +). The application of secondary batteries. The invention does overcome all the shortcomings of conventional technology. The main purpose is to provide a crosslinked colloidal metathesis membrane used in the construction of an intermediate separator for secondary electrical negative electrode materials. The characteristics of mechanical strength processing and good adhesion to the electrode plate. The invention is realized as follows: a crosslinked rubber is composed of a crosslinked polyacrylonitrile (PAN) gel electrolyte,

第17頁 1237643 案號 91109990 曰 修正 五、發明說明(12) 聚偏二氟乙烯(Ρ V d F )高分子、與液態電解液組合而成,其 中,交聯P A N電解質以A N單體及具有兩個末端丙烯酸酯官 能基之交聯劑單體經共聚合而成;聚偏二氟乙烯(PVdF)係 指為分子量5 0 0 0以上之高分子均聚物,或可為PVdF含 量8 0 %以上的聚偏二氟乙烯-六氟丙烯共聚物;液態電 解液則是使用非水性溶劑:如環狀碳酸酯、非環狀碳酸 酯、醯胺類溶劑、内酯類溶劑、醚類溶劑等,溶解鹼金族 或鹼土族金屬鹽類而形成。電解液含量為電解質膜中高分 子基材重量之1 0 %〜2 0 0 % ,而交聯膠態複合高分子 S / c m。另外,複合高分 電解質膜導電度高於lx 10 子電解質膜可加入2 0%以下之聚環氧乙烷(PEO)軟鏈 高分子或多孔性的無機填充物,增加其機械強度。 為使 貴審查委員進一步了解本發明之結構特徵及功 效,茲藉由下述具體之實施例,並配合所附之圖式,對本 發明做一詳細之說明,說明如后(實施例中所使用的AN及 交聯劑單體均事先經過標準純化步驟處理以除去安定劑) 實施例一、交聯聚丙烯腈高分子膜(未含電解液)之製備 取0.5g PEO加入4g DMF、6g AN單體及2g TGD中,以 低於5 0 °C之溫度攪拌約6小時至均勻混合溶液後於室溫下 冷卻備用。取O.lg (Benzoly peroxide,ΒΡ0)溶解於3g A N中形成透明溶液後,再加入前述混合溶液中於室溫下緩 緩攪拌呈均勻膠態溶液。最後將所得的膠態溶液倒入厚度Page 17 1237643 Case No. 91109990 Amendment V. Description of the Invention (12) Polyvinylidene fluoride (PV V d F) polymer is combined with liquid electrolyte, in which the crosslinked PAN electrolyte is made of AN monomer and has Cross-linker monomers of two terminal acrylate functional groups are copolymerized; polyvinylidene fluoride (PVdF) refers to a polymer homopolymer with a molecular weight of 5,000 or more, or a PVdF content of 80 % Polyvinylidene fluoride-hexafluoropropylene copolymer; liquid electrolyte uses non-aqueous solvents: such as cyclic carbonates, non-cyclic carbonates, ammonium solvents, lactone solvents, ether solvents It is formed by dissolving alkali metal or alkaline earth metal salts. The content of the electrolyte is 10% to 200% of the weight of the high molecular weight substrate in the electrolyte membrane, and the crosslinked colloidal composite polymer S / cm. In addition, the composite high-grade electrolyte membrane has a conductivity higher than lx 10 sub-electrolyte membranes. Polyethylene oxide (PEO) soft chain polymers or porous inorganic fillers can be added below 20% to increase its mechanical strength. In order to make your reviewers better understand the structural features and effects of the present invention, the following specific embodiments are used in conjunction with the accompanying drawings to make a detailed description of the present invention, which will be described later (used in the examples). The AN and cross-linker monomers were all treated with standard purification steps in advance to remove stabilizers. Example 1. Preparation of cross-linked polyacrylonitrile polymer membrane (without electrolyte). Take 0.5 g of PEO and add 4 g of DMF and 6 g of AN. In the monomer and 2 g of TGD, stir at a temperature of less than 50 ° C for about 6 hours until the solution is uniformly mixed, and then cool it at room temperature for use. After O.lg (Benzoly peroxide, BPO) was dissolved in 3 g of A N to form a transparent solution, it was added to the aforementioned mixed solution and slowly stirred at room temperature to form a homogeneous colloidal solution. Finally pour the resulting colloidal solution into the thickness

