TWI229949B - Manufacturing process and product of LED - Google Patents

Manufacturing process and product of LED Download PDF

Info

Publication number
TWI229949B
TWI229949B TW93101393A TW93101393A TWI229949B TW I229949 B TWI229949 B TW I229949B TW 93101393 A TW93101393 A TW 93101393A TW 93101393 A TW93101393 A TW 93101393A TW I229949 B TWI229949 B TW I229949B
Authority
TW
Taiwan
Prior art keywords
light
layer
emitting diode
transparent conductive
patent application
Prior art date
Application number
TW93101393A
Other languages
Chinese (zh)
Other versions
TW200525776A (en
Inventor
Jen-Hua Fu
Kuen-You Lai
Jr-Hau Lin
Original Assignee
Genesis Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesis Photonics Inc filed Critical Genesis Photonics Inc
Priority to TW93101393A priority Critical patent/TWI229949B/en
Application granted granted Critical
Publication of TWI229949B publication Critical patent/TWI229949B/en
Publication of TW200525776A publication Critical patent/TW200525776A/en

Links

Abstract

The present invention discloses a LED manufacturing process and the LED made by the same. The manufacturing process includes first performing epitaxial growth on a substrate to form an epitaxy layer cell which can generate photos by electro-optic effect; then forming a transparent conduction layer on the epitaxy layer cell by a transparent and conductive oxide material in ionic atmosphere; and finally forming a P-type ohmic electrode electrically connected with the transparent conduction layer, and forming an n-type ohmic electrode electrically connected with the n-type cladding layer, so as to complete the manufacturing of LED. By the manufacturing process of the preset invention, a transparent conduction layer can be directly coated on the epitaxy layer cell, which can diffuse the current to the epitaxy layer cell in a low-impedance state uniformly for generating photons.

