200524175 玖、發明說明: 【發明所屬之技術領域】 $光子晶體 及一由其製造的 5 10 15 本發明是有關於一種一 (One-Dimensional Photonic Crystal) ^ 發光裝置。 【先前技術】 由於發光二極體(Light Emitting Di〇de)具有體積小 之優勢,因此已被廣泛應用於顯示器背光模組、通訊、、電 細、父通唬誌及玩具等消費市場。目前因為亮度不夠的問 題,尚未能廣泛使用於照明市場。但是照明領域的應用對 未來的消費市場而言,發展及成長的空間相當廣大。 為了解決有關發光二極體亮度不夠的問題,科學家們 從數個方面來提高元件的亮度,包括由磊晶技術 (epitaxial process technol〇gy)、晶粒製程技術(chip process technology)及封裝技術(package pr〇cess technology)等方面來著手。其中,在磊晶技術方面主要 盡里長:幵施體(donor)及受體(acceptor)的濃度,並設法 減低發光層(active)的差排密度(disl〇cati〇n density)。由於提高發光層中的受體濃度並不容易,特別 是在藍光氮化鎵(GaN)系統有其難度,因此設法減低發光 層中的差排密度之技術並不容易突破。而有關封裝技術方 面則利用組裝技術在晶粒上置放反射鏡(reflecti〇n mirror) ’但此種方法則會增加組裝的困難度。 參閱圖1,一種習知一的發光二極體1,是目前發光 20 200524175 一極to的最基本結構。該發光二極體1包含··一基材1 J 及一發光晶體12。 該發光晶體12是利用此技術領域所熟悉的晶粒技術 分別形成有一 N型材料層121、一 N型電極層122、一發 5 光層(%1:“6〗町6〇123、一?型材料層124及一透明的1> 型電極層125。該N型材料層121是形成在該基材u上方, 並於該N型材料層121上方的局部區域形成該N型電極層 122,且在沒有該N型電極層122的區域形成該發光層 123。該p型材料層124是形成於該發光層123的上方, 10 並於該P型材料層124的上方形成該P型電極層125。使 知在该發光二極體1在封裝製程後可與電源電性連接,以 形成發光元件。 參閱圖2,一種習知二的發光二極體2,大致上是與 該習知一的結構相同。其不同處在於該發光二極體2更包 15 含複數個介於該發光層123與該N型材料層121間的高低 折射率(refractive index)材料層對13。藉該等高低折射 率材料層對13,以提高該發光二極體2的發光效率。 蒼閱圖3 ’ 一種習知三之發光二極體3,是以磊晶技 術並利用高折射率材料來提高元件的發光亮度。該發光二 2〇 ㈣3的結構大致上是與該習知-的結構相同,其;同處 在於’該發光二極體3更包含複數個介於該基材u及节 發光晶體12之間的反射層對14。該等反射層對14是利用 如(ALGai jInN/⑴aGai_a)1_bInbN(y>a)高低折射率的材 料,預先成長於基材U上,再於其上成長該發光晶體η。 200524175 使得由該發光晶體12向下發射出來的光可以被該等反射 層對14反射回該發光晶體12的上方,以提昇該發光二極 體3的亮度。 參閱圖4,一種習知四的發光二極體4,是以薄膜沉 積技術(thin film deposition process technology)並 利用高反射率的金屬材料來提高元件的發光亮度。該發光 二極體4的結構大致上是與該習知一的結構相同,其不同 處在於,該發光二極體4更包含一位於該基材u底面的 金屬鏡面層15。使得由該發光晶體12向下發射出來的光, 可以被該金屬鏡面層15反射回該發光晶體12的上方,以 提昇該發光二極體4的整體亮度。 參閱圖5,一種習知五的發光二極體5,是利用抗反 射材料來提高元件的發光亮度。該發光二極體5的結構大 致上是與該習知一的結構相同,其不同處在於,該發光二 極肢5更包含複數個位於該透明的p型電極層1 μ上方的 抗反射層對16。藉由該等抗反射層對16,可提昇該發光 二極體5的亮度。 前面所提到的該等習知之設計雖然都可增加發光二 極體的發光亮度,但不是因製程中所產生的晶袼不匹配 (lattlce mismatch),會增加發光晶體中的差排密度而影 響到發光亮度,就是有減低亮度的疑慮。此外,如習知二 和三中的高低折射率材料層對,對於大角度的入射光仍有 漏光的缺點。而如習知四中的金屬鏡面層15,對於可見光 或是紫外光有吸收的缺點。又如該習知五雖然抗反射層對 200524175 16可以提昇該發光二極體5的發光亮度,但隨著入射角度 的增加,該等抗反射層對16的抗反射性的效果便會隨之 減低。 5 10 15 另外’美國專利第6, 130, 780號揭露一由一全方向一 維光子晶體所製成的全方向反射鏡。該全方向一維光子晶 體具有一全方向光帶隙,使得當一入射光的頻率(或波長) 落入該光帶隙時,可全反射任何—人射角及偏極化 (Polarization)的光。此處所揭露的全方向反射鏡是由 複數呈對的高低折射率層之介電材料 r間折射率的差異,必須是足夠高才可以形成= 一、。其中’該全方向反射鏡與前面各習知所提到的反射 鏡及抗反射鏡之間的差異,可見於US.613(),⑽說明 書。以上所提到的前案專利,在此併入本案作為參考資料。 因此’如何避免形成發光二極體的晶格不匹配,又可 使發光二極體的發光亮度提昇以符合消f市場的需求,β 當下開發發光二極體業者不斷研究努力的方向。而疋 【發明内容】 因此,本發明之一目的,即在提供一 本發明之另一目的,即在提供 、、、光子晶體。 的即在k供一種具有_維 的發光裝置,藉以克服前面習知所提到的缺失 本發明之一維光子晶體,包含:-在介電常數上呈一 週期性變化的介電體。 I/' ,該介電體具有至少一介電單元。該介電單元至 一第一介電層及一第二介電層。兮笪 八有 盾6玄寻介電層在折射率上是 20 200524175 相互不同的,以至於該介電體具有一實質地全反射一具有 一預定波長範圍的光源的反射性。 其中,該第一介電層及該第二介電層在該預定波長範 圍之光源的環境下具有一大於0·58的折射率差該第一 介電層的折射率是大於該第二介電層的折射率。該第一介 電層是由一選自於下所構成之群組的化合物所製成:氧化 物及硫化物;該第二介電層是由—選自於下所構成之群組 的化合物所製成:氧化物及氟化物。 另外,本發明之具有一維光子晶體的發光裝置,包 含:一發光二極體及一一維光子晶體之介電體。 該發光二極體具有一基材及一連接於該基材的發光 晶體。該發光二極體藉該基材與發光晶體共同界定出一形 成在該基材上且遠離該發光晶體的第一表面,及一形成在 該發光晶體上且遠離該基材並相反於該第一表面的第二 表面。該發光晶體可發射出一預定波長範圍之光源。 該一維光子晶體之介電體連接於該第一表面及第二 表面的其中-者上。該介電體在介電常數上具一週期性變 化並具有至少一介電單元。該介電單元至少具有一第一介 電層及-第二介電層。該等介電層在折射率上是相互不同 的,以致於該一維光子晶體之介電體具有一實質地全反射 該光源之反射性。 其中’該第-介電層及該第二介電層在該預定波長範 圍之光源的環境下具有一大於0.58的折射率差。 本發明之功效在於,藉該-維光子晶體之介電體可全 200524175 反射任何一入射角及偏極化的光源,增加該發光二極體的 光源外出效率(extraction efficiency),以使得該發光 裝置具有較高的發光效率。 【實施方式】 本發明之-維光子晶n,是針對在各波長#圍的光源 下去設計出該一維光子晶體的介電變化之週期性關係。本 發明之一維光子晶體包含:一在介電常數上具一週期性變 化的介電體。 10 15 該介電體具有至少一介電單元。該介電單元至少具有 一第一介電層及一第二介電層。該等介電層在折射率I是 相互不同的,以至於該介電體具有一實質地全反射一具有 一預疋波長範圍的光源的反射性。 其中,該第-介電層及該第二介電層在該預定波長範 圍之光源的環境下具有-大& G 58的折射率差,該第— 介電層的折射率是大於該第二介電層的折射率。該第一介 電層是由-選自於下所構成之群組的化合物所製成:氧化 物及硫化物;該第二介電層是由-選自於下所構成之群組 的化合物所製成··氧化物及氟化物。 藉該介電單元可定義出一晶格常數(簡稱a)。當該第 -介電層的折射率(簡稱ηι)及第二介電層的折射率(以下 簡稱m)之間的差異大於一預定值,並配合調整該第一介 電層的厚度(以下簡㈣)達—預定厚度時,該-維光子晶 體之介電體可具有一全方向光帶隙(。— — phot狐band卿)。在本發明之—維光子日日日體的應用領 20 200524175 域中(以下配合參閱6),該全方向光帶隙之尺寸 (b=dgaPsize)需達3%以上。由圖6可得,^的該預定厚 度是以圖6中的等高線的最低點為指標。f⑴等於^ 3 時’由圖6中3%的虛線最低點處水平對應到垂直軸,、可得 5 ㈣率差需大於h15才可使該—維光子日日日體之介電體具 有一 3%的全光帶隙尺寸。# m等於2. 〇時,由_ 6中⑽ 的貫線最低點處水平對應到垂直軸,可得折射率差需大於 才可使該—維光子晶體之介電體具有—⑽以上的全 光帶隙尺寸。因此,應用於本發明之該第一及第二介電層 ) 的折射率差需大於〇. 58。 利用本發明之一維光子晶體可製造成一具有一維光 子晶體的發光裝置。該發光裝置包含:一發光二極體及一 一維光子晶體之介電體。 該發光二極體具有一基材及一連接於該基材的發光 晶體。該發光二極體藉該基材與發光晶體共同界定出一形 成在該基材上且遠離該發光晶體的第一表面,及一形成在 該發光晶體上且遠離該基材並相反於該第一表面的第二 表面。該發光晶體可發射出一預定波長範圍之光源。 該一維光子晶體之介電體連接於該第一表面及第二 表面的其中一者上。該介電體在介電常數上具一週期性變 化並具有至少一介電單元。該介電單元至少具有一第一介 電層及一第二介電層。該等介電層在折射率上是相互不同 的,以致於該一維光子晶體之介電體具有一實質地全反射 該光源之反射性。 10 200524175 較佳地,該第一介電層的折射率是大於該第二介電声 !折:率。且在一具體實施例中,該第-介電層是相對言; 弟-介電層靠近該光源。值得一提的是,本發明之該介電 體的反射性是不受限於該第—及第二介電層相對該光源 的排列順序。 適用於本發明之該第一介電層是由一選自於下所構 成之群組的化合物所製成··氧化物及硫化物(Sulfide)。 ίο 15 車乂佳地5亥第一介電層之化合物是氧化物,該氧化物是由 -選自於下列所構成之群組的氧化物所製% :氧化鈦 (Ti〇2)、五氧化二鈕(Ta2〇5)、氧化鍅(Zr〇2)、氧化鋅(如〇)、 三氧化二敍(Nd2〇3)及五氧化二鈮(Nb2〇5)。在一具體實施 例中,該第-介電層是由二氧化鈦(以下簡稱Ti〇2)所製 成另外,二氧化二銦(Ιπ2〇3)、氧化錫(sn〇2)、三氧化二 弟(Sb2〇3)、氧化給(Hf〇2)、氧化鈽(Ce〇2)及硫化鋅(zns)皆 適用於本發明之第一介電層的化合物。 適用方、本發明之該第二介電層是由一選自於下所構 成之群組的化合物所製成··氧化物及氟化物(Fluoride)。 較佳地,該第二介電層之化合物是氧化物,該氧化物是由 璉自於下列所構成之群組的氧化物所製成··氧化矽 (Sl〇2)、氧化鋁(AL0〇、氧化鎂(MgO)、三氧化二鑭(La2〇3)、 二氧化二镱(γ^Ο3)及三氧化二釔(Υ2〇3)。在一具體實施 例中’ 5玄第二介電層是由二氧化矽(以下簡稱S i 〇2)所製 成。另外’三氧化二銳(Sc2〇3)、氧化鎢(W〇3)、氟化鋰(UF)、 乱化納(NaF)、氟化鎂(MgFO、氟化鈣(CaF2)、氟化I思 20 200524175 (SrF2)、氟化鋇(BaF2)、氟化鋁(AlFs)、氟化鑭(LaF3)、氟 匕敍(NdF3)氟化紀(YF3)及氟化飾(CeF3)皆適用於本發明 之第二介電層的化合物。 適用於本發明之該預定波長範圍是介於300 nm到550 ⑽。在一較佳具體例中,該預定波長範圍是介於3〇〇⑽ 到420 nm(以下簡稱光),且藉該介電單元的一總厚度 界定出一第一晶袼間隙a】(lattice spacing),使該第一 介電層的厚度是介於〇·24⑴到〇·69 ai。在另一較佳具體 例中,该預定波長範圍是介於42〇 nm到48〇 nm(以下簡稱 監光),且藉該介電單元的總厚度界定出一第二晶袼間隙 a2,使該第一介電層的厚度是介於〇33⑴到〇·58心。在 又一較佳具體例中,該預定波長範圍是介於480咖到55〇 ⑽,且藉該介電單元的總厚度界定出一第三晶袼間隙⑴, 使該第-介電層的厚度是介於〇·40 a3到〇·51 a3。值得一 提的是,該預定波長範圍與前面所提及的各晶袼間隙是呈 一函數關係,以致於變更該預定波長範圍的同時,該第一 介電層的厚度也會隨之改變,且該第一及第二介電層在該 預定波長範圍的環境下具有一大於〇 58之折射率差。 在-具體實施例中,該-維光子晶體之介電體是連接 於該第一表面上,藉該一維光子晶體之介電體使該光源由 4第一表面反射至該第二表面。在另一具體實施例中,該 一維光子晶體之介電體是連接於該第二表面上,藉該一維 光子晶體之介電體使該光源由該第二表面反射至該第一 表面。較佳地,本發明之發光裝置更包含至少一散熱元 12 200524175 件上°亥政熱70件具有-散熱塊(heat sink)及複數設置在 ^心鬼上的‘線,且該散熱塊是藉該等導線連接於該發 光晶體上。 /適用於本發明之該發光晶體是由-摻雜至少-HIB族 元素的氮化鎵(以下簡稱GaN)半導體材料所製成。 車:乜地’本發明之該發光晶體自該基材遠離該基材的 方向是依序具有一連接於該基板的第一型半導體層、一局 一二:°亥帛料導體層的發光層、-覆蓋該發光層的第 々里半導版層及一覆蓋該第二型半導體層並呈透明狀的 第二電極層。在一較佳具體例中,該第一型半導體層是一 N^##4^ft^(N>-doped semiconductor layer; i^T 簡無N-doped半導體層),該第二型半導體層是—p型推 半導奴層(P-doped semiconductor layer;以下簡稱 二doped半導體層),該第二電極層是一 p型電極層(以下 簡稱P-type電極層)。 有關本毛明之如及其他技術内容、特點與功效,在 以下配合參考圖式之六具體實施例的詳細說明中,將可清 楚的明白。 在本發明被詳細描述之前,要注意的是,在以下的說 明中,類似的元件是以相$的編號來表示。 〈具體實施例一〉 、,參閱圖7圖及圖8,本發明之具有一維光子晶體的發 光裝置的-具體實施例-,包含··—發光二極體6…一 維光子晶體之介電體7、及複數焊墊(bc)nding細)81。 13 200524175 該發光二極體6具有一材質為藍寶石(sapphire)的基 材61及連接於該基材61的發光晶體62。該發光二極體 6藉該基材61與發光晶體62共同界定出—形成在該基材 61上且遠離該發光晶體62的第-表面611,及一形成在 該發光晶Μ 62上且遠離該基材61並相反於該第一表面 611的第二表面621。 ίο 15 20 孩發光晶體62是使用一摻雜有至少一 mB族元素的 GaN半導體材料所製成。該發光晶體62自該基材61遠離 該基材61的方向是依序具有一連接於該基板61的 N-doped半導體層622、一局部覆蓋該N—d〇ped半導體層 622的發光層624、一覆蓋該發光層624的p—d〇ped半導 體層625及一覆蓋該p-d〇ped半導體層625的p—type電 極層626。其中,該等焊墊81是分別設置在該N—如口以半 導體層622及該p-type電極層626上。藉由複數導線(圖 未示)分別與該等焊墊81電性連接,以使得在該具體實施 例一中’该發光晶體62可發射出一 300 nm到420 nm波 長範圍之UV光光源。其中,該發光晶體62之製作過程為 一蟲晶技術,此技術内容為發光二極體領域之相關人士所 熟悉’在此不再多加詳述。 該一維光子晶體之介電體7連接於該第一表面611 上’藉該一維光子晶體之介電體7將該UV光光源由該第 一表面611反射至該第二表面621。其中,該介電體7是 由一電子束蒸鍍(e-beam evaporation)法製備而成,此方 法非本發明之技術重點,因此,在此不再多加詳述。 14 200524175 該介電體7在介雷t 四個介電單元7卜每週期性變化,並具有十 第一介電;71 介電單元71具有—材質為咖的 一八”一曰及一材質為Si〇2的第二介電層712,且每 ίο 15 20 」:::、71的第一介電層711相對該第二介電層712 罪“光光源。在該具體實施例-中,藉每-介電單 元71Γ總厚度界定出—尺寸為⑴㈣第—晶格間隙 ϋ下間稱al),且每_第_介電層711的厚度為0 當每—第-及第二介電層m、712在該uv光光源的波長 為385 nm環境時,該等第一及第二介電層川、712的折 射率分別為2.6及1.48,其折射率差為112,以致於該 、准光子曰曰體之介電體7具有一實質地全反射該肝光光 源之反射性(意即,該具體實施例一中的介電體7具有一 全方向光帶隙)。 以下配合蒼閱圖9,當每一第一介電層711的厚度介 方;0· 2ai到〇· 78ai時,該一維光子晶體之介電體7具有一 光帶隙。當每一第一介電層711的厚度為〇.42⑴時,該一 維光子晶體之介電體7具有一最大光帶隙尺寸(約趨近於 1(U),且對照至圖9的上方圖示,由水平座標為〇· uai處 對應到垂直座標處,可得到一頻率介於〇.3〇〇(£/3〇到 〇· 273 (c/a!)的光帶隙,其中,c為光速。由前所述,配合 參閱圖10,也可由圖10中的一波導區(guided region) 得到一頻率介於〇· SOiKc/a!)到〇· 273(c/a])的光帶隙,意 即,該具體實施例一中的光帶隙之波長範圍是介於367 nm 到4 03 nm。圖9及圖1 〇中的波數(w a v e N u m b e r ; ky) 15 200524175 及波偏極化TE及TM的定義,則見於美國專利第 6,1 3 0,7 8 0號的說明書中。 5 10 15 20 由分析數據可得’該具體實施例一中的一維光子晶f 之介電體7 ’在波長介於369 nm到401 nm之間的反射率 疋大於99.5/^(配合蒼閱圖11)。另外,可配合參閱圖I? 及圖13 ’疋分別由該基材(藍寶石在3 8 5 nm的環境下折射 率為1 · 7)61及該發光晶體(GaN在385 nm的環境下折射率 為2.58)62所測得的反射率及穿透率分析數據,亦得到在 波長介於369 nm到401 rnn之間皆具有大於99·5%的反射 率。由此,該具體實施例一中的發光裝置,可藉該一維光 子晶體之介電體7將該UV光光源由該第一表面611反射 至該第二表面621。 〈具體實施例二〉 乡閱圖14,本發明之具有一維光子晶體的發光裝置的 —具體實施例二,大致上是與該具體實施例_相同。其不 同處在於’該發光晶體62是可發射出—波長介於彻⑽ 到480mii的藍光光源,因此,該一維光子晶體之介電體7 的細部結構需隨著該藍光光源做一修正。 旦 在該具體實施例二中,藉每—介電單& Η,的總厚度 "疋出-尺寸為13“m的第二晶格間隙(以下簡稱⑻, 且每一第-介電層7U,的厚度為〇·44 a ”當每—第一及 ^介等7711,、712,靖光絲的波長物咖環境 及::广及第二介電層711,、712,的折射率分別為Μ .,其折射率差為G.95,以致於該_維光子晶體之 16 200524175 介電體7具有一實質地全反射該藍光光源之反射性(意 即,該具體實施例二中的介電體7具有一全方向光帶隙)。 以下配合參閱圖15,當每一第一介電層711,的厚度介 於0_ 2a2到0.7a2時,該一維光子晶體之介電體7具有一光 帶隙。當每一第一介電層711,的厚度為〇· 44as時,該一維 光子晶體之介電體7具有一最大光帶隙尺寸(約趨近於 5%) ’且對照至圖15的上方圖示,由水平座標為〇· 44以處 對應到垂直座標處,可得到一頻率介於0.305(^/^2)到 0. 29lc/aO光帶隙。由前所述,配合參閱圖16,也可由圖 16中的一波導區得到一頻率介於〇· 3〇5(c/a2)到 〇· 291 (c/ad的光帶隙,意即,該具體實施例二中的光帶隙 之波長範圍是介於43 9 nm到4 61 nm。 由分析數據可得,該具體實施例二中的一維光子晶體 之介電體7 ’在波長介於440 nm到464 nm之間的反射率 疋大於99. 5%(配合參閱圖17)。另外,可配合參閱圖1 $ 及圖19 ’分別由該基材(藍寶石)61及該發光晶體(GaN在 450 mn的環境下折射率為2·48)62所測得的反射率分析數 據’亦得到在波長介於440 nm到464 nm之間皆具有大於 99· 5%的反射率。 〈具體貫施例三〉 芩閱圖20圖,本發明之具有一維光子晶體的發光装 置的一具體實施例三,大致上是與該具體實施例一相同。 其不同處在於,該發光晶體62是可發射出一波長介於48〇 ⑽到550 nm的綠光光源,因此,該一維光子晶體之介電 17 200524175 體7的細部結構需隨著該綠光光源做一修正。 —在該具體實施例三中,藉每一介電單元7〗”的總厚度 界定出一尺寸為151 的第三晶格間隙(以下簡稱⑴), 且每一第一介電層711,,的厚度為〇·45⑴。當每一第一及 5 第:介電層711,,、712,,在該綠光光源的波長為500 nm環 境時,該等第一及第二介電層711”、712,,的折射率分別為 2· 36及1· 46,其折射率差為〇· go,以致於該一維光子晶 月豆之"電體7具有一實質地全反射該綠光光源之反射性 (意即,該具體實施例三中的介電體7具有一全方向光帶 10 隙)。 以下配合參閱圖21,當每一第一介電層711,,的厚度介 於0· 3aa到〇· 64as時,該一維光子晶體之介電體7具有一 光帶隙。當每一第一介電層711,,的厚度為〇.45a3時,該一 維光子晶體之介電體7具有一最大光帶隙尺寸(約趨近於 15 & 5%) ’且對照至圖21的上方圖示,由水平座標為〇. 45a3 處對應到垂直座標處,可得到一頻率介於〇.3〇8(c/a3)到 〇· 297(c/aO光帶隙。由前所述,配合參閱圖22,也可由 圖22中的一波導區得到一頻率介於(K 308(c/a3)到 0· 297(c/as)的光帶隙,意即,該具體實施例三中的光帶隙 2〇 之波長範圍是介於491 ηηι到507 nm。 由分析數據可得,該具體實施例三中的一維光子晶體 之介電體7,在波長介於492 nm到512 nm之間的反射率 是大於99. 5%(配合參閱圖23)。另外,可配合參閱圖24 及圖25,分別由該基材(藍寶石)61及該發光晶體(GaN在 18 5 10 15 20200524175 发明 Description of the invention: [Technical field to which the invention belongs] $ photonic crystal and a 5 10 15 manufactured by the invention The present invention relates to a one-dimensional photonic crystal light emitting device. [Previous technology] Due to its small size, Light Emitting Diodes have been widely used in consumer markets such as display backlight modules, communications, electronics, electronics, parenthood and toys. At present, due to insufficient brightness, it has not been widely used in the lighting market. However, for the future consumer market, the application in the field of lighting has considerable room for development and growth. In order to solve the problem of insufficient brightness of light-emitting diodes, scientists have improved the brightness of components from several aspects, including epitaxial process technolgy, chip process technology, and packaging technology ( package pr〇cess technology) and other aspects. Among them, in epitaxial technology, they have done their best: the concentration of donors and acceptors, and they have tried to reduce the active density of the light emitting layer. Since it is not easy to increase the acceptor concentration in the light-emitting layer, especially in the blue light gallium nitride (GaN) system, it is not easy to break through the technology to reduce the differential density in the light-emitting layer. In terms of packaging technology, assembly technology is used to place a reflective mirror on the die, but this method will increase the difficulty of assembly. Referring to FIG. 1, a conventional light emitting diode 1 is the most basic structure of a light emitting diode 20 200524175 at present. The light-emitting diode 1 includes a substrate 1 J and a light-emitting crystal 12. The light-emitting crystal 12 is formed with an N-type material layer 121, an N-type electrode layer 122, and a light-emitting layer (% 1: "6", machi 6123, 1? Type material layer 124 and a transparent 1 > type electrode layer 125. The N-type material layer 121 is formed above the substrate u, and the N-type electrode layer 122 is formed in a local area above the N-type material layer 121, The light emitting layer 123 is formed in a region where the N-type electrode layer 122 is absent. The p-type material layer 124 is formed above the light-emitting layer 123, and the P-type electrode layer is formed above the P-type material layer 124. 125. It is known that the light-emitting diode 1 can be electrically connected to a power source after the packaging process to form a light-emitting element. Referring to FIG. 2, a light-emitting diode 2 of the conventional method 2 is roughly the same as that of the first method. The structure is the same. The difference is that the light-emitting diode 2 further includes 15 a plurality of high-refractive index material layer pairs 13 between the light-emitting layer 123 and the N-type material layer 121. A pair of high and low refractive index material layers 13 to improve the light emitting efficiency of the light emitting diode 2. 3 'A kind of light-emitting diode 3 of the conventional method, which is an epitaxial technology and uses a high refractive index material to improve the luminous brightness of the element. The structure of the light-emitting diode 20 is substantially the same as that of the conventional- The same is that 'the light-emitting diode 3 further includes a plurality of reflection layer pairs 14 between the substrate u and the node light-emitting crystal 12. The reflection layer pairs 14 are used as (ALGai jInN / ⑴aGai_a ) 1_bInbN (y> a) high and low refractive index materials, which are grown on the substrate U in advance, and then the light-emitting crystal η is grown thereon 200524175 so that the light emitted downward by the light-emitting crystal 12 can be reflected by the reflective layers The pair 14 is reflected back above the light-emitting crystal 12 to increase the brightness of the light-emitting diode 3. Referring to FIG. 4, a light-emitting diode 4 of the conventional method 4 is based on thin film deposition process technology and The high-reflectivity metal material is used to improve the luminous brightness of the element. The structure of the light-emitting diode 4 is substantially the same as that of the conventional one, except that the light-emitting diode 4 further includes a light-emitting diode 4 Gold on base u Mirror layer 15. The light emitted downward by the light-emitting crystal 12 can be reflected by the metal mirror layer 15 back above the light-emitting crystal 12 to improve the overall brightness of the light-emitting diode 4. Referring to FIG. 5, a The light-emitting diode 5 of the conventional knowledge 5 uses an anti-reflective material to improve the light-emitting brightness of the element. The structure of the light-emitting diode 5 is substantially the same as that of the knowledge-based one, except that the light-emitting diode 5 is different The pole limb 5 further includes a plurality of anti-reflection layer pairs 16 located above the transparent p-type electrode layer 1 μ. By the anti-reflection layer pairs 16, the brightness of the light-emitting diode 5 can be increased. Although the conventional designs mentioned above can increase the luminous brightness of light-emitting diodes, they are not affected by the lattlce mismatch generated during the process, which will increase the differential density in the light-emitting crystals and affect When it comes to luminous brightness, there is a doubt about reducing the brightness. In addition, as in the high and low refractive index material layer pairs in Conventions 2 and 3, there is still a shortcoming of light leakage for incident light at a large angle. However, the metal mirror layer 15 in the fourth aspect has the disadvantage of absorbing visible light or ultraviolet light. For another example, although the anti-reflection layer pair 200524175 16 can increase the light-emitting brightness of the light-emitting diode 5, as the incident angle increases, the anti-reflection effect of the anti-reflection layer 16 will follow. reduce. 5 10 15 In addition, U.S. Patent No. 6,130,780 discloses an omnidirectional mirror made of an omnidirectional one-dimensional photonic crystal. The omnidirectional one-dimensional photonic crystal has an omnidirectional optical bandgap, so that when the frequency (or wavelength) of an incident light falls within the optical bandgap, it can totally reflect any-human angle of incidence and polarization (Polarization) Light. The omnidirectional mirror disclosed here is composed of a pair of high and low refractive index layers. The difference in refractive index between the dielectric materials r must be high enough to form = 1. Among them, the difference between the omnidirectional mirror and the previously mentioned mirrors and antireflection mirrors can be found in US.613 (), the specification. The patents of the previous case mentioned above are incorporated herein as reference materials. Therefore, how to avoid the lattice mismatch of the light-emitting diodes and increase the light-emitting brightness of the light-emitting diodes to meet the needs of the consumer market, β The current development direction of the light-emitting diodes is that of continuous research efforts. [Abstract] Therefore, one object of the present invention is to provide another object of the present invention, which is to provide photonic crystals. In other words, a light-emitting device with a dimension of k is provided at k to overcome the defects mentioned in the prior art. One-dimensional photonic crystal of the present invention includes:-a dielectric body that changes periodically in dielectric constant. I / ', the dielectric body has at least one dielectric unit. The dielectric unit is connected to a first dielectric layer and a second dielectric layer. The refractive index of the eight-layer dielectric layer is 20 200524175, which are different from each other, so that the dielectric body has a substantially total reflection and a reflectivity of a light source having a predetermined wavelength range. The first dielectric layer and the second dielectric layer have a refractive index difference greater than 0.58 under the environment of the light source in the predetermined wavelength range. The refractive index of the first dielectric layer is greater than that of the second dielectric layer. The refractive index of the electrical layer. The first dielectric layer is made of a compound selected from the group consisting of: oxides and sulfides; the second dielectric layer is made of a compound selected from the group consisting of Made of: oxides and fluorides. In addition, the light-emitting device having a one-dimensional photonic crystal of the present invention includes a light-emitting diode and a dielectric of the one-dimensional photonic crystal. The light emitting diode has a substrate and a light emitting crystal connected to the substrate. The light emitting diode and the light emitting crystal together define a first surface formed on the substrate and away from the light emitting crystal, and a light emitting crystal formed on the light emitting crystal and away from the substrate and opposite to the first surface. One surface of the second surface. The light emitting crystal can emit a light source with a predetermined wavelength range. The dielectric of the one-dimensional photonic crystal is connected to one of the first surface and the second surface. The dielectric body has a periodic change in dielectric constant and has at least one dielectric unit. The dielectric unit has at least a first dielectric layer and a second dielectric layer. The dielectric layers are mutually different in refractive index, so that the dielectric body of the one-dimensional photonic crystal has a substantially total reflectivity of the light source. Among them, the first dielectric layer and the second dielectric layer have a refractive index difference greater than 0.58 under the environment of the light source in the predetermined wavelength range. The effect of the present invention is that the dielectric body of the -dimensional photonic crystal can fully reflect any light source with an incident angle and a polarized polarization by 200524175, thereby increasing the extraction efficiency of the light source of the light emitting diode, so that the light is emitted. The device has high luminous efficiency. [Embodiment] The one-dimensional photonic crystal n of the present invention is to design the periodic relationship of the dielectric change of the one-dimensional photonic crystal for the light source around each wavelength #. A one-dimensional photonic crystal of the present invention includes a dielectric having a periodic change in dielectric constant. 10 15 The dielectric body has at least one dielectric unit. The dielectric unit has at least a first dielectric layer and a second dielectric layer. The dielectric layers are mutually different in refractive index I, so that the dielectric body has a substantially total reflection and a reflectivity of a light source having a pre-chirped wavelength range. Wherein, the first dielectric layer and the second dielectric layer have a refractive index difference of -large & G 58 under the environment of the light source in the predetermined wavelength range, and the refractive index of the first dielectric layer is greater than that of the first dielectric layer. The refractive index of the two dielectric layers. The first dielectric layer is made of compounds selected from the group consisting of: oxides and sulfides; the second dielectric layer is made of compounds selected from the group consisting of Made by ····· and fluoride. A lattice constant (referred to as a) can be defined by the dielectric unit. When the difference between the refractive index (hereinafter referred to as η) of the first dielectric layer and the refractive index (hereinafter referred to as m) of the second dielectric layer is greater than a predetermined value, the thickness of the first dielectric layer (hereinafter referred to as Simplified) When the thickness is up to a predetermined thickness, the dielectric body of the one-dimensional photonic crystal may have an omnidirectional optical bandgap (...-Phot fox band). In the field of application of the invention-dimensional photon sun-sun solar body 20 200524175 (refer to 6 below), the size of the omnidirectional optical band gap (b = dgaPsize) needs to be more than 3%. As can be seen from Fig. 6, the predetermined thickness of ^ is based on the lowest point of the contour line in Fig. 6 as an index. When f⑴ is equal to ^ 3 ', the lowest point of the 3% dotted line in Fig. 6 corresponds to the horizontal axis, and 5 is obtained. The rate difference needs to be greater than h15 in order to make the -dimensional photon sun and sun dielectric body have a 3% full optical band gap size. When # m is equal to 2. 〇, the lowest point of the line passing through ⑽ in _ 6 corresponds horizontally to the vertical axis, and the refractive index difference needs to be greater than the dielectric body of the -dimensional photonic crystal to have a total Optical band gap size. Therefore, the refractive index difference of the first and second dielectric layers applied to the present invention needs to be greater than 0.58. A light-emitting device having a one-dimensional photonic crystal can be manufactured by using the one-dimensional photonic crystal of the present invention. The light-emitting device includes a light-emitting diode and a one-dimensional photonic crystal dielectric. The light emitting diode has a substrate and a light emitting crystal connected to the substrate. The light emitting diode and the light emitting crystal together define a first surface formed on the substrate and away from the light emitting crystal, and a light emitting crystal formed on the light emitting crystal and away from the substrate and opposite to the first surface. One surface of the second surface. The light emitting crystal can emit a light source with a predetermined wavelength range. The dielectric of the one-dimensional photonic crystal is connected to one of the first surface and the second surface. The dielectric body has a periodic change in dielectric constant and has at least one dielectric unit. The dielectric unit has at least a first dielectric layer and a second dielectric layer. The dielectric layers are mutually different in refractive index, so that the dielectric body of the one-dimensional photonic crystal has a substantially total reflectivity of the light source. 10 200524175 Preferably, the refractive index of the first dielectric layer is greater than the refractive index of the second dielectric layer. And in a specific embodiment, the first-dielectric layer is relative; the second-dielectric layer is close to the light source. It is worth mentioning that the reflectivity of the dielectric body of the present invention is not limited to the order of the first and second dielectric layers relative to the light source. The first dielectric layer suitable for the present invention is made of a compound selected from the group consisting of oxides and sulfides. ίο 15 The compound of the first dielectric layer of the Chejiajiadi 5hai is an oxide, which is made of an oxide selected from the group consisting of: titanium oxide (Ti〇2), five Two button oxide (Ta205), hafnium oxide (Zr02), zinc oxide (such as 0), trioxide (Nd203), and niobium pentoxide (Nb205). In a specific embodiment, the first dielectric layer is made of titanium dioxide (hereinafter referred to as Ti0 2). In addition, indium dioxide (1π2 03), tin oxide (snO2), and second trioxide are used. (Sb203), oxidation (Hf02), hafnium oxide (Ce02), and zinc sulfide (zns) are all suitable for the compound of the first dielectric layer of the present invention. Applicable party, the second dielectric layer of the present invention is made of a compound selected from the group consisting of oxides and fluorides. Preferably, the compound of the second dielectric layer is an oxide, and the oxide is made of an oxide selected from the group consisting of: silicon oxide (S102), aluminum oxide (AL0) 〇 Magnesium oxide (MgO), lanthanum trioxide (La203), difluorene dioxide (γ ^ 03), and yttrium trioxide (rhenium 203). In a specific embodiment, '5 玄 二 介The electrical layer is made of silicon dioxide (hereinafter referred to as Si02). In addition, 'dioxide trioxide (Sc203), tungsten oxide (W03), lithium fluoride (UF), and random sodium ( NaF), Magnesium fluoride (MgFO, Calcium fluoride (CaF2), I fluoride 20 200524175 (SrF2), Barium fluoride (BaF2), Aluminum fluoride (AlFs), Lanthanum fluoride (LaF3), Fluorine (NdF3) The fluorinated period (YF3) and the fluorinated ornament (CeF3) are both suitable for the compound of the second dielectric layer of the present invention. The predetermined wavelength range suitable for the present invention is between 300 nm and 550 ⑽. In a preferred embodiment, the predetermined wavelength range is between 300 Å and 420 nm (hereinafter referred to as light), and a first crystal chirp gap a is defined by a total thickness of the dielectric unit] (lattice spacing). Make that first The thickness of the electrical layer is between 0.24 ⑴ and 0.69 ai. In another preferred embodiment, the predetermined wavelength range is between 420 nm and 480 nm (hereinafter referred to as "monitor light"), and by using this medium The total thickness of the electrical unit defines a second crystal chirp gap a2, so that the thickness of the first dielectric layer is between 0.33 and 0.58 centimeters. In another preferred embodiment, the predetermined wavelength range is dielectric. The thickness of the first dielectric layer is between 480 and 55 ⑽, and a third crystal 袼 gap 界定 is defined by the total thickness of the dielectric unit, so that the thickness of the first dielectric layer is between 40 · 40 a3 and 〇51 · 3. It is mentioned that the predetermined wavelength range has a functional relationship with the crystal gaps mentioned above, so that when the predetermined wavelength range is changed, the thickness of the first dielectric layer will change accordingly, and The first and second dielectric layers have a refractive index difference greater than 0 58 under the environment of the predetermined wavelength range. In a specific embodiment, a dielectric of the -dimensional photonic crystal is connected to the first surface. On the other hand, the dielectric of the one-dimensional photonic crystal is used to reflect the light source from the first surface to the second surface. In a specific embodiment, a dielectric of the one-dimensional photonic crystal is connected to the second surface, and the light source is reflected from the second surface to the first surface by the dielectric of the one-dimensional photonic crystal. Ground, the light-emitting device of the present invention further includes at least one heat sink element 12 200524175 pieces, 70 pieces of heat, 70 heat sinks and a plurality of 'wires' arranged on the heart, and the heat sink is borrowed from the And other wires are connected to the light-emitting crystal. / The light-emitting crystal suitable for the present invention is made of a gallium nitride (hereinafter referred to as GaN) semiconductor material doped with at least -HIB group elements. Car: "Earth ground" The direction of the light-emitting crystal of the present invention from the substrate away from the substrate is to have a first type semiconductor layer connected to the substrate in sequence, one round to two: the light emission of the conductor layer Layer, a first semiconductor layer covering the light emitting layer, and a second electrode layer covering the second type semiconductor layer and being transparent. In a preferred embodiment, the first-type semiconductor layer is an N ^ ## 4 ^ ft ^ (N > -doped semiconductor layer; i ^ T has no N-doped semiconductor layer), and the second-type semiconductor layer Yes — a p-doped semiconductor layer (hereinafter referred to as two doped semiconductor layers), the second electrode layer is a p-type electrode layer (hereinafter referred to as a P-type electrode layer). Regarding this Mao Mingru and other technical contents, characteristics and effects, it will be clearly understood in the following detailed description of the specific embodiment with reference to the sixth drawing. Before the present invention is described in detail, it is to be noted that, in the following description, similar elements are represented by numbers corresponding to $. <Specific Embodiment 1> With reference to FIG. 7 and FIG. 8, a specific embodiment of the light-emitting device having a one-dimensional photonic crystal according to the present invention includes a light-emitting diode 6... Of a one-dimensional photonic crystal. Electric body 7 and plural pads (bc) nding 81). 13 200524175 The light emitting diode 6 has a base material 61 made of sapphire and a light emitting crystal 62 connected to the base material 61. The light-emitting diode 6 is defined by the substrate 61 and the light-emitting crystal 62 together—a first surface 611 formed on the substrate 61 and away from the light-emitting crystal 62, and a light-emitting crystal M 62 formed away from the light-emitting crystal 62. The substrate 61 is opposite to the second surface 621 of the first surface 611. ίο 15 20 The light emitting crystal 62 is made of a GaN semiconductor material doped with at least one mB group element. The light-emitting crystal 62 has a N-doped semiconductor layer 622 connected to the substrate 61 and a light-emitting layer 624 partially covering the N-doped semiconductor layer 622 in a direction from the substrate 61 away from the substrate 61. A p-dop semiconductor layer 625 covering the light-emitting layer 624 and a p-type electrode layer 626 covering the pdoped semiconductor layer 625. The pads 81 are respectively disposed on the N-ohm semiconductor layer 622 and the p-type electrode layer 626. A plurality of wires (not shown) are electrically connected to the pads 81 respectively, so that in the first embodiment, the light emitting crystal 62 can emit a UV light source in a wavelength range of 300 nm to 420 nm. Among them, the manufacturing process of the light-emitting crystal 62 is a worm-crystal technology, and the technical content is familiar to those in the field of light-emitting diodes' and will not be described in detail here. The dielectric 7 of the one-dimensional photonic crystal is connected to the first surface 611. The UV light source is reflected from the first surface 611 to the second surface 621 by the dielectric 7 of the one-dimensional photonic crystal. The dielectric body 7 is prepared by an e-beam evaporation method, which is not the technical focus of the present invention. Therefore, it will not be described in detail here. 14 200524175 The dielectric body 7 has four dielectric units 7 which periodically change at the dielectric layer t and has ten first dielectrics; 71 The dielectric unit 71 has a material of eighteen ", one material and one material. It is the second dielectric layer 712 of SiO2, and each 1520 ″ ::, 71 of the first dielectric layer 711 is a light source with respect to the second dielectric layer 712. In this specific embodiment- , Defined by the total thickness of each-dielectric unit 71Γ—the dimension is “the first-lattice gap” (hereinafter referred to as al), and the thickness of each-th-dielectric layer 711 is 0 When the electric layer m and 712 have a wavelength of 385 nm, the refractive indexes of the first and second dielectric layers 712 and 712 are 2.6 and 1.48, respectively, and the refractive index difference is 112, so that The quasi-photon dielectric body 7 has a reflectivity that substantially reflects the liver light source (that is, the dielectric body 7 in the first embodiment has an omnidirectional optical band gap). The following cooperation According to FIG. 9, when the thickness of each first dielectric layer 711 is between 0.2 and 0. 78ai, the dielectric body 7 of the one-dimensional photonic crystal has an optical band gap. When the thickness of the first dielectric layer 711 is 0.42 ⑴, the dielectric body 7 of the one-dimensional photonic crystal has a maximum optical band gap size (approximately approaching 1 (U), and compared to the upper diagram of FIG. 9 From the horizontal coordinate of u · ai to the vertical coordinate, an optical bandgap with a frequency between 0.300 (£ / 30 and 273 (c / a!) Can be obtained, where c is The speed of light. From the foregoing, with reference to FIG. 10, an optical band with a frequency between 0 · SOiKc / a!) And 0 · 273 (c / a) can also be obtained from a guided region in FIG. 10. Gap, that is, the wavelength range of the optical band gap in this specific embodiment 1 is between 367 nm and 403 nm. The wave number (wave N umber; ky) 15 200524175 and wave deviation in FIG. 9 and FIG. 10 The definitions of polarized TE and TM can be found in the specification of US Patent No. 6,130,780. 5 10 15 20 According to the analysis data, 'of the one-dimensional photonic crystal f in the first embodiment is obtained. The reflectivity of dielectric body 7 'at a wavelength between 369 nm and 401 nm is greater than 99.5 / ^ (see Figure 11). In addition, please refer to Figure I? And Figure 13'. (Sapphire at 3 The reflectance and transmittance analysis data measured under the environment of 8 5 nm is 1 · 7) 61 and the light-emitting crystal (the refractive index of GaN is 2.58 under the environment of 385 nm) 62. It has a reflectance greater than 99 · 5% between 369 nm and 401 rnn. Therefore, the light-emitting device in the first embodiment can utilize the one-dimensional photonic crystal dielectric 7 to convert the UV light source from The first surface 611 is reflected to the second surface 621. <Specific Embodiment 2> As shown in FIG. 14, the light-emitting device having a one-dimensional photonic crystal according to the present invention—Specific Embodiment 2 is substantially the same as the specific embodiment. The difference lies in that the light-emitting crystal 62 is a blue light source capable of emitting light with a wavelength ranging from completely 480 to 480 mii. Therefore, the detailed structure of the dielectric body 7 of the one-dimensional photonic crystal needs to be modified with the blue light source. In the second specific embodiment, the total thickness of each dielectric sheet & Η is drawn out-a second lattice gap (hereinafter referred to as ⑻) having a size of 13 "m, and each The thickness of the layer 7U is 0.44 a. When each of the first and second dielectrics 7711, 712, the wavelength of the optical fiber environment and the refractive index of the broad dielectric layers 711, 712, The ratios are M. and the refractive index difference is G.95, so that the 16-dimensional photonic crystal 16 200524175 dielectric 7 has a reflectivity that substantially totally reflects the blue light source (meaning, the second specific embodiment The dielectric body 7 has an omnidirectional optical bandgap.) Refer to FIG. 15 for cooperation. When the thickness of each first dielectric layer 711 is between 0_2a2 and 0.7a2, the dielectric of the one-dimensional photonic crystal The body 7 has an optical band gap. When the thickness of each first dielectric layer 711 is 0.444as, the dielectric body 7 of the one-dimensional photonic crystal has a maximum optical band gap size (approximately 5%) ) 'And compared to the upper diagram of Figure 15, corresponding to the vertical coordinate from the horizontal coordinate of 0.44, you can get a frequency between 0.305 (^ / ^ 2) to 0. 29lc / aO optical band gap From the foregoing, with reference to FIG. 16, an optical band gap having a frequency between 0.305 (c / a2) and 0.291 (c / ad) can also be obtained from a waveguide region in FIG. The wavelength range of the optical band gap in this specific embodiment 2 is between 43 9 nm and 4 61 nm. According to the analysis data, the dielectric 7 ′ of the one-dimensional photonic crystal in this specific embodiment 2 has a wavelength The reflectivity between 440 nm and 464 nm is greater than 99.5% (see Figure 17 for coordination. In addition, please refer to Figure 1 $ and Figure 19 'The substrate (sapphire) 61 and the light-emitting crystal, respectively (The refractive index of GaN under the environment of 450 mn is 2.48.) The measured reflectance analysis data of 62 also obtained a reflectance greater than 99 · 5% at a wavelength between 440 nm and 464 nm. The third specific embodiment is shown in FIG. 20. According to FIG. 20, a third specific embodiment of the light-emitting device having a one-dimensional photonic crystal according to the present invention is substantially the same as the first specific embodiment. The difference is that the light-emitting crystal 62 Is a light source that emits a green light with a wavelength between 48 ° to 550 nm. Therefore, the dielectric of this one-dimensional photonic crystal is 17 200524175 volume 7 The detailed structure of the structure needs to be modified with the green light source.-In the third specific embodiment, a third lattice gap (hereinafter referred to as "151") is defined by the total thickness of each dielectric unit 7 ". Ii), and the thickness of each first dielectric layer 711 ′ is 0.45 Å. When each of the first and fifth layers: the dielectric layers 711 ,,, 712, the wavelength of the green light source is 500 nm In the environment, the refractive indices of the first and second dielectric layers 711 "and 712" are 2.36 and 1.46, respectively, and the refractive index difference is 0 · go, so that the one-dimensional photonic crystal moon bean The "electric body 7" has a reflectivity that substantially reflects the green light source (that is, the dielectric body 7 in the third embodiment has an omnidirectional optical band 10 gap). Referring to FIG. 21 in conjunction with the following, when the thickness of each first dielectric layer 711 ′ is between 0.3aa and 0.6as, the dielectric body 7 of the one-dimensional photonic crystal has an optical band gap. When the thickness of each first dielectric layer 711 ′ is 0.45a3, the dielectric body 7 of the one-dimensional photonic crystal has a maximum optical bandgap size (approximately 15 & 5%). As shown in the upper diagram of FIG. 21, from the horizontal coordinate of 0.45a to the vertical coordinate, a frequency band between 0.30 (c / a3) and 297 (c / aO) can be obtained. From the foregoing, with reference to FIG. 22, an optical band gap having a frequency between (K 308 (c / a3) to 0.297 (c / as) can also be obtained from a waveguide region in FIG. 22, which means that the The wavelength range of the optical band gap 20 in the third embodiment is between 491 nm and 507 nm. According to the analysis data, the dielectric body 7 of the one-dimensional photonic crystal in the third embodiment has a wavelength between The reflectivity between 492 nm and 512 nm is greater than 99.5% (see Figure 23 for coordination. In addition, refer to Figure 24 and Figure 25. The substrate (sapphire) 61 and the light-emitting crystal (GaN in 18 5 10 15 20
200524175 500⑽的環境下折射率為2.44)62所測得的反射率分析數 據,亦得到在波長介於492⑽到512咖之間皆具有大於 99· 5%的反射率。 〈具體貫施例四〉 參閱圖26圖,本發明之具有一維光子晶體的發光裝 置的-具體實施例四,大致上是與該具體實施例_相同: 其不同處在於’該一維光子晶體之介電體7是連接在該第 一表面621上’且更包含—散熱元件9及兩分別與該等焊 墊81相互連接的焊塊㈤如b卿)82,其中,該發光二 極體6是利用覆晶⑴ipeMp)的封裝方式與該散熱元件9 相互連接。 该散熱7L件9具有-散熱塊91及複數設置在該散熱 塊91上的導線92,且該散熱塊91是藉該等導線92㈣ 等焊塊82連接。 ^ 〈具體實施例五〉 本1明之具有一維光子晶體的發光裝置的—具體實 施例五,大致上是與該具體實施例四相同。其不同處在 ^ 於’該發光晶體62所發射出的預定波長範圍及該一維光 子晶體之介電體7的細部結構是相同於該具體實施例二。 <具體實施例六〉 本發明之具有-維光子晶體的發光裝置的一具體實 、 鈿例/、,大致上疋與該具體實施例四相同。其不同處在 於’該發光晶體62所發射出的預定波長範圍及該一維光 子明to之;I電7的細部結構是相同於該具體實施例三。 19 )或該第二表面622上 ίο 15 20 200524175 由上所述,本發明之一維光子晶體及其發光裝置具有 下列數項特點·· 表面621上(具體實施例 (具體實施例四、i、六),因此可避免如習知形成在磊晶 體内部的反射層所造成的晶格不匹配之問題。 二、當該發光二極體6所使用的一維光子晶體之介電 體7具有較大的光帶隙尺寸時,則所配合使用的發光二極 體之光源半高寬受限較小。如具體實施例一及四中,具有 約10%的全光帶隙尺寸,即使該發光二極體6的半高寬是 趨近4〇nm’仍可藉由該一維光子晶體之介電體7反射該光 源回相反於該人射光源的方向,以修正該光源在發光裝置 中的發光效率。 一、藉由该一維光子晶體之介電體7,可全反射任何 射角及偏極化的光源,以提高該發光二極體6的光源 外出效率。 四、在該具體實施例四、五、六中,利用半導體製程 中覆晶的封裝方式來封裝該發光二極體6 ,可提供散熱性 佳的特點’並可避免該發光二極體6因該等焊塾81的遮 光效應,而影響該發光二極體6的發光效率。 本發明之一 匹配之的問題, 維光子晶體及其發光裝置可避免晶袼不 且發光二極體具有發光效率高及散熱性佳 等特點,確實達到本發明之目的 准以上所述者,僅為本發明之較佳實施例而已,當不 20 200524175 ,以此限定本發明實施之_,即大凡依本發”請專利 _及發明說”内容所作之簡單的等效變化與修飾,皆 應仍屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 5 10 15 20 圖1是—剖面示意圖’說明-種習知-的發光二極體 之基本結構; 圖2是一剖面示意圖,說明一種習知二的發光二極 之各層結構; 圖3是—剖面示意圖,說明一種習知三的發光二極體 之各層結構; 圖4是-剖面示意圖,說明一種習知四的發光二極, 之各層結構; 1 圖5是-剖面示意圖’說明一種習知五的發光二極俨 之各層結構; 1 圖6是-折射率差與一第—介電層之厚度所形成之光 帶隙尺寸的關係圖,說明本發明之該第一介電層及一第二 介電層的折射率差與該第—介電層之厚度所形成之光帶 隙尺寸的關係; 圖7是一剖面示意圖,說明本發明之具有一維光子晶 體的發光裝置的一具體實施例一; 圖8是該圖7的局部放大示意圖,說明該具體實施例 一的一介電體的介電單元之細部結構; 圖9是一第一介電層在一第一晶格間隙(ai)中的相對 厚度關係圖,說明在該具體實施例一的波長範圍(3〇〇⑽ 21 200524175 到420 nm)下,-光帶隙尺寸及該第一介電層之厚度的關 係圖; 圖10是一光帶隙結構圖,說明該具體實施例一中的 介電體的光帶隙結構; 圖11是-平均反射率光譜圖,說明由空氣中測得該 具體實施例一中的介電體的反射率; 圖12是一平均反射率及穿透率光譜圖,t兒明由一基 材中測得該具體實施例一中的介電體的反射率及穿透率; - 圖13是一平均反射率及穿透率光譜圖,言兒明由^ 光晶體中測得該具體實施例一中的介電體的反射率及穿 透率; 圖14是该圖7的局部放大示意圖,說明一具體實施 例一的一介電體的介電單元之細部結構,· 圖15是一第一介電層在一第二晶格間隙(a2)中的相 . 對厚度關係圖,說明在該具體實施例二的波長範圍(42〇nm 到480 ηπι)下,一光帶隙尺寸及該第一介電層之厚度的關 係圖; φ 圖16是一光帶隙結構圖,說明該具體實施例二中的 介電體的光帶隙結構; 圖17是一平均反射率光譜圖,說明由空氣中測得該 . 具體實施例二中的介電體的反射率; ~ 圖18是一平均反射率光譜圖,說明由該基材中測得 該具體實施例二中的介電體的反射率; 圖19是一平均反射率光譜圖,說明由該發光晶體中 22 200524175 測得該具體實施例二中的介電體的反射率; 圖20是該圖7的局部放大示意圖,說明一具體實施 例三的一介電體的介電單元之細部結構; 圖21是一第一介電層在一第三晶格間隙㈤中的相 對厚度關係圖,說明在該具體實施例三的波長範圍⑽⑽ 到550 nm)下’ -光帶隙尺寸及該第一介電層之厚度的關 係圖; 圖22疋-光帶隙結構圖,說明該具體實施例三中的200524175 The reflectance analysis data measured in the 500⑽ environment with a refractive index of 2.44) 62 also shows a reflectance greater than 99.5% at wavelengths between 492⑽ and 512. <Specific Implementation Example 4> Referring to FIG. 26, a specific embodiment 4 of a light-emitting device having a one-dimensional photonic crystal according to the present invention is roughly the same as the specific embodiment_: the difference lies in the 'the one-dimensional photon The dielectric body 7 of the crystal is connected to the first surface 621 ′ and further includes a heat-dissipating element 9 and two solder bumps (such as bqing) 82 which are connected to the pads 81, respectively. The light-emitting diode The body 6 is connected to the heat dissipation element 9 by a packaging method using a flip chip (MPipe). The heat-dissipating 7L member 9 has a heat-dissipating block 91 and a plurality of wires 92 provided on the heat-dissipating block 91, and the heat-dissipating block 91 is connected by soldering blocks 82 such as the wires 92㈣. ^ <Embodiment 5> The first embodiment of the light-emitting device having a one-dimensional photonic crystal—the embodiment 5 is substantially the same as the embodiment 4. The difference is that the predetermined wavelength range emitted by the light-emitting crystal 62 and the detailed structure of the dielectric body 7 of the one-dimensional photonic crystal are the same as those in the second embodiment. < Specific Embodiment 6> A specific example of the light-emitting device having a -dimensional photonic crystal of the present invention, an example /, is substantially the same as the fourth embodiment. The difference lies in the predetermined wavelength range emitted by the light-emitting crystal 62 and the one-dimensional photon crystal; the detailed structure of the I-electric 7 is the same as that of the third embodiment. 19) or the second surface 622 15 20 200524175 From the above, the one-dimensional photonic crystal and the light-emitting device of the present invention have the following features: · On the surface 621 (the specific embodiment (the specific embodiment 4, i (6) Therefore, it is possible to avoid the problem of lattice mismatch caused by the reflective layer formed inside the epitaxial crystal as known. 2. When the dielectric 7 of the one-dimensional photonic crystal used in the light-emitting diode 6 has When the optical bandgap size is larger, the light source diode used with the light-emitting diode has a smaller half-width limitation. As in the first and fourth embodiments, it has a total optical bandgap size of about 10%. The full width at half maximum of the light-emitting diode 6 is approaching 40 nm. The light source can still be reflected by the dielectric body 7 of the one-dimensional photonic crystal back to the direction opposite to the light source to correct the light source in the light-emitting device. The luminous efficiency in the first. With the one-dimensional photonic crystal dielectric 7, the light source can be totally reflected at any angle of incidence and polarization, so as to improve the light-emitting efficiency of the light-emitting diode 6. In the fourth, fifth and sixth embodiments, the semiconductor process is used The packaging method to package the light-emitting diode 6 can provide good heat dissipation characteristics, and can prevent the light-emitting diode 6 from affecting the light-emitting efficiency of the light-emitting diode 6 due to the light-shielding effect of the welding pads 81. One of the problems of the present invention is that the two-dimensional photonic crystal and its light-emitting device can avoid the crystal lumps, and the light-emitting diode has the characteristics of high luminous efficiency and good heat dissipation, and indeed achieves the object of the present invention. It is only the preferred embodiment of the present invention. When it is not 20 200524175, it is used to limit the implementation of the present invention, that is, the simple equivalent changes and modifications made in accordance with the contents of the "Please Patent" and the invention of this invention. It should still be within the scope of the patent of the present invention. [Simplified description of the drawings] 5 10 15 20 Figure 1 is the basic structure of a light-emitting diode-a schematic diagram of the description-a kind of conventional-Figure 2 is a schematic diagram of the cross-section, Explain a layer structure of a light emitting diode of the second type; FIG. 3 is a schematic cross-sectional view illustrating the layer structure of a light emitting diode of the third type; FIG. 4 is a schematic cross section illustrating a light emitting diode of the fourth type The structure of each layer; 1 FIG. 5 is a schematic cross-sectional view illustrating the structure of layers of a conventional light-emitting diode 五; FIG. 6 is an optical band gap formed by a refractive index difference and a thickness of a first dielectric layer The relationship diagram of dimensions illustrates the relationship between the refractive index difference between the first dielectric layer and a second dielectric layer and the optical band gap size formed by the thickness of the first dielectric layer of the present invention; FIG. 7 is a cross section A schematic diagram illustrating a first specific embodiment of a light-emitting device having a one-dimensional photonic crystal according to the present invention; FIG. 8 is a partially enlarged schematic diagram of FIG. 7 illustrating a detailed structure of a dielectric unit of a dielectric of the first embodiment; FIG. 9 is a graph of the relative thickness of a first dielectric layer in a first lattice gap (ai), illustrating that in the wavelength range (30000 21 200524175 to 420 nm) of the first embodiment, -A diagram of the relationship between the optical band gap size and the thickness of the first dielectric layer; Fig. 10 is an optical band gap structure diagram illustrating the optical band gap structure of the dielectric body in the first specific embodiment; Fig. 11 is-average Reflectance spectrum chart, illustrated in the first specific embodiment measured from the air The reflectivity of the dielectric body; Figure 12 is an average reflectance and transmittance spectrum chart, t Erming measured the reflectance and transmittance of the dielectric body in the first specific embodiment from a substrate; -FIG. 13 is an average reflectance and transmittance spectrum chart, and Yan Erming measured the reflectance and transmittance of the dielectric body in the specific embodiment 1 from a light crystal; FIG. 14 is a view of FIG. 7 A partially enlarged schematic diagram illustrating a detailed structure of a dielectric unit of a dielectric body according to a first embodiment, FIG. 15 is a phase of a first dielectric layer in a second lattice gap (a2). Figure, illustrating the relationship between the optical band gap size and the thickness of the first dielectric layer in the wavelength range (42nm to 480 nm) of the second specific embodiment; φ Figure 16 is a structural diagram of an optical bandgap Illustrate the optical band gap structure of the dielectric in the second specific embodiment; FIG. 17 is an average reflectance spectrum chart illustrating the measured reflectance of the dielectric in the specific embodiment; ~ FIG. 18 is an average reflectance spectrum diagram illustrating the reflection of the dielectric body in the second specific embodiment measured from the substrate. FIG. 19 is an average reflectance spectrum chart, illustrating the reflectance of the dielectric body in the second specific embodiment measured from the 200522175 in the light-emitting crystal; FIG. 20 is a partially enlarged schematic diagram of FIG. 7, illustrating a specific Detailed structure of a dielectric unit of a dielectric body in the third embodiment; FIG. 21 is a graph showing the relative thickness of a first dielectric layer in a third lattice gap ㈤, illustrating the wavelength range in the third specific embodiment To 550 nm)-the relationship between the optical band gap size and the thickness of the first dielectric layer; Fig. 22 疋-optical band gap structure diagram, illustrating the third embodiment
介電體的光帶隙結構; I 圖23是-平均反射率光譜圖,說明由空氣中測得該 具體實施例三中的介電體的反射率; 圖24是-平均反射率光譜圖,說明由該基材中測得 該具體實施例三中的介電體的反射率; 圖25是-平均反射率光譜圖,說明由該發光晶體中 - 測得該具體實施例三中的介電體的反射率;及 圖26是一局部剖面示意圖,說明本發明之具有一維 光子晶體的發光裝置的一具體實施例四。 鲁 23 200524175 【圖式之主要元件代表符號簡單說明】 6 …發光二極體 71’’ …介電早元 1 - 〃基材 711 …第一介電層 611 …第一表面 711’ …-第一介電層 62- •發光晶體 711” …第一介電層 621 第二表面 712… ……第二介電層 622 N-doped半導體層 712, …第二介電層 624… …發光層 712” …第二介電層 625 …P-doped半導體層 81…… …焊墊 626 …< P-type電極層 82 ^ …焊塊 7……… 介電體 9 …散熱元件 71 …介電單元 G1 ^ ^ ^ * …散熱塊 71,…… …介電單元 92…… …導線 24Optical band gap structure of the dielectric body; I FIG. 23 is an average reflectance spectrum diagram illustrating the reflectance of the dielectric body in the specific embodiment 3 measured from the air; FIG. 24 is an average reflectance spectrum diagram, Explain that the reflectance of the dielectric body in the third embodiment is measured from the substrate; FIG. 25 is a graph of the average reflectance, illustrating that the dielectric in the third embodiment is measured from the light-emitting crystal. And FIG. 26 is a schematic partial cross-sectional view illustrating a specific embodiment 4 of a light-emitting device having a one-dimensional photonic crystal according to the present invention. Lu 23 200524175 [Simplified explanation of the main symbols of the drawings] 6… light-emitting diode 71 ”… dielectric element 1-〃 substrate 711… first dielectric layer 611… first surface 711 '…- A dielectric layer 62- • a light-emitting crystal 711 ″, a first dielectric layer 621, a second surface 712, a second dielectric layer 622, a N-doped semiconductor layer 712, a second dielectric layer 624, a light-emitting layer 712 "... the second dielectric layer 625 ... the P-doped semiconductor layer 81 ... ... the pad 626 ... < the P-type electrode layer 82 ^ ... the pad 7 ... the dielectric 9 ... the heat sink 71 ... the dielectric unit G1 ^ ^ ^ *… heat sink 71,…… dielectric unit 92…… lead 24