第18頁 1237643 _ 案號91109990_年月日 修正 五、發明說明(13) 約1 5 0〜2 5 0 // m之模具中,封蓋後送入烘箱中以6 〇 °c加熱 聚合1 2小時。反應完成後打開模具即可得厚約1 5 〇〜2 5 0 H m之交聯聚丙烯腈高分子電解質乾膜。 實施例二、交聯聚丙烯腈高分子電解質膜(含電解液)之製 備取1.5g PEO溶解於20g 1M LiC104/EC/PC溶液中,加 熱攪拌至1 0 0 °C,呈現均勻混合溶液後,於室溫下冷卻備 用。取0.15g BPO加入3.5g AN及lg TGD在室溫下攪拌均勻 後倒入前述混合溶液中,在室溫下攪拌至呈半透明膠態溶 液。將膠態溶液倒入厚度約1 5 0〜2 5 0 // m之模具中,封蓋 後送入烘箱中,在6 0 °C溫度加熱聚合1 2小時。反應完成後參 即可得厚度約150〜250 //m之交聯PAN高分子電解質膜。 實施例三、交聯膠態PVdF-PAN複合高分子電解質膜之製備 含有AN單體之電解質膠態溶液製作方法如實施例二所 述。將3g PVdF溶於10g丙酮中,攪拌加熱至50°C ,待均勻 溶解後冷卻至室溫。加入不同重量比之電解質膠態溶液後 在室溫下緩緩攪拌至均勻膠態溶液。將所得的膠態溶液以 刮刀(4 0 0 μ m )在模版上刮成均勻薄膜。將薄膜置於通有氮 氣的乾燥箱中1 2小時,除去大部分的丙酮後可得一半透明 的薄膜。以玻璃封蓋後置於烘箱中,在6 0 t的溫度加熱聚 合1 2小時。反應完成後即可得厚度約1 5 0〜2 5 0 # m之交聯丨® PVdF -PAN複合電解質膜。Page 18 1237643 _ Case No. 91109990_ Amendment 5 、 Explanation of invention (13) In a mold of about 15 0 ~ 2 5 0 // m, after capping, it is sent to an oven to heat and polymerize at 60 ° C. 1 2 hours. After the reaction is completed, the mold can be opened to obtain a crosslinked polyacrylonitrile polymer electrolyte dry film having a thickness of about 150 to 250 mm. Example 2: Preparation of cross-linked polyacrylonitrile polymer electrolyte membrane (containing electrolyte solution) 1.5 g of PEO was dissolved in 20 g of 1M LiC104 / EC / PC solution, heated and stirred to 100 ° C, and a uniformly mixed solution was obtained. , Cool at room temperature for future use. Take 0.15g of BPO, add 3.5g of AN and lg TGD and stir at room temperature, then pour into the above mixed solution, and stir at room temperature until a translucent colloidal solution is obtained. The colloidal solution was poured into a mold having a thickness of about 150 to 2500 // m, sealed and sent to an oven, and heated and polymerized at 60 ° C for 12 hours. After the reaction is completed, cross-linked PAN polymer electrolyte membrane with a thickness of about 150 to 250 // m can be obtained. Embodiment 3 Preparation of Crosslinked Colloidal PVdF-PAN Composite Polymer Electrolyte Membrane The manufacturing method of electrolyte colloidal solution containing AN monomer is as described in Embodiment 2. Dissolve 3g of PVdF in 10g of acetone, heat to 50 ° C with stirring, and cool to room temperature after dissolving uniformly. After adding electrolyte colloidal solutions of different weight ratios, stir slowly at room temperature until a homogeneous colloidal solution is obtained. The obtained colloidal solution was scraped on the stencil with a spatula (400 μm) to form a uniform film. The film was placed in a nitrogen-filled drying box for 12 hours. After removing most of the acetone, a semi-transparent film was obtained. Covered with glass and placed in an oven, heated and polymerized at 60 t for 12 hours. After the reaction is completed, a crosslinked 丨 ® PVdF-PAN composite electrolyte membrane with a thickness of about 15 0 to 2 50 # m can be obtained.