Description

1229949 玖、發明說明: 【發明所屬之技術領域】 本發明是有關於一種製程,特別是指一種製造發光二 極體的製程。 【先前技術】 發光二極體(Light Emitting Diode,LED)是一種應用光 電效應以外加電壓激發電子而放射出光的光電半導體元件 。因為發光二極體主要是應用光電效應發光,所以是一種 微細的固態光源,不但體積小、壽命長、驅動電壓低、反 應速率快、耐震性特佳,而且能夠配合輕、薄和小型化之 應用设備的需求,因此成為新一代的人造光源來源。 參閱圖1所示,一般氮化鎵系列發光二極體1包含一 基材(Substrate)ll、一於該基材U上磊晶成長而成之磊晶 層單元12、一磊晶形成於該磊晶層單元12上的銦錫氧化物 層(Indium Tin Oxide ,ITO) 13,及一電性連接該磊晶層 卓元12與銦錫氧化物層13的電極單元14。 磊晶層單元12主要是以導電型氮化鎵化合物(Gallium nitride-based compound semiconductors)為材料形成,包含一 形成在基材11上的η型披覆層m (n-cladding layer)、一 形成於η型披覆層121上的活性發光層122(Active light-emitting layer),及一形成於活性發光層122上的p型披覆 層123 ( p-cladding layer )。電極單元μ包含一與n型彼覆 層121電性連接的η型歐姆電極141,及一電性連接於銦錫 氧化物層13上的ρ型歐姆電極142。 5 1229949 當施加電壓於電極單元14時,p型歐姆電極142會將 電流經由銦錫氧化物層13均勻擴散至磊晶層單元12,而以 光電效應產生多數光子,進而使發光二極體丨發光。 上述發光二極體1由於是藉著銦錫氧化物層13將電流 均勻擴散至磊晶層單元12中,藉光電效應產生光子,因此 銦錫氧化物層13與磊晶層單元12之p型披覆層123間的 連結界面,會影響電流擴散到磊晶層單元12的狀態,進而 影響發光二極體1的發光亮度以及均勻度。 然而,因為錮錫氧化物層13與磊晶層單元12之p型 彼覆層123的功函數(work functi〇n)高度不匹配,因此如 何使錮錫氧化物層13能平整均勻地自磊晶層單元12之p 型彼覆層123肖上形成,^^而降低電流阻抗、&高發光二 極體1發光亮度,是業界不斷努力的方向之一。 例如,中華民國第546859號發明專利案「氮化鎵系發 光二極體之結構及其製造方法」、中華民國第54171〇號發 明專利案「具有透明基板之發光二極體及其製法」、中華民 國第515118號發明專利案「單體(石)可積體式電感器」 等案,即分別試圖提出不同的技術手段,解決上述如何使 銦錫氧化物層與蠢晶層單元間功函數不匹配而能平整且均 勻形成,進而使電流均勻擴散到磊晶層單元,提高發光二 極體的發光亮度以及均勻度的問題。 雖然上述各發明專利所提出的技術手段確實可以解決 問題’提高發光二極體的發光亮度以及均句度的問題,但 是尋求更簡單的製程,利用現有的機台設備,製作出發光 6 1229949 亮度更高更均勻的發光二極體 仍是業者不斷努力的目標 5 10 【發明内容】 因此,本發明之目的,是在提供一種簡易的製程, 製造具有透明導電層的發光二極體。 此外,本發明之另一目的,是在裎 疋在梃供一種在相同工作 電壓時亮度更高的發光二極體。 於是,本發明之一種發光二極體製程,用於製造一 光二極體,該製程包括下列步驟。 x (a)依序於一基材上向上形成一 n型披覆声、一 層,及- Ρ型披覆層’使該η型披覆層、活性層與ρ型披 覆層形成'晶til,言女曰]^ - 森日日層早兀4磊日日層早兀可以光電效應產味 複數光子。 以 15 201229949 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a manufacturing process, and particularly to a manufacturing process for manufacturing a light emitting diode. [Previous Technology] Light Emitting Diode (LED) is a kind of optoelectronic semiconductor device that uses photoelectric effect to excite electrons by applying voltage to emit light. Because the light-emitting diode mainly uses the photoelectric effect to emit light, it is a fine solid-state light source, which is not only small, long life, low driving voltage, fast response rate, excellent shock resistance, but also can be used in light, thin and miniaturized. The demand for application equipment has therefore become a new generation of artificial light sources. Referring to FIG. 1, a general gallium nitride series light-emitting diode 1 includes a substrate 11, an epitaxial layer unit 12 epitaxially grown on the substrate U, and an epitaxial layer formed thereon. An indium tin oxide layer (ITO) 13 on the epitaxial layer unit 12 and an electrode unit 14 electrically connecting the epitaxial layer zhuoyuan 12 and the indium tin oxide layer 13. The epitaxial layer unit 12 is mainly formed using Gallium nitride-based compound semiconductors as a material, and includes an n-cladding layer m (n-cladding layer) formed on the substrate 11 and a An active light emitting layer 122 (active light-emitting layer) on the n-type cladding layer 121 and a p-cladding layer 123 formed on the active light emitting layer 122. The electrode unit µ includes an n-type ohmic electrode 141 electrically connected to the n-type cladding layer 121, and a p-type ohmic electrode 142 electrically connected to the indium tin oxide layer 13. 5 1229949 When a voltage is applied to the electrode unit 14, the p-type ohmic electrode 142 will uniformly diffuse the current through the indium tin oxide layer 13 to the epitaxial layer unit 12, and generate a majority of photons by the photoelectric effect, thereby making the light emitting diode 丨Glow. Since the light-emitting diode 1 diffuses the current into the epitaxial layer unit 12 uniformly through the indium tin oxide layer 13 and generates photons by the photoelectric effect, the p-type of the indium tin oxide layer 13 and the epitaxial layer unit 12 is p-type. The connection interface between the cladding layers 123 affects the state of current diffusion to the epitaxial layer unit 12, and further affects the light emitting brightness and uniformity of the light emitting diode 1. However, because the work function of the tin oxide layer 13 and the p-type cladding layer 123 of the epitaxial layer unit 12 are highly mismatched, how to make the tin oxide layer 13 flat and uniform The p-type cladding layer 123 of the crystal layer unit 12 is formed on the substrate, and reducing the current resistance and the light emitting brightness of the high light emitting diode 1 is one of the continuous efforts of the industry. For example, the invention patent No. 546859 of the Republic of China "the structure of a gallium nitride-based light emitting diode and a manufacturing method thereof", the invention patent case of the Republic of China No. 5417110 "a light emitting diode with a transparent substrate and a manufacturing method thereof", The Republic of China's Invention Patent No. 515118, "Single (Stone) Integrable Inductor", etc., tried to propose different technical methods to solve the above problem of how to make the work function between the indium tin oxide layer and the stupid crystal layer unit different. The matching can be formed flat and uniform, so that the current is evenly diffused to the epitaxial layer unit, and the problem of the light emitting brightness and uniformity of the light emitting diode is improved. Although the technical means proposed by the above-mentioned invention patents can indeed solve the problem of 'increasing the light emitting brightness and uniformity of the light emitting diodes, a simpler process is sought, and the existing machine equipment is used to produce the light emitting 6 1229949 brightness. Higher and more uniform light emitting diodes are still the goal of the industry 5 10 [Summary of the Invention] Therefore, the object of the present invention is to provide a simple process for manufacturing light emitting diodes with transparent conductive layers. In addition, another object of the present invention is to provide a light-emitting diode with higher brightness at the same operating voltage. Therefore, a light-emitting diode system of the present invention is used for manufacturing a light-emitting diode, and the process includes the following steps. x (a) sequentially forming an n-type coating sound, a layer on a substrate, and-a P-type coating layer 'forming the n-type coating layer, the active layer and the p-type coating layer' , Yan Nu Yue] ^-Mori Riri Early Morning 4 Lei Riri Early Morning can produce multiple photons by photoelectric effect. By 15 20

▲ (b)在-離子氣氛下’以—透明導電化合物為材料在 該ρ型披覆層上直接鍍膜形成一透明導電層。 (〇形成一與該透明導電層電性連接之ρ型毆姆電極 ,及形成一與該η型披覆層電性連接之η _姆電極,且 該Ρ、η型殴姆電極可外加電麼而使電流可經由該透明導電 層擴散通過該磊晶層單元,使該磊晶層單元產生光子。 此外,本發明之一種發光二極體,包含一基材、一磊 晶層單7G、一透明導電層,及一電極單元。 該蠢晶層單元形成在該基材上,可以光電效應產生光 Q 該透明導電層形成在該爲晶層單元上,是在—包含預 7 1229949 定氣體之離子氣氛下,直接自該磊晶層單元向上形成,而 可在低阻抗之狀態下使電流均勻向該磊晶層單元擴散。 該電極單元可施加電壓,分別與該磊晶層單元與該透 明導電層電性連接,且當施加電壓時是藉該透明導電層使 電流在低阻抗之狀態下均勻擴散至磊晶層單元,進而以光 電效應產生光子。 本發明之功效在於簡化生產製程,控制製程氣氛以直 接在磊晶層單元上生成功函數不匹配之透明導電層,以製 作在相同工作電壓時,亮度更亮的發光二極體。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之二較佳實施例的詳細說明中,將可清 楚的明白。 參閱圖2,本發明發光二極體製程之一第一較佳實施例 ,是可製造如圖1所示之氮化鎵系列發光二極體i,但與習 知的發光一極體1在相同工作電壓時相比較,本發明所完 成的發光二極體1則具有更高的亮度以及均勻度。 首先以步驟21,依序於基材U上向上形成披覆層 121、活性層122,及p型披覆層123,使n型披覆層121、 活性層122與ρ型披覆層123形成磊晶層單元12,磊晶層 單元12可以光電效應產生光子。此步驟與習知製造發光二 極體的過程相似,都是以磊晶成長為主,先選用例如藍寶 石、碳化石夕、氧化辞、玻璃、氮化錄、氮化銘等材料為基 材’並配合以導電型氮化鎵化合物為材料形成氮化錄為二 8 1229949 料形成η、p型披覆層,氮化銦鎵化合物形成活性層,由於 此步驟之細節需視所使用的設備以及所完成之產品性能而 有所不同,且並非本發明重點所在,故在此不再多加舉例 詳述。 接著進行步驟22,在混掺有〇2、CF4、SF6、〇3,的離 子氣氛中,以銦錫氧化物為材料,在25t〜7〇(rC2溫度, 2xl〇_6〜1.8xl〇-3T〇rr的條件下進行鍍膜,在p型披覆層123 上直接形成透明導電層13。本步驟是以錮錫氧化物(ιτ〇) 10 為材料形成透明導電層13為例說明,而只要是透明且可導 電之氧化物,例如銦鈽氧化物(IC〇)、辞銘氧化物(αζ〇) 、鋅鎵氧化物(GZQ)料均可制為㈣,讀膜形成透 明導電層。 15 取俊進行步驟23,先將透明導電層13、p型披覆, 、I*生層122之-側蚀刻移除,使得n型披覆層⑵告 分區域裸露,再於透明導„ 13上形成p型歐姆電極14 ’並在η型披覆層121部分裸露之區域形成n型歐姆電相 141 ’而完成如圖i所示發光二極體i的製備。 20 … > 閱圖1以上述製耘所製造的發光二極體,與習知潑 光二極體的構造一樣’在此不多加贅述。 :閱圖3 ’但是,以本發明製程所製造之發光二極體, 門明導電f 13是直接克服與氮化鎵材料功函數不匹配 二二’而均句平整地形成在㈠披覆層123上,因此可 1::之狀態下使電流均勾向該蟲晶層單元擴散,也就 同的工作電壓下’依本發明製程所製造的發光二 9 1229949 極體1的發光亮度會較昔知製程所製作的發光二極體為亮 5 而,為使所製備完成的發光二極體丨亮度更高,在進 行完上述製程之步驟22之後’可以湘侧方式,將所於 膜形成的透明導電層13向蟲晶層單元12方向姓刻出㈣ 截面形狀呈圓形、三角形、五角形、六角形,甚或其他任 意幾何圖形的凹孔,進而使透明導電I 13纟面形成幾何圖 形的凹凸表面而粗糙化,使磊晶層單元12產生的 10 時產生多向性散射,而使得發光二極冑i發光時亮度更高 。當然,此等使透明導電層13表面粗以使發光亮度提 高的過程,也可以在步驟23製作完成n、p型歐姆電極i4i 、142後進行,由於此過程的目的僅在於使透明導電層η 表面粗糙化而使光線通過時產生多向性的發散進而使H發光 亮度提昇’因此在此不再對此過程以及為使粗糙化而形成 15 凹孔的形狀、特徵多加贅述。 參閱圖4’本發明發光二極體製程之—第二較 ’是可製造如圖5所示《氮化鎵系列發光二極體3。 參閱圖5 ’該發光二極體3與圖【所示之發光二極體i 相似,其不同處僅在於以本例製程所完成之發光二極體3 20 更包含-形成在透明導電層13,上的散光保護層31,散光保 護層31 {以氮化石夕或二氧化吩為材料形成,具有複數自散 光保護層3"目反於透明導電層13,之表面向下凹陷的凹孔 3U,每一凹孔川的截面是呈圓形、三角形、五角形、六 角形’甚或其他任意幾何圖形的凹孔,而使㈣晶層單元 10 1229949 12,所產生的光線通過透明導電層i3,之後,在行經散光保護 層> f可藉由及複數凹孔311產生散射而使發光二極體 3亮度更加提昇。 5 10 參閱圖4,以本發明發光二極體製程之第二較佳實施例 製作如圖5所示之發光二極體3日寺,是與圖2所示本發明 發光二極體製程之第一較佳實施例的製程相似,其不同處 僅在於本例之製程是在依序進行完步驟21、步驟Μ、步驟 23之後,更騎—㈣24,選用氮切歧二氧切等可 透光的化合物為材料’自透明導電層13’之-相反於蟲晶層· 單元的表面向上形成散錢護層31,再㈣刻方式將散 ,保護層31钱刻出複數凹孔311,而使光線通過時可產生 散射’而完成如圖5所示之發光二極體3的製備。 15 20 综上所述’本發明發光二極體製程,主#是以混摻有 〇2、eh、SF6、Ο;,的離子氣氛中,以透明導電氧化物例 如銦錫氧化物、銦鈽氧化物、辞紹氧化物、辞嫁氧化物為 材料’並配合製程溫度、M力’而在氮化鎵材料所形成之p 型披覆層123上直接形成晶格與氮化鎵材料功函數高度不鲁 :配的透明導電層13、13,,且此一關鍵步驟,並不限於製 造發光二極體,在氮化鎵材料上鍍透明且可導電之化合物 例如銦錫氧化物、錮鈽氧化物、辞鋁氧化物、鋅鎵氧化 物為材料時均可以應用,而可以直接形成如圖3職照片 所示,平整且均勻的透明導電層。再,參閱圖6之實驗結 果所不,以此方式形成平整、均勻的透明導電層,可在業 界所習用的20mA的操作電流時保持工作電壓小於3_5v 2 11 1229949 下,也就是說,以本發明製程所完成之發光二極體可以在 低阻抗狀態下使電流均勻擴散,進而使所製成的發光二極 體在相同的工作電壓下,亮度更亮。 綜上所述,本發明發光二極體製程提供一種簡化的製 5 冑’而可以較少的製程步驟、較低的製作成本製作出在相 同的工作電壓時亮度更高且發光均句的發光二極體,確實 達到本發明之創作目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 10 ㈣及發明說明書内容所作之簡單的等效變化與修飾,皆 應仍屬本發明專利涵蓋之範圍内。 【囷式簡單說明】 圖1是一剖視示意圖,說明一發光二極體的構造; 圖2是一流程圖,說明本發明發光二極體製程的一第 15 一較佳實施例; 圖3是一 SEM照片,說明以本發明發光二極體製程所 形成之透明導電層極為平整均勻; 圖4是一流程圖,說明本發明發光二極體製程的一第 二較佳實施例; 20 圖5是一剖視示意圖,說明以本發明發光二極體製程 的第二較佳實施例所製造之發光二極體的構造;及 圖6是一曲線圖,說明以本發明發光二極體製程所製 造之發光二極體的工作電壓與阻抗電流的關係。 12 25 1229949 【圖式之主要元件代表符號說明】 1 發光二極體 142 ρ型歐姆電極 11 基材 21 步驟 12 、 12, 蠢晶層早元 22 步驟 121 η型披覆層 23 步驟 122 活性發光層 24 步驟 123 Ρ型披覆層 3 發光二極體 13 、 13, 透明導電層 31 散光保護層 14 電極單元 311 凹孑L 141 η型歐姆電極 13▲ (b) Under the -ion atmosphere ', a transparent conductive compound is used as a material to directly coat the p-type coating layer to form a transparent conductive layer. (0) forming a p-type electrode that is electrically connected to the transparent conductive layer, and forming a n-type electrode that is electrically connected to the n-type coating layer, and the p, n-type electrode can be externally charged Therefore, current can be diffused through the epitaxial layer unit through the transparent conductive layer, so that the epitaxial layer unit generates photons. In addition, a light emitting diode of the present invention includes a substrate, an epitaxial layer 7G, A transparent conductive layer and an electrode unit. The stupid crystal layer unit is formed on the substrate, which can generate light by the photoelectric effect. The transparent conductive layer is formed on the crystalline layer unit. Under the ionic atmosphere, it is formed directly from the epitaxial layer unit, and the current can be uniformly diffused to the epitaxial layer unit in a low impedance state. The electrode unit can apply a voltage to the epitaxial layer unit and the epitaxial layer unit, respectively. The transparent conductive layer is electrically connected, and when a voltage is applied, the current is uniformly diffused to the epitaxial layer unit in a low impedance state by the transparent conductive layer, and then photons are generated by the photoelectric effect. The effect of the present invention is to simplify production The process atmosphere is controlled to directly generate a transparent conductive layer with a mismatched success function on the epitaxial layer unit to produce a light-emitting diode with brighter brightness at the same operating voltage. [Embodiment] The foregoing and related aspects of the present invention Other technical contents, features and effects will be clearly understood in the following detailed description with reference to the second preferred embodiment of the drawing. Referring to FIG. 2, a first preferred embodiment of the light emitting diode system of the present invention It is possible to manufacture a gallium nitride series light emitting diode i as shown in FIG. 1, but compared with the conventional light emitting diode 1 at the same operating voltage, the light emitting diode 1 completed by the present invention has Higher brightness and uniformity. First, in step 21, a coating layer 121, an active layer 122, and a p-type coating layer 123 are sequentially formed on the substrate U upward, so that the n-type coating layer 121 and the active layer 122 are sequentially formed. The epitaxial layer unit 12 is formed with the p-type cladding layer 123, and the epitaxial layer unit 12 can generate photons by the photoelectric effect. This step is similar to the conventional process of manufacturing light emitting diodes, which are mainly based on epitaxial growth. Such as sapphire, carbide, Materials such as rhetoric, glass, nitrides, nitrides, etc. are used as the base material, and a conductive gallium nitride compound is used as a material to form a nitride. 8 1229949 materials to form η, p-type coatings, indium nitride The gallium compound forms an active layer. Since the details of this step depend on the equipment used and the performance of the finished product, and are not the focus of the present invention, no more detailed examples are given here. Then step 22, In an ionic atmosphere mixed with 02, CF4, SF6, and 03, indium tin oxide is used as a material at a temperature of 25t to 70 (rC2 temperature, 2x10_6 to 1.8x10-3 Torr). Coating is performed below to directly form a transparent conductive layer 13 on the p-type cladding layer 123. This step is described by using the tin oxide (ιτ〇) 10 as a material to form the transparent conductive layer 13 as long as it is transparent and conductive. Oxides such as indium-rhenium oxide (IC0), indium oxide (αζ〇), and zinc-gallium oxide (GZQ) materials can be made of rhenium, and the reading film forms a transparent conductive layer. 15 Take Jun and proceed to step 23, first remove the transparent conductive layer 13, the p-type cladding, and the-side of the I * green layer 122, so that the n-type cladding layer is exposed in sub-regions, and then transparently guided. 13 A p-type ohmic electrode 14 ′ is formed thereon, and an n-type ohmic electrical phase 141 ′ is formed in a partially exposed region of the n-type cladding layer 121 to complete the preparation of the light-emitting diode i as shown in FIG. 20.… ≫ See FIG. 1 The structure of the light-emitting diode manufactured by the above process is the same as that of the conventional light-emitting diode ', so I won't go into details here.: See Figure 3' However, the light-emitting diode manufactured by the process of the present invention, Mingming The conductive f 13 directly overcomes the mismatch of the work function of the gallium nitride material, and is uniformly formed on the pudding layer 123, so that the current can be hooked to the worm crystal layer unit in the state of 1 ::. Diffusion, at the same working voltage, the luminescence of the light-emitting diode 9 1229949 manufactured according to the process of the present invention will be brighter than that of the light-emitting diode manufactured by the known process. 5 In order to make the prepared Light-emitting diodes 丨 higher brightness, after performing step 22 of the above process , The transparent conductive layer 13 formed on the film is inscribed in the direction of the worm crystal layer unit ㈣. The cross-sectional shape is a concave hole with a circular, triangular, pentagonal, hexagonal, or other arbitrary geometric shape, so as to make the transparent conductive I 13 The surface is roughened by forming a concave-convex surface of a geometric figure, so that the epitaxial layer unit 12 generates a multidirectional scattering at 10 o'clock, and makes the light-emitting diode 胄 i brighter when it emits light. Of course, this makes the transparent conductive layer 13 The process of roughening the surface to increase the luminous brightness can also be performed after the n and p-type ohmic electrodes i4i and 142 are manufactured in step 23. Because the purpose of this process is only to roughen the surface of the transparent conductive layer η and cause light to pass through. The divergence of the multi-directionality further improves the H light emission brightness ', so this process and the shape and characteristics of the 15 recessed holes formed for the purpose of roughening will not be described in detail here. Refer to FIG. 4' The process of the light-emitting diode system of the present invention— The second comparison is that a GaN series light-emitting diode 3 can be manufactured as shown in FIG. 5. See FIG. 5 ′ The light-emitting diode 3 is similar to the light-emitting diode i shown in the figure [1], and the difference is only in The light-emitting diode 3 20 completed in the process of this example further includes a astigmatism protective layer 31 formed on the transparent conductive layer 13, and the astigmatism protective layer 31 {is formed of a nitride stone or a phenol dioxide, and has a plurality of The self-astigmatism protective layer 3 " concave holes 3U recessed downward on the surface of the transparent conductive layer 13, each cross-section of the concave hole is a circular, triangular, pentagonal, hexagonal or even other arbitrary geometrical concave Holes, so that the ray crystal layer unit 10 1229949 12, passes through the transparent conductive layer i3, and then passes through the astigmatism protective layer > f can make the light emitting diode 3 bright by scattering through the plurality of concave holes 311 5 10 With reference to FIG. 4, a second preferred embodiment of the light-emitting diode system of the present invention is used to fabricate a light-emitting diode 3R temple as shown in FIG. 5, which is the same as the light-emitting diode of the present invention shown in FIG. 2. The process of the first preferred embodiment of the system process is similar, except that the process of this example is that after step 21, step M, and step 23 are sequentially performed, the process is further performed—㈣24, and nitrogen cutting dioxin is selected. And other light-transmitting compounds The conductive layer 13 ′ is opposite to the worm crystal layer. The surface of the unit is formed with a loose money protective layer 31, which is then engraved to scatter. The protective layer 31 has a plurality of concave holes 311, which can cause light scattering when passing through. 'And the preparation of the light-emitting diode 3 shown in FIG. 5 is completed. 15 20 In summary, the light emitting diode system of the present invention, the main # is an ionic atmosphere mixed with 02, eh, SF6, 0 ;, with a transparent conductive oxide such as indium tin oxide, indium hafnium Oxides, crystalline oxides, and crystalline oxides are used as materials, and in combination with the process temperature and M force, a lattice and a gallium nitride material work function are directly formed on the p-type cladding layer 123 formed of the gallium nitride material. Highly robust: Transparent conductive layers 13 and 13, and this key step is not limited to the manufacture of light-emitting diodes, and transparent and conductive compounds such as indium tin oxide, gadolinium are plated on the gallium nitride material. All oxides, aluminum oxides, and zinc gallium oxides can be used as materials, and a flat and uniform transparent conductive layer can be directly formed as shown in the photo of Fig. 3. Furthermore, referring to the experimental results shown in FIG. 6, forming a flat and uniform transparent conductive layer in this way can keep the working voltage below 3_5v 2 11 1229949 at the operating current of 20mA commonly used in the industry, that is, using this The light-emitting diode completed by the invention process can evenly diffuse the current under a low impedance state, so that the light-emitting diode made is brighter under the same working voltage. In summary, the light-emitting diode system of the present invention provides a simplified manufacturing process, and can produce light with higher brightness and uniform light emission at the same operating voltage with fewer manufacturing steps and lower manufacturing costs. Diodes indeed achieve the creative purpose of the present invention. However, the above are only the preferred embodiments of the present invention. When the scope of implementation of the present invention cannot be limited by this, that is, the simple equivalent changes and modifications made in accordance with the patent application 10 of the present invention and the contents of the invention specification , All should still fall within the scope of the invention patent. [Brief description of the formula] FIG. 1 is a schematic cross-sectional view illustrating the structure of a light-emitting diode; FIG. 2 is a flowchart illustrating a fifteenth and preferred embodiment of the light-emitting diode system of the present invention; FIG. 3 It is a SEM photograph illustrating that the transparent conductive layer formed by the light emitting diode system of the present invention is extremely flat and uniform; FIG. 4 is a flowchart illustrating a second preferred embodiment of the light emitting diode system of the present invention; FIG. 5 is a schematic cross-sectional view illustrating the structure of a light-emitting diode manufactured by the second preferred embodiment of the light-emitting diode system of the present invention; and FIG. 6 is a graph illustrating the process of the light-emitting diode system of the present invention The relationship between the working voltage and the impedance current of the manufactured light emitting diode. 12 25 1229949 [Description of the main symbols of the diagram] 1 Light-emitting diode 142 ρ-type ohmic electrode 11 Substrate 21 Steps 12 and 12, Stupid crystal layer early element 22 Step 121 n-type coating 23 Step 122 Active luminescence Layer 24 Step 123 P-type cladding layer 3 Light emitting diodes 13 and 13, Transparent conductive layer 31 Astigmatism protective layer 14 Electrode unit 311 Concave L 141 η-type ohmic electrode 13

Claims (1)

1229949 拾、申請專利範圍: 用於製造一發光二極體 該製程包 i一種發光二極體製程 括: 及^於-基材上向上形成—η型披覆層、—活性層, 覆心披!層,使該"披覆層、活性層與Ρ型彼 產二:…層單元,該蟲晶層單元可以光電效應 型披Ζ孔乳下’以—透明導電化合物為材料在該Ρ 旻曰上直接鍍膜形成一透明導電層;及 C ::成—與該透明導電層電性連接之Ρ型毁姆電極,及 f成—與該η型披覆層電性連接之η型殿姆電極,且 =Ρ、η型殴姆電極可外加電壓而使電流可經由該透明 、,電層擴散通過該磊晶層單元,使該磊晶層單元產生 光子。 康申.月專利I巳圍帛i項所述發光二極體製程,其中,該 步驟(a)所制之基材是選自於由下列所構成之群組中的 物所構成·藍寶石、碳化石夕、氧化辞、玻璃、氮化鎵、氮 化銘,及此等之組合。 3.根據申請專利範圍帛丨項所述發光二極體製程,其中,該 v驟(a)疋選用氮化鎵為材料形成該n、p型披覆層,且 選用氮化銦鎵為材料形成該活性層。 4·根據申請專利範圍第丨項所述發光二極體製程,其十,該 步驟(b )所使用之離子氣氛是選自於由下列所構成之群組 中的物所構成:02、CF4、SF6、〇3,及此等之組合。 14 1229949 於該磊晶層單元的表面向上形成一散光保護層,使光線通 過该散光保護層時產生散射,而使該發光二極體亮度提昇 0 12.根據申請專利範圍第u項所述發光二極體製程,其中,該 步驟(f)更包含一次步驟(fl ),是將該散光保護層蝕刻 出複數當光線通過時產生散射之凹孔。 13·根據申請專利範圍第12項所述發光二極體製程,其中,該 每一凹孔之截面是呈圓形、五角形、六角形,及/或其他幾 何圖形。 14·根據申請專利範圍第u項所述具有銦錫氧化物層之發光二 極體的製程,其中,該可透光材料是選自於由下列所構成 之群組中的物所構成:氮化矽、二氧化矽,及此等之組合 〇 15. —種發光二極體,包含: 一基材; 一形成在該基材上的磊晶層單元,可以光電效應產生 光子; 一形成在該磊晶層單元上的透明導電層,是在一包含 預定氣體離子之離子氣氛下,直接自該磊晶層單元向上形 成,而可在低阻抗之狀態下使電流均勻向該磊晶層單元擴 散;及 ' 一可施加電壓之電極單元,分別與該磊晶層單元與該 透明導電層電性連接,且當施加電M時是藉該透明導電層 使電流在低阻抗之狀態下均勻擴散至磊晶層單元,進而以 16 1229949 光電效應產生光子。 16_根據申請專利範圍第15項所述發光二極體,其中,該基材 疋選自於由下列所構成之群組中的物所構成:藍寶石、碳 化矽、氧化鋅、玻璃、氮化鎵、氮化鋁,及此等之組合。 17.根據申請專利範圍第15項所述發光二極體,其中,該磊晶 層單兀包含一與該基材連結之η型披覆層、一 p型彼覆層 ,及一形成在該η、Ρ型披覆層之間的活性層,且該電極單 元包έ 一與该η型披覆層電性連結之η型毆姆電極,及一 與该Ρ型披覆層電性連結之ρ型殿姆電極。 18·根據申請專利範圍第丨7項所述發光二極體,其中,該η、 Ρ型披覆層是以氮化鎵為材料形成,且該活性層是以氮化 銦鎵為材料形成。 19·根據申請專利範圍第15項所述發光二極體,其中,該透明 導電層是選自於由下列所構成之群組中的物所構成··銦錫 氧化物、銦鈽氧化物、辞鋁氧化物、鋅鎵氧化物,及此等 之組合。 20.根據申請專利範圍第15項所述發光二極體,其中,該透明 導電層具有複數自一相反於該磊晶層單元之表面向該磊晶 層單元方向凹陷形成的凹孔,該複數凹孔使當光線通過時 產生散射’而使該發光二極體亮度提昇。 21·根據申請專利範圍第2〇項所述發光二極體,其中,該每一 凹孔之截面是呈圓形、五角形、六角形,及/或其他幾何圖 形。 22.根據申請專利範圍第1 5項所述發光二極體,更包含一形成 17 1229949 在該透明導電層上的散光保護層,是可透光且當光線通過 時產生散射,而使該發光二極體亮度提昇。 23·根據申請專利範圍第22項所述發光二極體,其中,該散光 保護層具有複數自相反於該透明導電層之表面向下凹陷的 凹孔,該複數凹孔使當光線通過時產生散射,而使該發光 一極體免度提昇。 24·根據申請專利範圍第23項所述發光二極體,其中,複數每 一凹孔之截面是呈圓形、五角形、六角形,及/或其他幾何 圖形。 25·根據申請專利範圍第22項所述發光二極體,其中,該散光 保護層是選自於由下列所構成之群組中的物所構成:氮化 矽、二氧化矽,及此等之組合。 26_ —種透明導電層的製程,是在一以氮化鎵為材料形成的披 覆層上形成一透明導電層,使當外加電壓時藉該透明導電 層使電流均勻擴散至該披覆層,該製程包含: 在一包含預定氣體離子之離子氣氛下,以一透明且可 導電之化合物為材料直接自該披覆層向上鍍膜形成該透明 導電層。 27.根據申請專利範圍第%項所述透明導電層的製程,其中, 錢明且可導電之化合物是選自於由下列所構成之群組中 的物所構成:銦錫氧化物、銦鈽氧化物、鋅鋁氧化物、鋅 鎵氧化物,及此等之組合。 28·根據申請專利範圍第%項所述透明導電層的製程,其中, 該離子氣氛是選自於由下列所構成之群組中的物所構成: 18 1229949 〇2、CF4、SF6、03,及此等之組合。 29.根據申請專利範圍第26項所述透明導電層的製程,其中, 該製程是在25°C〜700°C之溫度,2xl0_6〜1.8xlO_3Torr的條 件下進行。 191229949 Scope of patent application: It is used to manufacture a light-emitting diode. The manufacturing process includes a light-emitting diode. The process includes: and-forming on the substrate-an n-type coating layer, an active layer, and a covering layer. !! Layer, so that the "coating layer, the active layer and the P-type are two: ... layer units, the worm-crystal layer unit can be under the effect of photoelectric effect-type pores with a transparent conductive compound as the material in the P A direct conductive coating is formed on the transparent conductive layer to form a transparent conductive layer; and C :: a P-type lamella electrode electrically connected to the transparent conductive layer, and f: a η-type lamella electrode electrically connected to the η-type coating layer In addition, a voltage can be applied to the P and η-type electrodes, so that the current can diffuse through the epitaxial layer unit through the transparent, electric layer, so that the epitaxial layer unit generates photons. The light-emitting diode system described in Kang Shenyue's patents I, W, and I, wherein the substrate produced in step (a) is made of a substance selected from the group consisting of: sapphire, Carbide, oxide, glass, gallium nitride, nitride nitride, and combinations thereof. 3. According to the light-emitting diode system described in item (1) of the patent application scope, wherein the step (a) (i) uses gallium nitride as a material to form the n, p-type coating layer, and uses indium gallium nitride as a material This active layer is formed. 4. According to the light-emitting diode system described in item 丨 of the scope of the patent application, tenth, the ionic atmosphere used in step (b) is composed of objects selected from the group consisting of: 02, CF4 , SF6, 03, and combinations of these. 14 1229949 An astigmatism protective layer is formed upward on the surface of the epitaxial layer unit, so that light will be scattered when passing through the astigmatism protective layer, thereby increasing the brightness of the light emitting diode. The bipolar system process, wherein step (f) further includes a step (fl), which is to etch the astigmatism protective layer into a plurality of recessed holes that cause scattering when light passes through. 13. The light emitting diode system according to item 12 of the scope of the patent application, wherein the cross section of each recessed hole is circular, pentagonal, hexagonal, and / or other geometrical figure. 14. The process for producing a light-emitting diode with an indium tin oxide layer according to item u of the scope of the patent application, wherein the light-transmissive material is composed of a substance selected from the group consisting of: nitrogen Silicon dioxide, silicon dioxide, and combinations thereof 15. A light-emitting diode comprising: a substrate; an epitaxial layer unit formed on the substrate, which can generate photons by the photoelectric effect; The transparent conductive layer on the epitaxial layer unit is formed directly from the epitaxial layer unit in an ionic atmosphere containing a predetermined gas ion, and the current can be uniformly applied to the epitaxial layer unit in a low impedance state. Diffusion; and an electrode unit capable of applying a voltage, which is electrically connected to the epitaxial layer unit and the transparent conductive layer, respectively, and when the electricity M is applied, the current is uniformly diffused in a low impedance state by the transparent conductive layer. To the epitaxial layer unit, which in turn generates photons with the photoelectric effect of 16 1229949. 16_ The light-emitting diode according to item 15 of the scope of the patent application, wherein the base material is selected from the group consisting of: sapphire, silicon carbide, zinc oxide, glass, nitride Gallium, aluminum nitride, and combinations thereof. 17. The light-emitting diode according to item 15 of the scope of the patent application, wherein the epitaxial layer unit includes an n-type coating layer connected to the substrate, a p-type coating layer, and a layer formed on the substrate. an active layer between η and P-type coatings, and the electrode unit includes an η-type electrode electrically connected to the η-type coating, and an electrode connected electrically to the P-type coating ρ-type temple electrode. 18. The light-emitting diode according to item 7 of the scope of the patent application, wherein the η and P-type coating layers are formed of gallium nitride as the material, and the active layer is formed of indium gallium nitride as the material. 19. The light-emitting diode according to item 15 of the scope of the patent application, wherein the transparent conductive layer is made of a substance selected from the group consisting of indium tin oxide, indium hafnium oxide, Describe aluminum oxide, zinc gallium oxide, and combinations thereof. 20. The light-emitting diode according to item 15 of the scope of the patent application, wherein the transparent conductive layer has a plurality of recessed holes formed from a surface opposite to the epitaxial layer unit and recessed in a direction toward the epitaxial layer unit. The recessed holes cause scattering when light passes through, thereby increasing the brightness of the light emitting diode. 21. The light-emitting diode according to item 20 of the scope of the patent application, wherein the cross-section of each recessed hole is circular, pentagonal, hexagonal, and / or other geometrical shapes. 22. The light-emitting diode according to item 15 of the scope of the patent application, further comprising a protective layer of astigmatism forming 17 1229949 on the transparent conductive layer, which is light-transmitting and scatters when light passes through, thereby making the light-emitting Diode brightness increased. 23. The light-emitting diode according to item 22 of the scope of the patent application, wherein the astigmatism protective layer has a plurality of recessed holes recessed downward from the surface opposite to the transparent conductive layer, and the plurality of recessed holes generate when light passes through. Scattering, so that the light-emitting monopole is improved. 24. The light-emitting diode according to item 23 of the scope of the patent application, wherein the cross-section of each of the plurality of recessed holes is circular, pentagonal, hexagonal, and / or other geometrical figures. 25. The light-emitting diode according to item 22 of the scope of the patent application, wherein the astigmatism protective layer is selected from the group consisting of silicon nitride, silicon dioxide, and the like Of combination. 26_ — A process for forming a transparent conductive layer is to form a transparent conductive layer on a coating layer made of gallium nitride as a material, so that when a voltage is applied, a current is evenly diffused to the coating layer by the transparent conductive layer. The process includes: directly forming a transparent conductive layer by coating a transparent and conductive compound as a material under an ionic atmosphere containing a predetermined gas ion from the coating layer. 27. The manufacturing process of the transparent conductive layer according to item% of the scope of the patent application, wherein the Qian Ming and conductive compound is selected from the group consisting of indium tin oxide, indium hafnium Oxides, zinc aluminum oxide, zinc gallium oxide, and combinations thereof. 28. According to the process of the transparent conductive layer described in the item% of the scope of the patent application, wherein the ionic atmosphere is composed of objects selected from the group consisting of: 18 1229949 〇2, CF4, SF6, 03, And these combinations. 29. The manufacturing process of the transparent conductive layer according to item 26 of the scope of the patent application, wherein the manufacturing process is performed at a temperature of 25 ° C to 700 ° C and a condition of 2xl0_6 to 1.8xlO_3Torr. 19
TW93101393A 2004-01-19 2004-01-19 Manufacturing process and product of LED TWI229949B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93101393A TWI229949B (en) 2004-01-19 2004-01-19 Manufacturing process and product of LED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93101393A TWI229949B (en) 2004-01-19 2004-01-19 Manufacturing process and product of LED

Publications (2)

Publication Number Publication Date
TWI229949B true TWI229949B (en) 2005-03-21
TW200525776A TW200525776A (en) 2005-08-01

Family

ID=36083241

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93101393A TWI229949B (en) 2004-01-19 2004-01-19 Manufacturing process and product of LED

Country Status (1)

Country Link
TW (1) TWI229949B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI563681B (en) * 2012-03-30 2016-12-21 Advanced Optoelectronic Tech Led die and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI563681B (en) * 2012-03-30 2016-12-21 Advanced Optoelectronic Tech Led die and method for manufacturing the same

Also Published As

Publication number Publication date
TW200525776A (en) 2005-08-01

Similar Documents

Publication Publication Date Title
KR100966367B1 (en) Light emitting device and manufacturing method for the same
TWI557938B (en) Devices and light emitting diodes and methods of fabricating the same
US8314439B2 (en) Light emitting diode with nanostructures and method of making the same
CN102709420A (en) GaN-based LED
CN102709426A (en) Manufacture method of GaN (gallium nitride)-based LED (light emitting diode) chip with roughened surface
WO2012048506A1 (en) Light emitting diode and manufacturing method thereof
WO2012058961A1 (en) Light-emitting diode and method for manufacturing same
TWI505500B (en) Light emitting diode and method for manufacturing the same
CN103681997B (en) A kind of manufacture method of required color light-emitting diode chip for backlight unit
KR20060120947A (en) Manufacturing method of light emitting element and light emitting element manufactured by this method
TW201232824A (en) Transparent thin film, light emitting device comprising the same, and methods for preparing the same
CN108899399B (en) A kind of LED epitaxial slice and preparation method thereof
Zhang et al. Enhancement in the light output power of GaN-based light-emitting diodes with nanotextured indium tin oxide layer using self-assembled cesium chloride nanospheres
TWI229949B (en) Manufacturing process and product of LED
CN207909908U (en) Uv led
CN102255028B (en) Light-emitting diode with transparent electrode and preparation method
CN105280777A (en) LED chip and manufacturing method thereof
WO2012062017A1 (en) Led and manufacturing method thereof and luminescent device
CN105679907B (en) High brightness LED epitaxial wafer and preparation method thereof
TW201220530A (en) wherein the quantum cluster pillars for producing photons have substantially ordered distribution and similar sizes
CN102683521B (en) The manufacture method of light-emitting diode
TWI517440B (en) Semiconductor structure with low contact resistance and its manufacturing method
KR101286211B1 (en) Method of fabricating light emitting device and light emitting device fabricated by using the same
CN108598236A (en) A kind of LED epitaxial slice and preparation method thereof
CN104701428A (en) Epitaxial method for reducing voltage of LED (light emitting diode)

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent