TWI233218B - One dimensional photonic crystal and light emitting device made from the same - Google Patents

One dimensional photonic crystal and light emitting device made from the same Download PDF

Info

Publication number
TWI233218B
TWI233218B TW93100472A TW93100472A TWI233218B TW I233218 B TWI233218 B TW I233218B TW 93100472 A TW93100472 A TW 93100472A TW 93100472 A TW93100472 A TW 93100472A TW I233218 B TWI233218 B TW I233218B
Authority
TW
Taiwan
Prior art keywords
dielectric
light
layer
dielectric layer
crystal
Prior art date
Application number
TW93100472A
Other languages
Chinese (zh)
Other versions
TW200524175A (en
Inventor
Chung-Hsiang Lin
Original Assignee
Pamelan Company Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pamelan Company Ltd filed Critical Pamelan Company Ltd
Priority to TW93100472A priority Critical patent/TWI233218B/en
Priority to US10/834,619 priority patent/US20050152417A1/en
Priority to US10/856,210 priority patent/US7078736B2/en
Priority to JP2004224297A priority patent/JP2005197650A/en
Application granted granted Critical
Publication of TWI233218B publication Critical patent/TWI233218B/en
Publication of TW200524175A publication Critical patent/TW200524175A/en

Links

Abstract

A light emitting device utilizing a one-dimensional photonic crystal comprises a light emitting diode having a substrate and a light emitting crystal for generating a luminescent source in a predetermined wavelength range, and a one-dimensional photonic crystal of dielectric. The light emitting diode has a first surface that was formed on the substrate and far from the light emitting crystal, and a second surface that was formed on the light emitting crystal and far from the substrate and opposite to the first surface. The dielectric connects in one of the first and the second surfaces and has at least one dielectric unit. The dielectric unit has a first dielectric layer and a second dielectric layer. There is a refractive index difference over than 0.58 between the first and the second dielectric layers under the predetermined wavelength range in such a manner that the dielectric has a reflectance characteristic of substantially reflecting totally of the luminescent source.

Description

1233218 玖、發明說明: 【發明所屬之技術領域】 本發明是有關於一種一維光子晶體 (One-Dimensional Photonic Crystal),及一由其製造的 5 發光裝置。 【先前技術】 由於發光二極體(Light Emitting Diode)具有體積小 之優勢,因此已被廣泛應用於顯示器背光模組、通訊、電 腦、父通號誌及玩具等消費市場。目前因為亮度不夠的問 3 題,尚未能廣泛使用於照明市場。但是照明領域的應用對 未來的消費市場而言,發展及成長的空間相當廣大。 為了解決有關發光二極體亮度不夠的問題,科學家們 從數個方面來提高元件的亮度,包括由磊晶技術 (epitaxial process technology)、晶粒製程技術(chip ; process technology)及封裝技術(package pr〇cess technology)等方面來著手。其中,在磊晶技術方面主要 盡量提昇施體(donor)及受體(acceptor)的濃度,並設法 減低發光層(active)的差排密度(disl〇cati〇n density)。由於提高發光層中的受體濃度並不容易,特別 > 是在藍光氮化鎵(GaN)系統有其難度,因此設法減低發光 層中的差排密度之技術並不容易突破。而有關封裝技術方 面則利用組裝技術在晶粒上置放反射鏡(ref lecti〇n mirror),但此種方法則會增加組裝的困難度。 參閱圖1,一種習知一的發光二極體1,是目前發光 1233218 一極體的最基本結構。該發光二極體1包含:一基材1 1 及一發光晶體12。 該發光晶體12是利用此技術領域所熟悉的晶粒技術 分別形成有一 N型材料層121、一 N型電極層122、一發 5 光層(activelayer)123、一 P型材料層124及一透明的p 型電極層125。該N型材料層121是形成在該基材u上方, 並於名N型材料層121上方的局部區域形成該N型電極層 122,且在沒有該N型電極層122的區域形成該發光層 123 "亥P型材料層124是形成於該發光層123的上方, 10 並於該P型材料層124的上方形成該p型電極層125。使 得在該發光二極體1在封裝製程後可與電源電性連接,以 形成發光元件。 參閱圖2,一種習知二的發光二極體2,大致上是與 §亥習知一的結構相同。其不同處在於該發光二極體2更包 15 含複數個介於該發光層123與該N型材料層121間的高低 折射率(refractive index)材料層對13。藉該等高低折射 率材料層對13,以提高該發光二極體2的發光效率。 參閱圖3,一種習知三之發光二極體3 ,是以磊晶技 術並利用高折射率材料來提高元件的發光亮《。該發光二 •° 極體3的結構大致上是與該習知一的結構相同,其不同處 在於,該發光二極體3更包含複數個介於該基材u及該 發光晶體12之間的反射層對14。該等反射層對】4是利用 如(AlxGai-xVyInN/(AlaGa,-a)]-bInbN(y>a)高低折射率的材 料,預先成長於基材11上,再於其上成長該發光晶體12。 1233218 使得由該發光晶體12向下發射出來的光可以被該等反射 層對14反射回該發光晶體12的上方,以提昇該發光二極 體3的亮度。 參閱圖4,一種習知四的發光二極體4,是以薄膜沉 積技術(thin film deposition process technology)並 利用高反射率的金屬材料來提高元件的發光亮度。該發光 二極體4的結構大致上是與該習知一的結構相同,其不同 處在於,該發光二極體4更包含一位於該基材u底面的 金屬鏡面層15。使得由該發光晶體12向下發射出來的光, 可以被該金屬鏡面層15反射回該發光晶體12的上方,以 提昇該發光二極體4的整體亮度。 參閱圖5,一種習知五的發光二極體5,是利用抗反 射材料來提高元件的發光亮度。該發光二極體5的結構大 致上是與該習知一的結構相同,其不同處在於,該發光二 極體5更包含複數個位於該透明的p型電極層丨25上方的 抗反射層對16。藉由該等抗反射層對16,可提昇該發光 二極體5的亮度。 月ij面所提到的該等習知之設計雖然都可增加發光二 極體的發光亮度,但不是因製程中所產生的晶格不匹配 (lattice mismatch),會增加發光晶體中的差排密度而影 響到發光亮度,就是有減低亮度的疑慮。此外,如習知二 和三中的高低折射率材料層對,對於大角度的入射光仍有 漏光的缺點。而如習知四中的金屬鏡面層15,對於可見光 或是紫外光有吸收的缺點。又如該習知五雖然抗反射層對 1233218 16可以提昇該發光二極體5的發光亮度,但隨著入射角度 的增加,該等抗反射層對16的抗反射性的效果便會隨之 減低。 另外,美國專利第6, 130, 780號揭露一由一全方向一 維光子晶體所製成的全方向反射鏡。該全方向一維光子晶 體具有一全方向光帶隙,使得當一入射光的頻率(或波長) 落入該光帶隙時’可全反射任何一入射角及偏極化 (Polarization)的光。此處所揭露的全方向反射鏡,是由 複數呈對的高低折射率層之介電材料所構成,且兩介電材 10 料之間折射率的差異,必須是足夠高才可以形成全方向光 ▼隙。其中,该全方向反射鏡與前面各習知所提到的反射 鏡及抗反射鏡之間的差異,可見於U S 6,130,780說明 書。以上所提到的前案專利,在此併入本案作為參考資料。 因此,如何避免形成發光二極體的晶格不匹配,又可 15 使發光二極體的發光亮度提昇以符合消費市場的需求,是 當下開發發光二極體業者不斷研究努力的方向。 【發明内容】1233218 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a one-dimensional photonic crystal, and a light-emitting device manufactured therefrom. [Previous technology] Due to its small size, Light Emitting Diodes have been widely used in consumer markets such as display backlight modules, communications, computers, parent signs and toys. At present, because of insufficient brightness, it has not been widely used in the lighting market. However, for the future consumer market, the application in the field of lighting has considerable room for development and growth. In order to solve the problem of insufficient brightness of light-emitting diodes, scientists have improved the brightness of components from several aspects, including epitaxial process technology, chip process technology, and package technology. pr〇cess technology) and other aspects. Among them, in the epitaxial technology, the concentration of donors and acceptors is mainly increased as much as possible, and attempts are made to reduce the density of the active layer. Since it is not easy to increase the acceptor concentration in the light-emitting layer, and it is particularly difficult in a blue light gallium nitride (GaN) system, it is not easy to break through the technique of reducing the differential density in the light-emitting layer. In terms of packaging technology, assembly technology is used to place a reflective mirror on the die, but this method will increase the difficulty of assembly. Referring to FIG. 1, a conventional light-emitting diode 1 is the most basic structure of a current-emitting 1233218 monopolar body. The light-emitting diode 1 includes a substrate 11 and a light-emitting crystal 12. The light-emitting crystal 12 is formed with an N-type material layer 121, an N-type electrode layer 122, an active-light-emitting layer 123, a P-type material layer 124, and a transparent layer, respectively, by using a grain technology familiar in this technical field. The p-type electrode layer 125. The N-type material layer 121 is formed over the substrate u, and the N-type electrode layer 122 is formed in a local area above the N-type material layer 121, and the light-emitting layer is formed in a region without the N-type electrode layer 122. 123 " H-P-type material layer 124 is formed on the light-emitting layer 123, and the p-type electrode layer 125 is formed on the P-type material layer 124. Therefore, the light-emitting diode 1 can be electrically connected to a power source after the packaging process to form a light-emitting element. Referring to FIG. 2, a light-emitting diode 2 of a conventional type 2 is substantially the same as the structure of §1. The difference is that the light-emitting diode 2 further includes a plurality of high-refractive index material layer pairs 13 between the light-emitting layer 123 and the N-type material layer 121. The high and low refractive index material layer pairs 13 are used to improve the light emitting efficiency of the light emitting diode 2. Referring to FIG. 3, a conventional light emitting diode 3 is based on epitaxial technology and uses a high refractive index material to improve the light emission of the element. The structure of the light-emitting diode 3 is substantially the same as that of the conventional one, except that the light-emitting diode 3 further includes a plurality of substrates u and the light-emitting crystal 12.的 Reflective layer pair 14. The pair of reflective layers] 4 is a material with a high and low refractive index such as (AlxGai-xVyInN / (AlaGa, -a)]-bInbN (y > a), which is grown on the substrate 11 in advance, and then the light is grown on Crystal 12. 1233218 enables the light emitted downward by the light-emitting crystal 12 to be reflected back to the top of the light-emitting crystal 12 by the reflection layer pairs 14 to enhance the brightness of the light-emitting diode 3. Referring to FIG. The light-emitting diode 4 of the known technology 4 is a thin film deposition process technology and uses a high-reflectivity metal material to improve the luminous brightness of the device. The structure of the light-emitting diode 4 is roughly the same as that The known structure is the same, except that the light-emitting diode 4 further includes a metal mirror layer 15 on the bottom surface of the substrate u. The light emitted from the light-emitting crystal 12 downward can be reflected by the metal mirror surface. The layer 15 is reflected back above the light-emitting crystal 12 to improve the overall brightness of the light-emitting diode 4. Referring to FIG. 5, a conventional light-emitting diode 5 uses an anti-reflective material to increase the light-emitting brightness of the element. The light-emitting diode 5 The structure is roughly the same as that of the conventional one, except that the light-emitting diode 5 further includes a plurality of anti-reflection layer pairs 16 above the transparent p-type electrode layer 25. The anti-reflection layer pair 16 can increase the brightness of the light emitting diode 5. Although the conventional designs mentioned on the moon ij surface can increase the light emitting brightness of the light emitting diode, it is not caused by the crystal produced in the manufacturing process. Lattice mismatch, which increases the density of the differential rows in the light-emitting crystal and affects the luminous brightness, is a concern of reducing the brightness. In addition, as in the high- and low-refractive-index material layer pairs of the second and third conventional methods, for large angles The incident light still has the disadvantage of light leakage. For example, the metal mirror layer 15 in the conventional knowledge 4 has the disadvantage of absorbing visible light or ultraviolet light. As in the conventional knowledge 5, although the antireflection layer pair 1233218 16 can enhance the light emitting secondary The luminous brightness of the polar body 5, but as the incident angle increases, the anti-reflective effect of these anti-reflection layers on the 16 will decrease accordingly. In addition, US Patent No. 6, 130, 780 discloses a comprehensive One-dimensional light An omnidirectional mirror made of a crystal. The omnidirectional one-dimensional photonic crystal has an omnidirectional optical band gap, so that when the frequency (or wavelength) of an incident light falls within the optical band gap, it can totally reflect any incident Angular and polarized light. The omnidirectional mirror disclosed here is composed of a pair of high and low refractive index dielectric materials, and the refractive index difference between the two dielectric materials. It must be high enough to form an omnidirectional light ▼ gap. Among them, the difference between the omnidirectional mirror and the previously mentioned mirrors and anti-reflection mirrors can be found in the specification of US 6,130,780. The patents of the previous case mentioned above are incorporated herein as reference materials. Therefore, how to avoid the lattice mismatch of the light-emitting diodes and increase the light-emitting brightness of the light-emitting diodes to meet the demands of the consumer market is the direction of continuous research efforts of current developers of light-emitting diodes. [Summary of the Invention]

的發光裝置,藉以克服前面習知所提到的缺失。 週期性變化的介電體。 本發明之—維光子晶體,包含:―在介電常數上具The light-emitting device is used to overcome the defects mentioned in the prior art. Dielectric body that changes periodically. The present invention-dimensional photonic crystal, including:-having a dielectric constant

一弟一介電層及一第二介電層。 元。該介電單元至少具有 該等介電層在折射率上是 5 10 15 20 1233218 相互=同的,以至於該介電體具有一實質地全反射-具有 一預定波長範圍的光源的反射性。 其中,該第-介電層及該第二介電層在該預定波長範 圍之光源的環境下具有一大於0·58的折射率差該第一 介電層的折射率是大於該第二介電層的折射率。該第一介 電層是由-選自於下所構成之群組的化合物所製成:氧化 物及硫化物;該第二介電層是由一選自於下所構成之群組 的化合物所製成··氧化物及氟化物。 另外,本發明之具有一維光子晶體的發光裝置,包 含:一發光二極體及一一维光子晶體之介電體。 該發光二極體具有-基材及—連接於基材的發光 晶體。該發光二極體藉該基材與發光晶體共同界定出一形 成在該基材上且遠離該發光晶體的第一表面,及一形成在 該發光晶體上且遠離該基材並相反於該第—表面的第二 表面。該發光晶體可發射出一預定波長範圍之光源。 該-維光子晶體之介電體連接於該第一表面及第二 表面的其中一者上。該介電體在介電常數上具一週期性變 化並具有至少一介電單a。該彳電單元至少具有一第一介 電層及-第二介電層。該等介電層在折射率上是相互不同 的,以致於該一絲子晶體之介電體具有一實質地全反射 該光源之反射性。 其中’該第-介電層及該第二介電層在該預定波長範 圍之光源的環境下具有一大於0.58的折射率差。 本發明之功效在於,藉該一維光子晶體之介電體可全 8 1233218 反射任何一入射角及偏極化的光源’增加該發光二極體的 光源外出效率(extraction efficiency),以使得該發光 裝置具有較高的發光效率。 【實施方式】 5 10 15 本發明之一維光子晶體,是針對在各波長範圍的光源 下去設計出該一維光子晶體的介電變化之週期性關係。本 發明之一維光子晶體包含:一在介電常數上具一週期性變 化的介電體。 該介電體具有至少一介電單元。該介電單元至少具有 -第-介電層及-第二介電層。該等介電層在折射率上是 相互不同的,以至於該介電體具有一實質地全反射一具有 一預定波長範圍的光源的反射性。 具中,該第 ;丨电層及該弟二介電層在該預定波長箣 圍之光源的環境下具有_大於G 58的折射率差,該第一 介電層的折射率是大於該第二介電層的折射率。該第一介 電層是由—選自於下所構成之群組的化合物所製成:氧化 物及&化物’ 4二介電層是由—選自於下所構成之群植 的化合物所製成:氧化物及氟化物。 藉該介電單元可定義出一晶格常數( 4電層的折射率及第二介電層的折射率(= 簡稱m)之間的差異大於一 φ ^ ^, 預值,並配合調整該第一介 電層的厂子度(以下簡稱㈣ 體之介電體可具有一入古A, 、·择九子日日 h + . h , ^^^^^(〇mnidirecti〇nalOne brother, one dielectric layer and one second dielectric layer. yuan. The dielectric unit has at least the dielectric layers whose refractive indices are 5 10 15 20 1233218 mutually equal, so that the dielectric body has a substantially total reflection-the reflectivity of a light source having a predetermined wavelength range. The first dielectric layer and the second dielectric layer have a refractive index difference greater than 0.58 under the environment of the light source in the predetermined wavelength range. The refractive index of the first dielectric layer is greater than that of the second dielectric layer. The refractive index of the electrical layer. The first dielectric layer is made of a compound selected from the group consisting of: oxides and sulfides; the second dielectric layer is a compound selected from the group consisting of Made by ····· and fluoride. In addition, the light-emitting device having a one-dimensional photonic crystal of the present invention includes a light-emitting diode and a dielectric of the one-dimensional photonic crystal. The light-emitting diode has a base material and a light-emitting crystal connected to the base material. The light emitting diode and the light emitting crystal together define a first surface formed on the substrate and away from the light emitting crystal, and a light emitting crystal formed on the light emitting crystal and away from the substrate and opposite to the first surface. -The second surface of the surface. The light emitting crystal can emit a light source with a predetermined wavelength range. The dielectric body of the -dimensional photonic crystal is connected to one of the first surface and the second surface. The dielectric body has a periodic change in dielectric constant and has at least one dielectric sheet a. The piezoelectric unit has at least a first dielectric layer and a second dielectric layer. The dielectric layers are different from each other in refractive index, so that the dielectric body of the sub-crystal has a substantially total reflectivity of the light source. Among them, the first dielectric layer and the second dielectric layer have a refractive index difference greater than 0.58 under the environment of the light source in the predetermined wavelength range. The effect of the present invention is that the dielectric body of the one-dimensional photonic crystal can fully reflect any light source with an incident angle and a polarized light of '1233218' to increase the extraction efficiency of the light source of the light emitting diode, so that the The light-emitting device has high light-emitting efficiency. [Embodiment] 5 10 15 The one-dimensional photonic crystal of the present invention is to design a periodic relationship of the dielectric change of the one-dimensional photonic crystal for a light source in each wavelength range. A one-dimensional photonic crystal of the present invention includes a dielectric having a periodic change in dielectric constant. The dielectric body has at least one dielectric unit. The dielectric unit has at least a first dielectric layer and a second dielectric layer. The dielectric layers are mutually different in refractive index, so that the dielectric body has a substantially total reflection and a reflectivity of a light source having a predetermined wavelength range. In the embodiment, the first dielectric layer and the second dielectric layer have a refractive index difference of greater than G 58 under the environment of the light source surrounded by the predetermined wavelength, and the refractive index of the first dielectric layer is greater than the first refractive layer. The refractive index of the two dielectric layers. The first dielectric layer is made of a compound selected from the group consisting of: oxides and & compounds' 4 The second dielectric layer is made of a compound selected from the group consisting of Made of: oxides and fluorides. The dielectric unit can be used to define a lattice constant (the difference between the refractive index of the 4 dielectric layer and the refractive index of the second dielectric layer (= m for short) is greater than a φ ^ ^, a preset value, and adjust the The degree of the first dielectric layer (hereinafter referred to as the "dielectric body" may have an ancient A,, select the ninth child day h +. H, ^^^^^ (〇mnidirecti〇nal

Ph〇t〇niC bandgap)。在本發明 、、隹先子晶體的應用領 20 1233218 :中(以下配合麥閱圖6) ’該全方向光帶隙之尺 (⑽卿⑽)需達3%以上。由圖6可得,d】的該預定厚 -疋以圖6中的等高線的最低點為指標。“2等於 5 10 15 20 時’由圖6中_虛線最低喊水平對應到垂直軸^ :射率差需大…才可使該一維光子晶體之介電體且 有:3%的全光帶隙尺寸。當&等於2〇時由圖6中狀 的貫線最低點處水平對應到垂直軸,可得折射率差需大於 〇·58才可使該-維光子晶體之介電體具有—勘上的全 光帶隙尺寸。因此,應用於本發明之該第一及第二介電層 的折射率差需大於〇. 58。 曰 利用本發明之-維光子晶體可製造成—具有—唯光 子晶體的發光裝置。該發光裝置包含:_發光二極體及一 一維光子晶體之介電體。 該發光二極體具有-基材及—連接於該基材的發光 晶體。該發光二極體藉該基材與發光晶體共同界定出一形 成在該基材上且遠離該發光晶體的第—表面,及一形成在 該發光晶體上且遠離該基材並相反於該第一表面的第二 表面。該發光晶體可發射出一預定波長範圍之光源。 邊一維光子晶體之介電體連接於該第一表面及第二 表面的其中一者上。該介電體在介電常數上具一週期性變 化並具有至少一介電單元。該介電單元至少具有一第一介 電層及一第二介電層。該等介電層在折射率上是相互不同 的,以致於該一維光子晶體之介電體具有一實質地全反射 該光源之反射性。 10 1233218 較佳地,該第一介電層的折射率是大於該第二介電層 =折射率。且在_具體實施例中,該第—介電層是相對該 第二介電層靠近該光源。值得一提的是,本發明之該介電 纟反射!生疋不丈限於該第一及第二介電層相對該光源 的排列順序。 適用於本發明之該第一介電層是由一選自於下所構 成之群組的化合物所製成:氧化物及硫化物(Sulfide)。 幸又,地”亥第一介電層之化合物是氧化物,該氧化物是由 k自於下列所構成之群組的氧化物所製成:氧化鈦 (Τι〇2)、五氧化二鈕(Ta2〇5)、氧化鍅(Zr〇2)、氧化辞(Zn〇)、 三氧化二鈦(NchO3)及五氧化二鈮(Nb2〇5)。在一具體實施 例中,忒第一介電層是由二氧化鈦(以下簡稱Ti〇〇所製 成。另外,三氧化二銦(In2〇3)、氧化錫(Sn〇2)、三氧化二 銻(Sb2〇3)、氧化铪(Hf〇2)、氧化鈽(Ce〇2)及硫化鋅(ZnS)皆 適用於本發明之第一介電層的化合物。 適用於本發明之該第二介電層是由一選自於下所構 成之群組的化合物所製成:氧化物及氟化物(Fluoride)。 較佳地,該第二介電層之化合物是氧化物,該氧化物是由 一選自於下列所構成之群組的氧化物所製成··氧化矽 (Si〇2)、氧化|g(Ah⑹、氧化鎂(Mg〇)、三氧化二鑭(La2⑹、 二氧化二镱(Yb2〇3)及三氧化二釔(Y2〇3)。在一具體實施 例中’該第二介電層是由二氧化矽(以下簡稱S i 〇2)所製 成。另外’三氧化二銳(Sc2〇〇、氧化鎢(W〇3)、氟化鋰(LiF)、 說化鈉(NaF)、氟化鎂(MgF2)、氟化鈣(CaF2)、氟化鋰 1233218 (SrF2)、氟化鋇(BaF2)、氟化鋁(Aip3)、氟化鑭([#3)、氟 化鈥(NdF3)、氟化釔(YF〇及氟化鈽(CeF3)皆適用於本發明 之第二介電層的化合物。 適用於本發明之該預定波長範圍是介於300⑽到55〇 nm。在一較佳具體例中,該預定波長範圍是介於3〇〇⑽ 到420 nm(以下簡稱UV光),且藉該介電單元的一總厚度 界定出一第一晶袼間隙ai(lattice spacing),使該第一 介電層的厚度是介於〇· 24 a!到0· 69 a!。在另一較佳具體 例中,該預定波長範圍是介於420 nm到480 nm(以下簡稱 藍光),且藉該介電單元的總厚度界定出一第二晶袼間隙 ⑴,使該第一介電層的厚度是介於〇·33⑴到〇·58⑴。在 又一較佳具體例中,該預定波長範圍是介於480⑽到55〇 nm,且藉該介電單元的總厚度界定出一第三晶袼間隙⑴, 使该第一介電層的厚度是介於〇· ⑴到〇_ 51⑴。值得一 提的是,該預定波長範圍與前面所提及的各晶袼間隙是呈 一函數關係,以致於變更該預定波長範圍的同時,該第一 介電層的厚度也會隨之改變,且該第一及第二介電層在該 預定波長範圍的環境下具有一大於〇· 58之折射率差。 在一具體貫施例中,該一維光子晶體之介電體是連接 方、該第一表面上,藉該一維光子晶體之介電體使該光源由 該第一表面反射至該第二表面。在另一具體實施例中,該 一維光子晶體之介電體是連接於該第二表面上,藉該一維 光子晶體之介電體使該光源由該第二表面反射至該第一 表面。較佳地,本發明之發光裝置更包含至少一散熱元 12 1233218 件,忒散熱TL件具有一散熱塊(heat sink)及複數設置在 該散熱塊上的導線,且該散熱塊是藉該等導線連接於 光晶體上。 L用方、本發明之該發光晶體是由一摻雜至少一冚B族 5 兀素的氮化鎵(以下簡稱GaN)半導體材料所製成。 ^佳地’本發明之該發光晶體自該基材遠離該基材的 方向是依序具有一連接於該基板的第一型半導體層、一局 P伖::亥第一型半導體層的發光層、一覆蓋該發光層的第 =型半導體層及-覆蓋該第二型半導體層並呈透明狀的 1〇 帛二電極層。在-較佳具體例中,該第-型半導體層是一 N 型摻雜半導體層(N-dQPed semiconductor layer;以下 簡稱N-d〇ped半導體層),該第二型半導體層是一 p型摻 雜半導體層(P-dQped semieQnduetQr layi以下簡稱(PhotoniC bandgap). In the application field of the invention, the proton crystal 20 1233218: Medium (refer to Figure 6 below) (see Figure 6 below) ′ The omnidirectional optical band gap rule (⑽ 清 ⑽) needs to be more than 3%. It can be obtained from FIG. 6 that the predetermined thickness −d] is taken as an index of the lowest point of the contour line in FIG. 6. "2 equals 5 10 15 20 'from the bottom line of the dashed line in Figure 6 corresponds to the vertical axis ^: The emissivity difference needs to be large ... to make the dielectric of this one-dimensional photonic crystal and have: 3% total light Band gap size. When & is equal to 20, it corresponds to the vertical axis horizontally at the lowest point of the through line in the shape shown in Figure 6. The refractive index difference needs to be greater than 0.58 to make the -dimensional photonic crystal dielectric. It has-the full optical band gap size. Therefore, the refractive index difference of the first and second dielectric layers applied to the present invention needs to be greater than 0.58. Said that the -dimensional photonic crystal of the present invention can be manufactured into- A light-emitting device having a photonic crystal. The light-emitting device includes: a light-emitting diode and a dielectric of a one-dimensional photonic crystal. The light-emitting diode has a substrate and a light-emitting crystal connected to the substrate. The light emitting diode and the light emitting crystal together define a first surface formed on the substrate and away from the light emitting crystal, and a light emitting crystal formed on the light emitting crystal and away from the substrate and opposite to the first surface. A second surface of a surface. The light emitting crystal can emit a light source with a predetermined wavelength range The dielectric of the edge one-dimensional photonic crystal is connected to one of the first surface and the second surface. The dielectric has a periodic change in dielectric constant and has at least one dielectric unit. The dielectric The unit has at least a first dielectric layer and a second dielectric layer. The dielectric layers are mutually different in refractive index, so that the dielectric body of the one-dimensional photonic crystal has a substantially total reflection of the light source 10 1233218 Preferably, the refractive index of the first dielectric layer is greater than the refractive index of the second dielectric layer. In a specific embodiment, the first dielectric layer is relative to the second dielectric layer. The dielectric layer is close to the light source. It is worth mentioning that the dielectric reflection of the present invention is not limited to the order in which the first and second dielectric layers are arranged relative to the light source. A dielectric layer is made of a compound selected from the group consisting of oxides and sulfides. Fortunately, the compound of the first dielectric layer is an oxide, and the oxidation Substances are made of oxides from the group consisting of: titanium oxide (T2O2), pentoxide (Ta205), hafnium oxide (ZrO2), oxide (ZnO), titanium trioxide (NchO3), and niobium pentoxide (Nb205). In a specific embodiment, the first dielectric layer is made of titanium dioxide (hereinafter referred to as Ti00. In addition, indium trioxide (In203), tin oxide (Sn02), antimony trioxide (Sb203), hafnium oxide (Hf02), hafnium oxide (Ce02), and zinc sulfide (ZnS) are all suitable for the compound of the first dielectric layer of the present invention. The second dielectric of the present invention is suitable for the second dielectric. The electrical layer is made of a compound selected from the group consisting of oxides and fluorides. Preferably, the compound of the second dielectric layer is an oxide, and the oxide is made of Made of an oxide selected from the group consisting of: silicon oxide (Si〇2), oxide | g (Ah⑹, magnesium oxide (Mg〇), lanthanum trioxide (La2⑹, difluoride) (Yb203) and yttrium trioxide (Y203). In a specific embodiment, 'the second dielectric layer is made of silicon dioxide (hereinafter referred to as Si02). In addition,' trioxide Errui (Sc200, tungsten oxide (W03), lithium fluoride (LiF), sodium fluoride (NaF), magnesium fluoride (MgF2), calcium fluoride (CaF2), lithium fluoride 1233218 (SrF2) Fluorination Barium (BaF2), aluminum fluoride (Aip3), lanthanum fluoride ([# 3), fluorinated '(NdF3), yttrium fluoride (YF0, and thorium fluoride (CeF3)) are all suitable for the second reference of the present invention. The compound of the electric layer. The predetermined wavelength range suitable for the present invention is between 300 Å and 55 nm. In a preferred embodiment, the predetermined wavelength range is between 300 Å and 420 nm (hereinafter referred to as UV light). ), And a first crystal spacing ai (lattice spacing) is defined by a total thickness of the dielectric unit, so that the thickness of the first dielectric layer is between 0.24 a! To 0.69 a !. In another preferred embodiment, the predetermined wavelength range is between 420 nm and 480 nm (hereinafter referred to as blue light), and a second crystal 袼 gap ⑴ is defined by the total thickness of the dielectric unit, so that the first The thickness of the dielectric layer is between 0.33 ⑴ and 0.58 ⑴. In another preferred embodiment, the predetermined wavelength range is between 480 ⑽ and 5500 nm, and a total thickness of the dielectric unit defines a The third crystal 袼 gap ⑴ makes the thickness of the first dielectric layer be between 0 · ⑴ to 0_51 ⑴. It is worth mentioning that the predetermined wavelength range and the front The mentioned interstitial gaps have a functional relationship, so that when the predetermined wavelength range is changed, the thickness of the first dielectric layer will also change accordingly, and the first and second dielectric layers are at the predetermined In the environment of the wavelength range, there is a refractive index difference greater than 0.58. In a specific embodiment, the dielectric of the one-dimensional photonic crystal is a connecting side and the first surface. The dielectric body reflects the light source from the first surface to the second surface. In another specific embodiment, the dielectric body of the one-dimensional photonic crystal is connected to the second surface, and the one-dimensional photonic crystal is borrowed. The dielectric body reflects the light source from the second surface to the first surface. Preferably, the light-emitting device of the present invention further includes at least one heat sink 12 1233218 pieces. The heat sink TL member has a heat sink and a plurality of wires disposed on the heat sink, and the heat sink is borrowed from these The wires are connected to the light crystal. For the L-side, the light-emitting crystal of the present invention is made of a gallium nitride (hereinafter referred to as GaN) semiconductor material doped with at least one 冚 B group 5 element. ^ Jiadi 'The light-emitting crystal of the present invention has a first-type semiconductor layer connected to the substrate in the direction from the substrate away from the substrate. Layer, a third-type semiconductor layer covering the light-emitting layer, and a second electrode layer covering the second-type semiconductor layer and being transparent. In a preferred embodiment, the first-type semiconductor layer is an N-dQPed semiconductor layer (hereinafter referred to as an Ndoped semiconductor layer), and the second-type semiconductor layer is a p-type doped semiconductor layer. Semiconductor layer (P-dQped semieQnduetQr layi)