第19頁 1237643 案號 91109990 曰 修正 五、發明說明(14) 實施例四、交聯PAN電解質膜與未交聯PAN粉末之TGA分析 將實施例一交聯P A N電解質膜與未交聯P A N粉末分別進 行熱穩定性分析,未交聯的P A N粉末在約3 0 0 °C左右開始分 解,而交聯的P A N電解質乾膜則在約3 6 0〜3 7 0 °C時始有分解 反應發生,此乃因交聯結構之形成使交聯PAN電解質膜具 有比較好的熱穩定性。 實施例五、膨潤測試 分別以PAN之良溶劑二曱基甲醯胺(DMF)對交聯PAN 電解質膜,以及PVdF之良溶劑丙酮對交聯膠態PVdF-PAN複 合高分子電解質膜加熱進行膨潤測試,結果如表1所示: 表1 電解質膜種類 使用落钥 觀察結果 PAN電解質膜(未 交聯) 二甲基〒鏖胺 完全落解 交聯PAN電解質膜 (實施例一) 二f基甲醢胺 體積澎脹但不溶解 交聨¥電解質膜 (實施锕二) 二甲基T蘊胺 體積彰脹但不落解 PVdF多孔膜(未交 聯) 丙酮 完全溶解 PVdF-PAN複合高 分子電解質膜(實 施例三) 丙酮 體積膨脹但不溶解 所製備的電解質 良溶劑雖可擴散入實施例Page 19 1237643 Case No. 91109990 Amendment V. Description of the invention (14) Example 4 TGA analysis of crosslinked PAN electrolyte membrane and uncrosslinked PAN powder Example 1 Crosslinked PAN electrolyte membrane and uncrosslinked PAN powder respectively The thermal stability analysis was performed. The uncrosslinked PAN powder began to decompose at about 300 ° C, while the crosslinked PAN electrolyte dry film began to decompose at about 360 to 37 ° C. This is because the formation of a crosslinked structure makes the crosslinked PAN electrolyte membrane have relatively good thermal stability. Example 5 Swelling test The cross-linked colloidal PVdF-PAN composite polymer electrolyte membrane was swelled with diphenylmethylformamide (DMF), a good solvent for PAN, and acetone, a good solvent for PVdF, respectively. The test results are shown in Table 1. Table 1 Types of electrolyte membranes Observation results using PAN electrolyte membrane (uncrosslinked) Dimethylammonium chloride completely dissociates and crosslinked PAN electrolyte membrane (Example 1) Volume of amine swells but does not dissolve. ¥ Electrolyte membrane (Implementation II) Dimethyl T amine swells but does not dissolve PVdF porous membrane (uncrosslinked). Acetone completely dissolves PVdF-PAN composite polymer electrolyte membrane (Example 3) Although the acetone expands by volume but does not dissolve, the prepared electrolyte good solvent can diffuse into the example

第20頁 1237643 案號 91109990 曰 修正 五、發明說明(15) 膜之内部,但由於高分子鏈藉由化學交聯彼此相聯,故溶 劑無法將已經膨潤的分子鏈進一步分離溶解。 實施例六、以交聯PAN電解質膜吸收不同濃度Li C104/EC/PC 電解質溶液我們以實施例一中的電解質膜吸收不同濃度之 LiC104/EC/PC電解溶液,表面擦乾後秤量交聯PAN電解質膜 所吸收的電解質溶液重量,並且測量其導電度,所得的結 果整理於表2中。由於PAN高分子具有相當大的極性,可 以吸收大量的電解液,所吸收的電解液量愈多導電度也愈 高0 表2 所使用的電解液濃 交聯PAN電解質膜 交聯PAN電解質膜 度(M LiC104 in 之電解液吸收量( 之導電度(1〇3 EC/PC (1/1)) 乾膜重量的倍數) S/cm) 0.5 6.35 2.15 1 6.11 2.02 1.5 5.4Q 1.51 2 5.61 1.3 實施例七、交聯PAN電解質膜之電化學穩定性 將實施例一的交聯PAN電解質膜吸收不同鹽類之電解 液:LiC104 ( 1 1 ) 、LiCF3S03 ( 1 2 ) 、LiBF4 ( 1 3 )、L i PF6 ( 1 4 )後,量測其分解電壓所得的結果如第1 圖所示,實驗條件為:吸收不同電解液的交聯PAN電解質 膜分解電壓v . s L i + / L i ,工作電極為不鏽鋼片,對應電極Page 20 1237643 Case No. 91109990 Amendment V. Description of the invention (15) Inside the membrane, but because the polymer chains are linked to each other by chemical cross-linking, the solvent cannot further dissolve and dissolve the swollen molecular chains. Example 6. Absorbing Li C104 / EC / PC electrolyte solution of different concentration with cross-linked PAN electrolyte membrane. We use the electrolyte membrane of Example 1 to absorb LiC104 / EC / PC electrolytic solution with different concentration. After the surface is dried, weigh the cross-linked PAN. The weight of the electrolyte solution absorbed by the electrolyte membrane, and its conductivity was measured. The results obtained are summarized in Table 2. Because the PAN polymer has a relatively large polarity, it can absorb a large amount of electrolyte, and the more the amount of electrolyte absorbed, the higher the conductivity. Table 2 The electrolyte used is strongly crosslinked PAN electrolyte membrane Crosslinked PAN electrolyte membrane (M LiC104 in electrolyte absorption (conductivity (10.3 EC / PC (1/1)) multiples of dry film weight) S / cm) 0.5 6.35 2.15 1 6.11 2.02 1.5 5.4Q 1.51 2 5.61 1.3 Implementation Example 7: Electrochemical stability of crosslinked PAN electrolyte membrane The crosslinked PAN electrolyte membrane of Example 1 absorbed electrolytes of different salts: LiC104 (1 1), LiCF3S03 (1 2), LiBF4 (1 3), L After i PF6 (1 4), the results obtained by measuring its decomposition voltage are shown in Fig. 1. The experimental conditions are: absorption voltage of cross-linked PAN electrolyte membrane of different electrolytes, v. s L i + / L i, working Electrode is stainless steel sheet, corresponding electrode

第21頁 1237643 案號 91109990 曰 修正 五、發明說明(16) 為鋰金屬,掃瞄速率5 0 m V / s。所得的分解電壓結果整理於 表3 。不論所用的電解液為何,交聯膠態P A N電解質膜均 展現高於5 V以上的電化學穩定度,遠超過一般鋰二次電池 之充電電壓4V。 表3 電解液種類(EC/PC(1/1)) 分解電壓(V,vs_ Li/Li+) 1 ML1CIO4 5.2 1 ML1CF3SO3 5.4 1 M LiBF4 6.3 1 Μ LiPF6 >6.5 * 實施例八、交聯膠態PVdF-PAN複合高分子電解質膜之TGA 分析及導電度量測 實施例三中合成PVdF-PAN複合膠態電解質膜隨兩個高 分子成分不同對電解液之吸收能力亦有所不同,用TGA(熱 重量差分析儀)分析不同成分複合膜之電解液吸收量。將 複合電解質膜之組成成分,電解液吸收量及導電度整理於 表4中。 表4Page 21 1237643 Case No. 91109990 Amendment V. Description of the Invention (16) Lithium metal with a scan rate of 50 m V / s. The resulting decomposition voltage results are summarized in Table 3. Regardless of the electrolyte used, the cross-linked colloidal P A N electrolyte membrane exhibits an electrochemical stability of more than 5 V, far exceeding the charging voltage of ordinary lithium secondary batteries by 4 V. Table 3 Type of electrolyte (EC / PC (1/1)) Decomposition voltage (V, vs_ Li / Li +) 1 ML1CIO4 5.2 1 ML1CF3SO3 5.4 1 M LiBF4 6.3 1 Μ LiPF6 > 6.5 * Example VIII, Crosslinked colloidal state TGA Analysis and Conductivity Measurement of PVdF-PAN Composite Polymer Electrolyte Membrane The PVdF-PAN composite colloidal electrolyte membrane synthesized in Example 3 has different absorption capacities of the electrolyte with the two polymer components. Thermogravimetric analyzer) analyzes the electrolyte absorption of composite films with different components. The composition of the composite electrolyte membrane, the amount of electrolyte absorption, and the electrical conductivity are summarized in Table 4. Table 4

複合膜成分比 電解液吸收比例( 導電度(1〇·3 S/cm PVdF : PAN % ) ) 1:1 50 0.6 1:2 55.5 1.2 1:3 63.5 1.9 第22頁 1237643 案號 9Π09990 A_ 曰 修正 五、發明說明(17) 實施例九、交 苯 將吸收足 作為鋰金屬聚 為聚苯胺碳黑 2圖所示,係 )、PVdF-PAN 箔(2 4 )、 3圖為電池前 量在五個循環 2 )結束前並 9 9 %左右。 聯 P V d F - P A N 胺二次電池 量電解液之 苯胺電池之 複合體,負 為 2 0 1 6 複合電解質 墊片(2 5 三十個循環 内(3 1 ) 無明顯的衰 複合膠態電解質膜作為鋰金屬聚 之隔離膜 交聯膠態PVdF-PAN 隔離膜使用,該電 極材料為链金屬, 鈕扣型電池,由正 (2 2 )、橡膠墊圈 )、彈簧片(2 6 電容量對循環數之 達到穩定,直至三 退情形,其庫倫效 複合電解 池之正極 電池結構 極材料((23) )所組成 關係圖, 十個循環 率始終維 質膜 材料 如第 2 1 、鋰 。第 電容(3 持在 實施例十、交聯PVdF-PAN複合電解質膜作為鋰離子二次電 池之 將吸收足量 作為鋰離子二次 L i Mn2〇4,負極材 電容量對循環數 池之特性,尤其 下更為顯著,如 質膜作為鋰離子 放電之功能,其 定,且庫偷效率 隔離膜 電解液的交 電池之隔離 料為經金屬 的關係圖, 是在南電流 圖所示,以 二次電池之 電容量隨著 皆維持在9 9 聯膠態PVdF-PAN複合電解質膜 膜使用,該電池的正極材料為 ,第4圖為電池前三十個循環 電容量有衰退情形是為此種電 (0 · 5 C )之充電與放電條件 本發明交聯PVdF-PAN複合電解 隔離膜,可以維持電池充電與 充放電循環數之增加漸趨於穩 %左右。Absorption ratio of composite film component to electrolyte (conductivity (10.3 S / cm PVdF: PAN%)) 1: 1 50 0.6 1: 2 55.5 1.2 1: 3 63.5 1.9 Page 22 1237643 Case No. 9Π09990 A_ Modification V. Description of the invention (17) Example IX. Polyphenylene will be used as a lithium metal to gather polyaniline carbon black (see figure 2), PVdF-PAN foil (2 4), and figure 3 shows the amount before the battery 2) before the end of the cycle and about 99%. PV d F-PAN amine secondary battery with aniline battery composite electrolyte, negative 2 0 1 6 composite electrolyte gasket (2 5 30 cycles (3 1) no obvious decay composite colloidal electrolyte The film is used as a lithium metal poly-isolating film, which is a cross-linked colloidal PVdF-PAN insulating film. The electrode material is a chain metal, button-type battery, which is composed of positive (2 2), rubber washer), and spring (2 6 capacitance pair cycle). The number has reached stability until the situation of three retreats. The relationship diagram of the positive electrode structure material ((23)) of the Coulomb-effect composite electrolytic cell, the ten cycle rates always maintain the quality of the membrane material such as No. 2 and Li. No. Capacitor ( 3 Holding in Example 10, the cross-linked PVdF-PAN composite electrolyte membrane as a lithium ion secondary battery will absorb sufficient amount as the lithium ion secondary L i Mn2O4, the characteristics of the negative electrode material capacitance to the cycle number pool, especially the next more In order to be significant, for example, the function of the plasma membrane as a lithium ion discharge is determined, and the cell-stealing efficiency separator membrane electrolyte battery separator is a metal-to-metal relationship diagram, which is shown in the southern current diagram. capacitance As the amount is maintained at 9 9-linked colloidal PVdF-PAN composite electrolyte membrane, the positive electrode material of the battery is as shown in Figure 4. The capacity of the first thirty cycles of the battery has a decline in capacity. 5 C) Charging and discharging conditions The cross-linked PVdF-PAN composite electrolytic isolation film of the present invention can maintain the increase in the number of charge and discharge cycles of the battery to gradually stabilize to about%.

1237643 ___案號 91109990_年月曰_修正 _ 五、發明說明(18) 實施例十一、交聯膠態PVdF_PAN複合電解質膜作為碳負極 聚苯胺二次電池之隔離膜 如實施例九之電池結構,正極材料為聚苯胺碳黑複合 體’負極材料為嵌入足量鐘離子之MCMB碳材,隔離膜為交· 聯PVdF-PAN複合電解質膜。第5圖為電池前四十個循環電 容量對循環數之關係圖,電容量在五個循環内(5 1 )達 到穩定,直至四十個循環(5 2 )結束前並無明顯的衰退 情形,其庫倫效率始終維持在9 9 %左右。 實施例十二、交聯膠態PVdF — PAN複合電解質膜與Lic〇〇2正 極與MCMB碳負極之貼合 將實施例三中交聯PVdF-PAN複合電解質膜預聚膠液均零 勻塗佈於:LiCo02正極極板上並與MCMB碳負極貼合,放置於 通氮氣的乾燥箱中(氮氣須除去水氧)將丙酮揮發除去。最 後以6 0 °C加熱12小時使膜中的AN單體及交聯劑單體共聚合 為交聯膠態PAN電解質。 經過上述的製程可得Lic〇〇2正極,交聯膠態PVdF-PAN 複合電解質膜,與M CMB碳負極緊密貼合的三層結構,三層 材料間之貼合緊密程度遠大於電極活性物質與集流層金屬 間之貼合力’故外力拉扯貼合面會造成活性物質與集流層 剝離的情形。使用SEM(scanning electronic microscopy)觀察三層結構斷面,結果如第6圖所示,其 j4| 中’上層為LiCo02正極(6 1 )、中層為交聯PVdF-PAN複 合電解質膜(62)、下層為M CMB碳負極(6 3 )。1237643 ___Case No. 91109990_Year of the month_Amendment__ V. Description of the invention (18) Example 11: Cross-linked colloidal PVdF_PAN composite electrolyte membrane as the separator of carbon negative polyaniline secondary battery, such as the battery of Example 9 Structure, the positive electrode material is a polyaniline carbon black composite. The negative electrode material is a MCMB carbon material with sufficient clock ions embedded, and the separator is a cross-linked PVdF-PAN composite electrolyte membrane. Figure 5 shows the relationship between the capacity and the number of cycles in the first forty cycles of the battery. The capacity has stabilized within five cycles (5 1), and there is no obvious decline until the end of the forty cycles (5 2). , Its Coulomb efficiency has been maintained at about 99%. Example 12: Lamination of Crosslinked Colloidal PVdF — PAN Composite Electrolyte Membrane and Lic002 Positive Electrode and MCMB Carbon Negative Electrode On: LiCo02 positive electrode plate and bonded with MCMB carbon negative electrode, placed in a nitrogen-filled dry box (nitrogen must remove water and oxygen) to volatilize and remove acetone. Finally, the AN monomer and the crosslinking agent monomer in the film were copolymerized into a crosslinked colloidal PAN electrolyte by heating at 60 ° C for 12 hours. After the above process, a three-layer structure of Lic00 positive electrode, cross-linked colloidal PVdF-PAN composite electrolyte membrane, and M CMB carbon negative electrode can be obtained. The tightness between the three layers of material is much greater than that of the electrode active material. The bonding force with the metal of the current collecting layer ', so external force pulling the bonding surface will cause the active material and the current collecting layer to peel off. Scanning electronic microscopy (SEM) was used to observe the cross-section of the three-layer structure. The results are shown in Figure 6. The upper layer of j4 | is a LiCo02 positive electrode (6 1), the middle layer is a cross-linked PVdF-PAN composite electrolyte membrane (62), The lower layer is an M CMB carbon negative electrode (6 3).

第24頁 1237643 案號 91109990 年 月 曰 修正 圖式簡單說明 第1圖為交聯P A N電解質膜吸收不同電解液之分解電壓實 驗結果圖。 第2圖為内含PVdF-PAN複合電解質膜之2016鈕扣型電池結 構圖。 第3圖為使用PVdF-PAN複合電解質膜作為鋰金屬聚苯胺二 次電池之隔離膜,其電容量對循環次數關係圖。 第4圖為使用PVdF-PAN複合電解質膜作為鋰離子二次電池 之隔離膜,其電容量對循環次數關係圖。 第5圖為使用PVdF-PAN複合電解質膜作為碳負極聚苯胺二 次電池之隔離膜,其電容量對循環次數關係圖。 第6圖為LiCo02正極,交聯PVdF-PAN複合電解質膜,MCMB 石炭負極三層結構之斷面圖。 圖號簡單說明: 1 2 14 2 2 2 4 2 6 3 2 5 2 6 2 • · LiCF3S03 ——· LiPF& •複合電解質 • · ••鋰箔 • · •彈簧片 •三十個循環 •四十個循環 複合電解質膜 1 1 · . . · LiC104 1 3 ——· · LiBF4 2 1 · · ·正極材料 2 3 · · ·橡膠墊圈 2 5.....墊片 五個循環内 五個循環内 LiCo〇2正極 6 3 · MCMB碳負極Page 24 1237643 Case No. 91109990 Modification Brief Description of the Drawings Figure 1 shows the experimental results of the decomposition voltage of the cross-linked P A N electrolyte membrane absorbing different electrolytes. Figure 2 shows the structure of a 2016 button-type battery containing a PVdF-PAN composite electrolyte membrane. Fig. 3 is a graph showing the relationship between the capacitance and the number of cycles when a PVdF-PAN composite electrolyte membrane is used as a separator of a lithium metal polyaniline secondary battery. Fig. 4 is a graph showing the relationship between the capacity and the number of cycles when a PVdF-PAN composite electrolyte membrane is used as a separator for a lithium ion secondary battery. Fig. 5 is a graph showing the relationship between the capacitance and the number of cycles when a PVdF-PAN composite electrolyte membrane is used as the separator of a carbon negative polyaniline secondary battery. Figure 6 is a cross-sectional view of a three-layer structure of a LiCo02 positive electrode, a cross-linked PVdF-PAN composite electrolyte membrane, and a MCMB carbon negative electrode. Brief description of drawing number: 1 2 14 2 2 2 4 2 6 3 2 5 2 6 2 • LiCF3S03 —— LiPF & • Composite electrolyte • • • Lithium foil Composite electrolyte membrane 1 1 · · · · LiC104 1 3 —— · · LiBF4 2 1 · · · cathode material 2 3 · · · rubber gasket 2 5 ..... gasket five cycles within five cycles LiCo〇2 cathode 6 3MCMB carbon anode

第25頁Page 25

Claims (1)

1237643 案號 91109990 曰 修正 六、申請專利範圍 LiSbF6,LiI iLiBr,LiCl,LiA1C14,LiSCN, LiAsF6,LiCF3S03,Li(CF3S02)2N,Li(C2F5S02)1237643 Case No. 91109990 said Amendment 6. Scope of patent application LiSbF6, LiI iLiBr, LiCl, LiA1C14, LiSCN, LiAsF6, LiCF3S03, Li (CF3S02) 2N, Li (C2F5S02) 2N,Li(CF3S02)3C,Li(C2F5S02)3C,其中,液態電 解液所使用之溶劑係為環狀碳酸酯、非環狀碳 酸酯、醯胺類溶劑、内酯類溶劑、醚類溶劑, 其中,液態電解液所使用之溶劑係為碳酸乙烯 酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲基酯 、碳酸二乙基酯、二甲氧基乙烷、二甲基甲醯 _ 胺、二甲亞楓、τ - 丁内_酯、N -甲基四氫吡咯酮 2 34 如申請專利範圍第1項之二次電池,其中,交聯膠態 複合電解質膜中,電解液含量為電解質膜中高分子基 材重量之1 0 %至2 0 0 % 。 如申請專利範圍第1項之二次電池,其中,交聯膠態 複合電解質膜導電度高於1 0 — 4 S/cm 如專利申請範圍第1項之二次電池,其中,交聯劑單 體具有如下結構:2N, Li (CF3S02) 3C, Li (C2F5S02) 3C, among which the solvents used in the liquid electrolyte are cyclic carbonates, non-cyclic carbonates, ammonium solvents, lactone solvents, ether solvents, Among them, the solvents used in the liquid electrolyte are ethylene carbonate, propylene carbonate, butene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, and dimethylformamide. , Dimethyl isocyanate, τ-butyrolactone, N-methyltetrahydropyrrolidone 2 34 The secondary battery according to item 1 of the patent application scope, wherein the electrolyte content in the crosslinked colloidal composite electrolyte membrane is 10% to 200% of the weight of the polymer substrate in the electrolyte membrane. For example, the secondary battery of item 1 of the patent application scope, wherein the conductivity of the cross-linked colloidal composite electrolyte membrane is higher than 10-4 S / cm. The secondary battery of item 1 of the patent application scope, wherein the cross-linking agent alone The body has the following structure: 第27頁 1237643 案號 91109990 _Ά 修正 申請專利範圍 解質黏著 6 ·如專利申 聚偏 >—氣 PVdF均聚 六氟丙浠 7 ·如申請專 子電解質 高分子。 8 ·如申請專 子電解質 9 ·如申請專 子正極材 烯腈膠態電解質可加入1 5 %以下的丙烯酸,丙烯酸 酯鋰一種以上單體,經共聚合以賦予交聯PAN膠態電 而成。 請申請專利範圍第1項之二次電池,其中, 乙烯(PVdF)高分子為分子量5 0 0 0以上之 物或PVdF含量8 0%以上的聚偏二氟乙烯-共聚物(PVdF-co-HFP )。Page 27 1237643 Case No. 91109990 _Ά Amendment Scope of patent application Degradation and adhesion 6 · If the patent is applied > -PVdF homopolymer Hexafluoropropane 7 · If you apply for a special electrolyte polymer. 8 · If you apply for special electrolyte 9 · If you apply for special electrode cathode material ene nitrile gel electrolyte, you can add less than 15% acrylic acid, lithium acrylate more than one monomer, and copolymerize to give crosslinked PAN colloidal electricity . Please apply for a secondary battery under item 1 of the patent, in which the polymer of ethylene (PVdF) is a substance having a molecular weight of 5,000 or more or a polyvinylidene fluoride-copolymer (PVdF-co- HFP). 利範圍第1項之二次電池,其中,複合高分 膜可加入2 0%以下之聚環氧軟鏈 複合高分 導電局分 利範圍第1項之二次電池,其中 膜可加入多孔性的無機填充物。 利範圍第1項之二次電池,其中 料係摻雜態或是非摻雜態。 %The secondary battery of item 1 of the profit range, in which the composite high-resolution film can add less than 20% of the polyepoxy soft chain composite high-resistance conductive secondary charge range of the secondary battery, in which the film can be added with porosity Inorganic filler. The secondary battery according to item 1, wherein the material is in a doped state or an undoped state. % 第28頁Page 28
TW091109990A 2002-05-14 2002-05-14 Method for manufacturing PAN polymer electrolyte used for isolation membrane of secondary battery TWI237643B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW091109990A TWI237643B (en) 2002-05-14 2002-05-14 Method for manufacturing PAN polymer electrolyte used for isolation membrane of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW091109990A TWI237643B (en) 2002-05-14 2002-05-14 Method for manufacturing PAN polymer electrolyte used for isolation membrane of secondary battery

Publications (1)

Publication Number Publication Date
TWI237643B true TWI237643B (en) 2005-08-11

Family

ID=36929897

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091109990A TWI237643B (en) 2002-05-14 2002-05-14 Method for manufacturing PAN polymer electrolyte used for isolation membrane of secondary battery

Country Status (1)

Country Link
TW (1) TWI237643B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9522995B2 (en) 2011-10-18 2016-12-20 Jsr Corporation Protective film and composition for preparing the same, slurry, and electrical storage device
CN111933864A (en) * 2019-04-25 2020-11-13 郭炳林 Energy storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9522995B2 (en) 2011-10-18 2016-12-20 Jsr Corporation Protective film and composition for preparing the same, slurry, and electrical storage device
CN111933864A (en) * 2019-04-25 2020-11-13 郭炳林 Energy storage device
CN111933864B (en) * 2019-04-25 2022-12-20 聚电材料股份有限公司 Energy storage device

Similar Documents

Publication Publication Date Title
CN110556586B (en) Polymeric organic-inorganic composite solid electrolyte and in-situ assembled all-solid-state battery
TW501306B (en) Polymer battery and method of manufacture
CA2792747C (en) Lithium secondary battery using ionic liquid
KR101546251B1 (en) Electrolyte for electrochemical device and the electrochemical device thereof
CN111533851A (en) Preparation method of polymer electrolyte and application of polymer electrolyte in all-solid-state battery
JP2013194112A (en) Agent for forming gel electrolyte, composition for forming gel electrolyte, gel electrolyte and power-accumulating device
JP2018537831A (en) Solid electrolyte, solid electrolyte membrane and method for producing the same, and secondary battery
CN114335716A (en) In-situ polymerization solid-state battery with electrolyte of multilayer structure and preparation method thereof
CN111740177B (en) Positive electrode material, positive electrode, battery, and battery pack
US20040224233A1 (en) Method for preparation of chemically crosslinked polyacrylonitrile polymer electrolyte as separator for secondary battery
JP3718467B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
CN104752683B (en) Positive electrode composition and slurry and preparation method and positive electrode and positive pole and preparation method and lithium ion battery
CN101494302A (en) Battery
CN116995235A (en) Negative electrode adhesive, negative electrode plate, lithium ion battery and preparation method of negative electrode adhesive
CA3140106A1 (en) In-situ polymerized polymer electrolyte for lithium ion batteries
JP2013225488A (en) Nonaqueous electrolyte secondary battery
JP6904413B2 (en) Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
TWI237643B (en) Method for manufacturing PAN polymer electrolyte used for isolation membrane of secondary battery
JP2002216848A (en) Gelled electrolyte, and gelled electrolyte cell using the same
CN115312852A (en) Polymer solid electrolyte and preparation method and application thereof
JP2014035901A (en) Gel electrolyte and power storage device
JP5896154B2 (en) SOLID ELECTROLYTE FILM FORMING AGENT, ELECTROLYTIC SOLUTION CONTAINING SAME, AND ELECTRIC STORAGE DEVICE
JP4370759B2 (en) Non-aqueous electrolyte battery
JP2013152849A (en) Lithium-ion secondary battery subjected to aging treatment and method for manufacturing the same
CN113363573A (en) Preparation method of solid electrolyte, solid electrolyte and all-solid-state battery

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees