TWI236164B - Nitride device and method for manufacturing the same - Google Patents

Nitride device and method for manufacturing the same Download PDF

Info

Publication number
TWI236164B
TWI236164B TW93111787A TW93111787A TWI236164B TW I236164 B TWI236164 B TW I236164B TW 93111787 A TW93111787 A TW 93111787A TW 93111787 A TW93111787 A TW 93111787A TW I236164 B TWI236164 B TW I236164B
Authority
TW
Taiwan
Prior art keywords
layer
gallium nitride
patent application
scope
item
Prior art date
Application number
TW93111787A
Other languages
Chinese (zh)
Other versions
TW200536141A (en
Inventor
Shih-Chen Wei
Yung-Hsin Shie
Wen-Liang Li
Shi-Ming Chen
Original Assignee
Epitech Corp Ltd
Shi-Ming Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epitech Corp Ltd, Shi-Ming Chen filed Critical Epitech Corp Ltd
Priority to TW93111787A priority Critical patent/TWI236164B/en
Priority to KR20040046986A priority patent/KR100629857B1/en
Application granted granted Critical
Publication of TWI236164B publication Critical patent/TWI236164B/en
Publication of TW200536141A publication Critical patent/TW200536141A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A nitride device and a method for manufacturing the same are disclosed. The present invention comprises the following steps. First, provide a substrate, and locate a buffer layer on the substrate. Next, locate an undoped GaN layer on the buffer layer. Then, locate a semiconductor epitaxial structure on the undoped GaN layer. Finally, form a P<+>-GaN layer on the semiconductor epitaxial structure, wherein UDMHy or organic metal with N are used as the source of N, and hydrogen or the mix of nitrogen and hydrogen are used as the carrier gas.

Description

1236164 五、發明說明(1) 【發明所屬之技術領域】 本發明是有關於一種氮化物 關於一種以有機金屬化學氣 及其製造方法,特別疋 氮化物元件。 予孔相〉儿積(MOCVD)的方式形成之 【先前技術】 半導體發光元件,例如發来—1236164 V. Description of the invention (1) [Technical field to which the invention belongs] The present invention relates to a nitride, an organometallic chemical gas and a method for manufacturing the same, especially a nitride element. Pre-porous phase> formed by MOCVD [prior art] A semiconductor light-emitting element, such as

Diode; LED),係利用半導體材料體(Li“t EmiUing 一種可將電能轉換為光能之/、n斤製作而成的兀件, 導體發光元件不但體i:之;=態光源。由☆,此κ 快、耐震、壽命長等特性,】驅動電壓低、反應f率 薄、短、小之需求,因而p出ί配合各式應用設備輕、 子產品。 成為曰常生活中相當普及之電 m言午多的焦點集中在以氮 、氮化紹鎵⑴GaN)、氮化二二乂 發光元件丰導f大“、H心成的發光元件。此類的 U什牛導體大多成長於不導雷 · 板上,而與其他發光元件採用導二^ apphire)基 寶石基板係一絕緣體,…能。繁於藍 於是,電極0 t彳H彡胃i ^ g i板製作電極。 導體層做各別地接觸’才能完成此類以及η型的+ 發光-技Μ丄 此凡风此類發光兀件的製作。 晶過;;;中的㈣氮化物半導體材料在蟲晶時,會在蟲 氫原子=足=摻雜物,但是大部分的掺雜物卻會被 卞所純化。因此,氮化物 虱化物毛先一極體必須在製作完成 1236164 五、發明說明(2) 後’進行活化的 導體材料的摻雜 熱方式來進行活 環境中,經一段 重^非,進而減少 因此,習知的做 構後,將磊晶片 至 4 0 0〇C 〜1〇〇〇〇C 氮化鎵從高阻抗 此法之缺點為, 驟。另一方法為 部切換成氮氣, 鎵從不導電的氮 須控制降溫的速 保養而有所變化 回火(Annealing)步驟’以提高氮化 濃度。-般係藉由高溫爐管、微波爐等加 化退火步驟’將發光二極體置於 時間後,材料内的原子將會進^ ^曰问狐 半導體與金屬電極間的接觸電$ M格位置 法係在成長完鼠化蘇相關的於 拿出磊晶機台,再將磊晶片放二一極體結 ,再於氮氣的環境下回火,以爐子升溫 的氮化鎵變成低阻抗的ρ型氮化鎂推雜之 於晶粒製造時,必須多加一個回火使用 ,於磊晶成長完後,將成長腔内的氣=八 並控制降溫的速度,以使得鎂摻雜-王 化鎵變成導電的Ρ型氮化鎵。其缺點鼠化 度,且&amp;長腔内的Α長溫度會义 ,故較不易精確控制。 风σ的 【發明内容】 本發明的又一目的就是在提供一種氮化物元件及政 法’可增加量產之穩定性。 /、 根據本發明之上述目的,提出一種氮化物元件,至 因此,本發明的目 方法,可以省略回 本發明的另一目的 法,不需控制降溫 的就是在提供一 火的步驟。 就是在提供一種 的速度,可直接 種氮化物元件及其 氮化物元件及其製 降溫。 製造 造方 製造方 少包 1236164 五、發明說明(3) 〜^- 括二:ί Ϊ、一緩衝層位於此基板上、一未摻雜氮化 位於此緩衝層上、一半導體磊晶結構位於此未摻雜氮 層上、以及一高濃度之氮化鎵層位於此半導體磊晶結 依照本發明之較佳實施例,基板之材質為透 缓衝::材質為氮化鎵’且氮化物元件較佳為發:元 例如叙光—極體。此外,高濃度之氮化鎵層可為ρ型 其厚度較佳為100入至800 Α,更佳為5 0 0 Α ί據另一目的,提出-種氮化物元件之製造 如下Γ驟。首先,提供一基板,再形成 板上。接著’形成-未摻雜氮化鎵層於此 1最:形成&quot;'半導體磊晶結構於此未摻雜氮化 士。m成一高濃度之氮化鎵層於此半導體磊晶 構丄時# ί形成此高濃度之氮化鎵層於此半導體蟲 構上日守,係使用二曱基聯氨(Unsymmetric mihydrazine; uDMHy)或含就的有機金屬作為: =纟,源,且使用氫氣或氮氣與氫氣之混氣作為載氣 氣與虱軋之混氣的比例可為1比2 〇 ...... 發明之較佳實施{列,基板之材質為透明之藍寶 例如發光二極體…卜,高濃度之氣 其厚度較佳為l〇〇 A至800 A,更佳為5 0 0 A。 錄層 化鎵 構 石, 件, ,且 方 一緩 緩衝 鎵層 結構 晶結 fl原 ,氮 石, 件, ,且Diode; LED), which is made of a semiconductor material body (Li "t EmiUing, which can convert electrical energy into light energy, n, and n kilograms, made of conductive light-emitting elements not only the body i: 之; = state light source. By ☆ This feature of κ is fast, shock-resistant, and has a long life.] The driving voltage is low, and the response rate is thin, short, and small. Therefore, it is compatible with various applications and light and sub-products. It has become quite popular in daily life. The focus of the report is on light-emitting elements made of nitrogen, gallium nitride, gallium nitride, GaN), and two or two nitride light-emitting elements. Most of these U-shine conductors are grown on non-lightning boards, and other light-emitting components use conductive ^ apphire) -based gem substrates as an insulator, ... Trouble in blue Therefore, the electrodes were fabricated from electrodes of 0 t, 彳, and ^ g i. The conductor layers are individually contacted ’to complete the production of such and n-type + luminescence-techniques. When the crystals of osmium nitride semiconductor materials are crystallized, the hydrogen atom = foot = dopant, but most of the dopants will be purified by radon. Therefore, the nitride lice compound first polar body must be made in the living environment after the completion of the production of 1236164 V. Description of the invention (2) 'doped thermal method of the conductive material to be activated, after a period of repetition, thereby reducing the After the conventional fabrication, the disadvantage of this method is that the gallium nitride is from 400C to 10000C from high impedance. The other method is to switch to nitrogen gas. The non-conducting nitrogen of gallium needs to be controlled to reduce the temperature and change the temperature. The tempering (Annealing) step ’is used to increase the nitriding concentration. -Generally, through the addition annealing step of high temperature furnace tube, microwave oven, etc. 'After the light-emitting diode is placed in time, the atoms in the material will enter. After the law system is completed, the epitaxial machine is taken out, and the epitaxial wafer is put into a bipolar junction, and then tempered in a nitrogen environment, and the gallium nitride heated by the furnace becomes a low impedance ρ When the type Mg is mixed with grains, an additional tempering must be added. After the epitaxial growth is completed, the gas in the growth cavity is equal to eight and the cooling rate is controlled so that the magnesium is doped with gallium. It becomes conductive P-type gallium nitride. Its disadvantages are ratification, and the long temperature of A in the long cavity will mean that it is difficult to control accurately. [Summary of the Invention] Another object of the present invention is to provide a nitride element and a method to increase the stability of mass production. / According to the above object of the present invention, a nitride element is proposed. Therefore, the objective method of the present invention can omit the other objective method of the present invention. What does not need to control the temperature reduction is to provide a fire step. Is to provide a speed, can directly plant nitride elements and nitride elements and their cooling. Manufacturing method Manufacturing method package 1236164 V. Description of the invention (3) ~ ^-Including two: Ϊ Ϊ, a buffer layer is located on the substrate, an undoped nitride is located on the buffer layer, and a semiconductor epitaxial structure is located The undoped nitrogen layer and a high-concentration gallium nitride layer are located in the semiconductor epitaxial junction. According to a preferred embodiment of the present invention, the material of the substrate is transparent buffer: the material is gallium nitride 'and the nitride The element is preferably a hair: element such as a light-polar body. In addition, the high-concentration gallium nitride layer may be of a p-type, and its thickness is preferably from 100 to 800 A, more preferably from 50 A. According to another purpose, a nitride device is proposed as follows. First, a substrate is provided, and then a plate is formed. Next, the formation of an undoped gallium nitride layer is performed here: the formation of the semiconductor epitaxial structure is undoped with nitride. m forms a high-concentration gallium nitride layer at the time of this semiconductor epitaxial structure # ίThe formation of this high-concentration gallium nitride layer on the semiconductor structure is based on the use of unsymmetric mihydrazine (uDMHy) Or the contained organic metal is used as: = 纟, source, and the use of hydrogen or a mixture of nitrogen and hydrogen as the carrier gas and the mixture of lice rolling can be 1 to 2 〇 ...... Invention comparison The best implementation is {row, the material of the substrate is a transparent sapphire such as a light-emitting diode, etc., and the thickness of the high-concentration gas is preferably 100 A to 800 A, and more preferably 500 A. Layered gallium structure stone, pieces, and square buffer structure

1236164 五、發明說明(4) ~~ 一 【實施方式】 本發明係揭露一種氮化物元件及其製造方法,在P型氣化 鎵層上’藉由使用二甲基聯氨或含氮的有機金屬取^氨氣 (NH3),來成長高濃度之p型氮化鎵層。本發 件及其製造方法不需經回火的步驟,可直接降 加量產之穩定性。為了使本發明之敘述更加詳盡與完備, 可參照下列描述並配合第1圖至第4圖之圖示。 請參照第1圖,第1圖係繪示依照本發明之較佳實施例之p 型氮化鎵之剖面圖。製作本發明之p型氮化鎵時,先提供 基板100,其中基板1〇〇較佳為透明材質,且基板1〇〇之材 負可為氧化銘(A 1 2〇 〇,而較佳為藍寶石。接下來,於反廣 腔内,進行基板100之熱洗(Thermal Cleaning)步驟、,此w 熱洗步驟較佳可在溫度110(rc之氫氣(L)環境下進行,以 清潔基板1 00。完成基板i 00之熱洗步驟後,再利用例如低 溫有機金屬化學氣相沉積的方式,降溫至5 〇 〇ct,以成長 緩衝層102覆蓋在基板100上,其中緩衝層1〇2之材質較佳 f匕Λ。接著,再升溫至105(rc,成長未摻雜氮化鎵層 =覆盍在緩衝層102上,再成長„型氮化鎵層1〇6覆蓋在未 ^鼠化鎵層104上。其巾,此未掺雜氮化鎵層丨Q4之厚度 =佳=為1// m,且η型氮化鎵層i 06較佳可為矽摻雜,n型 2化鎵層1 〇 6之厚度較佳為2// m。待η型氮化鎵層丄〇 6形成 將至纖’成長多重量子井(Multl Quant㈣ ,MQW)發光層1〇8。接著,於多重量子井發光層丨〇8上 成長P型氮化鋁鎵層U0,其中此p型氮化鋁鎵層11〇較佳1236164 V. Description of the invention (4) ~~ One [Embodiment] The present invention discloses a nitride element and a method for manufacturing the same, on a P-type gallium vaporized layer 'by using dimethyl hydrazine or a nitrogen-containing organic The metal is ammonia (NH3) to grow a high-concentration p-type gallium nitride layer. This article and its manufacturing method do not need to be tempered, and can directly reduce the stability of mass production. In order to make the description of the present invention more detailed and complete, reference may be made to the following descriptions and the illustrations in FIGS. 1 to 4. Please refer to FIG. 1. FIG. 1 is a cross-sectional view of a p-type GaN according to a preferred embodiment of the present invention. When manufacturing the p-type gallium nitride of the present invention, a substrate 100 is first provided, wherein the substrate 100 is preferably a transparent material, and the material of the substrate 100 may be an oxide inscription (A 1 200, and more preferably Sapphire. Next, the substrate 100 is subjected to a thermal cleaning step in the inverse cavity. This w cleaning step may preferably be performed in a hydrogen (L) environment at a temperature of 110 (rc) to clean the substrate 1 00. After the thermal washing step of the substrate i 00 is completed, the temperature is reduced to 500 ct by a method such as low-temperature organometallic chemical vapor deposition, and the growth buffer layer 102 is covered on the substrate 100, wherein the buffer layer 102 The material is better. Next, the temperature is increased to 105 ° C, and an undoped gallium nitride layer is grown = overlying the buffer layer 102, and then a "type gallium nitride layer 106" is overlaid on the substrate. On the gallium layer 104. The thickness of this undoped gallium nitride layer 丨 Q4 = good = 1 / / m, and the n-type gallium nitride layer i 06 is preferably silicon-doped, n-type The thickness of the gallium layer 106 is preferably 2 // m. When the n-type gallium nitride layer 丄 06 is formed, a fiber-growth multiple quantum well (Multl Quant㈣, MQW) light-emitting layer 1 is formed. 8. Next, P-type aluminum gallium nitride growth layer U0 on the multiple quantum well light emitting layer Shu 〇8, where such p-type aluminum gallium nitride layer is preferred 11〇

第10頁 1236164 五、發明說明(5) 鎂摻雜,且此p型氮化鋁鎵層1 1 〇之厚度較佳可為2 〇 〇 A。 然後,成長P型氮化鎵層1 1 2於p型氮化鋁鎵層1丨〇上,其 中,P型氮化鎵層1 1 2較佳為鎂摻雜,且p型氮化鎵層/丨'2 厚度較佳可為0.2// m。 最後’再於p型氮化鎵層1 1 2上成長高濃度之氮化鎵層(p -GaN)114’以做為接觸層(Contact Layer),其厚度較卢 可為1 0 0 A至8 0 0 A,而厚度為5 0 0 A更佳。於成長此高濃产 之氮化鎵層1 1 4時,使用二甲基聯氨取代氨氣,以作為&amp;又 原子的來源,而載氣可為氫氣或氮氣與氫氣之混盆 例可為1比2。 ” /Page 10 1236164 V. Description of the invention (5) Magnesium doping, and the thickness of the p-type aluminum gallium nitride layer 1 1 0 may be 2000 A. Then, a p-type gallium nitride layer 1 12 is grown on the p-type aluminum gallium nitride layer 1 丨, wherein the p-type gallium nitride layer 1 12 is preferably doped with magnesium, and the p-type gallium nitride layer / 丨 '2 The thickness may preferably be 0.2 // m. Finally, a high-concentration gallium nitride layer (p-GaN) 114 is grown on the p-type gallium nitride layer 1 12 as a contact layer, and the thickness thereof is 100 A to 100 A. 8 0 0 A, and a thickness of 5 0 A is more preferred. When growing this high-concentration gallium nitride layer 114, dimethyl hydrazine is used instead of ammonia as the source of &amp; and the carrier gas can be hydrogen or a mixed basin of nitrogen and hydrogen. For 1 to 2. "/

接著,將成長完之磊晶片拿出反應腔,不需經過回火的步 驟,直接做晶粒的製程。首先使用電感耦合式電漿 乂 (I^c^ctive Coupled Plasma·’ ICP)蝕刻技術,移除部分 之高濃度之氮化鎵層丨丨4、部分之p型氮化鎵層丨丨2、部分 之P型氮^化鋁鎵層110以及部分之多重量子井發光層1〇8,Next, take out the grown wafer and take it out of the reaction chamber, without going through the tempering step, and directly make the crystal grains. First use inductively coupled plasma (I ^ c ^ ctive Coupled Plasma · 'ICP) etching technology to remove some high-concentration gallium nitride layers 丨 4, some p-type GaN layers 丨 丨 2, Part of the P-type aluminum gallium nitride nitride layer 110 and part of the multiple quantum well light emitting layer 108,

^至暴露出部分之n型氮化鎵層1 〇6為止。隨後,利用例如 =鍍(EVaporati〇n)方式,於高濃度之氮化鎵層ιΐ4上形成 搞1 1 f極層1 1 6 ’再於部分之透明電極層1 1 6上形成接觸電 J 並於部分之n型氮化鎵層1〇6上形成接觸電極120, P二成整個發光二極體之製作,如第2圖所示。其中,透 : = 116與接觸電極118較佳為鎳(Ni)/金(Au)結構, 枝灸電極1 2 〇較佳為鈦(τ丨)/鋁/鎳/金結構。 多考第3圖,其係繪示使用不同氣體做載氣與氮原子之^ Until the exposed portion of the n-type GaN layer 106. Subsequently, a 1 1 f electrode layer 1 1 6 ′ is formed on the high-concentration gallium nitride layer ιΐ 4 by using, for example, an EVaporation method, and a contact current J is formed on a part of the transparent electrode layer 1 1 6 and A contact electrode 120 is formed on a part of the n-type GaN layer 106, and P is made into the whole light-emitting diode, as shown in FIG. 2. Among them, the transparent electrode 116 and the contact electrode 118 preferably have a nickel (Ni) / gold (Au) structure, and the branch moxibustion electrode 1 2 0 preferably has a titanium (τ 丨) / aluminum / nickel / gold structure. Consider Figure 3, which shows the use of different gases as the carrier gas and nitrogen atoms.

第11頁 1236164 五、發明說明(6) 來源,以成長高濃度之氮化鎵層之結果。樣品A為使用氨 氣為氮原子的來源,以成長高濃度之氮化鎵層;樣品B為 使用二甲基聯氨取代氨氣為氮原子的來源,其中載氣為氫 氣;樣品C為使用二甲基聯氨取代氨氣為氮原子的來源, 其中載氣為氮氣與氫氣之混氣,其比例為1比2。在晶粒製 程中,樣品A必須先經過回火的步驟,樣品B與樣品C則不 須經過回火的步驟。比較此三個樣品,可以發現三者的結 果相似,因此本發明之氮化物元件之製造方法確實可以省 下回火的步驟。 請再參考第4圖,其係繪示使用二甲基聯氨取代氨氣,以 成長高濃度之氮化鎵層時,二甲基聯氨之使用量對發光二 極體工作電壓(V f )的影響圖。如圖所示,當二甲基聯氨的 使用量太少時,發光二極體的工作電壓會偏高,而當二甲 基聯氨的使用量增加至2 0 0 0 s c c m以上時,發光二極體的工 作電壓可降至3. 1 V,因此本發明之氮化物元件之製造方法 可以提供高亮度、高品質的發光二極體。 由上述本發明之較佳實施例可知,應用本發明具有下列優 點。首先,成長高濃度之氮化鎵層時,反應腔内的載氣可 為氫氣或氮氣與氫氣的混氣,故在此高濃度之氮化鎵層長 成後,可直接關掉鎂原子與鎵原子的來源,不需將載氣全 部切換成氮氣。其次,使用二甲基聯氨代替氨氣,可降低 鎂原子和氫原子結合的機率,因此,磊晶片可省略回火的 步驟,且不需控制降溫的速度,可直接降溫。 雖然本發明已以一較佳實施例揭露如上,然其並非用以限Page 11 1236164 V. Description of the invention (6) Source, the result of growing a high-concentration gallium nitride layer. Sample A uses ammonia as the source of nitrogen atoms to grow a high-concentration gallium nitride layer; Sample B uses dimethyl hydrazine instead of ammonia as the source of nitrogen atoms, where the carrier gas is hydrogen; sample C is used Dimethyl hydrazine replaces ammonia as the source of nitrogen atoms. The carrier gas is a mixed gas of nitrogen and hydrogen. The ratio is 1: 1. In the grain process, sample A must go through the tempering step first, and samples B and C need not go through the tempering step. Comparing these three samples, it can be found that the results of the three are similar, so the method of manufacturing the nitride element of the present invention can indeed save the tempering step. Please refer to FIG. 4 again, which shows the use of dimethyl hydrazine versus the working voltage of the light emitting diode (V f) when using dimethyl hydrazine instead of ammonia to grow a high-concentration gallium nitride layer. ). As shown in the figure, when the amount of dimethyl hydrazine used is too small, the working voltage of the light-emitting diode will be high, and when the amount of dimethyl hydrazine is increased to more than 2 0 0 0 sccm, the light will be emitted. The working voltage of the diode can be reduced to 3.1 V, so the method for manufacturing a nitride element of the present invention can provide a high-brightness, high-quality light-emitting diode. As can be seen from the above-mentioned preferred embodiments of the present invention, the application of the present invention has the following advantages. First, when growing a high-concentration gallium nitride layer, the carrier gas in the reaction chamber can be hydrogen or a mixture of nitrogen and hydrogen. Therefore, after the high-concentration gallium nitride layer is grown, the magnesium atoms and the The source of gallium atoms does not need to switch all the carrier gas to nitrogen. Second, the use of dimethyl hydrazine instead of ammonia can reduce the probability of the combination of magnesium atoms and hydrogen atoms. Therefore, the tempering step can be omitted for the epitaxial wafer, and the temperature can be directly reduced without controlling the cooling rate. Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to be limited thereto.

第12頁 1236164Page 12 1236164

第13頁 1236164 圖式簡單說明 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、和優點能更明顯易 懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說 明如下: 第1圖係繪示依照本發明之較佳實施例之p型氮化鎵之剖面 圖。 第2圖係繪示依照本發明之較佳實施例之發光二極體之剖 面圖。 第3圖係繪示使用不同氣體做載氣與氮原子之來源,以成 長局濃度之氮化嫁層之結果。 第4圖係繪示使用二曱基聯氨取代氨氣,以成長高濃度之 氮化鎵層時,二曱基聯氨之使用量對發光二極體工作電壓 (Vf )的影響圖。 【元件代表符號簡單說明】 1 0 0 :基板 1 0 2 :緩衝層 1 0 4 :未摻雜氮化鎵層 1 0 6 : η型氮化鎵層 108:多重量子井發光層 1 1 0 : Ρ型氮化鋁鎵層 1 1 2 : ρ型氮化鎵層 1 1 4 :高濃度之氮化鎵層Page 1236164 Brief description of the drawings [Simplified description of the drawings] In order to make the above and other objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is given below in conjunction with the accompanying drawings, The detailed description is as follows: FIG. 1 is a cross-sectional view showing a p-type gallium nitride according to a preferred embodiment of the present invention. Fig. 2 is a sectional view showing a light emitting diode according to a preferred embodiment of the present invention. Figure 3 shows the results of using different gases as the source of the carrier gas and nitrogen atoms to grow the nitrided layer with a local concentration. Figure 4 is a graph showing the effect of the amount of difluorenyl hydrazine on the operating voltage (Vf) of the light-emitting diode when using difluorenyl hydrazine instead of ammonia to grow a high-concentration gallium nitride layer. [Simple description of element representative symbols] 1 0 0: substrate 1 0 2: buffer layer 1 0 4: undoped gallium nitride layer 1 0 6: n-type gallium nitride layer 108: multiple quantum well light emitting layer 1 1 0: P-type aluminum gallium nitride layer 1 1 2: p-type gallium nitride layer 1 1 4: high-concentration gallium nitride layer

第14頁 1236164 圖式簡單說明 1 1 6 :透明電極層 1 1 8 :接觸電極 1 2 0 :接觸電極 1111 第15頁Page 14 1236164 Brief description of the drawings 1 1 6: Transparent electrode layer 1 1 8: Contact electrode 1 2 0: Contact electrode 1111 Page 15

Claims (1)

1236164 六、申請專利範圍 1. 一種氮化物元件,至少包括: 一基板; 一緩衝層位於該基板上; 一未摻雜氮化鎵(G a N )層位於該緩衝層上; 一半導體磊晶結構位於該未摻雜氮化鎵層上;以及 一高濃度之氮化鎵層位於該半導體磊晶結構上。 2 .如申請專利範圍第1項所述之氮化物元件,其中該基板 係一透明基板。 3 .如申請專利範圍第1項所述之氮化物元件,其中該基板 之材質為氧化鋁(A 1 20 3)。 4 .如申請專利範圍第1項所述之氮化物元件,其中該基板 之材質為藍寶石。 5 .如申請專利範圍第1項所述之氮化物元件,其中該緩衝 層之材質為氮化嫁。 6 .如申請專利範圍第1項所述之氮化物元件,其中該半導 體磊晶結構至少包括依序堆疊之: 一 η型氮化鎵層位於該未摻雜氮化鎵層上; 一多重量子井(MQW )發光層位於該η型氮化嫁層上; 一 Ρ型氮化铭鎵(A 1 G a Ν )層位於該多重量子井發光層上;以1236164 6. Scope of patent application 1. A nitride device including at least: a substrate; a buffer layer on the substrate; an undoped gallium nitride (G a N) layer on the buffer layer; a semiconductor epitaxial The structure is located on the undoped gallium nitride layer; and a high concentration gallium nitride layer is located on the semiconductor epitaxial structure. 2. The nitride element according to item 1 of the scope of patent application, wherein the substrate is a transparent substrate. 3. The nitride element according to item 1 of the scope of patent application, wherein the material of the substrate is alumina (A 1 20 3). 4. The nitride element according to item 1 of the scope of patent application, wherein the material of the substrate is sapphire. 5. The nitride device according to item 1 of the scope of patent application, wherein the material of the buffer layer is nitrided. 6. The nitride element according to item 1 of the scope of the patent application, wherein the semiconductor epitaxial structure includes at least one of the following stacked sequentially: an n-type gallium nitride layer on the undoped gallium nitride layer; a multiple A quantum well (MQW) light-emitting layer is located on the n-type nitrided layer; a p-type gallium nitride (A 1 G a N) layer is located on the multiple quantum well light-emitting layer; 第16頁 1236164 六、申請專利範圍 及 一 P型氮化鎵層位於該P型氮化鋁鎵層上。 7.如申請專利範圍第1項所述之氮化物元件,其中該高濃 度之氮化鎵層為p型。 8 .如申請專利範圍第1項所述之氮化物元件,其中該高濃 度之氮化鎵層之厚度較佳為100 A至800 A。 9 .如申請專利範圍第1項所述之氮化物元件,其中該高濃 度之氮化鎵層之厚度更佳為500 A。 1 0 . —種氮化物元件之製造方法,至少包括: 提供一基板; 形成一緩衝層於該基板上; 形成一未摻雜氮化鎵層於該緩衝層上; 形成一半導體磊晶結構於該未摻雜氮化鎵層上;以及 形成一南濃度之鼠化蘇層於該半導體蠢晶結構上。 11.如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該形成一高濃度之氮化鎵層於該半導體磊晶結構 上之步驟係使用二甲基聯氨(Unsymmetric Dimethylhydrazine; UDMHy)作為氮原子的來源。Page 16 1236164 6. Scope of Patent Application and A P-type GaN layer is located on the P-type aluminum gallium nitride layer. 7. The nitride device according to item 1 of the scope of patent application, wherein the high-concentration gallium nitride layer is p-type. 8. The nitride device according to item 1 of the scope of patent application, wherein the thickness of the high-concentration gallium nitride layer is preferably 100 A to 800 A. 9. The nitride device according to item 1 of the scope of patent application, wherein the thickness of the high-concentration gallium nitride layer is more preferably 500 A. 10. A method for manufacturing a nitride device, at least comprising: providing a substrate; forming a buffer layer on the substrate; forming an undoped gallium nitride layer on the buffer layer; forming a semiconductor epitaxial structure on Forming an undoped gallium nitride layer on the undoped gallium nitride layer; 11. The method for manufacturing a nitride device according to item 10 of the scope of the patent application, wherein the step of forming a high-concentration gallium nitride layer on the semiconductor epitaxial structure uses dimethylhydrazine (Unsymmetric Dimethylhydrazine) UDMHy) as a source of nitrogen atoms. 第17頁 1236164 六、申請專利範圍 1 2 _如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該形成一高濃度之氮化鎵層於該半導體磊晶結構 上之步驟係使用含氮的有機金屬作為氮原子的來源。 1 3 ·如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該形成一高濃度之氮化鎵層於該半導體磊晶結構 上之步驟係使用氫氣作為載氣。 1 4 .如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該形成一高濃度之氮化鎵層於該半導體磊晶結構 上之步驟係使用氮氣與氫氣之混氣作為載氣。 1 5 ·如申請專利範圍第1 4項所述之氮化物元件之製造方 法,其中該氮氣與氫氣之混氣的比例可為1比2。 1 6 .如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該基板之材質為氧化鋁(A 1 20 3)。 1 7.如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該基板之材質為藍寶石。 1 8.如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該緩衝層之材質為氮化鎵。Page 17 1236164 VI. Patent Application Range 1 2 _ The method for manufacturing a nitride device as described in Item 10 of the patent application range, wherein the step of forming a high-concentration gallium nitride layer on the semiconductor epitaxial structure The system uses a nitrogen-containing organic metal as a source of nitrogen atoms. 1 3. The method for manufacturing a nitride device as described in item 10 of the scope of patent application, wherein the step of forming a high-concentration gallium nitride layer on the semiconductor epitaxial structure uses hydrogen as a carrier gas. 14. The method for manufacturing a nitride device according to item 10 of the scope of the patent application, wherein the step of forming a high-concentration gallium nitride layer on the semiconductor epitaxial structure uses a mixed gas of nitrogen and hydrogen as Carrier gas. 1 5 · The method for manufacturing a nitride element as described in item 14 of the scope of the patent application, wherein the ratio of the mixed gas of nitrogen and hydrogen may be 1 to 2. 16. The method for manufacturing a nitride element as described in item 10 of the scope of patent application, wherein the material of the substrate is alumina (A 1 20 3). 1 7. The method for manufacturing a nitride element as described in item 10 of the scope of patent application, wherein the material of the substrate is sapphire. 1 8. The method for manufacturing a nitride device according to item 10 of the scope of patent application, wherein the material of the buffer layer is gallium nitride. 第18頁 1236164 六、申請專利範圍 1 9 ·如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中形成該半導體磊晶結構之步驟至少包括: 形成一 η型氮化鎵層於該未摻雜氮化鎵層上; 形成一多重量子井發光層於該η型氮化鎵層上; 形成一 Ρ型氮化銘鎵層於該多重量子井發光層上;以及 形成一 Ρ型氮化鎵層於該Ρ型氮化鋁鎵層上。 2 0 ·如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該高濃度之氮化鎵層為ρ型。 21.如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該高濃度之氮化鎵層之厚度較佳為1 Ο Ο Α至 8 0 0 A。 2 2 .如申請專利範圍第1 0項所述之氮化物元件之製造方 法,其中該高濃度之氮化鎵層之厚度更佳為500 A。Page 18 1236164 VI. Patent application scope 19 · The method for manufacturing a nitride element as described in item 10 of the patent application scope, wherein the step of forming the semiconductor epitaxial structure includes at least: forming an n-type gallium nitride layer On the undoped gallium nitride layer; forming a multiple quantum well light emitting layer on the n-type gallium nitride layer; forming a p-type GaN gallium layer on the multiple quantum well light emitting layer; and forming a A P-type GaN layer is formed on the P-type aluminum gallium nitride layer. 20 · The method for manufacturing a nitride device as described in item 10 of the scope of patent application, wherein the high-concentration gallium nitride layer is of a p-type. 21. The method for manufacturing a nitride device according to item 10 of the scope of the patent application, wherein the thickness of the high-concentration gallium nitride layer is preferably 100 Å to 800 Å. 2 2. The method for manufacturing a nitride device according to item 10 of the scope of the patent application, wherein the thickness of the high-concentration gallium nitride layer is more preferably 500 A.
TW93111787A 2004-04-27 2004-04-27 Nitride device and method for manufacturing the same TWI236164B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW93111787A TWI236164B (en) 2004-04-27 2004-04-27 Nitride device and method for manufacturing the same
KR20040046986A KR100629857B1 (en) 2004-04-27 2004-06-23 Nitride device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93111787A TWI236164B (en) 2004-04-27 2004-04-27 Nitride device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI236164B true TWI236164B (en) 2005-07-11
TW200536141A TW200536141A (en) 2005-11-01

Family

ID=36648977

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93111787A TWI236164B (en) 2004-04-27 2004-04-27 Nitride device and method for manufacturing the same

Country Status (2)

Country Link
KR (1) KR100629857B1 (en)
TW (1) TWI236164B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102391513B1 (en) 2015-10-05 2022-04-27 삼성전자주식회사 Material layer stack, light emitting device, light emitting package, and method of fabricating the light emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3534227B2 (en) 1998-07-10 2004-06-07 株式会社村田製作所 Semiconductor light emitting device
JP4327339B2 (en) 2000-07-28 2009-09-09 独立行政法人物質・材料研究機構 Semiconductor layer forming substrate and semiconductor device using the same
JP2003069073A (en) 2001-08-30 2003-03-07 Shin Etsu Handotai Co Ltd GaN LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD
JP2004014587A (en) 2002-06-04 2004-01-15 Hitachi Cable Ltd Nitride compound semiconductor epitaxial wafer and light emitting element

Also Published As

Publication number Publication date
KR20050103860A (en) 2005-11-01
TW200536141A (en) 2005-11-01
KR100629857B1 (en) 2006-09-29

Similar Documents

Publication Publication Date Title
JPH05343741A (en) Gallium nitride series semiconductor element and manufacture thereof
US20040094756A1 (en) Method for fabricating light-emitting diode using nanosize nitride semiconductor multiple quantum wells
KR100884883B1 (en) Zinc Oxide Semiconductor and Method of manufacturing the same
JP2007073672A (en) Semiconductor light emitting element and its manufacturing method
WO2007018299A1 (en) Semiconductor device and process for producing the same
TW201022490A (en) Method for manufacturing gallium oxide based substrate, light emitting device, and method for manufacturing the light emitting device
TW201135975A (en) Techniques for achieving low resistance contacts to nonpolar and semipolar p-type (Al, Ga, In)N
TW201222669A (en) Methods for depositing germanium-containing layers
JP2010537436A (en) Method for fabricating low resistivity ohmic contacts to p-type III-V nitride semiconductor material at low temperature
CN100470857C (en) Gallium nitride-based semiconductor device
JP2008021745A (en) Group iii nitride compound semiconductor laminated structure, and method for growth thereof
TW200402895A (en) Method for reducing the resistivity of p-type II-VI and III-V semiconductors
JP2007087992A (en) Semiconductor device and its fabrication process
JP3522610B2 (en) Method for manufacturing p-type nitride semiconductor
TWI236164B (en) Nitride device and method for manufacturing the same
TWI295483B (en) 3-5 group compound semiconductor, process for producing the same, and compound semiconductor element using the same
TW201015757A (en) Method for fabricating p-type gallium nitride-based semiconductor, method for fabricating nitride-based semiconductor element, and method for fabricating epitaxial wafer
JP2011258631A (en) Light-emitting diode element and method of manufacturing the same
US20050179046A1 (en) P-type electrodes in gallium nitride-based light-emitting devices
CN109473522B (en) Gallium nitride-based light emitting diode epitaxial wafer and preparation method thereof
JP2006179618A (en) Semiconductor light emitting device and its manufacturing method
KR100432246B1 (en) III-Nitride compound semiconductor light emitting device
JP2009158702A (en) Light-emitting device
JP5046324B2 (en) Method for improving p-type conductivity of Mg-doped group III nitride semiconductor and method for producing p-type group III nitride semiconductor
CN109671818B (en) Gallium nitride-based light emitting diode epitaxial wafer and preparation method thereof