Pooped半導體層),該第二電極層是一 p型電極層(以下 15 簡稱P-type電極層)。 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之六具體實施例的詳細說明中,將可清 楚的明白。 在本發明被詳細描述之前,要注意的是,在以下的說 20 明中,類似的元件是以相同的編號來表示。 〈具體實施例一〉 參閱圖7圖及圖8,本發明之具有一維光子晶體的發 光裝置的-具體實施例_,包含··一發光二極體6、一一 維光子晶體之介電體7、及複數焊墊(bonding pad)81。 13 1233218 S亥發光二極體6具有一材質為藍寶石(sapphire)的基 材jl及連接於該基材61的發光晶體62。該發光二極體 藉亥基材61與發光晶體62共同界定出一形成在該基材 W上且遠離該發光晶體62的第一表面611,及一形成在 該發光晶冑62上且遠離該基材61並相反於該第一表面 611的第二表面621。 孩發光晶體62是使用一摻雜有至少一 fflB族元素的 GaN半導體材料所製成。該發光晶體62自該基材61遠離 。亥基材61的方向是依序具有一連接於該基板61的 N doped半導體層622、一局部覆蓋該N—d叩半導體層 622的發光層624、一覆蓋該發光層624的p—d〇ped半導 月豆g 625及復蓋该Ρ-doped半導體層625的P-type電 極層626。其中,該等焊墊81是分別設置在該N_d〇ped半 導體層622及該p-type電極層626上。藉由複數導線(圖 未示)分別與該等焊墊81電性連接,以使得在該具體實施 例中’该發光晶體62可發射出一 300 nm到420 nm波 長範圍之UV光光源。其中,該發光晶體62之製作過程為 一蠢晶技術,此技術内容為發光二極體領域之相關人士所 熟悉’在此不再多加詳述。 該一維光子晶體之介電體7連接於該第一表面611 上’藉該一維光子晶體之介電體7將該UV光光源由該第 一表面611反射至該第二表面621。其中,該介電體7是 由一電子束蒸鍍(e-beam evaporation)法製備而成,此方 法非本發明之技術重點,因此,在此不再多加詳述。 14 5 10 15 20 1233218 该/丨電體7在介電當盔 电书數上具一週期性變化, 四個介電單元7卜每—介_ ^並具有十 电卓7L 71具有一材曾Α τ; η上人 第一介電層711及一材質為 一、〇2的 為Sl〇2的第二介電層712,且每 一介電皁元71的第—介 母 土 臂相對该弟二介電層71? 靠近該uv光光源。在今且邮〜α θ Π2 一 μ&quot;體貫轭例一中,藉每一介雷罝 元71的一總厚度界定出一 尺寸為110⑽的第一晶格間隙 C以下間稱a]),且每一楚_ _ 告々 ^ 罘—&quot;龟層711的厚度為0.42a]。 虽母一第一及第二介電y® 711 r, ! 〇 , θ 711、712在該UV光光源的波長 為385 nm環境時,該辇笙 立吐 入 7第一及第二介電層711、712的折 射率分別為2·6^.4δ,其折射率差為1 12,以致於該 、隹光子曰曰體之介電體7具有一實質地全反射該UV光光 源之反射性(思即,该具體實施例一中的介電體7具有一 全方向光帶隙)。 以下配合參閱圖9,當每一第一介電層711的厚度介 於0.2a】到0.78adf,該一維光子晶體之介電體7具有一 光帶隙。當每一第一介電層711的厚度為〇42a]時,該一 維光子晶體之介電體7具有一最大光帶隙尺寸(約趨近於 10%),且對照至圖9的上方圖示,由水平座標為〇· 42ai處 對應到垂直座標處,可得到一頻率介於〇.3〇〇(c/ai)到 0· 273(c/a!)的光帶隙,其中,c為光速。由前所述,配合 參閱圖10,也可由圖10中的一波導區(guided region) 得到一頻率介於〇· 300(c/ai)到0· 273(c/a])的光帶隙,意 即,該具體實施例一中的光帶隙之波長範圍是介於367 nm 到403 nm。圖9及圖1 〇中的波數(Wave Number ; ky) 15 1233218 及波偏極化TE及TM的定義,則見於美國專利第 6, 1 30, 780號的說明書中。 由分析數據可得,該具體實施例一中的一維光子晶^ 之介電體7 ’在波長介於3 6 9 nm到4 01 nm之間的反射率 是大於99· 5%(配合參閱圖11)。另外,可配合參閱圖 及圖13,是分別由該基材(藍寶石在385 nm的環境下折射 率為1 · 7)61及该發光晶體(GaN在385 nm的環境下折射率 為2.58)62所測得的反射率及穿透率分析數據,亦得到在 波長介於369 rm到401 nm之間皆具有大於99·5%的反射 率。由此,該具體實施例一中的發光裝置,可藉該一維光 子晶體之介電體7將該UV光光源由該第一表面611反射 至該第二表面621。 〈具體貫施例二〉 薈閱圖14 ’本發明之具有一維光子晶體的發光裝置的 一具體實施例二,大致上是與該具體實施例一相同。其不 同處在於,該發光晶體62是可發射出一波長介於42〇⑽ 到480 nm的藍光光源,因此,該一維光子晶體之介電體7 的細部結構需隨著該藍光光源做一修正。 +在該具體實施例二中,藉每—介電單元71,的總厚度 界,出一尺寸A 134 nm白勺第二晶袼間隙(以下簡稱七), 且每一第一介電層711,的厚度為〇·44七。當每一第一及 第二介電層7U’、712’在該藍光光源的波長為伽⑽環境 時’該等第-及第二介電層7U,、712,的折射率分別為Μ 及47,其折射率差為0 95,以致於該一維光子晶體之 16 1233218 介電體7具有一實質地全反射該藍光光源之反射性(意 即,該具體實施例二中的介電體7具有一全方向光帶隙)。 以下配合參閱圖15,當每一第一介電層711,的厚度介 於0.2a2到0.7a2時,該一維光子晶體之介電體7具有一光 帶隙。當每一第一介電層711,的厚度為0.44a2時,該一維 光子晶體之介電體7具有一最大光帶隙尺寸(約趨近於 5%),且對照至圖15的上方圖示,由水平座標為〇.44a2處 對應到垂直座標處,可得到一頻率介於〇.3〇5(c/a2)到 0· 291 c/a〇光帶隙。由前所述,配合參閱圖16,也可由圖 16中的一波導區得到一頻率介於〇· 3〇5(c/a2)到 〇· 291 (c/心)的光帶隙,意即,該具體實施例二中的光帶隙 之波長範圍是介於439 nm到461 nm。 由分析數據可得,該具體實施例二中的一維光子晶體 之介電體7,在波長介於440 nm到464 nm之間的反射率 是大於99.5%(配合參閱圖17)。另外,可配合參閱圖18 及圖19,分別由該基材(藍寶石)61及該發光晶體(GaN在 450 nm的環境下折射率為2· 48)62所測得的反射率分析數 據,亦得到在波長介於440 11111到464⑽之間皆具有大於 99. 5%的反射率。 〈具體實施例三〉 蒼閱圖20圖,本發明之具有一維光子晶體的發光裝 置的一具體實施例三,大致上是與該具體實施例—相同。 其不同處在於,該發光晶體62是可發射出—波長介於48〇 ⑽到550 nm的綠光光源,因此,該一維光子晶體之介電 17 !233218 體7的細部結構需隨著該綠光光源做一修正。 在該具體實施例三中,藉每一介電單元71,,的總厚度 界疋出一尺寸為151 nm的第三晶格間隙(以下簡稱, 5 且每一第一介電層711,,的厚度為〇· 45⑴。當每一第一及 第一介電層711”、712”在該綠光光源的波長為5〇〇 nm環 i兄時,該等第一及第二介電層711 ”、712,,的折射率分別為 3 6及1 · 4 6 ’其折射率差為〇 ·⑽,以致於該一維光子晶 體之介電體7具有一實質地全反射該綠光光源之反射性 ]n (思即,該具體實施例三中的介電體7具有一全方向光帶 隙)。 以下配合茶閱圖21,當每一第一介電層711”的厚度介 方、〇· 3as到〇· 64as時,該一維光子晶體之介電體7具有一 光帶陈。當每一第一介電層711”的厚度為〇.45a3時,該一 維光子晶體之介電體7具有一最大光帶隙尺寸(約趨近於 3· 5/〇 ’且對照至圖21的上方圖示,由水平座標為45a3 處對應到垂直座標處,可得到一頻率介於〇 3〇8(^/心)到 0· 297(c/as)光帶隙。由前所述,配合參閱圖22,也可由 圖22中的一波導區得到一頻率介於〇· 3〇8(c/a3)到 0· 297(c/as)的光帶隙,意即,該具體實施例三中的光帶隙 20 之波長範圍是介於491 nm到507 nm。 由分析數據可得,該具體實施例三中的一維光子晶體 之介電體7 ’在波長介於492 nm到512 nm之間的反射率 是大於99· 5%(配合參閱圖23)。另外,可配合參閱圖24 及圖25 ’分別由該基材(藍寶石)61及該發光晶體(GaN在 18 ίο 15Pooped semiconductor layer), the second electrode layer is a p-type electrode layer (hereinafter referred to as P-type electrode layer 15). The foregoing and other technical contents, features, and effects of the present invention will be clearly understood in the following detailed description of the specific embodiment with reference to the sixth drawing. Before the present invention is described in detail, it should be noted that in the following description, similar elements are represented by the same reference numerals. <Specific Embodiment 1> Referring to FIGS. 7 and 8, a specific embodiment of a light-emitting device having a one-dimensional photonic crystal according to the present invention includes a dielectric of a light-emitting diode 6 and a one-dimensional photonic crystal. Body 7, and a plurality of bonding pads 81. 13 1233218 The light emitting diode 6 has a base material jl made of sapphire and a light emitting crystal 62 connected to the base material 61. The light-emitting diode defines a first surface 611 formed on the substrate W and away from the light-emitting crystal 62 by a substrate 61 and a light-emitting crystal 62, and a light-emitting diode 62 formed away from the light-emitting crystal 62. The substrate 61 is opposite to the second surface 621 of the first surface 611. The child-emitting crystal 62 is made of a GaN semiconductor material doped with at least one fflB group element. The light emitting crystal 62 is far from the substrate 61. The direction of the base material 61 is sequentially provided with an N doped semiconductor layer 622 connected to the substrate 61, a light emitting layer 624 partially covering the N-d— semiconductor layer 622, and a p-d covering the light emitting layer 624. A ped semiconducting moon bean g 625 and a P-type electrode layer 626 covering the P-doped semiconductor layer 625. The pads 81 are respectively disposed on the N-doped semiconductor layer 622 and the p-type electrode layer 626. A plurality of wires (not shown) are electrically connected to the bonding pads 81 respectively, so that in the embodiment, the light emitting crystal 62 can emit a UV light source in a wavelength range of 300 nm to 420 nm. Among them, the manufacturing process of the light-emitting crystal 62 is a stupid crystal technology, and the technical content is familiar to those in the field of light-emitting diodes' and will not be described in detail here. The dielectric 7 of the one-dimensional photonic crystal is connected to the first surface 611. The UV light source is reflected from the first surface 611 to the second surface 621 by the dielectric 7 of the one-dimensional photonic crystal. The dielectric body 7 is prepared by an e-beam evaporation method, which is not the technical focus of the present invention. Therefore, it will not be described in detail here. 14 5 10 15 20 1233218 The electric body 7 has a periodic change in the number of dielectric books when it is used as a helmet. Α τ; η the first dielectric layer 711 and a second dielectric layer 712 made of SiO2 and SiO2, and the first-dielectric soil arm of each dielectric soap element 71 is opposite to the The second dielectric layer 71? Is close to the UV light source. In the present example ~ α θ Π2-through-yoke example 1, a first lattice gap C with a size of 110 界定 is defined by a total thickness of each thunder element 71, and a]), and Each Chu _ _ 々 々 罘 罘 — &quot; The thickness of the turtle layer 711 is 0.42a]. Although the mother-first and second dielectrics y® 711 r,! 〇, θ, 711, 712, when the wavelength of the UV light source is 385 nm, the sintered spit into 7 first and second dielectric layers The refractive indices of 711 and 712 are 2. 6 ^ .4δ, and the refractive index difference is 1 12 so that the photodiode 7 dielectric body 7 has a reflectivity that substantially totally reflects the UV light source. (That is, the dielectric body 7 in the first specific embodiment has an omnidirectional optical band gap). Referring to FIG. 9 in conjunction with the following, when the thickness of each first dielectric layer 711 is between 0.2a] to 0.78adf, the dielectric body 7 of the one-dimensional photonic crystal has an optical band gap. When the thickness of each first dielectric layer 711 is 042a], the dielectric body 7 of the one-dimensional photonic crystal has a maximum optical bandgap size (approximately 10%), and is compared to the top of FIG. 9 As shown in the figure, from the horizontal coordinate of 42 · ai to the vertical coordinate, an optical bandgap with a frequency between 0.300 (c / ai) and 0.327 (c / a!) Can be obtained, where: c is the speed of light. From the foregoing, with reference to FIG. 10, an optical bandgap having a frequency in the range of 0.300 (c / ai) to 0.327 (c / a) can also be obtained from a guided region in FIG. That is, the wavelength range of the optical band gap in the first embodiment is between 367 nm and 403 nm. The definitions of the wave numbers (Wave Number; ky) 15 1233218 and the wave polarizations TE and TM in FIG. 9 and FIG. 10 are found in the specification of US Patent No. 6,130,780. According to the analysis data, the reflectance of the dielectric 7 ′ of the one-dimensional photonic crystal ^ in the specific embodiment 1 is greater than 99.5% at a wavelength between 3 6 9 nm and 4 01 nm (see Figure 11). In addition, referring to FIG. 13 and FIG. 13, the substrate (refractive index of sapphire under the environment of 385 nm is 1 · 7) 61 and the light-emitting crystal (refractive index of GaN under the environment of 385 nm is 2.58) 62 The measured reflectance and transmittance analysis data also have reflectances greater than 99 · 5% at wavelengths between 369 rm and 401 nm. Therefore, the light emitting device in the first embodiment can reflect the UV light source from the first surface 611 to the second surface 621 by the dielectric 7 of the one-dimensional photonic crystal. <Specific Implementation Example 2> An overview of FIG. 14 ′ A specific embodiment 2 of the light-emitting device having a one-dimensional photonic crystal according to the present invention is substantially the same as the specific embodiment 1. The difference is that the light-emitting crystal 62 emits a blue light source with a wavelength between 42 ° and 480 nm. Therefore, the detailed structure of the dielectric body 7 of the one-dimensional photonic crystal needs to be made with the blue light source. Amended. + In the second specific embodiment, a second crystal gallium gap (hereinafter referred to as seven) of size A 134 nm is obtained by using the total thickness boundary of each dielectric unit 71 ′, and each first dielectric layer 711 , The thickness is 0.47. When each of the first and second dielectric layers 7U ', 712' has a Gamma environment at the wavelength of the blue light source, the refractive indices of the first and second dielectric layers 7U, 712 are M and 47, whose refractive index difference is 0.95, so that the 16 1233218 dielectric body 7 of the one-dimensional photonic crystal has a reflectivity that substantially reflects the blue light source (that is, the dielectric body in the second specific embodiment) 7 has an omnidirectional optical band gap). Referring to FIG. 15 below, when the thickness of each first dielectric layer 711 is between 0.2a2 and 0.7a2, the dielectric body 7 of the one-dimensional photonic crystal has an optical band gap. When the thickness of each of the first dielectric layers 711 is 0.44a2, the dielectric body 7 of the one-dimensional photonic crystal has a maximum optical bandgap size (approximately 5%), and it is compared to the top of FIG. 15 As shown in the figure, from the horizontal coordinate of 0.44a2 to the vertical coordinate, a frequency band of 0.305 (c / a2) to 0.391 c / a0 can be obtained. From the foregoing, with reference to FIG. 16, an optical band gap with a frequency between 0.305 (c / a2) and 0.291 (c / center) can also be obtained from a waveguide region in FIG. 16, which means that The wavelength range of the optical band gap in this specific embodiment 2 is between 439 nm and 461 nm. According to the analysis data, the reflectance of the dielectric body 7 of the one-dimensional photonic crystal in the second specific embodiment is greater than 99.5% at a wavelength between 440 nm and 464 nm (see FIG. 17 for coordination). In addition, with reference to FIG. 18 and FIG. 19, the reflectance analysis data measured from the substrate (sapphire) 61 and the light-emitting crystal (refractive index of GaN under the environment of 450 nm of 2.48) 62, also 5% Reflectivity is obtained at wavelengths between 440 11111 and 464 ⑽. <Specific Embodiment 3> As shown in FIG. 20, a specific embodiment 3 of the light-emitting device having a one-dimensional photonic crystal according to the present invention is substantially the same as the specific embodiment. The difference is that the light-emitting crystal 62 is a green light source that can emit light with a wavelength between 48 ° to 550 nm. Therefore, the detailed structure of the dielectric 17! 233218 body 7 of the one-dimensional photonic crystal needs to follow this Make a correction for the green light source. In the third specific embodiment, a third lattice gap (hereinafter referred to as "5" and each first dielectric layer 711 ") having a size of 151 nm is formed by the total thickness boundary of each dielectric unit 71,", The thickness is 0.45 第一. When each of the first and first dielectric layers 711 ", 712" has a wavelength of 500 nm in the green light source, the first and second dielectric layers The refractive indices of 711 ″ and 712 ′ are 3 6 and 1. 4 6 ′, respectively, and the refractive index difference is 0 · 〇, so that the dielectric body 7 of the one-dimensional photonic crystal has a substantially total reflection of the green light source. (Reflectivity) n (that is, the dielectric body 7 in the third specific embodiment has an omnidirectional optical band gap). With reference to FIG. 21, the thickness of each first dielectric layer 711 ″ From 0.3as to 64as, the dielectric body 7 of the one-dimensional photonic crystal has an optical band. When the thickness of each first dielectric layer 711 "is 0.45a3, Dielectric body 7 has a maximum optical band gap size (approximately 3 · 5 / 〇 'and compared to the upper diagram of Fig. 21, the horizontal coordinate is 45a3 corresponding to the vertical coordinate An optical bandgap with a frequency between 0. 308 (^ / center) and 0. 297 (c / as) can be obtained. From the foregoing, referring to FIG. 22, a waveguide region in FIG. 22 can also be used to obtain a An optical band gap with a frequency between 0.38 (c / a3) and 0.397 (c / as), which means that the wavelength range of the optical band gap 20 in the third embodiment is between 491 nm and 507 nm. According to the analysis data, the reflectivity of the dielectric 7 ′ of the one-dimensional photonic crystal in the specific embodiment 3 is greater than 99.5% at a wavelength between 492 nm and 512 nm (see the figure for coordination) 23). In addition, please refer to FIG. 24 and FIG. 25 ′ from the substrate (sapphire) 61 and the light-emitting crystal (GaN in 18 ίο 15

1233218 5〇0咖的環境下折射率為2·44)62所測得的反射率分析數 =,亦得到在波長介於492 nm_nm之間皆具有大於 99· 5%的反射率。 〈具體貫施例四〉 /閱圖26 ®,本發明之具有—維光子晶體的發光裝 置的具體貫施例四,大致上是與該具體實施例-相同。 ^不同處在於’該一維光子晶體之介電體7是連接在該第 一表面621上’且更包含一散熱元件9及兩分別與該等焊 墊81相互連接的焊塊(solder bump)82,其中,該發光二 極體6是利用覆晶⑴ipcMp)_裝方式與該散熱元件9 相互連接。 ”亥放熱7L件9具有一散熱塊91及複數設置在該散熱 塊91上的導線92 ’且該散熱塊91是藉該等導線92與該 寻焊塊8 2連接。 〈具體實施例五〉 本發明 &lt; 具有一維光子晶體的發光裳X的一具體實 施例五’大致上是與該具體實施例四相同。其不同處在 ^ 於’遠發光晶體62所發射出的預定波長範圍及該一維光 子晶體之介電體7的細部結構是相同於該具體實_二。 、 〈具體實施例六〉 ·· 本發明之具有一維光子晶體的發光裝置的—具體冑 - 鈿例/、,大致上是與該具體實施例四相同。其不同處在 於’該發光晶體62所發射出的預定波長範圍及該一維光 子晶體之介電體7的細部結構是相同於該具體實施例三。 19 1233218 由上所述,本發明之一維光子晶體及其發光裝置具有 下列數項特點: 5 10 15 20 一、由於該一維光子晶體之介電體7是形成在該第一 表面621上(具體實施例一、二、三)或該第二表面622上 (具體實施例四、五、六),因此可避免如習知形成在蟲晶 體内部的反射層所造成的晶格不匹配之問題。 一、當该發光二極體6所使用的一維光子晶體之介電 體7具有較大的光帶隙尺寸時,則所配合使用的發光二極 體之光源半高寬受限較小。如具體實施例一及四中,具有 約10%的全光帶隙尺寸,即使該發光二極體6的半高寬是 趨近40nm,仍可藉由該一維光子晶體之介電體7反射該光 源回相反於該人射光源的方向,以修正該光源在發光裝置 中的發光效率。 一三、藉由該一維光子晶體之介電體7,可全反射任何 射角及偏極化的光源,以提高該發光二極體6的光源 外出效率。 你綠具體實施例四 伯⑻主勺封4方式來封裝該發光二極冑6,可提供散熱抱 却r點’並可避免該發光二極體6因該等焊墊81的避 怎^而影響該發光二極體6的發光效率。 匹配光子晶體及其發光裳置可避免晶袼不 等特點 、》光-極體具有發光效率高及散熱性佳 寺特點、確實達到本發明之目的。 准以上所述者,僅為本發明之較佳實施例而已,當不 20 ίο 15 20 1233218 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明書内容所作之簡單的等效變化與修飾,皆 應仍屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是-剖面示意圖,說明一種習知一的發光二極體 之基本結構; 圖2是一剖面示意圖,說明一種習知二的發光二極體 之各層結構; 圖3是一剖面示意圖,說明-種習知三的發光二極體 之各層結構; 圖4是一剖面示意圖,說明一種習知四的發光二極體 之各層結構; 圖5是一剖面示意圖’說明一種習知五的發 之各層結構; 圖6是一折射率差與-第-介電層之厚度所形成之光 帶隙尺寸的關係圖,說明本發明之該第—介電_及_第— 介電層的折射率差與該第—介電層之厚度所形成之光; 隙尺寸的關係; 圖7是一剖面示意圖,說明本發明之具有一維光子晶 體的發光裝置的一具體實施例一; 圖8是該圖7的局部放大示意圖,說明該具體實_ 一的一介電體的介電單元之細部結構; 圖9是一第一介電層在一笛 电層在弟-晶格間隙(a])中 厚度關係圖’說明在該亘μ眚姑^办丨 、 月且《靶例一的波長範圍(3〇〇咖 21 1233218 到420⑽)下’ -光帶隙尺寸及該第—介電層之厚度的關 係圖; 圖10是-光帶隙結構圖,說明該具體實施例一中的 介電體的光帶隙結構; 5 ® 11是一平均反射率光譜圖,說明由空氣中测得該 具體實施例一中的介電體的反射率; Λ 圖12是一平均反射率及穿透率光譜圖,說明由—基 材中測得該具體實施例一中的介電體的反射率及穿透率; 圖13是-平均反射率及穿透率光譜圖,說明由一發 1〇 光晶體中測得該具體實施例-中的介電體的反射率及^ 透率; 圖14是該圖7的届部访士 -立 句〇丨放大不意圖,說明一具體實施 例二的一介電體的介電單元之細部結構; 目15疋一第一介電層在一第二晶格間隙(⑴)中的相 對厚度_圖’說明在該具體實施例二的波長範附彻⑽ 到480 nm)下,-光帶隙尺寸及該第一介電層之厚度的關 係圖; 圖16疋-光帶隙結構圖,說明該具體實施例二中的 介電體的光帶隙結構; &gt;〇 圖17是一平均反射率光講圖,說明由空氣中測得該 具體實施例二中的介電體的反射率; ▲圖18是-平均反射率光譜圖,說明由該基材中測得 該具體實施例二中的介電體的反射率,· 圖19疋平均反射率光譜圖,說明由該發光晶體中 22 1233218 測得該具體實施例二中的介電體的反射率; 一圖20是該圖7的局部放大示意圖,說明一具體實施 例一的&quot;電體的介電單元之細部結構; 圖21是一第—介電層在一第三晶格間陈⑹中的相 對厚度關係圖,說明在該具體實施例三的波長範圍(4〜 到550 nm)T ’ -光帶隙尺寸及該第—介電層之厚度的關 係圖; 圖22是一光帶隙結構圖,說明該具體實施例三中的 介電體的光帶隙結構; 10 15 圖23是一平均反射率光譜圖,說明由空氣中測得該 具體實施例三中的介電體的反射率; 圖24是一平均反射率光譜圖,說明由該基材中測得 該具體實施例三中的介電體的反射率; 圖25是一平均反射率光譜圖,說明由該發光晶體中 測得該具體實施例三中的介電體的反射率;及 圖2 6是一局部别面示意圖,說明本發明之具有一維 光子晶體的發光裝置的一具體實施例四。 23 1233218 【圖式之主要元件代表符號簡單說明】 β Μ…發光二極體 71,,。… …”介電早元 1 X ί &lt; ν - ί ……基材 711 …第一介電層 611 ……第一表面 711, η…第一介電層 62........ ……發光晶體 71Γ ……第一介電層 621 …,第二表面 712 …第二介電層 622 N-doped半導體層 712, …第二介電層 624… ……發光層 712” +第二介電層 625… …P-doped半導體層 81 ……焊墊 626… ……P-type電極層 82…… …火干塊 7 “…… ……介電體 …散熱元件 71 - ……介電早兀 91 - …♦散熱塊 71,… ……介電早元 92-… 導線 24The analysis index of the measured refractive index under the environment of 1233218 500 ° C is 2.44) 62, and it also shows that the reflectance is greater than 99. 5% in the wavelength between 492 nm and nm. <Specific Implementation Example 4> / See FIG. 26®, the specific implementation example 4 of the light-emitting device having a dimensional photonic crystal according to the present invention is substantially the same as the specific embodiment. ^ The difference is that 'the dielectric body 7 of the one-dimensional photonic crystal is connected to the first surface 621' and further includes a heat dissipation element 9 and two solder bumps connected to the pads 81, respectively. 82, wherein the light-emitting diode 6 is connected to the heat-dissipating element 9 by a flip-chip (IPcMp) mounting method. "The heat-releasing 7L member 9 has a heat-dissipating block 91 and a plurality of wires 92 'disposed on the heat-dissipating block 91, and the heat-dissipating block 91 is connected to the solder-seeking block 82 through the wires 92. <Specific Embodiment 5> A specific embodiment 5 of the light emitting skirt X having a one-dimensional photonic crystal of the present invention is substantially the same as the specific embodiment 4. The difference lies in the predetermined wavelength range emitted by the far-emitting crystal 62 and The detailed structure of the dielectric body 7 of the one-dimensional photonic crystal is the same as that of the specific embodiment II. Specific Embodiment 6 The light-emitting device with the one-dimensional photonic crystal of the present invention-specific 胄-钿 例 / Is substantially the same as that of the specific embodiment 4. The difference is that the predetermined wavelength range emitted by the light-emitting crystal 62 and the detailed structure of the dielectric body 7 of the one-dimensional photonic crystal are the same as those of the specific embodiment. 3. 19 1233218 As mentioned above, the one-dimensional photonic crystal and its light-emitting device of the present invention have the following features: 5 10 15 20 1. Because the dielectric 7 of the one-dimensional photonic crystal is formed on the first surface 621 (specific embodiment , Two, three) or the second surface 622 (specific embodiments four, five, and six), so that the problem of lattice mismatch caused by the reflective layer formed inside the worm crystal as known can be avoided. When the dielectric 7 of the one-dimensional photonic crystal used in the light-emitting diode 6 has a large optical bandgap size, the light-source half-width limitation of the light-emitting diode used in combination is less limited. In Examples 1 and 4, it has a total optical bandgap size of about 10%. Even if the full width at half maximum of the light-emitting diode 6 is closer to 40 nm, the light source can still be reflected by the dielectric 7 of the one-dimensional photonic crystal. Reverse the direction of the person's light source to modify the light-emitting efficiency of the light source in the light-emitting device. One or three, by the dielectric body 7 of the one-dimensional photonic crystal, the light source can be totally reflected at any angle of incidence and polarization. In order to improve the light-emitting efficiency of the light-emitting diode 6, the green light emitting diode 6 can be packaged in the main sealing method 4 of the green embodiment, which can provide heat dissipation and prevent the r-point. The polar body 6 affects the light-emitting efficiency of the light-emitting diode 6 due to the avoidance of the bonding pads 81. Matching photonic crystals and their luminous clothes can avoid the unequal characteristics of crystals. "The light-polar body has the characteristics of high luminous efficiency and good heat dissipation, and indeed achieves the purpose of the present invention. Those mentioned above are only the present invention. It is only the preferred embodiment. When it is not 20 ίο 15 20 1233218, the scope of implementation of the present invention can be limited in this way, that is, any simple equivalent changes and modifications made according to the scope of the patent application and the content of the invention specification of the present invention should still belong to The invention is covered by the patent. [Brief description of the drawings] Fig. 1 is a schematic cross-section illustrating the basic structure of a conventional light-emitting diode. Fig. 2 is a schematic cross-section illustrating a conventional light-emitting diode. The structure of the layers of the polar body; Figure 3 is a schematic cross-sectional view illustrating the structure of the layers of the light-emitting diode of the conventional three; Figure 4 is a schematic cross-sectional view illustrating the structure of the layers of the light-emitting diode of the conventional four; 5 is a schematic cross-section diagram illustrating the structure of each layer of a conventional technique; FIG. 6 is a diagram showing the relationship between the refractive index difference and the optical band gap size formed by the thickness of the -dielectric layer, explaining The relationship between the refractive index difference of the first dielectric layer and the first dielectric layer and the light formed by the thickness of the first dielectric layer; the gap size relationship; FIG. 7 is a schematic cross-sectional view illustrating the invention A specific embodiment 1 of a light-emitting device having a one-dimensional photonic crystal; FIG. 8 is a partially enlarged schematic view of FIG. 7, illustrating the detailed structure of a dielectric unit of a dielectric body; FIG. 9 is a first The thickness relationship diagram of a dielectric layer and a dielectric layer in the sibling-lattice gap (a) 'illustrates the wavelength range of the target example (3. 1233218 to 420 ⑽) The relationship between the optical band gap size and the thickness of the first dielectric layer; FIG. 10 is a structural diagram of the optical band gap, illustrating the optical band gap structure of the dielectric body in the first specific embodiment 5 ® 11 is an average reflectance spectrum chart, which shows that the reflectance of the dielectric body in the first specific embodiment is measured from the air; Λ FIG. 12 is an average reflectance and transmittance spectrum chart, which shows that— The reflectance and transmittance of the dielectric body in the first specific embodiment were measured in the substrate; FIG. 13 is-average reflection And transmittance spectrum chart, which show that the reflectivity and transmittance of the dielectric body in the specific embodiment- measured in a 10-light crystal; Figure 14 is the interviewer-legal sentence of Figure 7 〇 丨 Explanation is not intended to explain the detailed structure of the dielectric unit of a dielectric body of a specific embodiment 2; head 15 疋 a relative thickness of a first dielectric layer in a second lattice gap (⑴) _ Figure 'Describe the relationship between the optical band gap size and the thickness of the first dielectric layer at the wavelength range of the specific embodiment 2 (from ⑽ to 480 nm); Figure 16 疋-Optical band gap structure diagram, illustrating the Optical band gap structure of the dielectric body in the second embodiment; &gt; FIG. 17 is an average reflectance photogram illustrating that the reflectance of the dielectric body in the second embodiment is measured from the air; ▲ FIG. 18 is the average reflectance spectrum chart, which illustrates the reflectance of the dielectric body in the second specific embodiment measured from the substrate, and FIG. 19 疋 The average reflectance spectrum chart, which is illustrated by the light-emitting crystal 22 1233218 The reflectance of the dielectric body in the second specific embodiment is measured; FIG. 20 is a partially enlarged schematic diagram of FIG. The detailed structure of the dielectric unit of the "Electrical Body" of the first embodiment; FIG. 21 is a graph showing the relative thickness of a first-dielectric layer in a third inter-lattice lattice, illustrating the third embodiment Wavelength range (4 to 550 nm) T'-optical band gap size and the thickness of the first dielectric layer; Figure 22 is an optical band gap structure diagram illustrating the dielectric body in the third embodiment 10 15 FIG. 23 is an average reflectance spectrum chart illustrating the reflectance of the dielectric body in the third specific embodiment measured from the air; FIG. 24 is an average reflectance spectrum chart illustrating the The reflectance of the dielectric body in the third embodiment is measured in the substrate. FIG. 25 is an average reflectance spectrum chart illustrating the reflection of the dielectric body in the third embodiment from the light-emitting crystal. And FIG. 26 is a partial schematic diagram illustrating a specific embodiment 4 of the light-emitting device having a one-dimensional photonic crystal according to the present invention. 23 1233218 [Brief description of the main symbols of the drawings] β Μ ... light emitting diode 71, ... …… ”Dielectric Early 1 X ί &lt; ν-ί… Substrate 711… First dielectric layer 611… First surface 711, η ... First dielectric layer 62 ........ ... the light-emitting crystal 71Γ ... the first dielectric layer 621, the second surface 712, the second dielectric layer 622, the N-doped semiconductor layer 712, the second dielectric layer 624, the light-emitting layer 712 "+ the second Dielectric layer 625… P-doped semiconductor layer 81… pad 626… P-type electrode layer 82… flammable block 7 “…… dielectric body… heat sink 71-… dielectric Early Wu 91-… ♦ Heat sink 71, ... ...... Dielectric early element 92 -... Wire 24

Claims (1)

I2332l8 【為第93100472號修正本·修正日期: I、申請專利範圍: 1 ·—種具有一維光子晶體的發光裝置,包含: 一發光二極體,具有一基材及一連接於該基材的發 光晶體,藉該基材與發光晶體共同界定出一形成在該基 材上且遠離該發光晶體的第-表面,及一形成在該發光 晶體上且遠離該基材並相反於該第一表面的第二表面, 該發光晶體可發射出一預定波長範圍之光源; 質地全反射該光源之反射性 一一維光子晶體之介電體,連接於該第一表面及第 二表面的其中一者上’該介電體在介電常數上具一週期 性變化並具有至少一介電單元,該介電單元至少具有一 第-介電層及-第二介電層’該等介電層在折射率上是 相互不同的,以致於該一維光子晶體之介電體具有一實 其中’該第-介電層及該第二介電層在該預定波長範圍之光 源的《下具有-大於〇,58的折射率差,該第—介電層的折 射率疋大於該第二介電層的折射率,該第—介電層是由—選 :於下所構成之群組的化合物所製成:氧化物及硫化物;: 第二介電層是由-選自於下所構成之群組的化合物所製成^ 氧化物及氟化物。 2.依據申請專利範圍第】項之發光裝置,其中,該第—介 電層之化合物是氧化物,該氧化物是由一選自於下列:: 構成之群組的氧化物所製成:氧滅、五氧化二组 化錯、氧化鋅、三氧化二斂及五氧化二鈮丨該第二介電 25 1233218 層之化合物是氧化物,該氧化物是由〜選自於下列所構 成之群組的氧化物所製成:氧化矽、氧化鋁、氧化鎂、 三氧化二鑭、三氧化二镱及三氧化二釔。 3·依據申請專利範圍第2項之發光裝置,其中,該第—介 電層是由二氧化鈦所製成,該第二介電層是由二氧化石夕 所製成。 4.依據申請專利範圍第1項之發光裝置,其中,該預定波 長範圍是介於300 nm到420 nm,藉該介電單元的一換厚 度界定出一第一晶格間隙ai,使該第一介電層的厚度是 介於 〇· 24 a!到 〇· 69 a!。 5·依據申請專利範圍第丨項之發光裝置,其中,該預定波 長範圍是介於420 nm到480 nm,藉該介電單元的一總厚 度界定出一第二晶格間隙心,使該第一介電層的厚度是 介於〇· 33心到〇· 58 a2。 疋 6·依據申請專利範圍第1項之發光裝置,其中,該預定波 長範圍是介於480 nm到550 nm,藉該介電單元的一總厚 度界疋出一第二晶格間隙as,使該第一介電層的厚卢是 介於〇· 40 a3到〇· 51⑴。 子又疋 7·依據申言青專利範E第1項之發光裝置,該_維光子晶㉗ 之介電體是連接於該第一表面上,藉該一維光子晶體之 介電體使該光源由該第一表面反射至該第二表面。 8·依據申請專利範圍帛1項之發光裝置,纟中,該一維光 子曰曰心之介電體是連接於該第二表面上,藉該一維光子 晶體之介電體使該光源由該第二表面反射至該第一表 26 1233218 面0 9·依據申請專利範圍帛8 j員之發光裝置,t包含至少一散 熱元件炫散熱元件具有一散熱塊及複數設置在該散熱 塊上的導線,該散熱塊是藉該等導線連接於該發光晶體 上。 10.依射請專利範圍第1項之發光裝置,其中,該發光晶 虹疋由彳乡鍊至少一m B族元素的氮化鎵半導體材料所 製成。 u.依據申請專利範圍第1〇項之發光裝置,其中,該發光晶 體Γ亥基材遠離該基材的方向依序具有—連接於該基板 體層、一局部覆蓋該第-型半導體層的發 一曰及後盍該發光層的第二型半導體層。 12·依據申請專利範圍第 .. e 九裝置其中,該第一型 + “層…型摻雜半導體層,該第 - P型摻雜半導體層。 +導-層疋 13· —種一維光子晶體,包含: 在電常數上具一週期性變化的介電體 至少一介雷V. 业/、有 Ά ’该介電單元至少具有_ -第二介電層’該等介 “及 以至於該介電……射羊上疋相互不同的, 〜具有—貫質地全反射— 範圍的光源的反射性; 令預疋波長 ”中ϋ玄第一介電層及該第二介命 範圍之光源的#T H ^ 6在該預定波長 兄下具有一大於〇·58的 -介電層的折射率 射率是,該第 弟―&quot;私層的折射率,該第 27 1233218 &quot;电層疋由選自於下所構成之群組的化合物所製 成:氧化物及硫化物;該第二介電層是由一選自於下所 構成之群組的化合物所製成:氧化物及i化物。 μ.依據申請專利範圍g 13項之—維光子晶體,其中,該第 &quot;电層之化合物是氧化物’該氧化物是由一選自於下 列所構成之群組的氧化物所製成:氧化欽、五氧化二錄、 氧化錯、氧化鋅、三氧化二鈒及五氧化二鈮;該第二介 毛層之化σ物疋氧化物,該氧化物是由一選自於下列所 構成之群組的氧化物所製成:氧化石夕、氧化紹、氧化錢、 二氧化二鑭'三氧化二镱及三氧化二釔。 15.依據中請專利範圍第14項之—維光子晶體,其中, &quot;宅層疋由二氧化鈦所製成,該二 化矽所製成。 -層疋由二氧 W請專利範圍第13項之—維光子晶體,其中 定波長範圍是介於300⑽到指_,藉該介電^預 總厚度界定出-第-晶格間隙⑴,使該第一介I:的— 度是介於0.24⑴到〇.69 a,。 包曰的厚 17.依據申請專利範圍第13項之一維光子晶體,复中 定波長範圍是介於420⑽到彻,藉電1預 總厚度界定出-第二晶格間隙a2,使該第一介::的〜 度是介於0.33⑴到0.58 a” 电層的厚 18·:據申請專利範圍第13項之一維光子晶體 1 疋波長範圍是介於480 nm到550 nm,藉該介恭dd咳預 總厚度界定出-第三晶格間隙a3,使該第一::元的〜 电層的厚 28 1233218 度是介於0. 40 as到0. 51 as。I2332l8 [Revised No. 93100472 · Date of amendment: I. Patent application scope: 1 · A light-emitting device with a one-dimensional photonic crystal, including: a light-emitting diode having a substrate and a substrate connected to the substrate A light-emitting crystal formed by the substrate and the light-emitting crystal together to define a first surface formed on the substrate and far from the light-emitting crystal, and a light-emitting crystal formed on the light-emitting crystal and far from the substrate and opposite to the first A second surface of the surface, the light-emitting crystal can emit a light source with a predetermined wavelength range; a texture that totally reflects the reflective one-dimensional photonic crystal dielectric of the light source and is connected to one of the first surface and the second surface Or the dielectric body has a periodic change in dielectric constant and has at least one dielectric unit, and the dielectric unit has at least a first dielectric layer and a second dielectric layer. The refractive indexes are different from each other, so that the dielectric body of the one-dimensional photonic crystal has a solid structure in which the first dielectric layer and the second dielectric layer have- Greater than 0,58 The refractive index difference of the first dielectric layer is larger than that of the second dielectric layer. The first dielectric layer is made of a compound selected from the group consisting of: oxidized Compounds and sulfides: The second dielectric layer is made of a compound selected from the group consisting of oxides and fluorides. 2. The light-emitting device according to item [Scope of the patent application], wherein the compound of the first dielectric layer is an oxide, and the oxide is made of an oxide selected from the group consisting of: Oxygen extinguishment, pentoxide, zinc oxide, trioxide, and niobium pentoxide 丨 The compound of the second dielectric layer 25 1233218 is an oxide, and the oxide is selected from the group consisting of ~ Groups of oxides are made of: silicon oxide, aluminum oxide, magnesium oxide, lanthanum trioxide, dithium trioxide, and yttrium trioxide. 3. The light-emitting device according to item 2 of the scope of patent application, wherein the first dielectric layer is made of titanium dioxide, and the second dielectric layer is made of stone dioxide. 4. The light-emitting device according to item 1 of the patent application range, wherein the predetermined wavelength range is between 300 nm and 420 nm, and a first lattice gap ai is defined by a change thickness of the dielectric unit, so that the first The thickness of a dielectric layer is between 0.24 a! And 0.69 a !. 5. The light-emitting device according to item 丨 of the patent application range, wherein the predetermined wavelength range is between 420 nm and 480 nm, and a second lattice gap center is defined by a total thickness of the dielectric unit, so that the first The thickness of a dielectric layer is between 0.33 to 0.58 a2.疋 6. The light-emitting device according to item 1 of the patent application range, wherein the predetermined wavelength range is between 480 nm and 550 nm, and a second lattice gap as is formed by a total thickness boundary of the dielectric unit, so that The thickness of the first dielectric layer is between 0.40 a3 and 0.51 ⑴. Ziyou 7 · According to the light-emitting device of Item 1 of Patent Claim E, the dimensional photonic crystal dielectric is connected to the first surface, and the light source is controlled by the dielectric of the one-dimensional photonic crystal. The first surface is reflected to the second surface. 8. According to the light-emitting device of item (1) of the scope of the applied patent, in which, the one-dimensional photon said dielectric body is connected to the second surface, and the one-dimensional photon crystal dielectric is used to make the light source from The second surface reflects to the first table 26 1233218 surface 0 9 · According to the scope of the patent application, the light emitting device of 8 members, t includes at least one heat dissipating element, and the heat dissipating element has a heat dissipating block and a plurality of heat dissipating blocks disposed on the heat dissipating block. The wires are connected to the light-emitting crystal through the wires. 10. The light-emitting device according to claim 1, wherein the light-emitting crystal is made of a gallium nitride semiconductor material of at least one m B group element of the Lixiang chain. u. The light-emitting device according to item 10 of the scope of patent application, wherein the direction of the light-emitting crystal substrate away from the substrate has sequentially-a connection to the substrate body layer, and a partial cover of the first-type semiconductor layer. The second-type semiconductor layer of the light-emitting layer is described later. 12 · According to the scope of application for patent No. e. Nine devices, wherein the first type + "layer ... type doped semiconductor layer, and the -P type doped semiconductor layer. + Guide-layer 疋 13 · —a kind of one-dimensional photon A crystal comprising: a dielectric having a cyclical change in dielectric constant of at least one dielectric V. Industry /, there is 'the dielectric unit has at least a second dielectric layer' such dielectrics "and so that Dielectric ... The upper ridges of the shooting sheep are different from each other, and have the reflectivity of the light source in the range of-total texture and total reflection; the wavelength of the first dielectric layer in the Xuanxuan and the light source in the second intermediate range in the pre-wavelength. #TH ^ 6 has a refractive index of the dielectric layer greater than 0.58 at the predetermined wavelength. The refractive index of the dielectric layer is the refractive index of the private layer, and the electrical layer of the 27th 1233218 is The second dielectric layer is made of a compound selected from the group consisting of: oxides and sulfides; the second dielectric layer is made of a compound selected from the group consisting of: oxides and sulfides Μ. According to 13 of the scope of application for patents—dimensional photonic crystals, where the &quot; electricity The compound is an oxide 'This oxide is made of an oxide selected from the group consisting of: oxin, pentoxide, oxidized oxide, zinc oxide, osmium trioxide, and pentoxide Niobium; the sigma-condensed oxide of the second mesolayer, the oxide is made of an oxide selected from the group consisting of: oxidized stone, oxidized oxide, oxidized oxide, and dioxide Dilanthanum 'osmium trioxide and yttrium trioxide. 15. According to the patent application No. 14 of the patent-dimensional photonic crystals, &quot; house layer 疋 is made of titanium dioxide, the silicon dioxide. -The layer 疋 is made of dioxin and the patent scope of item 13-dimensional photonic crystal, in which the fixed wavelength range is between 300 ⑽ to 指, and the-^-lattice gap 界定 is defined by the dielectric ^ pre-thickness, so that The degree of the first introduction I: is between 0.24 ⑴ and 0.69 a. The thickness of the package is 17. According to the one-dimensional photonic crystal of the 13th item in the patent application scope, the fixed wavelength range is between 420 ⑽ and Thoroughly, the pre-total thickness by borrowing 1 defines-the second lattice gap a2, so that the first intro :: ~ Thickness of the electrical layer between 0.33 ⑴ and 0.58 a ”: According to the patent application, one of the 13th-dimensional photonic crystal 1 疋 wavelength range is 480 nm to 550 nm, which is defined by the reference 40as 到 0. 51 as。 Out-the third lattice gap a3, so that the thickness of the first :: yuan ~ electrical layer 28 1233218 degrees is between 0. 40 as to 0.51 as. 2929
TW93100472A 2004-01-08 2004-01-08 One dimensional photonic crystal and light emitting device made from the same TWI233218B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW93100472A TWI233218B (en) 2004-01-08 2004-01-08 One dimensional photonic crystal and light emitting device made from the same
US10/834,619 US20050152417A1 (en) 2004-01-08 2004-04-29 Light emitting device with an omnidirectional photonic crystal
US10/856,210 US7078736B2 (en) 2004-01-08 2004-05-27 Light emitting device with a photonic crystal
JP2004224297A JP2005197650A (en) 2004-01-08 2004-07-30 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93100472A TWI233218B (en) 2004-01-08 2004-01-08 One dimensional photonic crystal and light emitting device made from the same

Publications (2)

Publication Number Publication Date
TWI233218B true TWI233218B (en) 2005-05-21
TW200524175A TW200524175A (en) 2005-07-16

Family

ID=34825357

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93100472A TWI233218B (en) 2004-01-08 2004-01-08 One dimensional photonic crystal and light emitting device made from the same

Country Status (2)

Country Link
JP (1) JP2005197650A (en)
TW (1) TWI233218B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901964B2 (en) 2005-11-10 2011-03-08 Seoul Opto Device Co., Ltd. Method of fabricating AC light emitting device having photonic crystal structure

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273975A (en) * 2006-03-10 2007-10-18 Matsushita Electric Works Ltd Light-emitting device
DE102008006988A1 (en) 2008-01-31 2009-08-06 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
KR101081196B1 (en) 2010-03-22 2011-11-07 엘지이노텍 주식회사 Light emitting device, method for fabricating the same and light emitting device package
WO2012015153A2 (en) * 2010-07-28 2012-02-02 Seoul Opto Device Co., Ltd. Light emitting diode having distributed bragg reflector
CN102709419B (en) * 2012-05-29 2014-12-17 东南大学 Light-emitting diode with cross grating structure and preparation method thereof
US11024767B2 (en) 2017-10-17 2021-06-01 Lumileds Llc Nano-photonics reflector for LED emitters
TWI680316B (en) * 2019-07-05 2019-12-21 凌巨科技股份有限公司 Illumination system and display apparatus thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901964B2 (en) 2005-11-10 2011-03-08 Seoul Opto Device Co., Ltd. Method of fabricating AC light emitting device having photonic crystal structure
US8716727B2 (en) 2005-11-10 2014-05-06 Seoul Opto Device Co., Ltd. Ac light emitting device having photonic crystal structure and method of fabricating the same

Also Published As

Publication number Publication date
JP2005197650A (en) 2005-07-21
TW200524175A (en) 2005-07-16

Similar Documents

Publication Publication Date Title
US7483212B2 (en) Optical thin film, semiconductor light emitting device having the same and methods of fabricating the same
US9147856B2 (en) Organic light emitting device
US7370993B2 (en) Light recycling illumination systems having restricted angular output
TWI766356B (en) Light emitting diode chip
US20050152417A1 (en) Light emitting device with an omnidirectional photonic crystal
JP6360173B2 (en) Flip chip side-emitting LED
CN102683532B (en) Substrate containing imaging Distributed Bragg Reflector (DBR) structure
JP2012502472A (en) Monochromatic light source
US8648990B2 (en) Optical device
US8487334B2 (en) Semiconductor light emitting diode chip and light emitting device using the same
JP2000164938A (en) Light emitting device and method of packaging light- emitting element
Lin et al. Enhancement of InGaN–GaN Indium–Tin–Oxide Flip-Chip Light-Emitting Diodes With TiO $ _2 $–SiO $ _2 $ Multilayer Stack Omnidirectional Reflector
Zhou et al. Enhanced luminous efficiency of phosphor-converted LEDs by using back reflector to increase reflectivity for yellow light
TWI233218B (en) One dimensional photonic crystal and light emitting device made from the same
TWI829671B (en) Light-emitting device
US20130181194A1 (en) Organic light emitting device
TWI429110B (en) Light emitting device with autocloning photonic crystals and manufacturing method thereof
EP3882988A1 (en) Light-emitting diode
TWI437725B (en) Optoelectronic semiconductor component
TW578319B (en) Light emitting diode having anti-reflection layer and method of making the same
TWI287307B (en) Light-emitting device with omni-bearing reflector
Zhi et al. High Performance Wide Angle DBR Design for Optoelectronic Devices
KR20050070854A (en) Semiconductor light emitting diode device
US20130181193A1 (en) Organic light emitting device and method for manufacturing the same
US20220158040A1 (en) Light-emitting diode

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees