TWI229700B - Amorphous soft magnetic alloy powder, and green compact core and radio wave absorber using the same - Google Patents
Amorphous soft magnetic alloy powder, and green compact core and radio wave absorber using the same Download PDFInfo
- Publication number
- TWI229700B TWI229700B TW092122125A TW92122125A TWI229700B TW I229700 B TWI229700 B TW I229700B TW 092122125 A TW092122125 A TW 092122125A TW 92122125 A TW92122125 A TW 92122125A TW I229700 B TWI229700 B TW I229700B
- Authority
- TW
- Taiwan
- Prior art keywords
- powder
- soft magnetic
- magnetic alloy
- alloy powder
- atomic
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 755
- 229910001004 magnetic alloy Inorganic materials 0.000 title claims abstract description 370
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 61
- 239000000203 mixture Substances 0.000 claims abstract description 117
- 239000002245 particle Substances 0.000 claims abstract description 80
- 238000000034 method Methods 0.000 claims abstract description 72
- 239000000314 lubricant Substances 0.000 claims abstract description 20
- 239000013526 supercooled liquid Substances 0.000 claims abstract description 18
- 229910052796 boron Inorganic materials 0.000 claims abstract description 17
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 14
- 238000002156 mixing Methods 0.000 claims abstract description 13
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 230000005291 magnetic effect Effects 0.000 claims description 155
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 101
- 239000007921 spray Substances 0.000 claims description 78
- 239000011810 insulating material Substances 0.000 claims description 45
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 43
- 239000001301 oxygen Substances 0.000 claims description 43
- 229910052760 oxygen Inorganic materials 0.000 claims description 43
- 229910052804 chromium Inorganic materials 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 18
- 229910052750 molybdenum Inorganic materials 0.000 claims description 13
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 6
- 239000000696 magnetic material Substances 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 239000002689 soil Substances 0.000 claims description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical group [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 claims 1
- 240000002853 Nelumbo nucifera Species 0.000 claims 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 claims 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 claims 1
- 241000282376 Panthera tigris Species 0.000 claims 1
- 230000000149 penetrating effect Effects 0.000 claims 1
- 230000035515 penetration Effects 0.000 claims 1
- 230000005415 magnetization Effects 0.000 abstract description 32
- 238000009692 water atomization Methods 0.000 abstract description 3
- 239000012212 insulator Substances 0.000 abstract 2
- 229910045601 alloy Inorganic materials 0.000 description 127
- 239000000956 alloy Substances 0.000 description 127
- 230000035699 permeability Effects 0.000 description 74
- 238000004519 manufacturing process Methods 0.000 description 61
- 230000000052 comparative effect Effects 0.000 description 37
- 230000001976 improved effect Effects 0.000 description 32
- 238000010438 heat treatment Methods 0.000 description 26
- 238000005259 measurement Methods 0.000 description 24
- 125000004429 atom Chemical group 0.000 description 23
- 229920001971 elastomer Polymers 0.000 description 22
- 230000007423 decrease Effects 0.000 description 20
- 238000001816 cooling Methods 0.000 description 19
- 239000007788 liquid Substances 0.000 description 19
- -1 a1203 Inorganic materials 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 17
- 239000000155 melt Substances 0.000 description 17
- 238000002844 melting Methods 0.000 description 17
- 230000008018 melting Effects 0.000 description 17
- 239000011777 magnesium Substances 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002243 precursor Substances 0.000 description 15
- 229920005989 resin Polymers 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 14
- 229910052710 silicon Inorganic materials 0.000 description 14
- 230000007797 corrosion Effects 0.000 description 13
- 238000005260 corrosion Methods 0.000 description 13
- 239000000806 elastomer Substances 0.000 description 13
- 230000001629 suppression Effects 0.000 description 13
- 239000011261 inert gas Substances 0.000 description 12
- 238000009413 insulation Methods 0.000 description 12
- 230000009477 glass transition Effects 0.000 description 11
- 238000004080 punching Methods 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 239000002131 composite material Substances 0.000 description 10
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 9
- 238000002425 crystallisation Methods 0.000 description 9
- 230000008025 crystallization Effects 0.000 description 9
- 239000005060 rubber Substances 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 8
- 238000000748 compression moulding Methods 0.000 description 8
- 230000004907 flux Effects 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 8
- 239000003595 mist Substances 0.000 description 8
- 238000005507 spraying Methods 0.000 description 8
- 229910052720 vanadium Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 7
- 229920001296 polysiloxane Polymers 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- 229910052726 zirconium Inorganic materials 0.000 description 7
- 239000004709 Chlorinated polyethylene Substances 0.000 description 6
- 239000000428 dust Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 6
- 229920002050 silicone resin Polymers 0.000 description 6
- 229920002379 silicone rubber Polymers 0.000 description 6
- 239000004945 silicone rubber Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229910052715 tantalum Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000003431 cross linking reagent Substances 0.000 description 5
- 239000005300 metallic glass Substances 0.000 description 5
- 235000019353 potassium silicate Nutrition 0.000 description 5
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910017116 Fe—Mo Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 229910018125 Al-Si Inorganic materials 0.000 description 3
- 229910018520 Al—Si Inorganic materials 0.000 description 3
- 229910017112 Fe—C Inorganic materials 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- 229910008423 Si—B Inorganic materials 0.000 description 3
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 3
- 229940063655 aluminum stearate Drugs 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 229910000889 permalloy Inorganic materials 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 229910001096 P alloy Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005280 amorphization Methods 0.000 description 2
- 229910002056 binary alloy Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical class [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 238000002050 diffraction method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007496 glass forming Methods 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 241000238367 Mya arenaria Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- AGXUVMPSUKZYDT-UHFFFAOYSA-L barium(2+);octadecanoate Chemical compound [Ba+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O AGXUVMPSUKZYDT-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005292 diamagnetic effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000005288 electromagnetic effect Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000011361 granulated particle Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000075 oxide glass Substances 0.000 description 1
- 125000003544 oxime group Chemical group 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000009702 powder compression Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000646 scanning calorimetry Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/02—Amorphous alloys with iron as the major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
1229700 玖、發明說明: [發明所屬之技術領域】 本發明關㈣晶形軟磁性合金粉末、使用其之麼粉核心 及其電磁波吸收體,特別關於可藉由水霧化法製造的接近 球狀的非晶形軟磁性合金粉末、使用其之產粉核心和電磁 波吸收體。 【先前技術】 一直以來,已知由TM-A1_Ga— p— C_B— Si系等(ΤΜ 是Fe、Co、Ni等過渡金屬元素)組成而成的合金,係藉由對 合金溶融液進行驟冷,形成非晶形相,由彼等形成非晶形 軟磁性合金(例如參考專利文獻卜3)。特別言之,於該非晶 形軟磁性合金中,具有特定組成者已知有:在結晶^之^ 的溫度範ffi具有廣泛的過冷卻液體狀態,構成所謂的金屬 玻璃質合金(glassy alloy)。 此種金屬玻璃質合金具有優異的軟磁特性,與使用液體 驟冷法製造的非晶形軟磁性合金的薄帶相比,可形成厚得 多的整體狀厚板材。 但是,由於以往金屬玻璃係藉由例如為單輥法之液體驟 冷法等方法製造,因此需要合金本身具備相當程度之高 晶形形成能力。 ° 因此金屬玻璃的開發係以提高合金的非晶形形成能力為 主要目的,以能達成該目的之合金組成作為觀點來進行探 但是,能提高合金非晶形形成能力的組成,未必與能提 O:\86\86694.DOC -6- 1229700 高軟磁特性的合金組成一致,因此為提高高飽和磁化量和 軟磁特性,仍有進一步改良的餘地。 另外,以往的金屬玻璃由於使用價格高的Ga,無法提高 産量,因此需要能降低成本的組成。 而且,藉由單輥法等製造的金屬玻璃可得到厚度為2〇〇 微米左右的薄帶形態。將此種薄帶狀金屬玻璃用於變壓器 或扼流圈等的磁心時,舉例而言,係將薄帶粉碎成粉體, 在該粉體中混合樹脂等黏結材料,固化成形為預定的形 狀,藉此製造壓粉核心。 由此製得的粉體是藉由粉碎薄帶製造的,故含有大量薄 片狀的變形粉末,因此磁心的成形密度降低,難以確保粉 末相互間的絕緣,因此有時會使磁心本身的磁特性劣化。 另外’與本發明相關的其他先前技術的文獻另有專利文 獻5〜8 〇 專利文獻1 :特開平08 — 333660號公報 專利文獻2 ··特開平08 — 037107號公報 專利文獻3 :特開平09 — 256122號公報 專利文獻4 :專利2574174號公報 專利文獻5 :特開昭63 — 1 17406號公報 專利文獻6 :特開昭57 — 185957號公報 專利文獻7 :特開平06 — 158239號公報 專利文獻8 :特開平01 — 156452號公報 、,十對上述問靖,係提出— A1 一 y系合金和坡莫合金 -一末(例如參考專利文獻2)。此種軟磁性合金粉末的1229700 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a crystalline soft magnetic alloy powder, a powder core using the same, and an electromagnetic wave absorber, and particularly to a nearly spherical shape which can be manufactured by a water atomization method Amorphous soft magnetic alloy powder, its powder producing core and electromagnetic wave absorber. [Prior technology] It has been known that alloys composed of TM-A1_Ga-p-C_B-Si series (TM is a transition metal element such as Fe, Co, Ni, etc.) are quenched by quenching the alloy melt An amorphous phase is formed, and an amorphous soft magnetic alloy is formed by them (for example, refer to Patent Document 3). In particular, in this amorphous soft magnetic alloy, those having a specific composition are known to have a wide range of supercooled liquid states at a temperature range of crystalline ^ and constitute a so-called metallic glassy alloy. This metallic vitreous alloy has excellent soft magnetic properties, and can form a thicker monolithic sheet material that is thicker than an amorphous soft magnetic alloy ribbon produced by a liquid quenching method. However, since conventional metallic glass is produced by a method such as a liquid quench method such as a single roll method, the alloy itself is required to have a considerable degree of crystal form forming ability. ° Therefore, the development of metallic glass is based on the improvement of the amorphous forming ability of the alloy as the main purpose, and the alloy composition that can achieve this goal is taken as the point of view. However, the composition that can improve the amorphous forming ability of the alloy is not necessarily related to O: \ 86 \ 86694.DOC -6- 1229700 The alloy composition of high soft magnetic properties is consistent, so in order to improve the high saturation magnetization and soft magnetic properties, there is still room for further improvement. In addition, conventional metallic glass cannot use high-cost Ga to increase the yield. Therefore, a composition capable of reducing costs has been required. In addition, a metallic glass manufactured by a single roll method or the like can obtain a thin strip shape having a thickness of about 200 μm. When such a thin strip-shaped metallic glass is used in a magnetic core such as a transformer or a choke coil, for example, the thin strip is pulverized into a powder, and a bonding material such as a resin is mixed in the powder, and the powder is solidified into a predetermined shape. To make powder cores. The powder thus obtained is produced by pulverizing a thin strip, and therefore contains a large amount of flake-shaped deformed powder. Therefore, the forming density of the magnetic core is reduced, and it is difficult to ensure the insulation between the powders. Therefore, the magnetic characteristics of the magnetic core itself may sometimes be caused Deterioration. In addition, other prior art documents related to the present invention include Patent Documents 5 to 8. Patent Document 1: Japanese Patent Application Laid-Open No. 08-333660 Patent Document 2: Japanese Patent Application Laid-Open No. 08-037107 Patent Literature 3: Japanese Patent Application Laid-Open No. 09 — Patent Publication No. 256122 Patent Literature 4: Patent No. 2574174 Patent Literature 5: Japanese Patent Publication No. 63-1117406 Patent Literature 6: Japanese Patent Publication No. 57-185957 Patent Literature 7: Patent Publication No. 06-158239 8: Japanese Unexamined Patent Publication No. 01-156452, ten pairs of questions mentioned above are proposed—A1—y-based alloys and permalloy—one end (for example, refer to Patent Document 2). The soft magnetic alloy powder
O:\86\86694.DOC 1229700 製造方法使用以惰性氣體對合金熔融液喷霧並驟冷的氣體 喷霧法或者水喷霧法。 根據上述Fe—Al—Si系合金粉末和撾〇坡莫合金粉末,為 Fe — Al—Si系合金粉末的情況下,可得到比較低的核心損 失,但是飽和磁化量降低,直流重疊特性惡化;而“〇坡莫 合金之核c損失高’實際上仍有改進的餘地。因此為解決 此課題,期待藉由將Fe基非晶形合金粉末化,得到兼具高 良淨磁化里和低核心損失的壓粉核心,但是如上所述,粉 體的形狀未被最佳化,對於使用非晶形合金粉末的壓粉核 心,仍然得不至具有良好磁特性的粉末。 根據上述氣體噴霧法,雖可得到球狀、雜質少(含氧量少) 的非晶形軟磁性合金粉末,但是,為粉碎並冷卻合金溶融 液,須使用大量的高價惰性氣體,因此導致製造成本提高。 而且由於用惰性氣體粉碎合金溶融液,難以擴大製造裝 置又由於上述惰性氣體係由儲氣瓶供給,因此粉碎壓力 •此提q至2G MPa ’難以提高製造效率。因此藉由氣體喷 務法製造的球狀非晶形軟磁性合金粉末除增加成本之外, 還存在對篁産性不利的問題。 見=研種在大氣環境中進行的水喷霧法,以取代 v、務纟果使用水噴霧法,可使製造設備大型化, :在高壓下粉碎合金炫融液,故可提高產量,而且,通 贺霧法中,與使用惰性氣體的情況相比,其冷卻速 二二容易非晶化,但是使用水喷霧法得到的非晶形: 私末疋不定形的’無法得到球狀者。O: \ 86 \ 86694.DOC 1229700 The manufacturing method uses a gas spray method or a water spray method that sprays and melts an alloy melt with an inert gas. According to the above Fe-Al-Si-based alloy powder and Lao Permalloy powder, in the case of Fe-Al-Si-based alloy powder, a relatively low core loss can be obtained, but the saturation magnetization is reduced, and the DC overlap characteristics are deteriorated; And "the core c of Permalloy alloys has a high loss," in fact, there is still room for improvement. Therefore, in order to solve this problem, it is expected that by powdering Fe-based amorphous alloys, a combination of high net clean magnetization and low core loss will be obtained. The powder core, but as mentioned above, the shape of the powder is not optimized, and for powder cores using amorphous alloy powder, powders with good magnetic properties are still not obtained. According to the above-mentioned gas spray method, although it can be obtained Amorphous soft magnetic alloy powder with a spherical shape and few impurities (less oxygen content). However, in order to pulverize and cool the alloy melt, a large amount of expensive inert gas must be used, which results in increased manufacturing costs. Moreover, the alloy is pulverized with inert gas. Melting liquid, it is difficult to expand the manufacturing equipment. Because the above inert gas system is supplied from the gas cylinder, the crushing pressure is increased. Manufacturing efficiency. Therefore, in addition to increasing the cost, the spherical amorphous soft magnetic alloy powder produced by the gas spray method has a problem of detrimental productivity. See = Research on the water spray method in the atmospheric environment Using water spray method instead of v and fruit can make the manufacturing equipment large: crush the alloy melt under high pressure, so it can increase the output, and in the fogging method, it is in contrast to the case of using an inert gas. In comparison, its cooling rate is 22%, which is easy to be amorphized, but the amorphous shape obtained by the water spray method: 'unshaped' by the end.
O:\86\86694.DOC 1229700 而且,使用氣體喷霧法雖可製造Fe — Si—B系的球狀非曰 形合金粉末或者Co系的球狀非晶形合金粉末,但是使用= 卻速度快的一般水喷霧法,難以製造具有上述組成的球狀 非晶形合金粉末。 此種不定形非晶形合金粉末的表面凹凸多,因此成幵彡户 度低’與上述黏結材料混合固化成形時,非常 /曰, 、 〗又件粉 末間的絕緣,無法得到特性優異的壓粉核心。而且,者非 晶形合金粉末為不定形時,藉由阿特萊塔加工 〇次外日日形合 金粉末所得物與上述黏結材料一起固化成形為片狀,製造 電磁波吸收體之情況下,藉由阿特萊塔加工時,非晶形2 金粉末係被切細,因此難以控制粒徑,無法獲得 的電磁波吸收體。 ~ 又,藉由水噴霧法製造接近球狀的軟磁性合金粉末,例 T專利文獻4所記述者,藉由此種水噴霧法得到的合金粉末 是Fe-Ni—Cr_Si—B系者,而且,結晶相的夾雜率高,因 此另需用以進行非晶化的步驟,在該專利文獻4中,用介質 授拌輥粉碎此種合金並進行扁平化時,要進行非晶化,易 由上述輥混人雜質’導致特性劣化,且使步驟數目增多。 【發明内容】 、有鐘於上述情況,本發明之目的在於提供—種非晶形軟 磁ί·生口金粉末,其兼具高飽和磁化量和低核心損失,可藉 =噴霧法製造而接近球狀,並提供使用該非晶形軟錄 曰金粉末之壓粉核心以及電磁波吸收體。 本發明另提供-種非晶形軟磁性合金粉末,其中不加入O: \ 86 \ 86694.DOC 1229700 Moreover, although Fe—Si—B based spherical non-shaped alloy powder or Co based spherical amorphous alloy powder can be manufactured using the gas spray method, the use of = is fast. It is difficult to produce a spherical amorphous alloy powder having the above composition by a general water spray method. The surface of this amorphous amorphous alloy powder has many irregularities, so it has a low degree of mixing. When mixed with the above-mentioned bonding material, it is very difficult to obtain a compacted powder with excellent characteristics. core. In addition, when the amorphous alloy powder is in an amorphous shape, the product obtained by Atleta processing of the outer-Japanese alloy powder is cured and formed into a sheet shape together with the above-mentioned bonding material to produce an electromagnetic wave absorber. During Atleta processing, since the amorphous 2 gold powder is cut fine, it is difficult to control the particle size, and an electromagnetic wave absorber cannot be obtained. ~ Also, a soft magnetic alloy powder close to a spherical shape is produced by a water spray method. As described in Example T Patent Document 4, the alloy powder obtained by this water spray method is a Fe-Ni-Cr_Si-B series, and Since the inclusion ratio of the crystalline phase is high, an additional step for amorphization is required. In Patent Document 4, when the alloy is pulverized and flattened by a medium mixing roller, the amorphization is performed, which is easy to cause The above-mentioned roller is mixed with impurities', which causes deterioration of characteristics and increases the number of steps. [Summary of the Invention] In the above circumstances, the object of the present invention is to provide an amorphous soft magnetic gold powder, which has both high saturation magnetization and low core loss, and can be made into a spherical shape by the spray method. And provide the powder core and electromagnetic wave absorber using the amorphous soft recording gold powder. The present invention further provides an amorphous soft magnetic alloy powder, which is not added
O:\86\86694.DOC 1229700 咼價的Ga等,兼具高飽和磁化量和低核心損失,可藉由水 喷霧法製造而低成本、接近球狀,並提供使用該非晶形軟 磁性合金粉末之壓粉核心和電磁波吸收體。 為達至上述目的,本發明係使用以下構成。 本發明的非晶形軟磁性合金粉末是藉由水噴霧法形成大 致為球狀的粉末,其特徵在於,該粉末以Fe為主要成分, 至少含有P、C、B,由式△Tx=Tx—Tg (其中,Τχ是結晶 化開始溫度,Tg是玻璃轉移溫度。)表示的過冷卻液體的溫 度間隔ΔΤχ為20K以上的非晶形相構成。 上述構成的非晶形軟磁性合金粉末具有顯示磁性的以和 具有非晶形形成能力的Ρ、c、Β此半金屬元素,因此可構 成以非晶形相為主相,同時具有優異軟磁特性的非晶形軟 磁性合金粉末,而且,由於可藉由在大氣環境下進行的水 喷霧法製造,因此與使用惰性氣體的氣體喷霧法相比,合 金熔_液的/♦卻速度鬲,非晶化容易,可構成整個組織完 全疋非晶形相的非晶形軟磁性合金粉末。本發明的非晶形 軟磁性合金粉末即使沒有加入高價的〇&等元素,也能非晶 形化,因此可降低成本,進而能兼具高飽和磁化量和低核 心損失。 藉由水喷霧法能製造大致球狀的非晶形軟磁性合金粉 末,本發明的非晶形軟磁性合金粉末製造所使用的非晶形 軟磁性合金熔融液(熔融狀態的合金)使用與本發明非晶形 孝人磁性合金粉末相同組成或者大致相同組成的,因此含有 上述具有非sa形形成能力的元素,並且以便使過冷卻液體O: \ 86 \ 86694.DOC 1229700 High-priced Ga, etc., which has both high saturation magnetization and low core loss. It can be manufactured by water spray method at low cost and close to a spherical shape. The amorphous soft magnetic alloy is also provided. Powder core and electromagnetic wave absorber. To achieve the above object, the present invention uses the following constitutions. The amorphous soft magnetic alloy powder of the present invention is a roughly spherical powder formed by a water spray method, which is characterized in that the powder contains Fe as a main component and contains at least P, C, and B, and is expressed by the formula △ Tx = Tx— Tg (where Tx is the crystallization start temperature and Tg is the glass transition temperature.) The temperature interval ΔTχ of the supercooled liquid represented is an amorphous phase having a temperature of 20K or more. The amorphous soft magnetic alloy powder having the above structure has magnetic properties such as P, c, and B, which is a semi-metal element having an ability to form an amorphous shape. Therefore, the amorphous soft magnetic alloy powder can be composed of an amorphous phase as a main phase and an excellent soft magnetic property. Soft magnetic alloy powder, and because it can be produced by the water spraying method in the atmospheric environment, compared with the gas spraying method using an inert gas, the alloy melts at a slower speed and is easier to amorphize. Amorphous soft magnetic alloy powder that can form an amorphous phase in the entire structure. The amorphous soft magnetic alloy powder of the present invention can be amorphous even without adding high-priced elements such as O & therefore, the cost can be reduced, and both the high saturation magnetization and the low core loss can be achieved. A substantially spherical amorphous soft magnetic alloy powder can be produced by a water spray method, and an amorphous soft magnetic alloy molten liquid (an alloy in a molten state) used in the production of the amorphous soft magnetic alloy powder of the present invention is used in accordance with the present invention. The crystalline form of filial piety magnetic alloy powder has the same composition or approximately the same composition, and therefore contains the above-mentioned element having a non-sa shape forming ability, and in order to make the supercooled liquid
O:\86\86694.DOC 10- 1229700 的溫度間隔ΔΤχ大至20K以上,在大氣環境下向上述合金 熔融液(溶融狀態的合金)中從喷水喷嘴喷射高壓水來進行 粉碎、冷卻時,即使冷卻速度多少有些遲緩,也具有大的 過冷卻液體區域,不發生結晶化,伴隨著溫度降低,直至 玻璃轉移溫度Tg都容易形成非晶形相,而且,藉由使冷卻 合金熔融液時的冷卻速度為對合金熔融液產生足夠表面張 力的程度,可得到大致球狀的非晶形軟磁性合金粉末。上 述合金熔融液的冷卻速度藉由控制水的噴水麼力、嘴射流 量(熔融液喷嘴的内徑)、合金熔融液流量等來改變。而且, 在製造本發明的大致球狀的非晶形軟磁性合金粉末時,除 合金熔融液的冷卻速度之外,還可控制喷水喷嘴的狹縫寬 度、喷水喷嘴的傾斜角度、水喷射角、合金熔融液的溫度 和黏度、喷霧點(粉化點距離)等。 上述構成的非晶形軟磁性合金粉末可藉由水喷霧法製 造’因此可使製造裝置大型化,並且,可將合金熔融液在 南壓水下粉碎,可提高産量性,而且,不使用高價惰性氣 體就可完成,因此可降低製造成本。 上述構成的非晶形軟磁性合金粉末可藉由水噴霧法形成 接近球狀的形狀,因此體積密度高,表面凹凸少,在為提 高成形密度,製造壓粉核心等,混合樹脂等絕緣材料進行 固化成形時,可保證粉末之間的絕緣,因此可用作壓粉核 心製造使用的軟磁性合金粉末。 上述構成的非晶形軟磁性合金粉末具有接近球狀的形 狀,因此為製造電磁波吸收體,在藉由阿特萊塔對該非曰 O:\86\86694.DOC -11 - 1229700 形軟磁性合金粉末進行加工時,可得到形狀一致的扁平化 粒子,而且,粒徑容易控制,可用作電磁波吸收體製造用 的軟磁性合金粉末。 對於本發明的非晶形軟磁性合金粉末,較佳上述大致球 狀的粉末含有 Cr、Mo、W、V、Nb、Ta、Ti、Zr、H.f、pt、O: \ 86 \ 86694.DOC 10-1229700 The temperature interval ΔΤχ is as high as 20K or more. When the high-pressure water is sprayed from the water spray nozzle to the above molten alloy (melted alloy) in the atmospheric environment for pulverization and cooling, Even if the cooling rate is somewhat slow, there is a large supercooled liquid region, which does not crystallize. With the temperature decrease, it is easy to form an amorphous phase up to the glass transition temperature Tg. Furthermore, by cooling the molten alloy when cooling The speed is such that a sufficient surface tension is generated in the molten alloy, and an approximately spherical amorphous soft magnetic alloy powder can be obtained. The cooling rate of the above-mentioned alloy melt is changed by controlling the water jet force, the nozzle jet flow (the inner diameter of the melt nozzle), the alloy melt flow rate, and the like. In addition, when manufacturing the substantially spherical amorphous soft magnetic alloy powder of the present invention, in addition to the cooling rate of the alloy melt, the slit width of the water spray nozzle, the inclination angle of the water spray nozzle, and the water spray angle can be controlled. , Temperature and viscosity of alloy melt, spray point (distance of powder point), etc. The amorphous soft magnetic alloy powder having the above-mentioned structure can be produced by the water spray method. Therefore, the manufacturing apparatus can be enlarged, and the alloy melt can be crushed under the south pressure water, which can improve the productivity, and it does not use high prices. Inert gas can be completed, so manufacturing costs can be reduced. The amorphous soft magnetic alloy powder having the above structure can be formed into a nearly spherical shape by a water spray method. Therefore, the bulk density is high, and the surface is less uneven. In order to increase the molding density, a powder core is manufactured, and an insulating material such as a resin is mixed and cured. When forming, it can ensure the insulation between the powders, so it can be used as a soft magnetic alloy powder used in the manufacture of powder cores. The amorphous soft magnetic alloy powder having the above configuration has a nearly spherical shape. Therefore, in order to manufacture an electromagnetic wave absorber, Atleta's O: \ 86 \ 86694.DOC -11-1229700 soft magnetic alloy powder is used. During processing, flat particles having a uniform shape can be obtained, and the particle diameter can be easily controlled, and can be used as a soft magnetic alloy powder for manufacturing an electromagnetic wave absorber. For the amorphous soft magnetic alloy powder of the present invention, it is preferable that the above-mentioned substantially spherical powder contains Cr, Mo, W, V, Nb, Ta, Ti, Zr, H.f, pt,
Pd、Au中的一種或者兩種以上的元素。 藉由加入Cr、Mo、W、v、Nb、Ta、丁卜△、Hf中的一 種或者兩種以上的元素,可在非晶形軟磁性合金粉末表面 上形成不動態化氧化覆膜,具有提高耐腐蝕性的作用。One or more elements of Pd and Au. By adding one or more elements of Cr, Mo, W, v, Nb, Ta, Dingbu △, Hf, a non-dynamic oxide film can be formed on the surface of the amorphous soft magnetic alloy powder, which has improved Effect of corrosion resistance.
Pt、Pd、Au是貴金屬元素,因此藉由加入pt、pd或者心, 可將此等貴金屬it素分散在非晶形軟磁性合金粉末表面, 具有提高耐腐姓性的作用。 另外,在本發明的非晶形軟磁性合金粉末中,較佳上述 大致球狀粉末的長寬比平均為1以上,3以下。 如果上述大致球狀粉末的平均長寬比超過3,不定形的非 晶形軟磁性合金粉末增多,成形密度難以提高,而且,使 用非晶形軟磁性合金粉末製造壓粉核心等成形體時,難以 獲得粉末的絕緣。 在本發明的非晶形軟磁性合金粉末中,上述大致球狀粉 末較佳平均粒徑(1>5〇)在45微米以下。此處所謂的平均粒= (Dso)是累積50原子%粒徑(中間粒徑)。 上述大致球狀粉末的Dm超過45微米時,粉末顆粒内發生 過電流,核心損失增加,而如果粒徑大於45微米,粉末形 狀緩慢進行異形狀化,難以獲得接近球狀的粉末。1 'Pt, Pd, and Au are precious metal elements. Therefore, by adding pt, pd, or heart, this precious metal it can be dispersed on the surface of the amorphous soft magnetic alloy powder, which has the effect of improving the corrosion resistance. In the amorphous soft magnetic alloy powder of the present invention, it is preferable that the aspect ratio of the substantially spherical powder is 1 or more and 3 or less on average. If the average aspect ratio of the above-mentioned substantially spherical powder exceeds 3, the number of amorphous soft magnetic alloy powders increases, and it is difficult to increase the forming density. Furthermore, when amorphous soft magnetic alloy powders are used to produce compacts such as powder cores, it is difficult to obtain Powder insulation. In the amorphous soft magnetic alloy powder of the present invention, it is preferable that the above-mentioned substantially spherical powder has an average particle diameter (1 > 50) of 45 m or less. Here, the average particle size = (Dso) is a cumulative 50 atomic% particle size (intermediate particle size). When the Dm of the above-mentioned substantially spherical powder exceeds 45 micrometers, an overcurrent occurs in the powder particles and the core loss increases. If the particle diameter is larger than 45 micrometers, the powder shape is slowly deformed, and it is difficult to obtain a powder close to a spherical shape. 1 '
O:\86\86694.DOC -12- 1229700 上述大致球狀粉末的Dm可藉由控制使用水喷霧法製造 本發明的非晶形軟磁性合金粉末時的水噴射壓力等製造條 件來控制。 ' 另外,對於本發明的非晶形軟磁性合金粉末,上述大致 球狀粉末的振實密度為3.7Mg/m3以上時,❹該非晶形軟 磁性合金粉末製造的壓粉核心(磁心)的透磁率、直流重疊特 性提N ’成开)體的強度也提冑,在此方面而言是較佳的。 此處的振實密度是根據日本粉末冶金工業t團體規格 JPMAP08 - 1992金屬粉的振實密度試驗方法(1992年4年3 月發行)測定,振實密度越大,越接近球狀。 上述大致球狀粉末的振實密度未達3.7Mg/m3時,使用非 晶形軟磁性合金粉末製造的成形體的密度降低。 、生上述大致球狀粉末的振實密度藉由控制使用水喷霧法製 造本發明非晶形軟磁性合金粉末時的水噴射角等製造條件 來控制。特別是非晶形軟磁性合金粉末的振實密度容易受 至水噴射角Θ的影響,水喷射角越小,振實密度越大。並 中’如果水噴射角變得過小’炫融液的粉碎能力降低,得 到的非晶形合金粉末的粒徑增大,進而,冷卻能力降低, 産率降低。 在本發明的非晶形軟磁性合金粉末中,上述大致球㈣ ^佳讀度在雇ppm以下。在藉由水噴霧法製造非曰E 性合金粉末時,對具有與要製造的非晶形軟磁性^ 金二具有相同組成或者大致相同組成的非晶形軟磁性^ ” W的射高壓水’粉碎’冷卻,形成大致球狀粉末.O: \ 86 \ 86694.DOC -12- 1229700 The Dm of the above-mentioned substantially spherical powder can be controlled by controlling the manufacturing conditions such as the water spray pressure when the amorphous soft magnetic alloy powder of the present invention is manufactured using the water spray method. 'In addition, regarding the amorphous soft magnetic alloy powder of the present invention, when the tapped density of the above-mentioned substantially spherical powder is 3.7 Mg / m3 or more, The DC superposition characteristic improves the strength of the body, which is also preferable in this respect. The tap density here is measured in accordance with the Japanese powder metallurgy industry t group specification JPMAP08-1992 test method for tap density of metal powder (issued in April 1992). The larger the tap density, the closer it is to a spherical shape. When the tapped density of the above-mentioned substantially spherical powder is less than 3.7 Mg / m3, the density of a molded body produced using an amorphous soft magnetic alloy powder decreases. The tap density of the above-mentioned substantially spherical powder is controlled by controlling production conditions such as a water spray angle when the amorphous soft magnetic alloy powder of the present invention is produced by a water spray method. In particular, the tap density of the amorphous soft magnetic alloy powder is easily affected by the water spray angle Θ. The smaller the water spray angle, the larger the tap density. If the water spray angle becomes too small, the pulverizing ability of the melt is reduced, and the particle size of the obtained amorphous alloy powder is increased. Further, the cooling ability is reduced and the yield is reduced. In the amorphous soft magnetic alloy powder according to the present invention, the above-mentioned substantially spherical readability is not more than ppm. When manufacturing non-E-type alloy powder by water spray method, the high-pressure water injection 'pulverization' of the amorphous soft magnetic material having the same composition or substantially the same composition as the amorphous soft magnetic material ^ Jinji ^ "W" Cool to form a roughly spherical powder.
O:\86\86694.DOC -13- Ϊ229700 然後’將其乾燥,由於此等步驟在大氣環境中進行,因此 與藉由氣體噴霧法製造時相比,非晶形軟磁性合金粉末中 4易混入氧,特別是在乾燥步驟容易混入氧。 上述大致球狀粉末的氧濃度超過3〇〇〇 ppm時,氧濃度變 件過高,粉末表面容易産生銹,非晶形軟磁性合金粉末的 磁特性降低,而使用此種非晶形軟磁性合金粉末製造的磁 心損失增大,透磁率降低。 另外’對於本發明的非晶形軟磁性合金粉末,上述大致 球狀粉末較佳比表面積在〇·3〇 m2/g以下。此處所說的比表 面積是指藉由BET法測定的。BET法是在液體氮的溫度下在 粉體粒子表面上吸附具有吸附佔有面積的分子,從其量求 出樣品比表面積的方法,最好使用藉由惰性氣體的低溫低 濕物理吸附的bet法。 隨著上述大致球狀粉末的比表面積增高,粉末形狀上的 凹凸4夕,並且氧丨辰度增大,因此使比表面積的上限為〇. 3 〇 m2/g,藉此得到不易産生銹的大致球狀的非晶形軟磁性合 金私末。如果上述大致球狀粉末的比表面積高,難以獲得 粉末之間的絕緣,而且,使用該非晶形軟磁性合金粉末製 造的磁心的成形密度降低。而且,上述非晶形軟磁性合金 粉末的比表面積在0.30 m2/g以下,使用軟磁性合金粉末製 造的磁心的透過率和直流重疊特性可提高。 對於本發明的非晶形軟磁性合金粉末,上述大致球狀粉 末的平均粒徑(D^)大於4微米,並且在45微米以下,振實密 度在3 · 7 Mg/m以上’比表面積在〇·3 m2/g以下,氧濃产在 O:\86\86694.DOC -14 - 1229700 3000 ppm以下。 此種構成的非晶形軟磁性合金粉末,可使在頻率100 kHz、磁束密度〇1T條件下測定時的核心損失(w)在 kW/m3以下’而且,能使直至頻率1MHz的複合透磁率的實 數邛#基本上固定在57〜80,使直流偏壓磁界5500 ΑπΓ 1 守的直/”L重$特性(# ,DC55⑽)基本固定在川〜34」,因此在 用作磁心時容易使用。 另外,對於本發明的非晶形軟磁性合金粉末,較佳上述 大致球狀杨末的平均粒徑大於4微米,並且在16微米以 下,振實密度在4.〇Mg/mk上,比表面積在〇.23m2/g以下, 氣》辰度在2000 ppm以下。 此種構成的非晶形軟磁性合金粉末,可使在頻率ι〇〇 kHz、/兹束密度〇·1τ條件下測定時的核心損失(w)在25〇 kW/m以下,而且,能使直至頻率1 ΜΗζ的複合透磁率的實 ,部//’基本上固定在57〜75,使直流偏壓磁界5卿細」 了的直机重噎特性’Demo)基本固定在3〇〜%,因此在用 作磁心時具有良好的特性。 本發明的非晶形軟磁性合金粉末較佳是下式表示的。O: \ 86 \ 86694.DOC -13- Ϊ229700 and then 'dry it. Since these steps are performed in the atmospheric environment, compared with when manufactured by the gas spray method, 4 is easier to mix into the amorphous soft magnetic alloy powder. Oxygen, especially in the drying step, is easily mixed with oxygen. When the oxygen concentration of the above-mentioned approximately spherical powder exceeds 3000 ppm, the oxygen concentration change becomes too high, rust is easily generated on the powder surface, and the magnetic characteristics of the amorphous soft magnetic alloy powder are reduced. The manufactured core loss increases and the magnetic permeability decreases. In addition, for the amorphous soft magnetic alloy powder of the present invention, it is preferable that the above-mentioned substantially spherical powder has a specific surface area of 0.30 m2 / g or less. The specific surface area referred to here is measured by the BET method. The BET method is a method of adsorbing molecules having an adsorption occupying area on the surface of powder particles at the temperature of liquid nitrogen, and determining the specific surface area of the sample from the amount. It is best to use the low-temperature and low-humidity physical adsorption by an inert gas. . As the specific surface area of the above-mentioned approximately spherical powder increases, the irregularities on the powder shape and the degree of oxygen increase, so the upper limit of the specific surface area is 0.3 〇m2 / g, thereby obtaining a rust-resistant Roughly spherical amorphous soft magnetic alloy. If the specific surface area of the above-mentioned substantially spherical powder is high, it is difficult to obtain insulation between the powders, and further, the density of a core made of the amorphous soft magnetic alloy powder is reduced. In addition, the specific surface area of the amorphous soft magnetic alloy powder is 0.30 m2 / g or less, and the transmittance and DC superposition characteristics of a magnetic core made of the soft magnetic alloy powder can be improved. For the amorphous soft magnetic alloy powder of the present invention, the above-mentioned substantially spherical powder has an average particle diameter (D ^) greater than 4 micrometers, and 45 micrometers or less, a tap density of 3 · 7 Mg / m or more, and a specific surface area of 0. · Below 3 m2 / g, oxygen concentration is below O: \ 86 \ 86694.DOC -14-1229700 3000 ppm. The amorphous soft magnetic alloy powder having such a structure can make the core loss (w) measured at a frequency of 100 kHz and a magnetic flux density of 0T below kW / m3 ', and can achieve a composite permeability of up to 1 MHz. The real number 邛 # is basically fixed at 57 ~ 80, so that the DC bias magnetic field 5500 ΑπΓ 1 is kept straight / "L heavy $ characteristic (#, DC55⑽) is basically fixed at chuan ~ 34", so it is easy to use when used as a magnetic core. In addition, for the amorphous soft magnetic alloy powder of the present invention, it is preferable that the average particle diameter of the above-mentioned substantially spherical young powder is greater than 4 microns, and is 16 microns or less, the tap density is 4.0 Mg / mk, and the specific surface area is between 0.02 m2 / g or less, and the gas temperature below 2000 ppm. The amorphous soft magnetic alloy powder having such a structure can make the core loss (w) when measured at a frequency of ιιτkHz and a beam density of τ1τ below 25 kW / m. The actual magnetic permeability of the compound with a frequency of 1 μΗζ is basically fixed at 57 ~ 75, which makes the DC bias magnetic field 5 fine. The straight-line heavy duty characteristic 'Demo' is basically fixed at 30 ~%, so It has good characteristics when used as a magnetic core. The amorphous soft magnetic alloy powder of the present invention is preferably represented by the following formula.
Fe100.x.y.z.w.tMxPyczBwSit 其中,Μ是選自Cr、M〇、w、v、灿、h、财Fe100.x.y.z.w.tMxPyczBwSit where M is selected from the group consisting of Cr, Mo, w, v, can, h, and
?【孙^中的一種或者兩種以上的元素,表示組成比的兀 Y、z、w、t為,0·5原子%。各8原子%,2原子 原子%,〇原子% w 8原子%,1原子^ i2原子%,( 原子原子%,7〇原子化⑽—zU[One or two or more elements in Sun ^, the composition ratio of Y, z, w, and t is 0.5 atomic%. 8 atomic% each, 2 atomic%, 0 atomic% w 8 atomic%, 1 atom ^ i2 atomic%, (atomic atomic%, 70 atomic ⑽—zU
O:\86\86694.DOC -15- !2297〇〇 79原子%。 對於本發明的非晶 成式中的組成比的y、 $ 29·5原子%的關係。 形軟磁性合金粉末,較佳表示上述組 z、w、t滿足 17 原子% (y+z+w+t) ^本發明的非晶形軟磁性合金粉末,較佳表示上述組 4:中的組成比的以、"”滿足1原子%“獨子%, 4原子化β14原子%,〇原子y以原子%,2原子 』原子。/。,2原子%^8原子%,72原子%⑽—X—》 z—w~t)$79原子%的關係。 對於本發㈣非晶形軟磁性合金辣,較佳表示上❹ 成式中的組成比的以、2、^滿足1原子%^$3原子%, 原子%’丨原子如4原子%,4原子Jw 以原子。2原子%以7原子%’ 73原子%印〇〇一卜乂 一 z—w—t)S78原子〇/〇的關係。 上述任意-個組成式表示的非晶形軟磁性合金粉末且有 顯示磁性的邮/或元素T、具有非晶形形成能力的p、c』, 進:步具有Si此半金屬元素,因此可構成以非晶形相為主 相亚且具有優異軟磁性特性的非晶形軟磁性合金,而且, 由於能藉由水喷霧法製造,因此與使用惰性氣體的氣體嘴 霧法相比’可提高合金熔融液的冷卻速度,容易非晶形化: 可構成整個結構都是非晶形相的非晶形軟磁性合金粉末’ 而且,即使不加入高價的以等,也具有以非晶形相‘主相 並具有優異的軟磁特性,因此可降低成本。 另外本么明的扁平非晶形軟磁性合金粉末的特徵在於O: \ 86 \ 86694.DOC -15-! 2297〇79 atomic%. The relationship between y and the composition ratio in the amorphous formula of the present invention is $ 29 · 5 atomic%. Shaped soft magnetic alloy powder, preferably representing the above group z, w, t satisfying 17 atomic% (y + z + w + t) ^ The amorphous soft magnetic alloy powder of the present invention preferably represents the composition in the above group 4: In comparison, "quotation" satisfies 1 atomic% "soliton%, 4 atomic β 14 atomic%, 0 atom y atomic%, 2 atom" atom. /. , 2 atomic% ^ 8 atomic%, 72 atomic% ⑽—X—》 z—w ~ t) $ 79 atomic%. For the non-crystalline soft magnetic alloy of the present invention, it is preferable that the composition ratio in the formula above is 2, 2, ^ satisfies 1 atomic% ^ $ 3 atomic%, atomic% ', such as 4 atomic%, 4 atomic Jw Take the atom. The relationship of 2 atomic% and 7 atomic% '73 atomic% is printed as 〇 一一 乂 z-w-t) S78atomic 〇 / 〇. The above-mentioned amorphous soft magnetic alloy powder represented by any one of the composition formulas has a postal / or element T exhibiting magnetic properties, and p and c having an amorphous forming ability. Further, it has a semi-metal element such as Si, so it can be composed of Amorphous phase is an amorphous soft magnetic alloy with sub-major phases and excellent soft magnetic properties. Furthermore, because it can be manufactured by water spray method, it can improve the alloy melt compared to the gas nozzle mist method using an inert gas. Cooling rate, easy to be amorphous: It can constitute amorphous soft magnetic alloy powder with an amorphous phase in the entire structure. Moreover, it has an amorphous phase as its main phase and has excellent soft magnetic properties even if it does not include high-priced isotopes. As a result, costs can be reduced. In addition, Benmemin's flat amorphous soft magnetic alloy powder is characterized by
O:\86\86694.DOC -16- 1229700 晶形軟磁性合金粉末都被 上述任意一種構成的本發明的非 扁平化0 此種扁平型非晶形軟磁性合金粉末使用表面凹凸少的大 致,狀的本發明的非晶形軟磁性合金粉末,因此在藉由阿 特萊塔等加工時,非晶形合金粉末無法被細粉碎,可扁平 加工成均句形狀,得到形狀均句的扁平化粒子。為製造電 磁波吸收料,如果將此種騎㈣晶形軟磁性合金粉末 :入樹脂等絕緣材料中’此等粉末以層狀排列,因此能緻 密填充並且減小扁平化粒子彼此之間的間隙。 :發明a粉核心的特徵在於:由混合上述多種或者一種 任思-種構成的本發明的非晶形軟磁性合金粉末和絕緣材 料以及潤滑劑並進行造粒製成的造粒粉末構成,上述絕緣 材料可作為黏結劑固化成形。 上述Μ粉核心具有優異的軟磁特性,並且體積密度高, 表面凹凸少’藉由將使用成形為大致球狀的本發明的非晶 形軟磁性合金粉末製造的造粒粉末固化成形,可提高壓粉 核心的成形密度,並且伴技I 士 保持叔末之間的絕緣,提高磁特性。 由於使用藉由水哨·霧法制、生ΑΑ 士 、 版仏的本發明的非晶形軟磁性合 金粉末,因此能提高量産性。 错由不在造粒粉末製造後加入潤滑劑,而在造粒粉末製 造階段加入潤滑劑,製造造粒粉末時的非晶形軟磁性合金 粉末之間可滑動’能提高造粒粉末的製造效率,而且,能 在造粒粉末内緻密地加入非晶形軟磁性合金粉末,提高造 粒粉末的密度。 O:\86\86694.DOC -17- 1229700 因此本發明的壓粉核心量産性優異,並且具有高強度, 在高頻區域可提供低損失的壓粉核心。 本發明的壓粉核心適用於轉換電源的扼流圈、有源濾光 器的電抗線圈、變壓器的磁心。 另外,對於本發明的壓粉核心,粒徑45微米以上500微米 以下的造粒粉末含量較佳大於整個造粒粉末的83重量%。 如果上述造粒粉末的粒徑未達45微米,將造粒粉末流入 壓粉核心製造用模具中時,.流動性差,量産性降低,如果 超過500微米,核心損失增大。 對於本發明的壓粉核心,粒徑未達45微米的造粒粉末和 粒徑超過500微米的造粒粉末的含量較佳在整個造粒粉末 的17重量%以下。 粒徑未達45微米的造粒粉末和粒徑超過5〇〇微米的大造 粒粉末的含量大於17重量%時,將造粒粉末流入壓粉核心 製造用模具時的流動性變差。 因此如果粒徑為45微米以上50〇微米以下的造粒粉末的 含篁大於整個造粒粉末的83重量%,造粒粉末流入壓粉核 心製造用模具中的流動性良好,能提高製造效#,核心損 失充分降低,可得到成形密度高的壓粉核心。 本發明的電磁波吸收體的特徵在於混合上述任意一⑷ 成的本發明的非晶形軟磁性合㈣末或者爲平型非晶形4 磁性合金粉末和絕緣材料。 根據此種電磁波吸收體,蕪 精由使用具有優異的軟磁; 性、而且體積密度高、表面凹Λ小 ^ ^凹凸少、形成為大致球狀的」O: \ 86 \ 86694.DOC -16- 1229700 The crystalline soft magnetic alloy powder is non-flattened according to the present invention composed of any of the above. 0 This flat amorphous soft magnetic alloy powder has a rough, surface-like shape with little unevenness on the surface. Since the amorphous soft magnetic alloy powder of the present invention is processed by Atleta, the amorphous alloy powder cannot be finely pulverized, and can be flat-processed into a uniform sentence shape to obtain flat particles having a uniform sentence shape. In order to manufacture an electromagnetic wave absorbing material, if such a riding crystal soft magnetic alloy powder is put into an insulating material such as a resin ', these powders are arranged in layers, so that they can be densely packed and reduce the gap between the flattened particles. : The powder core of invention a is characterized in that it is composed of a granulated powder made by mixing the amorphous soft magnetic alloy powder of the present invention, which is composed of any of the above-mentioned types, or an insulating material, and a lubricant, and the granulation is performed. The material can be cured as a binder. The above-mentioned M powder core has excellent soft magnetic characteristics, high bulk density, and low surface irregularities. By solidifying and molding granulated powder produced by using the amorphous soft magnetic alloy powder of the present invention that is formed into a substantially spherical shape, powder compaction can be improved. The forming density of the core, and the companion technician maintains insulation between the terminals and improves the magnetic characteristics. Since the amorphous soft magnetic alloy powder of the present invention, which is produced by a water whistle and mist method, is produced by AA, and plate, the mass productivity can be improved. The reason is that the lubricant is not added after the granulated powder is manufactured, but the lubricant is added during the granulated powder manufacturing stage, and the amorphous soft magnetic alloy powder can be slid between the granulated powders to improve the manufacturing efficiency of the granulated powders. , Can add amorphous soft magnetic alloy powder densely in the granulated powder to increase the density of the granulated powder. O: \ 86 \ 86694.DOC -17-1229700 Therefore, the powder core of the present invention is excellent in mass productivity, has high strength, and can provide a powder core with low loss in a high frequency region. The powder core according to the present invention is suitable for a choke coil for converting a power source, a reactance coil of an active filter, and a magnetic core of a transformer. In addition, for the powder core of the present invention, the content of the granulated powder having a particle diameter of 45 μm to 500 μm is preferably greater than 83% by weight of the entire granulated powder. If the particle size of the granulated powder is less than 45 microns, when the granulated powder is flowed into the powder core manufacturing mold, the fluidity is poor and the mass productivity is reduced. If it exceeds 500 microns, the core loss increases. For the powdered core of the present invention, the content of the granulated powder having a particle diameter of less than 45 µm and the granulated powder having a particle size exceeding 500 µm is preferably 17% by weight or less of the entire granulated powder. When the content of the granulated powder having a particle diameter of less than 45 micrometers and the large granulated powder having a particle diameter of more than 500 micrometers is more than 17% by weight, the flowability of the granulated powder when it flows into a mold for manufacturing a powder core becomes poor. Therefore, if the granulated powder with a particle size of 45 micrometers or more and 50 micrometers or less contains more than 83% by weight of the whole granulated powder, the fluidity of the granulated powder flowing into the powder core manufacturing mold is good and the manufacturing efficiency can be improved # , The core loss is fully reduced, and a compacted core with a high forming density can be obtained. The electromagnetic wave absorber of the present invention is characterized by mixing any one of the amorphous soft magnetic alloy of the present invention or a flat amorphous 4 magnetic alloy powder and an insulating material. According to such an electromagnetic wave absorber, the essence has excellent soft magnetic properties, and has a high bulk density, a small surface concavity, a small unevenness, and a substantially spherical shape. "
O:\86\86694.DOC -18- 1229700 發明的非晶形軟磁性合金粉末,可緻密地填充絕緣材料, 因此可提高數百MHz〜數GHz的頻率數頻帶中的電磁波抑 制效果。而且,使用藉由水噴霧法製造的本發明的非晶形 軟磁性合金粉末,可提高量産性。 特別是,使用本發明的扁平型非晶形軟磁性合金粉末(扁 平化粒子)’此等粒子以層狀排列在絕緣材料中,能更加緻 密地填充,並減小扁平化粒子彼此之間的間隙,而且,上 述扁平化粒子與大致球狀的非晶形軟磁性合金粉末相比, 長寬比增大,電磁波吸收體本身的阻抗增大,能抑制過電 流的產生。 因此本發明的電磁波吸收體的量産性優異,並且數百 MHz〜數GHz的頻率數頻帶中的複合透磁率的虛數部#,,增 高,可提供電磁波抑制效果提高的電磁波吸收體。 【實施方式】 下面詳細說明本發明的實施型態。 (非晶形軟磁性合金粉末的實施型態) 本發明實施型態的非晶形軟磁性合金粉末是藉由水喷霧 法形成大致為球狀的粉末。此種大致球狀的粉末以以為主 要成分,由至少含有p、c、B的非晶形相構成。此等大致 球狀的粉末具有由式△八二八―Tg (其中,Τχ是結晶化開始 μ度’ Tg疋玻璃轉移溫度。)表示的過冷卻液體的溫度間隔 △ τχ為20K以上。 本發明的非晶形軟磁性合金粉末除製造非晶形粉末之 外,還充分維持必要的非晶形形成能力,並且,與以往FeO: \ 86 \ 86694.DOC -18-1229700 The amorphous soft magnetic alloy powder of the invention can be densely filled with an insulating material, so that it can improve the electromagnetic wave suppression effect in the frequency band of several hundred MHz to several GHz. Furthermore, mass productivity can be improved by using the amorphous soft magnetic alloy powder of the present invention produced by a water spray method. In particular, by using the flat-type amorphous soft magnetic alloy powder (flattened particles) of the present invention, these particles are arranged in layers in an insulating material, which can be more densely packed and reduce the gap between the flattened particles. Moreover, compared with the substantially spherical amorphous soft magnetic alloy powder, the flattened particles have an increased aspect ratio, an increased impedance of the electromagnetic wave absorber itself, and can suppress the generation of an overcurrent. Therefore, the electromagnetic wave absorber of the present invention is excellent in mass productivity, and the imaginary part # of the composite magnetic permeability in the frequency band of several hundred MHz to several GHz is increased to provide an electromagnetic wave absorber with improved electromagnetic wave suppression effect. [Embodiment] An embodiment of the present invention will be described in detail below. (Implementation form of amorphous soft magnetic alloy powder) The amorphous soft magnetic alloy powder according to the embodiment of the present invention is a powder having a substantially spherical shape by a water spray method. Such a substantially spherical powder is mainly composed of an amorphous phase containing at least p, c, and B as a main component. These approximately spherical powders have a temperature interval Δτχ of the supercooled liquid represented by the formula Δ828-Tg (where χ is the start of crystallization μ ° 'Tg 疋 glass transition temperature.) Is 20K or more. In addition to manufacturing amorphous powder, the amorphous soft magnetic alloy powder of the present invention sufficiently maintains the necessary amorphous forming ability, and is inferior to conventional Fe
O:\86\86694.DOC -19- 1229700 —A1 _ Ga — C 一 P — Si — B系合金相比進一步提高磁特性, 並且,能藉由水喷霧法形成接近球狀的形狀。進而,能獲 得能耐受水嘴霧法的耐腐敍性。而且,即使不加入Ga,也 能非晶形化,因此能降低成本,進而兼具高的飽和磁化量 和低的核心損失。 本發明的非晶形軟磁性合金粉末具有顯示磁性的Fe和具 有非晶形形成能力的P、C、B此半金屬元素,因此以非晶 形相為主相,同時具有優異軟磁特性。而且,除p、c、B 之外,還可加入Si。 而且,加入 M (Cr、Mo、W、V、Nb、Ta、Ti、Zr、Hf、O: \ 86 \ 86694.DOC -19- 1229700 —A1 _ Ga — C — P — Si — B-based alloys have further improved magnetic characteristics compared to other alloys, and can be formed into a nearly spherical shape by a water spray method. Furthermore, it is possible to obtain a corrosion resistance capable of withstanding the nozzle mist method. In addition, it can be made amorphous even without adding Ga, so that it can reduce costs, and also has a high saturation magnetization and a low core loss. The amorphous soft magnetic alloy powder of the present invention has Fe exhibiting magnetic properties and P, C, and B semi-metal elements having an amorphous forming ability, and therefore an amorphous phase is the main phase, and at the same time has excellent soft magnetic characteristics. Moreover, in addition to p, c, and B, Si may be added. Moreover, M (Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf,
Pt、Pd、Au中的一種或者兩種以上元素)可提高耐腐蝕性。 此種非晶形軟磁性合金粉末是表示2〇κ以上過冷卻液體 溫度間隔ΔΤχ的大致球狀的金屬玻璃質合金粉末,根據組 成具有ΔΤχ在30Κ以上,進一步在50Κ以上的明顯的溫度間 隔,而且,對於軟磁性,也具有在室溫下優異的特性。 本發明的非晶形軟磁性合金粉末由於與現有Fe _ Α1 — C P 一 Sl 一 B系合金相比含量大量的強磁性元素Fe,因此 具有南的飽和磁化量。 本發明的大致球狀的非晶形軟磁性合金粉末的組織整個 疋非晶形相,因此在合適的條件下進行熱處理時,不析出 結晶質相,可緩和内部應力,進一步提高軟磁特性。 一藉由水噴務法製造的本發明的大致球狀的非晶形軟磁性 合金粉末,具有與藉由氣體噴霧法製造的以往球狀非晶形 軟磁性合金粉末等同或者之上的飽和磁化量。One or two or more elements of Pt, Pd, and Au) can improve corrosion resistance. This amorphous soft magnetic alloy powder is a substantially spherical metallic vitreous alloy powder representing a temperature interval Δχ of a subcooled liquid of 20 κ or more, and has a significant temperature interval of ΔΤχ of 30 K or more and further 50 K or more according to the composition, and For soft magnetic, it also has excellent characteristics at room temperature. The amorphous soft magnetic alloy powder of the present invention has a saturation magnetization amount of south because it contains a large amount of ferromagnetic element Fe compared with the existing Fe_Al-CP-S1-B-series alloy. The structure of the substantially spherical amorphous soft magnetic alloy powder of the present invention has an entire amorphous phase. Therefore, when the heat treatment is performed under appropriate conditions, a crystalline phase is not precipitated, internal stress can be relaxed, and soft magnetic characteristics are further improved. A substantially spherical amorphous soft magnetic alloy powder of the present invention produced by a water spray method has a saturation magnetization equivalent to or higher than that of a conventional spherical amorphous soft magnetic alloy powder produced by a gas spray method.
O:\86\86694.DOC -20- 1229700 藉由水噴務法能製造大致球狀的非晶形軟磁性合金粉 末本&明非晶开> 軟磁性合金粉末製造所使用的合金熔融 液(熔融狀態的合金)使用與本發明的非晶形軟磁性合金粉 末相同組成或者大致相同組成的合金熔融液,因此含有如 上所述具有非晶形形成能力的元素,並且,過冷卻液體的 溫度間隔ΔΤχ為20K以上,所以藉由水喷霧法粉碎並冷卻 合金熔融液(熔融狀態的合金)時,即使將一般的水噴霧法的 冷卻速度減緩至與氣體喷霧法相同的程度,也具有寬的過 冷卻液體區域,不發生結晶化,伴隨著溫度的降低,達至 玻璃轉移溫度Tg,可容易地形成非晶形相。而且藉由將冷 卻合金熔融液時的冷卻速度控制為對合金熔融液作用足夠 表面張力的程度的冷卻速度,可得到大致球狀,即比表面 積小的非晶形軟磁性合金粉末。為此,不易被酸化,即使 冷卻速度降低,也需要形成能力夠非晶形化的上述合金組 成。 本發明的非晶形軟磁性合金粉末的平均長寬比為丨以上3 以下是從如上所述的理由是較佳的,平均長寬比為丨以上2 以下更加較佳,1以上1.5以下進一步較佳。 另外’本發明的非晶形軟磁性合金粉末的平均粒徑⑴ 為45微米以下,由如上所述的理由是較佳的,大於*微 米’而30微米以下為較佳的,4至16微米為進一步較佳。非 晶形软磁性合金粉末的D5 〇為4微来以下時,粉末收率降 低,而且,表觀的氧濃度提高。 另外,本發明的非晶形軟磁性合金粉末的振實密度為3 7 O:\86\86694.DOC -21 - 1229700O: \ 86 \ 86694.DOC -20- 1229700 A substantially spherical amorphous soft magnetic alloy powder can be produced by the water spray method. &Amp; Ming amorphous open > An alloy melt used for soft magnetic alloy powder production. (Alloy in molten state) Since an alloy molten liquid having the same composition or substantially the same composition as the amorphous soft magnetic alloy powder of the present invention is used, it contains an element having the ability to form an amorphous shape as described above, and the temperature interval of the supercooled liquid ΔΤχ It is 20K or more. Therefore, when the molten alloy (molten alloy) is pulverized and cooled by the water spray method, even if the cooling rate of the general water spray method is reduced to the same degree as the gas spray method, it has a wide range. In the supercooled liquid region, crystallization does not occur, and as the temperature decreases, the glass transition temperature Tg is reached, and an amorphous phase can be easily formed. In addition, by controlling the cooling rate when cooling the alloy melt to a cooling rate sufficient to exert a surface tension on the alloy melt, an approximately spherical, i.e., amorphous soft magnetic alloy powder having a smaller surface area can be obtained. For this reason, it is not easy to be acidified, and even if the cooling rate is reduced, it is necessary to form the above-mentioned alloy composition capable of being amorphous. The average aspect ratio of the amorphous soft magnetic alloy powder according to the present invention is 丨 more than 3 and the following is preferred from the reasons described above, and the average aspect ratio is more preferably ≥ 2 and more preferably 1 and 1.5 and less. good. In addition, the average particle diameter ⑴ of the amorphous soft magnetic alloy powder of the present invention is 45 μm or less, which is preferable for the reasons described above, and is larger than * μm, and 30 μm or less is preferable, and 4 to 16 μm is Even better. When the D50 of the amorphous soft magnetic alloy powder is 4 micrometers or less, the powder yield decreases and the apparent oxygen concentration increases. In addition, the tap density of the amorphous soft magnetic alloy powder of the present invention is 3 7 O: \ 86 \ 86694.DOC -21-1229700
Mg/m以上如上所述理由為較佳,Λ ~千乂,土 苟3·9 Mg/m3以上為較 佳,為4.0 Mg/m3以上為進一步較佳。 本發明的非晶形軟磁性合金粉末的氧濃度為3〇〇〇 以 下,如上所述理由為較佳,為2500 ppm以下為較佳,為㈧ ppm以下為進一步較佳。 本發明的非晶形軟磁性合金粉末由於上述理由,比表面 積為0.30m2/g以下為較佳,為〇.26m2/g以下為較佳為〇 23 m2/g以下為進一步較佳。 本發明的非晶形軟磁性合金粉末的平均粒徑(DW大於4 微米,且45微米以下,振實密度為3.7Mg/m3以上,比表面 積為0.3m /g以下,氧濃度為3〇〇〇 ppm以下時,可使在頻率 100 kHz、磁束密度〇·1τ條件下測定時的核心損失(冒)為45〇 kW/m3以下,而且,直至頻率i以^^的複合透磁率的實數部 基本上固定在57〜80,使直流偏壓磁界5500 Am— 1時的 直"il重:£特性(# ’DC55〇〇)基本固定在3〇〜34.5,因此在用作 磁心時容易使用。 另外,本發明的非晶形軟磁性合金粉末的平均粒徑(d5〇) 大於4微米,並且在16微米以下,振實密度在4〇 Mg/m3以 上,比表面積在0.23 m2/g以下,氧濃度在2000 ppm以下時, 可使在頻率100 kHz、磁束密度〇· it的條件下測定時的核心 損失(W)在250 kW/m3以下,而且,能使直至頻率! mHz的 複合透磁率的實數部,基本上固定在57〜75,使直流偏壓 磁界5500 Am—1時的直流重疊特性(μ,DC55GG)基本固定在3〇 〜36,因此在用作磁心時容易使用。 O:\86\86694.DOC 22- 1229700 作為本發明大致球狀的非晶形軟磁性合金粉末的一個例 子’可舉出由下述組成式表示的。 ^eioo-x-y.z.w.tMxPyCzBwSit 其中,Μ是選自 Cr、Mo、W、V、Nb、Ta、Ti、Zr、Hf、 Pt Pd、Au中的一種或者兩種以上的元素,表示組成比的x、 y、Z、W、t為,〇·5原子 8原子 %,2原子 b 原子%,0原子原子%,i原子%^w^12原子%,〇 原子 8原子 %,70原子%$ (100_ χ_ y — z — w — t)$ 79原子%。 ~ 表示上述組成式表示的本發明的非晶形軟磁性合金粉末 的上述組成式中的組成比的y、z、w、t較佳滿足Η原子% $(丫+2+,+〇$29.5原子%的關係。 下面對本發明大致球狀非晶形軟磁性合金粉末的組成限 定理由進行說明。The reasons above Mg / m are more preferable as described above, Λ to 1,000 乂, soil 3.9 Mg / m3 or more is more preferable, and 4.0 Mg / m3 or more is more preferable. The amorphous soft magnetic alloy powder of the present invention has an oxygen concentration of 3,000 or less. The reason described above is preferable, 2500 ppm or less is preferable, and ㈧ ppm or less is more preferable. For the reasons described above, the amorphous soft magnetic alloy powder of the present invention preferably has a specific surface area of 0.30 m2 / g or less, more preferably 0.26 m2 / g or less, and more preferably 23 m2 / g or less. The average particle diameter of the amorphous soft magnetic alloy powder of the present invention (DW is greater than 4 micrometers and 45 micrometers or less, the tap density is 3.7Mg / m3 or more, the specific surface area is 0.3m / g or less, and the oxygen concentration is 3,000. When it is less than ppm, the core loss (floating) when measured at a frequency of 100 kHz and a magnetic flux density of 0.1 τ can be less than 45 kW / m3, and the real number part of the composite magnetic permeability of the frequency i at ^^ is basically reached. It is fixed at 57 ~ 80, which makes the DC bias magnetic field 5500 Am-1 straight. The weight (£ 'DC55〇) is basically fixed at 30 ~ 34.5, so it is easy to use when it is used as a magnetic core. In addition, the average soft magnetic alloy powder of the present invention has an average particle diameter (d50) of more than 4 micrometers, less than 16 micrometers, a tap density of 40 micrometers / m3 or more, and a specific surface area of 0.23 m2 / g or less. When the concentration is below 2000 ppm, the core loss (W) when measured under the conditions of a frequency of 100 kHz and a magnetic flux density of 0 · it can be less than 250 kW / m3, and the composite permeability of up to frequency! MHz can be achieved. The real part is basically fixed at 57 ~ 75, making the DC bias magnetic boundary 550 The DC overlap characteristic (μ, DC55GG) at 0 Am-1 is basically fixed at 30 ~ 36, so it is easy to use when used as a magnetic core. O: \ 86 \ 86694.DOC 22-1229700 As the substantially spherical non An example of the crystalline soft magnetic alloy powder is given by the following composition formula: eiei-xy.zwtMxPyCzBwSit where M is selected from Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf One, two or more elements of Pt, Pd, Au, and the composition ratios of x, y, Z, W, and t are 0.5 atom 8 atom%, 2 atom b atom%, 0 atom atom%, i Atomic% ^ w ^ 12 atomic%, 0 atom 8 atomic%, 70 atomic% $ (100_ χ_ y — z — w — t) $ 79 atomic%. ~ The amorphous soft magnetic alloy of the present invention represented by the above composition formula The composition ratios y, z, w, and t in the above-mentioned composition formula of the powder preferably satisfy the relationship of Η atomic% $ (α + 2 +, + 0 $ 29.5 atomic%. The following is a description of the approximately spherical amorphous soft magnetic alloy powder of the present invention. The reason for limiting the composition will be described.
Fe是承擔磁性的元素,是本發明非晶形軟磁性合金粉末 所必須的元素。 如果提高Fe的組成比例,就可提高非晶形軟磁性合金粉 末的飽和磁性(7 S。Fe is an element that bears magnetic properties and is an essential element for the amorphous soft magnetic alloy powder of the present invention. If the composition ratio of Fe is increased, the saturation magnetism (7 S) of the amorphous soft magnetic alloy powder can be increased.
Fe的加入量較佳在70原子%以上79原子%以下較佳72 原子%以上,79原子%以下,進一步較佳73原子%以上⑽ 子%以下。The amount of Fe added is preferably 70 atomic% or more and 79 atomic% or less, preferably 72 atomic% or more, 79 atomic% or less, and still more preferably 73 atomic% or more and 3% or less.
Fe的加入量未達70原子%時,飽和磁化量σ s降低至未達 15 0x10 Wb.m/kg,因此為不佳者。而Fe的加入量超過79 原子%時,表示合金的非晶形形成能力程度的Tg/Tm未達 O:\86\86694.DOC -23- 1229700 〇-57’非晶形形成能力降低,因此為不佳者。上述Tm是合 金的熔點。 而且,Fe的加入量如果在76原子❶/〇以上,能使合金粉末 的飽和磁化量cr s在17〇xl〇_6Wb.m/kg以上,如果在77原子 0/〇以上’能使合金的飽和磁化量σs在180χl0-6Wb·m/kg以 上。 另外,Cr、Mo、W、V、Nb、Ta、Ti、Zr、Hf可在合金 粉末表面上形成不動態化氧化覆膜,可提高合金粉末的耐 腐蝕性。此等元素中提高耐腐蝕性最有效的是Cr。在水喷 霧法中,合金熔融液與水直接接觸時,能進一步防止在合 金粉末乾燥步驟中産生銹(目測程度)。而且,此等元素可單 獨加入,或者組合兩種以上複合加入,例如可組合和V, Mo和Cr,V*Cr,以及Cr、M〇、v等複合加入。此等元素 中,Mo、V的耐腐蝕性比以稍差,但是由於提高非晶形形 成能力,可根據需要選擇此等元素。另外,從Cr、M〇、w、 V、Nb、Ta中選擇的元素的加入量超過8原? %時,磁特性(飽 和磁化量)降低。 上述組成式中作為元素戰用的元素中玻璃形成能力以 Zr、Hf為最高。由於Ti、Zr、Hf的氧化性強,因此此等元 素超過8原子%加人時,大氣環境中溶解合金粉末原料,炼 融液在原料溶解中發生氧化,而且磁特性(飽和磁化量)降 低0 合金粉末提高耐腐蝕性的效果可藉由加入選自Pt、pd、 AU中的一種或者兩種以上的貴金屬元素來獲得,藉由將此If the amount of Fe added is less than 70 atomic%, the saturation magnetization σ s is reduced to less than 15 0x10 Wb.m / kg, so it is not good. When the amount of Fe added exceeds 79 atomic%, Tg / Tm, which indicates the degree of amorphous formation ability of the alloy, does not reach O: \ 86 \ 86694.DOC -23-1229700 0-57 ', and the amorphous formation ability is reduced. Best. The Tm is the melting point of the alloy. In addition, if the amount of Fe added is 76 atomic ❶ / 0 or more, the saturation magnetization amount cr s of the alloy powder can be 17 × 10-10 Wb.m / kg or more, and if it is 77 atomic 0 / 〇 or more, the alloy can be made. The saturation magnetization σs is more than 180 × l0-6Wb · m / kg. In addition, Cr, Mo, W, V, Nb, Ta, Ti, Zr, and Hf can form a non-dynamic oxide film on the surface of the alloy powder, thereby improving the corrosion resistance of the alloy powder. Among these elements, Cr is most effective in improving the corrosion resistance. In the water spray method, when the molten alloy is in direct contact with water, rust can be further prevented during the drying process of the alloy powder (degree of visual inspection). Moreover, these elements can be added alone or in combination of two or more kinds, for example, V, Mo and Cr, V * Cr, and Cr, Mo, v, etc. can be added in combination. Among these elements, Mo and V are slightly inferior in corrosion resistance, but they can be selected according to need because of improving the amorphous forming ability. In addition, the amount of elements selected from Cr, Mo, w, V, Nb, and Ta exceeds 8%? At%, the magnetic characteristics (saturated magnetization) decrease. Zr and Hf are the highest glass forming abilities among the elements used as element warfare in the above composition formula. Because Ti, Zr, and Hf are highly oxidizing, when these elements are added in excess of 8 atomic%, the alloy powder raw materials are dissolved in the atmospheric environment, the smelting solution is oxidized during the melting of the raw materials, and the magnetic characteristics (saturation magnetization amount) are reduced 0 The effect of alloy powder on improving the corrosion resistance can be obtained by adding one or two or more precious metal elements selected from Pt, pd, and AU.
O:\86\86694.DOC -24- 1229700 寺貝金屬元素分散在粉末表面, 望主人η -主 如阿耐腐蝕性。而且,此 4貝金屬疋素可單獨加入或者藉由盥 U ^ Μ ^ - *ύ Λ + ^ ^Cr荨具有耐腐蝕 :“效果的疋素組合來複合加入。上述貴金屬元素不適 :肠混合’因此超過8原子%加入時,上述玻璃形成能力 I1牛低,而且,磁特性(飽和磁化量)也降低。 為使非晶形軟磁性合金粉末具有耐腐㈣,上述Μ的加 入量必須在0.5原子%以上。 因此組成式中Μ為選自Cr、M〇、w、ν、_、Ta、τ △、㈣…士令的一種或者兩種以上的元素㈣ 是較佳使用〜⑽^十^中的—種或者兩種以 上的元素。上述Μ的組成比χ較佳為〇 5原子%以上8原子%以 下,較佳i原子❶/。以上4原子%以下,進一步較佳巧子^ 上3原子%以下。 c、P、B和Si是提高非晶形形成能力的元素,藉由在Fe 和上述Μ中加入此等元素,變成多元系,可形成比只有以 和上述Μ的二元系穩定的非晶形相。 特別是,為與Fe在低溫下(約105(rc)保持共晶組成,整個 組織變成非晶形相,並且容易出現過冷卻液體的溫度間隔 △ Tx。 如果同時加入Ρ和Si ’過冷卻液體的溫度間隔△ Τχ更大, 非晶形形成能力提高,能將獲得非晶形單相的組織時的製 造條件向比較簡單的方向緩和。 不加入Si時的p的組成比y較佳為2原子。以上15原子。/〇以 下’較佳為4原子%以上14原子%以下,最較佳在6原子%以 O:\86\86694.DOC -25- 1229700 上11原子%以下。p的加入量未達2原子%時,無法得到非晶 形軟磁性合金粉末,如果超過15原子%,飽和磁化量降低。 如果P的組成比y在上述範圍,過冷卻液體的溫度間隔△ TX出現,並且合金粉末的非晶形形成能力提高。 如果加入Si,熱穩定性提高,因此較佳加入2原子%以上。 而如果Si的加入量超過8原子%,熔點上升。因此Si的組成 比t較佳〇原子%以上8原子%以下,較佳2原子%以上8原子% 以下,進一步較佳2原子。/。以上7原子%以下。 B的加入量未達2原子%時,難以獲得非晶形軟磁性合金 粉末’如果超過12原子%’溶‘點上升。因此B的组成比續 佳為1原子%以上12原子%以下’較佳2原子%以上1〇原子。 以下,進一步較佳4原子%以上9原子%以下。 如果加入c,熱穩定性提高,因此較佳加入丨原子%以上。 而如果C的加入量超過8原?%’、溶·點上升。因此⑽組成比 z較佳超過0原子。/。並在8原?%以下,較佳超過〇原子%在6 原子^以下’進-步較佳巧子㈣上化子㈣下。 因此此等半金屬元素C、p、師Si合計的組成比(y+z+w〜 較佳為17原子%以上2 9 5居;丨、/ 丁 +Λ. V乃原子/。以下,較佳18原子%以上% 原子%以下,較佳18原子%以上25原子%以下。 半金屬元素的合計組成比超過29.5原子%時,特別是卜 的組成比相對降低’餘和磁化量哺低,因此為不佳者。 半金屬元素的合計組成比未達17原子科,非晶形形成能 力降低,難以獲得非晶形相單相組織。O: \ 86 \ 86694.DOC -24- 1229700 Sibe metal elements are dispersed on the surface of the powder, and hope that the master η-master Ru corrosion resistance. Moreover, this 4 shell metal halide can be added alone or by adding U ^ Μ ^-* ύ Λ + ^ ^ Cr net has corrosion resistance: "The effect of a combination of halo elements. The above precious metal elements are not suitable: intestinal mixture ' Therefore, when it is added more than 8 atomic%, the glass forming ability I1 is low, and the magnetic characteristics (saturation magnetization amount) are also reduced. In order to make the amorphous soft magnetic alloy powder resistant to corrosion, the addition amount of the above M must be 0.5 atom. Therefore, in the composition formula, M is one or two or more elements selected from the group consisting of Cr, Mo, w, ν, _, Ta, τ △, ㈣, and 士. It is preferable to use ~ ⑽ ^ 十 ^ 中-One or two or more elements. The composition ratio χ of M is preferably from 0.05 atomic% to 8 atomic%, preferably i atom ❶ /. Above 4 atomic%, and more preferably ^^ 3 Atomic% or less. C, P, B, and Si are elements that improve the ability to form an amorphous form. By adding these elements to Fe and the above-mentioned M, it becomes a multi-element system, which can form a more stable binary system than only the above-mentioned binary system. Amorphous phase. In particular, for the low temperature (about 105 (rc ) Maintaining the eutectic composition, the entire structure becomes an amorphous phase, and the temperature interval △ Tx of the supercooled liquid is prone to occur. If the temperature interval △ Tχ of the supercooled liquid is added at the same time, the amorphous formation ability is improved, and the The manufacturing conditions when an amorphous single-phase structure is obtained are relaxed in a relatively simple direction. The composition ratio y of p when Si is not added is preferably 2 atoms or more. 15 atoms or more. / 0 or less is preferably 4 atomic% or more. 14 atomic% or less, most preferably 6 atomic% or less at 11 atomic% above O: \ 86 \ 86694.DOC -25-1229700. When the addition amount of p is less than 2 atomic%, amorphous soft magnetic alloy powder cannot be obtained If it exceeds 15 atomic%, the saturation magnetization decreases. If the composition ratio y of P is in the above range, the temperature interval ΔTX of the supercooled liquid appears, and the amorphous powder forming ability of the alloy powder is improved. If Si is added, the thermal stability is improved. Therefore, it is preferable to add 2 atomic% or more. If the amount of Si added exceeds 8 atomic%, the melting point increases. Therefore, the composition ratio of Si is preferably 0 atomic% or more and 8 atomic% or less, and preferably 2 atomic% or more. 8 atomic% or less, and more preferably 2 atomic% or more and 7 atomic% or less. When the amount of B added is less than 2 atomic%, it is difficult to obtain an amorphous soft magnetic alloy powder, and the melting point will rise if it exceeds 12 atomic%. Therefore, the composition ratio of B is preferably 1 atomic% or more and 12 atomic% or less, preferably 2 atomic% or more and 10 atoms or less. The following is more preferably 4 atomic% or more and 9 atomic% or less. If c is added, thermal stability is improved, Therefore, it is preferred to add 丨 atomic% or more. If the amount of C is more than 8 atomic%, the melting point will increase. Therefore, the ratio of zirconium composition is preferably more than 0 atom. More than 0 atomic% is below 6 atomic ^. It is preferred that the step is performed on the atom. Therefore, the total composition ratio of these semi-metallic elements C, p, and Si (y + z + w ~ is preferably 17 atomic% or more 2 95%; 丨, / 丁 + Λ. V is atom /. Below, more It is preferably 18 atomic% or more, preferably 18 atomic% or less, and more preferably 18 atomic% or more and 25 atomic% or less. When the total composition ratio of the semi-metal element exceeds 29.5 atomic%, the composition ratio of Bu is relatively reduced, and the magnetization amount is relatively low. Therefore, the total composition ratio of the semi-metal elements is less than 17 atomic families, the amorphous formation ability is reduced, and it is difficult to obtain an amorphous phase single-phase structure.
Fe的組成比在76原子%以上時,藉由使半金屬元素c、p、When the composition ratio of Fe is 76 atomic% or more, the semi-metal elements c, p, and
O:\86\86694.DOC -26- 1229700 B和Si的合計組成比(y+z+w+t)在18原子。/。以上24原子。/〇以 下,可使合金粉末的飽和磁化量σ s在170x l〇—6Wb.m/kg以 上。 進而,Fe的組成比在77原子%以上時,藉由使半金屬元素 C、P、B和Si的合計組成比(y+z + w+t)在18原子%以上23原子 %以下’可使合金粉末的飽和磁化量σ s在Ι80χ 10-6wb.m/kg 以上。 在本發明的非晶形軟磁性合金粉末中,在上述組成中, 可含有Ge為4原子。/〇以下。 對於上述任意一種情況的組成,在本發明中,過冷卻液 體的溫度間隔ΔΤχ在20K以上,根據組成,可在35K以上。 另外,除上述組成表示的元素之外,還可含有不可避免 的雜質。 藉由水噴霧法得到的上述組成的本發明的非晶形軟磁性 合金粉末在室溫下具有磁性,而且藉由熱處理可顯示更加 良好的磁性。因此可作為具有優異軟磁特性的材料廣泛用 於各種用途。 說明藉由水喷霧法製造本發明的纽球狀的非晶形軟磁 性合金粉末的一個例子。 本發明所使用的水嘖霾、本Η ^ ^ 曰“ (货務法疋,在大氣環境中將與上述非 日日形I人磁性合金粉末組成相 次者成大致相同的非晶形 ::磁:上合=融液與高壓水-起以霧狀喷霧至反應腔内 ίι聽料料並科,製造大輯狀的非晶 幵/权磁性合金粉末。O: \ 86 \ 86694.DOC -26-1229700 The total composition ratio (y + z + w + t) of B and Si is 18 atoms. /. Above 24 atoms. Below 0 / 〇, the saturation magnetization σ s of the alloy powder can be made 170 × 10-6 Wb.m / kg or more. Furthermore, when the composition ratio of Fe is 77 atomic% or more, the total composition ratio (y + z + w + t) of the semimetal elements C, P, B, and Si is 18 atomic% or more and 23 atomic% or less. The saturation magnetization σ s of the alloy powder is set to be more than 180 × 10-6 wb.m / kg. In the amorphous soft magnetic alloy powder according to the present invention, Ge may have 4 atoms in the composition. / 〇 or less. Regarding the composition of any of the above cases, in the present invention, the temperature interval ΔTχ of the subcooled liquid is 20K or more, and depending on the composition, it may be 35K or more. In addition to the elements represented by the above composition, unavoidable impurities may be contained. The amorphous soft magnetic alloy powder of the present invention having the above-mentioned composition obtained by the water spray method has magnetic properties at room temperature, and can exhibit more excellent magnetic properties by heat treatment. Therefore, it can be widely used in various applications as a material having excellent soft magnetic properties. An example of manufacturing the knob-shaped amorphous soft magnetic alloy powder of the present invention by a water spray method will be described. The water haze used in the present invention, the original "^" ("Cargo Law", in the atmospheric environment will be the same as the above-mentioned non-Japanese-shaped I human magnetic alloy powder composition in order to form approximately the same amorphous form :: magnetic : Coupling = melt liquid and high-pressure water-sprayed into the reaction chamber in the form of a mist, mix the materials, and manufacture large amorphous amorphous rhenium / weight magnetic alloy powder.
O:\86\86694.DOC -27- 1229700 圖1是表示適用於藉由水喷霧法的合金粉末製造中的高 壓水喷霧裝置的一個例子的截面示意圖。 該高壓水喷霧裝置1以熔融液坩堝2、水喷霧器3和反應腔 4為主體構成。該高壓水喷霧裝置1放置在大氣環境中。 熔融液坩堝2的内部裝入合金熔融液5。而且,熔融液坩 堝2中配置作為加熱手段的圓筒狀線圈2a,以加熱合金熔融 液5並保持熔融狀態。在熔融液坩堝2的底部設置熔融液噴 嘴6,合金熔融液5從熔融液噴嘴6向反應腔4内部滴下。 水喷霧益3設置在熔融液坩堝2的下側。在該水喷霧器3 中,設置水導入流路7和作為該導入流路7頂端部分的水噴 射嘴8。 ' 藉由未圖示的液體加壓泵(加壓機構)加壓的高壓水1〇藉 由導入流路7導入至水噴射喷嘴8,從該喷嘴8向反應腔4内 部形成高壓水流g進行噴霧。 反應腔4的内部形成與高壓水喷霧裝置丨周圍環境相同的 大氣環境。反應腔4内部的壓力保持在1〇〇kpa左右,而且, 溫度保持在室溫程度。 要製造大致球狀的非晶形軟磁性合金粉末,首先,將填 充在熔融液坩堝2中的合金熔融液5從熔融液喷嘴6滴加至 反應月工4内。同日彳’從水噴霧器3的水噴射嘴8噴射高壓水 射的高壓水10形成高壓水流g,達至上述滴加的熔融 ’文中’在贺霧點p衝擊熔融〉夜,將熔融液霧化 固,形成由上述組成的非曰开^日媸# & + λ 风扪非θ日形相構成的大致球狀的顆粒。 此專大致球狀的粉末與水_起存儲在反應腔4的底部。O: \ 86 \ 86694.DOC -27- 1229700 Fig. 1 is a schematic cross-sectional view showing an example of a high-pressure water spray device suitable for use in the production of alloy powder by a water spray method. This high-pressure water spraying device 1 is mainly composed of a melt crucible 2, a water sprayer 3, and a reaction chamber 4. The high-pressure water spray device 1 is placed in an atmospheric environment. The molten metal crucible 2 is filled with the molten alloy 5. The molten crucible 2 is provided with a cylindrical coil 2a as a heating means to heat the molten alloy 5 and maintain the molten state. A melt nozzle 6 is provided at the bottom of the melt crucible 2, and the molten alloy 5 is dropped from the melt nozzle 6 into the reaction chamber 4. The water spraying benefit 3 is provided below the melt crucible 2. The water sprayer 3 is provided with a water introduction flow path 7 and a water injection nozzle 8 as a tip end portion of the introduction flow path 7. '' The high-pressure water 10 pressurized by a liquid pressure pump (pressurizing mechanism) (not shown) is introduced into the water injection nozzle 8 through the introduction channel 7, and a high-pressure water flow g is formed from the nozzle 8 into the reaction chamber 4. spray. The inside of the reaction chamber 4 forms the same atmospheric environment as the surrounding environment of the high-pressure water spray device. The pressure inside the reaction chamber 4 was maintained at about 100 kpa, and the temperature was maintained at about room temperature. To produce a substantially spherical amorphous soft magnetic alloy powder, first, an alloy melt 5 filled in a melt crucible 2 is added dropwise from a melt nozzle 6 to a reaction month 4. On the same day, the high-pressure water 10 sprayed from the water nozzle 8 of the water sprayer 3 to form a high-pressure water stream g, to reach the above-mentioned dripping melting "text" at the fog point p impact melting> night, atomizing the molten liquid Solid, forming approximately spherical particles composed of the above-mentioned non-Japanese open ^ 日 媸 # & λ wind 扪 non-θ-day phase. This approximately spherical powder and water are stored at the bottom of the reaction chamber 4.
O:\86\86694.DOC -28- 1229700 此處所說的合金熔融液的冷卻速度是表面張力對合金熔 融液充分作用的程度。合金溶融液的冷卻速度根據合金的 組成、作為目的的合金粉末的粒徑等,決定合適的冷卻速 度,可103〜1 〇5 κ/s為大致目標。實際上,是否能得到接近 大致球狀的産物,可藉由確定是否在玻璃相(glassy phase) 中析出形成結晶相的FesB、FezB、FesP等相來決定。 然後,在大氣環境中將此等大致球狀粉末乾燥之後,將 此等粉末分級,得到具有預定平均粒徑的球狀或者接近球 狀的非晶形軟磁性合金粉末。 在藉由水噴霧法製造大致球狀的非晶形軟磁性合金粉末 時,藉由控制水的噴射壓力、喷射流量和合金熔融液的流 量等,控制合金熔融液的冷卻速度,而且,藉由控制水噴 射嘴的狹縫寬度、水喷射嘴的傾斜角度、水噴射角、合金 熔融液的溫度和黏度、喷霧點(粉化點距離)等來控制製造條 件,得到目的特性,具體而言,得到長寬比、振實密度、 〇5〇、氧噥度等在上述範圍内的非晶形軟磁性合金粉末。 知到的非晶形軟磁性合金粉末根據需要可進行熱處理。 藉由進行熱處理,可緩和合金粉末的内部應力,進一步提 高非晶形軟磁性合金粉末的軟磁特性。熱處理溫度仏較佳 為合金的居裏溫度Tc以上玻璃轉移溫度Tg以下的範圍。Λ = 處理溫度Ta如果不至居裏溫度Tc,無法獲得熱處理產生的、 :磁特性提高的效果,因此為不佳者。而1,如果熱處理 溫度Ta超過玻璃轉移溫度Tg,在合金粉末組織中容易析出 結晶質相,有可能降低軟磁特性,因此為不佳者。O: \ 86 \ 86694.DOC -28- 1229700 The cooling rate of the alloy melt referred to here is the degree to which the surface tension sufficiently affects the alloy melt. The cooling rate of the alloy melt is determined based on the composition of the alloy, the particle size of the intended alloy powder, etc., and an appropriate cooling rate can be determined. The approximate target is 103 to 105 k / s. In fact, whether or not a nearly spherical product can be obtained can be determined by determining whether phases such as FesB, FezB, and FesP that form a crystalline phase are precipitated in the glassy phase. Then, after drying these roughly spherical powders in an atmospheric environment, the powders are classified to obtain spherical or nearly spherical amorphous soft magnetic alloy powders having a predetermined average particle diameter. When a substantially spherical amorphous soft magnetic alloy powder is produced by a water spray method, the cooling speed of the alloy melt is controlled by controlling the spray pressure of the water, the spray flow rate, the flow rate of the alloy melt, and the like, and by controlling The slit width of the water spray nozzle, the inclination angle of the water spray nozzle, the water spray angle, the temperature and viscosity of the alloy melt, the spray point (powder point distance), etc. are used to control the manufacturing conditions to obtain the desired characteristics. An amorphous soft magnetic alloy powder having an aspect ratio, a tapped density, 0 50, and an oxygen content within the above ranges was obtained. The known amorphous soft magnetic alloy powder may be heat-treated as necessary. By performing the heat treatment, the internal stress of the alloy powder can be relaxed, and the soft magnetic characteristics of the amorphous soft magnetic alloy powder can be further improved. The heat treatment temperature 仏 is preferably in a range from the Curie temperature Tc of the alloy to the glass transition temperature Tg or lower. Λ = The processing temperature Ta is lower than the Curie temperature Tc, and the effect of improving the magnetic properties due to heat treatment cannot be obtained, so it is inferior. On the other hand, if the heat treatment temperature Ta exceeds the glass transition temperature Tg, a crystalline phase is easily precipitated in the alloy powder structure, and soft magnetic properties may be lowered. Therefore, it is inferior.
O:\86\86694.DOC -29- 1229700 熱處理時間較佳在充分緩和合金粉末的内部應力並且不 析出結晶質相的範圍内,例如較佳為3〇〜3〇〇分鐘的範圍。 本貝施型態的非晶形軟磁性合金粉末可藉由水喷霧法製 造,因此可進行製造裝置的大型化,並且可在高壓下將合 金熔融液粉碎,因此提高量産性,而且,由於沒有使用高 價的惰性氣體進行,可降低製造成本。 本實施型態的非晶形軟磁性合金粉末藉由水噴霧法形成 為接近球狀的形狀,因此體積密度高,表面的凹凸少,因 此可提高成形密度,為製造壓粉核心等,在與樹脂等絕緣 材料混合固化成形時,可保證粉末之間的絕緣,因此作為 壓粉核心製造用的軟磁性合金粉末是有效的。 另外本實施型悲的非晶形軟磁性合金粉末具有接近球 狀的形狀,因此在為製造電磁波吸收體藉由阿特萊塔等加 工該非晶形軟磁性合金粉末時,可得到形狀均勻的扁平化 顆粒,而且,由於容易控制粒徑,作為電磁波吸收體製造 用的軟磁性合金粉末是有效的。 (扁平型非晶形軟磁性合金粉末的實施型態) 本發明實施型態的扁平型非晶形軟磁性合金粉末是對上 述任意一種構成的實施型態的大致球狀非晶形軟磁性合金 粉末進行扁平化。 作為將非晶形軟磁性合金粉末扁平化的方法,例如將實 施里心的大致球狀的非晶形軟磁性合金粉末投入至阿特萊 塔:粉碎混合1G分鐘至16個小時,製成主要含有爲平化非 曰曰形软磁性合金粉末的非晶形軟磁性合金粉末。此處,對O: \ 86 \ 86694.DOC -29-1229700 The heat treatment time is preferably in a range that sufficiently relaxes the internal stress of the alloy powder and does not precipitate a crystalline phase, for example, a range of 30 to 300 minutes is preferable. The Bebesch-type amorphous soft magnetic alloy powder can be manufactured by the water spray method, so that the manufacturing equipment can be enlarged, and the alloy melt can be pulverized under high pressure. The use of expensive inert gas can reduce manufacturing costs. The amorphous soft magnetic alloy powder of this embodiment is formed into a nearly spherical shape by a water spray method, so the bulk density is high, and the surface has fewer irregularities, so the forming density can be increased. When the insulating materials are mixed and solidified, the insulation between the powders can be ensured. Therefore, it is effective as a soft magnetic alloy powder for powder core manufacturing. In addition, the amorphous soft magnetic alloy powder of this embodiment has a nearly spherical shape. Therefore, when the amorphous soft magnetic alloy powder is processed by Atleta or the like for manufacturing an electromagnetic wave absorber, flat particles having a uniform shape can be obtained. Moreover, since it is easy to control the particle diameter, it is effective as a soft magnetic alloy powder for manufacturing an electromagnetic wave absorber. (Implementation form of flat amorphous soft magnetic alloy powder) The flattened amorphous soft magnetic alloy powder according to the embodiment of the present invention is a flattened amorphous soft magnetic alloy powder having a substantially spherical shape according to an embodiment of any of the above embodiments Into. As a method of flattening the amorphous soft magnetic alloy powder, for example, a substantially spherical amorphous soft magnetic alloy powder that is applied to the center is put into Atleta: crushed and mixed for 1 G minutes to 16 hours, and is mainly composed of Amorphous soft magnetic alloy powder that flattens non-Ya-shaped soft magnetic alloy powder. Here, right
O:\86\86694.DOC -30- 1229700 扁平化前的上料晶形軟則±合金㈣難不進行熱處 理0 士藉由阿特萊塔進行的粉碎現合較佳進㈣分鐘〜16個小 日守的範圍内,較佳4〜8個小時範圍。 如果粉碎混合時間未達1G分鐘,扁平化未達,因此扁平 i非晶形軟磁性合金粉末的長寬比有無法在i以上,例如10 以上的傾向’如果粉劑混合時間超㈣個小時,扁平型非 :形軟磁性合金粉末的長寬比超過8〇以上。較佳扁平型非 軟兹1±。金粉末的厚度為〇1〜5微米的範圍(較佳卜2 微米)’同時長徑為卜⑽微米(較佳2〜8〇微米)。 得到的扁平型非晶形軟磁性合金粉末根據需要與上述實 施型態相同進行熱處理。 本實施型態的扁平型非晶形軟磁性合金粉末使用表面凹 的大致球狀的本只施型態的非晶形軟磁性合金粉末, 因此藉由阿特萊塔等加卫時,非晶形合金粉末沒有被細粉 碎’肊進行形狀均勻的扁平加工,得到形狀均勻的扁平化 赤子此種扁平型非晶形軟磁性合金粉末為製造電磁波吸 «’與樹脂等絕緣材料混合’此等粉末成層狀排列,因 此月b、’、致岔填充並且能減小扁平化粒子之間的間隙。 (壓粉核心的實施型態) 本發明實施型態的壓粉核心(壓粉磁心)是將一種或者幾 種上述本實施型態的大致球狀的非晶形軟磁性合金粉末與 絕緣材料、潤滑劑混合並進行造粒所成造粒粉末構成,上 述絕緣材料作為黏著劑進行@化成形。作為上述大致球狀O: \ 86 \ 86694.DOC -30- 1229700 The crystalline shape of the material before flattening is soft, but the alloy is not heat-treated. 0 The crushing by Atleta is better. The time is about 16 minutes. Within the range of day guard, the range of 4 to 8 hours is preferred. If the crushing and mixing time is less than 1G minutes and the flattening is not achieved, the aspect ratio of the flat i amorphous soft magnetic alloy powder cannot be higher than i, such as 10 or higher. 'If the powder mixing time exceeds ㈣ hours, the flat type Non-: shaped soft magnetic alloy powder has an aspect ratio of more than 80. The preferred flat type is 1 ±. The thickness of the gold powder is in the range of 0 to 5 micrometers (preferably 2 micrometers) 'and the long diameter is ⑽μm (preferably 2 to 80 micrometers). The obtained flat amorphous soft magnetic alloy powder is heat-treated as necessary in the same manner as in the above-mentioned embodiment. The flat amorphous soft magnetic alloy powder of this embodiment uses a substantially spherical amorphous soft magnetic alloy powder of a substantially spherical shape with a concave surface. Therefore, when a guard such as Atleta is used, the amorphous alloy powder Without being pulverized, 肊 flattened to a uniform shape to obtain a flat, uniform shape. This flat amorphous soft magnetic alloy powder is used to manufacture electromagnetic wave absorption «'mixed with insulating materials such as resin'. These powders are arranged in layers. Therefore, the months b, ', and the bifurcation fill and can reduce the gap between the flattened particles. (Implementation form of the powder core) The dust core (powder core) according to the embodiment of the present invention is one or more of the above-mentioned approximately spherical amorphous soft magnetic alloy powders of the present embodiment, an insulating material, and a lubricant. The powder is formed by mixing and granulating the agent, and the above-mentioned insulating material is used as an adhesive for @ 化 forming. As the above is roughly spherical
O:\86\86694.DOC -31 - 1229700 的非晶形軟磁性合金粉末,比阻抗較佳為15// Ω ιη以上。 邊壓粉核心的形狀例如如圖2所示,可舉出圓環狀的核心 21,形狀並不限於此,長圓環狀或者橢圓環狀都可。而且, 平面看大致Ε字肤、平面看大致π字狀、平面看大致j字狀 等都可。 該壓粉核心的上述造粒粉末被上述絕緣材料黏著,因此 組織中形成多種或者一種非晶形軟磁性合金粉末存在的狀 態,非晶形軟磁性合金粉末溶解,並不是構成均勻的組織。 而且,造粒粉末中的各非晶形軟磁性合金粉末較佳被絕緣 材料絕緣。 此,壓粉核心21中,非晶形軟磁性合金粉末與絕緣材料 混合存在,因此由於絕緣材料,壓粉核心自身的比阻抗增 大’過電流損失減小,纟高頻區域透磁率的降低減小。 如果非晶形軟磁性合金粉末的過冷卻液體的溫度間隔△ Τχ未達2GK ’在對非晶形軟磁性合金粉末和絕緣材料、潤滑 劑混合製造的造粒粉末進行壓縮成形後進行熱處理時,不 發生結晶化,難以充分緩和内部應力。 特別是,本實施型態的壓粉核心21較佳外加磁界Η.# kA/m的保磁力為80 A/m以下,較佳40 A/m以下。 構成本貫施型態的壓粉核心的絕緣材料提高壓粉核心的 比阻抗,同時形成含有非晶形軟磁性合金粉末的造粒粉 末,同時黏結形成的造粒粉末並保持壓粉核心的形狀,因 此較佳由對磁特性沒有大損失的材料構成,例如可舉出環 氧樹脂、聚石夕氧樹脂、$石夕氧橡膠、_樹脂、尿素樹脂、O: \ 86 \ 86694.DOC -31-1229700 amorphous soft magnetic alloy powder, the specific resistance is preferably 15 // Ω ιη or more. As an example of the shape of the side powder core, as shown in FIG. 2, a ring-shaped core 21 may be mentioned. The shape is not limited to this, and a long ring shape or an elliptical ring shape may be used. In addition, it may be substantially E-shaped in plan view, approximately π-shaped in plan view, or approximately J-shaped in plan view. The granulated powder of the powder core is adhered by the insulating material, so that a plurality of or one type of amorphous soft magnetic alloy powder exists in the structure, and the amorphous soft magnetic alloy powder dissolves, which does not constitute a uniform structure. Further, each of the amorphous soft magnetic alloy powders in the granulated powder is preferably insulated by an insulating material. Therefore, in the powder core 21, an amorphous soft magnetic alloy powder is mixed with an insulating material. Therefore, due to the insulating material, the specific resistance of the powder core itself is increased, the overcurrent loss is reduced, and the decrease in magnetic permeability in the high-frequency region is reduced. small. If the temperature interval of the supercooled liquid of the amorphous soft magnetic alloy powder △ Tχ is less than 2GK ', it will not occur when the granulated powder produced by mixing the amorphous soft magnetic alloy powder with the insulating material and the lubricant is subjected to heat treatment after compression molding. Crystallization makes it difficult to sufficiently alleviate internal stress. In particular, the powder core 21 according to this embodiment is preferably provided with a magnetic boundary Η. The coercive force of # kA / m is 80 A / m or less, and preferably 40 A / m or less. The insulating material forming the powder core of the conventional application type increases the specific resistance of the powder core, and simultaneously forms a granulated powder containing an amorphous soft magnetic alloy powder, and at the same time bonds the formed granulated powder and maintains the shape of the powder core. Therefore, it is preferably made of a material that does not have a large loss of magnetic properties, and examples thereof include epoxy resins, polysilicone resins, polysilicone rubbers, resins, urea resins,
O:\86\86694.DOC -32- 1229700 蜜胺甲醛樹脂、PVA(聚乙烯醇)等液態或者粉末狀的樹脂或 者橡膠、水玻璃(Na2〇_Si〇2)、氧化物玻璃粉末(Na2〇_ B2〇3-Si02、Pb0-B203 -Si02、Pb0-Ba0-Si02、Na2〇 -B2〇3- Zn〇、CaO- Ba〇- Si〇2、Al2〇3 — b2〇3 — Si〇2、b2〇3O: \ 86 \ 86694.DOC -32- 1229700 Liquid or powdery resins such as melamine formaldehyde resin, PVA (polyvinyl alcohol) or rubber, water glass (Na2〇_Si〇2), oxide glass powder (Na2 〇_ B2〇3-Si02, Pb0-B203-Si02, Pb0-Ba0-Si02, Na2〇-B2〇3-Zn〇, CaO-Ba〇-Si〇2, Al2〇3 — b2〇3 — Si〇2 , B2〇3
Sl〇2)、溶膠凝膠法生成的玻璃狀物質(以Si〇2、a12〇3、 Zr〇2、Ti〇2等為主要成份)等。 作為絕緣材料,可使用各種彈性體(橡膠)。 與絕緣材料一起還可同時使用選自硬脂酸鹽(硬脂酸 鋅、硬脂酸鈣、硬脂酸鋇、硬脂酸鎂、硬脂酸鋁等)中的潤 滑劑。 特別疋在上述絕緣材料中,較佳聚矽氧樹脂或者聚矽氧 橡膠。 ^夕氧橡膠通常是#具有高聚合度的直鏈狀有機石夕氧烷 的交聯體構成的橡膠狀彈性的橡膝。根據交聯方法,可分 $高溫型和室溫型,在本發明中較佳室溫型的。室溫型的 :夕氧橡膠疋使直鍵狀聚有機石夕氧烧與具有乙醜氧基、烷 ^ 肟基、異丙氧基等的矽烷化合物等交聯劑反應製備 、因此特別較佳使用具有乙酰氧基或者肟基的交聯劑。 2外」聚矽氧樹脂通常是指具有高度三元網路結構的有 機聚石夕氧貌的聚合物。藉由有機氣石夕烧或者有機烧氧基矽 烷的水解聚合或者環狀矽氧烷的開環聚合製造。 亡述,矽氧橡膠中’藉由具有烷氧基的交聯劑交聯製備 的水石夕乳橡膠的腐敍性小,可構成耐腐钮性優異的壓粉磁 心。而且’使用含有分子内具有正丁基的矽烷化合物的交Sl02), glassy substances produced by the sol-gel method (mainly composed of Si02, a1203, Zr02, Ti02, etc.). As the insulating material, various elastomers (rubbers) can be used. A lubricant selected from the group consisting of stearates (zinc stearate, calcium stearate, barium stearate, magnesium stearate, aluminum stearate, etc.) can be used together with the insulating material. In particular, among the above-mentioned insulating materials, a silicone resin or a silicone rubber is preferable. The oxygen rubber is usually a rubber-like elastic rubber knee composed of a crosslinked body of a linear organosparoxane having a high degree of polymerization. According to the cross-linking method, it can be divided into high temperature type and room temperature type, and the room temperature type is preferred in the present invention. Room temperature type: Oxygen rubber is particularly preferred because it is prepared by reacting straight-bonded polyorganic stone with a crosslinking agent such as ethoxyl, alkoxime, isopropoxy and other silane compounds. A cross-linking agent having an acetoxy group or an oxime group is used. "Outer 2" polysiloxane resins generally refer to polymers with a highly ternary network structure and organic polysilicon oxygen appearance. Manufactured by hydrolysis polymerization of organic gas ashite or organic oxysilane or ring-opening polymerization of cyclic siloxane. In other words, in the silicone rubber, the shuishixi latex rubber prepared by crosslinking with a cross-linking agent having an alkoxy group is less corrosive and can constitute a powder magnetic core having excellent corrosion resistance. And ’using a cross-link containing a silane compound with n-butyl in the molecule
O:\86\86694.DOC -33- 1229700 聯劑得到的聚石夕氧橡膠具有特別是優異彈性的性質。 因此對於本實施型態㈣粉核⑽言,如果使用藉由含 有具有正丁基的矽烷化合物的交聯劑製備的聚矽氧橡膠, 固化應力ΛΙ、’因此殘留在非晶形軟磁性合金粉末中的内部 應力小,非晶形軟磁性合金粉末的軟磁特性提高。藉此, 可大幅度降低壓粉核心的保磁力和核心損失。 本實施型態的壓粉核心丨所使用的造粒粉末的粒徑基於 上述理由,較佳粒徑為45微米以上5〇〇微米以下,較佳“微 米以上300微米以下,進一步較佳45微米以上15〇微米以下。 粒徑45微米以上500微米以下的造粒粉末的含量大於構 成壓粉核心1的整個造粒粉末的83重量%,或者粒徑未達45 微米的造粒粉末和粒徑大於5〇〇微米的造粒粉末的含量(夾 雜里)在整個造粒粉末的17重量%以下,可使將造粒粉末流 入壓粉核心製造用模具時的流動性良好,在能提高量產性 方面較佳,在15重量%以下更為較佳。 接著’參照附圖對本實施型態的壓粉核心的製造方法的 例子進行說明。 本發明的壓粉核心的製造方法由加入藉由水喷霧法得到 的本實施型態的大致球狀的非晶形軟磁性合金粉末和上述 絕緣材料、上述潤滑劑,進行混合造粒,形成造粒粉末的 步驟’將形成的造粒粉末壓縮成形形成核心前體的成形步 驟’和將上述核心前體在(Tg— 170)Κ以上(Tg)K以下的溫度 下進行熱處理,去除上述核心前體内部應力的熱處理步驟 構成。O: \ 86 \ 86694.DOC -33-1229700 The poly-silicone rubber obtained from the combination has particularly excellent elastic properties. Therefore, for the powder core of this embodiment, if a silicone rubber prepared by using a cross-linking agent containing a silane compound having n-butyl group is used, the curing stress Λ1, 'will remain in the amorphous soft magnetic alloy powder. The internal stress is small, and the soft magnetic properties of the amorphous soft magnetic alloy powder are improved. This can greatly reduce the coercive force and core loss of the powder core. The particle size of the granulated powder used in the powder core according to this embodiment is based on the above reasons. The preferred particle size is 45 micrometers or more and 500 micrometers or less, preferably "micrometers or more and 300 micrometers or less, further preferably 45 micrometers. The content of the granulated powder with a particle diameter of 45 microns or more and 500 microns or less is greater than 83% by weight of the entire granulated powder constituting the powder core 1, or the granulated powder and the particle diameter of less than 45 microns. The content (inclusion) of granulated powder larger than 500 microns is less than 17% by weight of the whole granulated powder, which can make the granulated powder flow into the powder core manufacturing mold with good fluidity, and can increase mass production. It is better in terms of performance, and more preferably 15% by weight or less. Next, an example of a method for manufacturing the powder core according to the embodiment will be described with reference to the drawings. The method for manufacturing the powder core according to the present invention is performed by adding water. The step of mixing and granulating the approximately spherical amorphous soft magnetic alloy powder of the embodiment obtained by the spray method with the above-mentioned insulating material and the above-mentioned lubricant to form a granulated powder. Granulated powder compression molding step forms the front body molding step core 'and the core body is subjected to heat treatment prior to the above-described in (Tg- 170) Κ above (Tg) at a temperature of K or less, the internal stress is removed before the above-described core member constituting the heat treatment step.
O:\86\86694.DOC -34- 1229700 在形成造粒粉末的步驟中,上述非晶形軟磁性合金粉末 和絕緣材料、潤滑劑混合的混合物中絕緣材料的夾雜率較 佳在〇_3重量%以上5重量%以下,較佳m以上3重量% 以下。 絕緣材料的夹雜率未達〇·3重量%時,無法將非晶形軟磁 性合金粉末和潤滑劑與該絕緣材料一起成形為預定的形 狀,因此為不佳者。而且,如果夹雜率超過5重量%,造粒 泰末中非晶形軟磁性合金粉末的加入密度降低,使用造粒 粉末製造的壓粉核心、中的#晶形軟磁性合金粉末的含有率❿ 降低,壓粉核心的軟磁特性降低,因此為不佳者。 而且,上述混合物中潤滑劑的夾雜率較佳為01重量%以 上2重量%以下,較佳〇丨重量%以上丨重量%以下。 潤滑劑的夾雜率未達0el重量%時,無法對非晶形軟磁性 合金粉末的流動性作相當的提高,因此不能期望造粒粉末 的製造效率的提高,而且,造粒粉末中的非晶形軟磁性合 金粉末的加入密度降低,結果,壓粉核心的軟磁特性降低,_ 因此為不佳者。而且,潤滑劑超過2重量%時,造粒粉末中 非晶形軟磁性合金粉末的加入密度降低,而且,壓粉核心 的機械強度降低,因此為不佳者。 如果形成上述造粒粉末,將形成的造粒粉末進行分級, . 選擇粒徑45微米以上500微米以下範圍的,較佳選擇45微米 -以上300微米以下範圍的,進一步較佳選擇45微米以上15〇 微米以下範圍的,在後續步驟使用。分級可使用筛網、振 動篩網、聲波篩網、氣流式分級機等。 O:\86\86694.DOC -35- 1229700 接著’進行將上述造粒粉末進行壓縮成形並形成磁心前 體的成形步驟。 而且’希望在壓縮成形之前蒸發造粒粉末中所含的溶 齊J、水分等,在非晶形軟磁性合金粉末的表面形成絕緣材 料層。 接著’壓縮造粒粉末製造磁心前體。核心前體的製造使 用圖3所示的模具110。該模具110由中空的圓筒型模m、 插入該模lU的中空部分1Ua中的上衝孔112和下衝孔113 構成。 在上衝孔112的下面,設置圓柱狀突起112a,將此等上衝 孔112、下衝孔113和模丨丨丨一體化,在模具i丨〇内部形成圓 環狀的模型。在該模具11〇中填充上述造粒粉末。 接者對模具11 〇中填充的造粒粉末施加單轴壓力,並在 至或者預定的溫度下加熱,進行壓縮成形。 在圖4中,表示壓縮成形時使用的適合放電電漿燒結裝置 的一個例子的關鍵部分。該例子的放電電漿燒結裝置以支 撐填充混合物的模具110和模具110的下衝孔113,將作為通 入後述的脈衝電流時一個電極的衝孔電極114和模具110的 上衝孔112向下側擠壓,將作為通入脈衝電流的另一個電極 的衝孔電極115和測定模具110内的造粒粉末溫度的熱電偶 17為主體構成。 此,該放電電漿燒結裝置放置在反應腔118内,該反應腔 m連接在圖示省略的真空排氣裝置和環境氣體的供給裝 置’其構成能將在模具110中填充的造粒粉末保持在惰性環 O:\86\86694.DOC -36 - 1229700 境等所需的環境下。 圖4中,通電裝置省略,但上下衝孔112、113和衝孔電極 114、115上可連接另外設置的通電裝置,構成為從該通電 裝置藉由衝孔112、in和衝孔電極114、115通入脈衝電流。 因此將填充有上述造粒粉末的模具丨1〇設置在放電電漿 燒結裝置中,向反應腔118内部引入真空,藉由衝孔112、 113從上下對混合物施加單軸壓力?,與此同時,施加脈衝 電流’對造粒粉末進行加熱,壓縮成形。 在Π亥放私電漿燒結處理中,藉由放電電流對造粒粉末以 預定的速度進行快速升溫,可縮短壓縮成形的時間,因此 適合於保持非晶形軟磁性合金粉末的非晶形相進行壓縮成 形0 在本發明中,將上述造粒粉末壓縮成形時的溫度因根摘 絕緣材料的種類和非晶形軟磁性合金粉末的組成而不同, 作為絕緣材料使用水玻璃、非晶形軟磁性使用心1 IV〇4C2.10B7.54Si4 η的組成的合金粉末時,為用絕緣材料黏 著造粒粉末彼此,必須為373K(1〇〇t)以上,而且,為使絕 緣材㈣融並且不從模具11()浸出,必須在673κ(彻。c)以 下。如果絕緣材料浸出,遷粉核心中的絕緣材料的含量降 低,覆粉核心的比阻技备供,古此土姚O: \ 86 \ 86694.DOC -34- 1229700 In the step of forming the granulated powder, the inclusion ratio of the insulating material in the mixture of the above-mentioned amorphous soft magnetic alloy powder, the insulating material, and the lubricant is preferably 0-3 weight. % Or more and 5% by weight or less, preferably m or more and 3% by weight or less. If the inclusion ratio of the insulating material is less than 0.3% by weight, the amorphous soft magnetic alloy powder and the lubricant cannot be formed into a predetermined shape together with the insulating material. Moreover, if the inclusion ratio exceeds 5% by weight, the addition density of the amorphous soft magnetic alloy powder in the granulated powder will decrease, and the content rate of the #crystalline soft magnetic alloy powder in the powder core made of the granulated powder will decrease. The soft magnetic characteristics of the powder core are reduced, so it is not good. The inclusion ratio of the lubricant in the mixture is preferably from 01% by weight to 2% by weight, and more preferably from 0% by weight to 1% by weight. When the inclusion ratio of the lubricant is less than 0el% by weight, the fluidity of the amorphous soft magnetic alloy powder cannot be sufficiently improved, and therefore, the improvement of the production efficiency of the granulated powder cannot be expected, and the amorphous softness in the granulated powder cannot be expected. The addition density of the magnetic alloy powder decreases, and as a result, the soft magnetic characteristics of the powder core decrease, so it is not good. In addition, when the lubricant exceeds 2% by weight, the addition density of the amorphous soft magnetic alloy powder in the granulated powder is lowered, and the mechanical strength of the powder core is lowered. If the above-mentioned granulated powder is formed, the granulated powder formed is classified.. The range of particle diameters of 45 micrometers and 500 micrometers is selected, preferably 45 micrometers to 300 micrometers and more preferably 45 micrometers and more 15 It is used in the following steps if it is less than 0 micron. For classification, screens, vibrating screens, sonic screens, and air-flow classifiers can be used. O: \ 86 \ 86694.DOC -35- 1229700 Then, the forming step of compressing the above-mentioned granulated powder to form a core precursor is performed. In addition, it is desirable to evaporate the dissolved J, moisture, and the like contained in the granulated powder before compression molding to form an insulating material layer on the surface of the amorphous soft magnetic alloy powder. Then, the powder was compressed to produce a magnetic core precursor. The core precursor is manufactured using a mold 110 shown in FIG. 3. The mold 110 is composed of a hollow cylindrical mold m, an upper punching hole 112 and a lower punching hole 113 inserted into the hollow portion 1Ua of the mold 1U. A cylindrical protrusion 112a is provided below the upper punching hole 112, and the upper punching hole 112 and the lower punching hole 113 are integrated with the die 丨 丨 丨 to form a circular ring-shaped mold inside the die i 丨 〇. This mold 11 is filled with the granulated powder described above. The contactor then applies uniaxial pressure to the granulated powder filled in the mold 110 and heats it at or to a predetermined temperature to perform compression molding. Fig. 4 shows the essential parts of an example of a suitable plasma sintering apparatus used in compression molding. The discharge plasma sintering device of this example supports the die 110 and the lower punch 113 of the die 110 filled with the mixture, and punches the electrode 114 and the upper punch 112 of the die 110 downward as one electrode when a pulse current described later is applied. The side extrusion is composed mainly of a punching electrode 115 which is another electrode to which a pulse current is applied, and a thermocouple 17 which measures the temperature of the granulated powder in the mold 110. Here, the discharge plasma sintering device is placed in the reaction chamber 118, and the reaction chamber m is connected to a vacuum exhaust device and an environmental gas supply device (not shown). The structure can hold the granulated powder filled in the mold 110. In the inert ring O: \ 86 \ 86694.DOC -36-1229700 environment and other required environments. In FIG. 4, the energizing device is omitted, but a separate energizing device may be connected to the upper and lower punch holes 112 and 113 and the punching electrodes 114 and 115. The energizing device is configured to pass the punching holes 112, in and the punching electrode 114, 115 passes a pulse current. Therefore, the mold filled with the granulated powder is set in a discharge plasma sintering device, a vacuum is introduced into the reaction chamber 118, and uniaxial pressure is applied to the mixture from above and below through the punching holes 112 and 113? At the same time, a pulsed current is applied to heat the granulated powder and compression-mold. During the sintering process of the plasma plasma, the granulated powder is rapidly heated at a predetermined speed by the discharge current, which can shorten the compression molding time. Therefore, it is suitable for compressing the amorphous phase of the amorphous soft magnetic alloy powder. Molding 0 In the present invention, the temperature at the time of compression molding the granulated powder is different depending on the type of the root insulation material and the composition of the amorphous soft magnetic alloy powder. Water glass is used as the insulating material, and the core of the amorphous soft magnetic material is used. In the case of an alloy powder having a composition of IV〇4C2.10B7.54Si4 η, in order to adhere the granulated powders to each other with an insulating material, it must be 373K (100t) or more. ) Leaching must be below 673κ (To. C). If the insulating material is leached, the content of the insulating material in the powder core is reduced, and the specific resistance technology of the powder coated core is available.
Hi几降低,同頻頻帶中的透磁率降低。 如果在373K(10(rc)以上贿(彻。c)以下的溫度範圍 下對造粒粉末進行I縮成形,可將絕緣材料適度固化,因 此黏著造粒粉末可形成為預定的形狀。 對於在屋縮成形時對造粒粉末施加的單㈣力p,如果遂The reduction in Hi frequency decreases the permeability in the same frequency band. If the granulated powder is subjected to I-shrink molding at a temperature range of 373K (10 (rc) or more (to .c)), the insulating material can be appropriately cured, so the adhesive granulated powder can be formed into a predetermined shape. The single force p exerted on the granulated powder during the shrink-forming process, if
O:\86\86694.DOC -37- 1229700 力太低’壓粉核心的密度無法提高,不能形成緻密的壓粉 核心。而如果壓力過高,絕緣材料浸出,壓粉核心中的絕 緣材料的含量降低,壓粉核心的比阻抗降低,高頻頻帶的 透磁率降低。因此單軸壓力p因絕緣材料的種類和非晶形軟 磁性合金粉末的組成而不同,在絕緣材料使用水玻璃、非 日曰形幸人磁性使用Fe74.43Cl*i 96P9.04C2.16B7 54Si4.87的組成時, 較佳600 MPa以上1500 MPa以下,較佳600 MPa以上900 MPa 以下。 此就得到圓環狀的磁心前體。 在對模具110中填充的造粒粉末施加單軸壓力在室溫下 壓縮成形時,除不連接通電裝置之外,使用與圖4所示的裝 置相同構成的壓製裝置,可製造圓環狀磁心前體。 另外,作為絕緣材料使用聚矽氧樹脂時,上述成形步驟 中,藉由在常溫下對造粒粒子進行壓縮成形,可得到預定 形狀的磁心前體。 由於聚矽氧樹脂具有彈性,固化應力小,非晶形軟磁性 合金粉末中殘留的内部應力小。因此除磁質伸縮的影響, 非晶形軟磁性合金粉末的軟磁特性提高。藉此,壓粉核心 的保磁力和核心損失可大幅度降低。 特別是,如上所述,使用含有分子内具有正丁基的矽烷 化合物的交聯劑得到的聚矽氧橡膠,彈性特別優異,固化 應力特科,非晶形軟磁性合金粉末中殘留的内部應力極 小,進而提高非晶形軟磁性合金粉末的軟磁特性,可大幅 度降低壓粉核心的保磁力及核心損失。O: \ 86 \ 86694.DOC -37- 1229700 Force is too low ’The density of the powder core cannot be increased and a dense powder core cannot be formed. If the pressure is too high, the insulating material leaches, the content of the insulating material in the powder core decreases, the specific impedance of the powder core decreases, and the magnetic permeability of the high frequency band decreases. Therefore, the uniaxial pressure p varies with the type of insulating material and the composition of the amorphous soft magnetic alloy powder. Water glass is used for the insulating material, and Fe74.43Cl * i 96P9.04C2.16B7 54Si4.87 is used for the magnetic material. In the composition, it is preferably 600 MPa to 1500 MPa, and more preferably 600 MPa to 900 MPa. This gives a toroidal core precursor. When uniaxial pressure is applied to the granulated powder filled in the mold 110 and compression-molded at room temperature, a ring-shaped magnetic core can be manufactured using a pressing device having the same configuration as the device shown in FIG. 4 except that the energizing device is not connected. Precursor. When a silicone resin is used as the insulating material, in the above-mentioned forming step, the granulated particles are compression-molded at ordinary temperature to obtain a core precursor having a predetermined shape. Due to the elasticity of the silicone resin, the curing stress is small, and the internal stress remaining in the amorphous soft magnetic alloy powder is small. Therefore, in addition to the influence of magnetostriction, the soft magnetic properties of the amorphous soft magnetic alloy powder are improved. As a result, the coercive force and core loss of the powder core can be greatly reduced. In particular, as described above, the silicone rubber obtained by using a cross-linking agent containing a silane compound having n-butyl in the molecule is particularly excellent in elasticity, the curing stress is special, and the residual internal stress in the amorphous soft magnetic alloy powder is extremely small. , And further improve the soft magnetic characteristics of the amorphous soft magnetic alloy powder, which can greatly reduce the coercive force and core loss of the powder core.
O:\86\86694.DOC -38 - 1229700 在使用聚矽氧樹脂時,對於壓縮成形時在造粒粉末上施 加的壓力,如果壓力太低,壓粉核心的密度無法提高,無 法形成緻密的壓粉核心。如果壓力過高,衝孔的消耗激增, 為消除成形、生的應力,需 此壓力因非晶形軟磁性合金粉末的組成而不同,非晶形軟 磁性合金粉末使用Fe74.43Cri.96p9 〇4C2 16B7 54Si4 87而成的組 成時,較佳500 MPa以上2500 MPa以下,較佳1000 Mpa# 上2000 MPa以下。 作為特別是構成壓粉核心的造粒粉末中所含的非晶形軟 磁性合金粉末,使用平均粒徑(D一大於4微米並且在45微米 以下,振實密度為3.7 Mg/m3以上,比表面積為〇 3 m2/g以 下,氧濃度為3000 ppm以下的時,可使頻率1〇〇 kHz、磁束 密度〇· 1 τ條件下測定時的核心損失(w)在45〇 kw/m3以下與 現有壓粉核心相比,核心損失大幅度降低。而且,能使直至 頻率1 MHz的複合透磁率的實數部#,基本上固定在”〜 8〇’使直流偏壓磁界5500 Am-!時的直流重疊特性㈨,dc5_) 基本固定在30〜34.5,因此在用作磁心時容易使用。 作為上述非晶形軟磁性合金粉末,使用平均粒徑⑴一大 於4微米,並且在16微米以下,振實密度在4 〇Mg/m3以上, 比表面積在0.23 m2/g以下,氧濃度在2〇〇〇 ppm以下的情況 下,可使在頻率100 kHz、磁束密度〇1T的條件下測定時的 核心損失(W)在250 kW/m3以下。而且,能使直至頻率1 ΜΗζ 57〜75 ’使直流偏 ’DC5500)基本固定在 的複合透磁率的實數部#,基本上固定在 壓磁界5 5 00 Am 時的直流重叠特性(从 O:\86\S6694.DOC -39- 1229700 30〜36’因此在用作磁心時容易使用。 下面進行對上述核心前體進行熱處理並去除核心前體内 部應力的熱處理步驟。如果將核心前體在預定的溫度範圍 内進行熱處理,可去除粉末製造步驟或者成形步驟中産生 的核心前體自身的内部應力和核心前體中包含的非晶形軟 磁性合金粉末的内部應力,能製造保磁力低的壓粉核心。 熱處理溫度較佳在(Tg— 170)K以上(Tg)K以下的範圍,較 佳在(Tg— 160)K以上(Tg—5)K以下的範圍,進一步較佳在 (Tg— 140)K以上(Tg~l〇)K以下的範圍,最較佳在(Tg — 110)K以上(Tg—l〇)K以下的範圍。 如果將核心前體在(Tg— 160)K以上(Tg — 5)K以下的溫度 範圍内進行熱處理,可製造例如外加磁界±2.4 kA/m下的保 磁力為100 A/Μ以下的壓粉核心,如果在(Tg — 140)Κ以上(Tg —ίο)以下的溫度熱處理,可得到如外加磁界±2 4kA/m下的 保磁力為80 A/Μ以下的壓粉核心’進而,如果將上述核心 前體在(Tg— 110)K以上(Tg— 10)K以下的溫度進行熱處理, 可得到例如外加磁界±2.4 kA/m下的保磁力為40 A/m以下的 壓粉核心。 熱處理溫度未達(Tg— 170)K時’無法充分去除核心前體 的内部應力,因此為不佳者,如果超過(Tg)K,非晶形軟磁 性合金粉末結晶化,保磁力增大,因此為不佳者。 在例如Fe74.43Cru6P9.04C2.i6B7.54Si4.87而成的組成的合金 粉末的情況下,Tg為780K,較佳使熱處理溫度為61〇k(337 °C)〜780K(507t:)的範圍,較佳使熱處理溫度為620k(347 O:\86\86694.DOC -40 - !229700 。〇〜皿(5〇rc)的範圍,進—步較佳使熱處理溫度為 640K(367t)〜7狐(49n:)的範圍,最較佳使熱處理溫度 為 670K (397°c )〜770K (497°c )的範圍。 特別是絕緣材料使用聚石夕氧橡膠時,較佳使埶處理溫产 為670K (3听)〜770K (497t )的範圍。使用聚石夕氧樹: 時’如果熱處理溫度未達670K’無法充分去除核心前體的 内部應力’因此為不佳者,如果熱處理溫度超過773K時, 聚石夕氧橡膠過度分解,壓粉核心的強度降低,因此為不佳 者。 作為絕緣材料使用聚⑦氧橡料,較錢熱處理的環境 為真空環境或者氣氣環境、氬氣等惰性氣體環境,特別較 佳氮氣環境。 藉由上述熱處理,可得到本實施型態的圓環狀壓粉核心 21 〇 此得到的Μ粉核心21含有本實施型態的非晶形軟磁性合 金粉末,因此在室溫下具有優異的軟磁特性,或者藉由熱 處理顯不更加良好的軟磁特性。 因此作為具有優異軟磁特性的材料,能將該遂粉核心用 作各種磁元件的磁^,與現有材料㈣,能得到具有優異 磁特性的磁心。 β述°兄月中’使用對造粒粉末藉由放電電漿燒結裝置 成、=細成形的方法,但是益不限於此,藉由通常的粉末 ,、熱磨法、榜出法等方法進行麼縮成形,也可得到O: \ 86 \ 86694.DOC -38-1229700 When using silicone resin, for the pressure applied to the granulated powder during compression molding, if the pressure is too low, the density of the powder core cannot be increased and a dense compact cannot be formed. Powder core. If the pressure is too high, the consumption of punching will increase sharply. In order to eliminate the forming and stress, this pressure needs to be different depending on the composition of the amorphous soft magnetic alloy powder. Fe74.43Cri.96p9 〇4C2 16B7 54Si4 When the composition is 87, it is preferably 500 MPa or more and 2500 MPa or less, and more preferably 1000 MPa or more and 2000 MPa or less. As the amorphous soft magnetic alloy powder contained in the granulated powder constituting the powder core, an average particle diameter (D greater than 4 microns and less than 45 microns, a tap density of 3.7 Mg / m3 or more, and a specific surface area are used. When the concentration is 〇3 m2 / g or less and the oxygen concentration is 3,000 ppm or less, the core loss (w) when measured under the conditions of a frequency of 100 kHz and a magnetic flux density of 0.1 τ may be less than 45 kW / m3 and the conventional Compared with the powder core, the core loss is greatly reduced. Moreover, the real number part #, which can achieve a composite permeability of up to 1 MHz, is basically fixed at "~ 80" when the DC bias voltage is 5500 Am-! Overlap characteristics ㈨, dc5_) are basically fixed at 30 ~ 34.5, so it is easy to use when used as a magnetic core. As the above amorphous soft magnetic alloy powder, use an average particle size ⑴ greater than 4 microns and less than 16 microns, tap density In the case of 40 Mg / m3 or more, a specific surface area of 0.23 m2 / g or less, and an oxygen concentration of 2000 ppm or less, the core loss can be measured at a frequency of 100 kHz and a magnetic flux density of 0T ( W) is below 250 kW / m3. The real number part of the composite magnetic permeability that can basically fix the frequency up to 1 ΜΗζ 57 ~ 75 'make the DC bias' DC5500), basically fixed at the DC magnetic overlap characteristic at 5 5 00 Am (from O: \ 86 \ S6694.DOC -39- 1229700 30 ~ 36 ', so it is easy to use when used as a magnetic core. The following is a heat treatment step of heat treating the core precursor and removing the internal stress of the core precursor. If the core precursor is in a predetermined temperature range Internal heat treatment can remove the internal stress of the core precursor itself generated in the powder manufacturing step or the forming step and the internal stress of the amorphous soft magnetic alloy powder contained in the core precursor, and can produce a powder core with low coercive force. The temperature is preferably in the range of (Tg-170) K or more (Tg) K or less, preferably in the range of (Tg-160) K or more (Tg-5) K or less, and more preferably in the range of (Tg-140) K or more The range of (Tg ~ 10) K or less is most preferably the range of (Tg-110) K or more and (Tg-10) K. If the core precursor is (Tg-160) K or more (Tg-5) ) Heat treatment in a temperature range below K, For example, if a powder core with a magnetic field of ± 2.4 kA / m and a coercive force of 100 A / M or less is manufactured, if it is heat-treated at a temperature of (Tg — 140) K or more (Tg — ί), it can be obtained as an external magnetic field of ± 2 A powder core having a coercive force of 4 A / m or less at 80 A / M or less. 'Furthermore, if the core precursor is heat-treated at a temperature of (Tg-110) K or more and (Tg-10) K or less, for example, an additional A powder core with a magnetic field of ± 2.4 kA / m and a coercive force of 40 A / m or less. When the heat treatment temperature does not reach (Tg- 170) K, the internal stress of the core precursor cannot be sufficiently removed, so it is not good. If it exceeds (Tg) K, the amorphous soft magnetic alloy powder crystallizes and the coercive force increases. For the poor. In the case of an alloy powder having a composition of, for example, Fe74.43Cru6P9.04C2.i6B7.54Si4.87, the Tg is 780K, and the heat treatment temperature is preferably in the range of 61Ok (337 ° C) to 780K (507t :). The heat treatment temperature is preferably 620k (347 O: \ 86 \ 86694.DOC -40-! 229700). The range of heat treatment is preferably 640K (367t) ~ 7. In the range of fox (49n :), the heat treatment temperature is most preferably in the range of 670K (397 ° c) to 770K (497 ° c). Especially when polyisocyanate rubber is used as the insulating material, it is preferable to make the osmium treatment warm. The range is from 670K (3 tones) to 770K (497t). When using polylithic oxygen tree: When 'if the heat treatment temperature is not reached 670K', the internal stress of the core precursor cannot be sufficiently removed ', so it is poor if the heat treatment temperature exceeds At 773K, the polysilicone rubber is excessively decomposed, and the strength of the powder core is reduced, so it is not good. Use polyfluoride rubber as the insulation material. The environment for the more expensive heat treatment is vacuum environment or gas environment, argon, etc. An inert gas environment, and particularly a nitrogen environment is preferred. Type of ring-shaped pressed powder core 21 〇 The obtained M powder core 21 contains the amorphous soft magnetic alloy powder of the present embodiment, and therefore has excellent soft magnetic characteristics at room temperature, or is not better by heat treatment. Therefore, as a material with excellent soft magnetic properties, this powder core can be used as the magnetic material of various magnetic elements, and compared with existing materials, a magnetic core with excellent magnetic properties can be obtained. The method for forming the granulated powder by a discharge plasma sintering device is a fine forming method, but the benefits are not limited to this. It can also be obtained by ordinary powder, thermal milling, and extrusion methods.
本發明的壓粉核心。 于JThe powder core of the present invention. In J
O:\86\86694.DOC »41 - 1229700 在上述說明中,說明使用模具製造圓環狀壓粉核心的方 法,但是並不限於此,製造塊狀成形體,將其切削加工, 切成圓環狀、棒狀、平面看大致E字狀、平面看大致口字狀 等形狀,可製造各種形狀的壓粉核心。 根據實施型態的壓粉核心’對使用具有優異軟磁特性並 :體積密度高’表面凹凸少,成形為大致球狀的本實施型 態的非晶形軟磁性合金粉末製造的造粒粉末進行固化成 形,因此可提高壓粉核心的成形密度,並且保持粉末之間 的絕緣高磁特性。而且,使用藉由水噴霧法製造的本 實施型態的非晶形軟磁性合金粉末,提高量産性。 另外,藉由在造粒粉末製造後不加入潤滑劑,在造粒粉 末製造階段加入潤滑劑,製造造粒粉末時的非晶形軟磁性 合金粉末之間滑動良好,可提高造粒粉末的製造效率,而 且,在造粒粉末内緻密地含有非晶形軟磁性合金粉末,因 此&粒叙末的饮度提咼,結果,得到軟磁特性優異的壓粉 核心。 藉由水噴務法得到的非晶形軟磁性合金粉末由平均粒徑 小並且大致球狀的粒子構成,因此如果將該非晶形軟磁性 合金粉末用於壓粉核心,可得到飽和磁化量高,核心損失 低,亚且透磁率相對於外加磁界的變化的變化率(振幅透磁 率)和電感的變化率(直流重疊特性)優異的壓粉核心。 作為使用本實施型態的造粒粉末的壓粉核心,並不限於 上述形狀,圖6所示的J字型壓粉核心41、圖7所示具有將圓 環的一部分切下形成缺口部分的形狀的槽的壓粉核心“也O: \ 86 \ 86694.DOC »41-1229700 In the above description, a method for manufacturing a ring-shaped powder core using a mold is described, but it is not limited to this. A block-shaped formed body is manufactured, cut and processed into a circle. It can be made into a ring shape, a rod shape, a substantially E shape in a plan view, and a substantially mouth shape in a plan view, and various types of powder cores can be manufactured. According to the powder compact core according to the implementation form, the granulated powder produced by using the amorphous soft magnetic alloy powder of this embodiment having excellent soft magnetic characteristics and high bulk density and having a small surface unevenness and being formed into a substantially spherical shape is solidified. Therefore, the forming density of the powder core can be improved, and the high magnetic insulation characteristics of the powder can be maintained. In addition, the use of the amorphous soft magnetic alloy powder of this embodiment produced by a water spray method improves mass productivity. In addition, the lubricant is not added after the granulated powder is manufactured, and the lubricant is added during the granulated powder manufacturing stage. The amorphous soft magnetic alloy powder during the granulated powder manufacturing has good sliding properties, which can improve the manufacturing efficiency of the granulated powder. Furthermore, since the amorphous soft magnetic alloy powder is densely contained in the granulated powder, the drinkability at the end of the granule is improved, and as a result, a powder core having excellent soft magnetic properties is obtained. The amorphous soft magnetic alloy powder obtained by the water jet method is composed of particles having a small average particle size and approximately spherical shapes. Therefore, if the amorphous soft magnetic alloy powder is used as a powder core, a high saturation magnetization and a core can be obtained. Compact powder core with low loss, excellent change rate (amplitude permeability) and change rate of inductance (DC overlap characteristic) of the permeability relative to the change of the applied magnetic field. The powder core using the granulated powder according to this embodiment is not limited to the shape described above. The J-shaped powder core 41 shown in FIG. 6 and FIG. 7 are formed by cutting out a part of a ring to form a notched portion. The shape of the grooved powder core "also
〇 \86\86694.DOC -42- 1229700 是本發明的壓粉核心。此等壓粉核心41和51的製造方法, 除模具形狀不同之外,可與上述實施型態的壓粉核心21的 製造方法相同地藉由壓縮成形來製造,或者,藉由形狀塊 狀成形體,將其進行切削加工來製造。在此等壓粉核心41 和51中,可獲得上述實施型態的壓粉核心21相同的作用效 果。 特別是,J字形的壓粉核心41可用作配置在電磁感應型加 熱器(IH型加熱器)中的線圈用磁心。作為此種汨型加熱器 的大致構成,例如在釜(被加熱物)的下面設置線圈,在該線 圈的下部,配置j字形的壓粉核心41。在m型加熱器中,藉 由線圈將該釜加熱,作為線圈用磁心,配置核心損失小的 本貫施型態的J字形壓粉核心41,可實現提高發熱效率的ih 型加熱器。 (電磁波吸收體的實施型態) 本貫施型恶的電磁波吸收體是混合上述本實施型態的扁 平型非晶形軟磁性合金粉末和絕緣材料而成的。加入至電 磁波吸收體中的多個扁平型非晶形軟磁性合金粉末在上述 緣材料中成層狀排列。 、'此處使用的絕緣材料,可使用兼具絕緣性和黏著劑的材 料’可4自氯乙烯、聚丙烯、ABS樹脂、酚醛樹脂、氯化 聚乙烯、矽樹脂、矽橡膠等熱塑性樹脂,在此等熱塑性樹 月曰中,氯化聚乙烯在加工性方面特別較佳。 、 對於此種氯化聚乙稀,發揮被認為在聚乙稀和聚氯乙缚 中門的特丨生,可使用含氯量例如為30〜45原子0/〇,伸展率 0: \86\86694. D〇〇 -43- 1229700 孟納黏度為35〜75 (Ms 1+4:10〇t:) 例如為420〜800原子% 等特性的氯化聚乙烯。 本發明電磁波吸收體的其他型態為,混合上述本實施型 態㈣平型非晶形軟磁性合金粉末和聚魏彈性體構成的 黏著劑,固化成形為片狀。 在目前的電磁波吸收體令’除上述本實施型態的扁平型 非晶形軟磁性合金粉末和作為黏㈣的_之外,還可加 入由硬脂酸鋁構成的潤滑劑,進而還可加入矽烷偶合劑。 在前的電磁波吸收體是將上述本實施型態的扁平型非晶 形軟磁性合金粉末與作為黏著劑的樹脂―起固化成形,因 此本實施型態的扁平型非晶形軟磁性合金粉末分散在樹脂 内邛,並且形成在樹脂中成層狀排列的結構。 、,而且’在前的其他電磁波吸收體是上述本實施型態的扁 平型非晶形軟磁性合金粉末與聚⑪氧彈性體構成的黏著劑 -起固化成形,因此本實施型態的扁平型非晶形軟磁性合 金粉末分散,並且在黏著劑中成層狀排列,特別較佳的是 各扁平型非晶形軟磁性合金粉末被聚矽氧彈性體都被絕 緣0 由於上述本實施型態的扁平型非晶形軟磁性合金粉末被 樹脂黏著劑絕緣,因此電磁波吸收體本身的阻抗被提高, 此抑制過電流的產生,可將數百MHz〜數GHz的頻率頻帶中 複合透磁率的虛數部分#,,(下面稱為虛數透磁率"”)在幅 度寬的範圍内提高,可提高高頻頻帶的電磁波抑制效果。 在前的電磁波吸收體中,使用熱塑性樹脂作為黏著劑,i〇 \ 86 \ 86694.DOC -42-1229700 is the powder core of the present invention. The manufacturing method of these powder cores 41 and 51 can be manufactured by compression molding in the same manner as the method of manufacturing the powder core 21 of the above embodiment, except that the mold shape is different. The body is manufactured by cutting. In these powder cores 41 and 51, the same effects as those of the powder core 21 of the above embodiment can be obtained. In particular, the J-shaped powder core 41 can be used as a magnetic core for a coil arranged in an electromagnetic induction heater (IH heater). As a general configuration of such a 汨 -type heater, for example, a coil is provided under a kettle (object to be heated), and a j-shaped powder core 41 is arranged below the coil. In the m-type heater, the kettle is heated by a coil, and as a coil core, a J-shaped powder core 41 with a small core loss is arranged to realize an ih-type heater with improved heating efficiency. (Implementation type of electromagnetic wave absorber) The electromagnetic wave absorber of the present embodiment is made by mixing the flat flat amorphous soft magnetic alloy powder and the insulating material of the above embodiment. A plurality of flat amorphous soft magnetic alloy powders added to the electromagnetic wave absorber are arranged in layers in the edge material. "'The insulating material used here can use materials with both insulation and adhesive properties.' May be made of thermoplastic resins such as vinyl chloride, polypropylene, ABS resin, phenolic resin, chlorinated polyethylene, silicone resin, and silicone rubber. Among these thermoplastic trees, chlorinated polyethylene is particularly preferable in terms of processability. For this kind of chlorinated polyethylene, it can be used as the gate of polyethylene and polyvinyl chloride. The chlorine content can be 30 ~ 45 atoms 0 / 〇, elongation 0: \ 86 \ 86694. D〇〇-43-1229700 A chlorinated polyethylene having a Muna viscosity of 35 to 75 (Ms 1 + 4: 10〇t :), such as 420 to 800 atomic%. In another form of the electromagnetic wave absorber of the present invention, an adhesive composed of the above-mentioned flat-type amorphous soft magnetic alloy powder of the present embodiment and a polywei elastomer is mixed to form a sheet. In the current electromagnetic wave absorber, in addition to the above-mentioned flat amorphous soft magnetic alloy powder of the present embodiment and _ as a viscosity, a lubricant composed of aluminum stearate can be added, and silane can be further added. Coupling agent. The previous electromagnetic wave absorber is formed by solidifying the flat amorphous soft magnetic alloy powder of the present embodiment and the resin as an adhesive, so the flat amorphous soft magnetic alloy powder of the present embodiment is dispersed in the resin. It is internally formed in a layered structure in the resin. In addition, the other electromagnetic wave absorbers in the foregoing are the adhesives composed of the flat amorphous soft magnetic alloy powder of the present embodiment described above and the polyfluorinated elastomer, and are formed by curing. The crystalline soft magnetic alloy powder is dispersed and arranged in layers in an adhesive. It is particularly preferred that each flat amorphous soft magnetic alloy powder is insulated by a polysiloxane elastomer. Because of the flat type of the embodiment described above, The amorphous soft magnetic alloy powder is insulated by the resin adhesive, so the impedance of the electromagnetic wave absorber itself is increased. This suppresses the generation of overcurrent, and can imaginary part of the composite permeability in the frequency band of several hundred MHz to several GHz # ,, (Hereinafter referred to as "Imaginary Permeability") can be increased in a wide range to improve the electromagnetic wave suppression effect in the high frequency band. In the former electromagnetic wave absorber, a thermoplastic resin is used as an adhesive, i
O:\86\86694.DOC -44- 1229700 GH 透磁率Π 6以上。虛數透磁率〆,為6以上時, HIS磁波抑制效果提高,能有效地遮蔽高頻電磁 磁波吸收體可辑r科析认 〜為軟貝的,作為電 山^_ 獲侍卓人貝的,例如象平板凸輪那樣用自由指 端力就可變形的形自t . r ; t ^ 4。例如猎由以上述聚矽氧彈性體作為 別,具有柔軟得多的隨意變形的特徵。 在別的电磁波吸收體中,使用聚々氧彈性體作為黏結劑 的,,可獲得! GHz的虛數透磁率# ”在1()以上。虛數透磁率 U在^乂上^ ’ GHZ頻帶的電磁波抑制效果提高,能有效 地遮蔽南頻電磁波,因此較佳。 聚石夕氧彈性體和氯化聚乙烯除提高電磁波吸收體的阻抗 之外,還黏結本實施型態的扁平型非晶形軟磁性合金粉 末^呆持電磁波吸收體的形狀。而且,㈣氧彈性體壓縮 成形性優異’因此即使在常溫下固化成形,也能構成高強 度的電磁波吸收體。進而’聚矽氧彈性體和氯化聚乙烯即 使在電《吸收體内部也具有足狗的彈十生,即使在使用具 ^例如lXHT6〜5()xl(r6的磁f伸縮常數的非晶形軟磁性 合金粉末的情況下,也能緩和變形,緩和電磁波吸收體的 内部應力,提高虛數透磁率#,,。 而且,如果在上述樹脂中加入由硬脂酸鋁構成的潤滑 劑,本實施型態的扁平型非晶形軟磁性合金粉末緻密填 充,黾磁波吸收體的岔度提高。藉此,虛數透磁率g,,提高。 如果在上述樹脂中加入矽烷偶合劑,本實施型態的扁平 型非晶形軟磁性合金粉末與聚矽氧彈性體因矽烷偶合劑形 〇 \86\86694 D〇C -45- !229700 成強結合,在扁平型非晶形軟磁性合金粉末的表面均勻覆 蓋聚矽氧彈性體。藉此扁平型非晶形軟磁性合金粉末彼此 的絕緣性提高,虛數透磁率# ”提高。 在本實施型態的電磁波吸收體中,由於本實施型態的扁 平型非晶形軟磁性合金粉末在絕緣材料中成層狀排列,因 此在電磁波吸收體中可緻密填充’並且能減小扁平化粉束 彼此之間的間$,而且上述扁平化粉末與大致球狀的非晶 形軟磁性合金粉末㈣,長寬比增大,電磁波吸收體本身 的阻抗增大,抑制過電流的發生。具體地說,如果扁平型 非晶形軟磁性合金粉末的長寬比在UXJL,粒子彼此的接觸 減小’電磁波吸收體本身的阻抗增A,過電流的發生受至 抑制,GHz頻帶的虛數透磁率# ”容易在6以上,藉此電磁波 吸收體的電磁波抑制效果提高。 如果扁平型非晶形軟磁性合金粉末的長寬比在ι〇以上, 粒子彼此的接觸更少’電磁波吸收體本身的阻抗增大的玻 璃增加’過電流的發生得到抑制,GHz頻帶的虛數透磁率 〔容易在1〇以上’藉此,電磁波吸收體的電磁波抑制效果 長寬比的上限較佳為8〇〇以下。如果長寬比在8〇〇以下 爲平型非晶形軟磁性合金粉末本身的反磁界不會變得 小’低周波頻帶下的複合透磁率的實數部分〆(下面稱為 效透磁率Μ彳被抑制得低,與㈣照,虛數透磁 容易在6以上,電磁波抑制效果提高。 長寬比的上限較佳在3⑻以下,如果長寬比在鳩以下O: \ 86 \ 86694.DOC -44- 1229700 GH Permeability Π 6 or more. When the imaginary magnetic permeability is 以上 6 or higher, the HIS magnetic wave suppression effect is improved, and it can effectively shield the high-frequency electromagnetic magnetic wave absorber. It can be identified as a soft shell, as an electric mountain For example, a flat cam can be deformed from t. R; t ^ 4 by using a free finger end force. For example, the above-mentioned polysiloxane elastomer is distinguished by a feature that it has a much softer random deformation. In other electromagnetic wave absorbers, using polyfluorene elastomer as a binder, you can get! The imaginary magnetic permeability # of GHz is above 1 (). The imaginary magnetic permeability U is above ^ 乂 ^ 'The electromagnetic wave suppression effect of the GHZ band is improved, and it can effectively shield the electromagnetic waves of the south frequency, so it is better. In addition to increasing the impedance of the electromagnetic wave absorber, the chlorinated polyethylene also adheres to the flat amorphous soft magnetic alloy powder of this embodiment ^ the shape of the electromagnetic wave absorber. Moreover, the oxygenated elastomer has excellent compression moldability. Even if it is cured and molded at normal temperature, it can also form a high-strength electromagnetic wave absorber. Furthermore, “polysiloxane elastomer and chlorinated polyethylene have the full life span of dogs even in the electric absorber. For example, in the case of an amorphous soft magnetic alloy powder with a magnetic f expansion constant of lXHT6 ~ 5 () xl (r6), it can also ease the deformation, alleviate the internal stress of the electromagnetic wave absorber, and increase the imaginary magnetic permeability #. A lubricant made of aluminum stearate is added to the above resin, and the flat amorphous soft magnetic alloy powder of this embodiment is densely packed, and the degree of chirping of the magnetic wave absorber is improved. The magnetic permeability, g, is increased. If a silane coupling agent is added to the above resin, the flat amorphous soft magnetic alloy powder and the polysiloxane elastomer of this embodiment form a silane coupling agent 〇 \ 86 \ 86694 D〇C -45-! 229700 Strongly bond, uniformly cover the surface of the flat amorphous soft magnetic alloy powder with polysiloxane elastomer. This makes the flat amorphous soft magnetic alloy powder have better insulation with each other and imaginary permeability # In the electromagnetic wave absorber of this embodiment, since the flat amorphous soft magnetic alloy powder of this embodiment is arranged in layers in the insulating material, the electromagnetic wave absorber can be densely packed and the flatness can be reduced. Between the powder bundles, and the flattened powder and the approximately spherical amorphous soft magnetic alloy powder, the aspect ratio increases, the impedance of the electromagnetic wave absorber itself increases, and the occurrence of overcurrent is suppressed. Specifically In other words, if the aspect ratio of the flat amorphous soft magnetic alloy powder is UXJL, the contact between the particles is reduced. The impedance of the electromagnetic wave absorber itself increases by A, and the overcurrent If it is suppressed, the imaginary permeability # in the GHz band is easily above 6 so that the electromagnetic wave suppression effect of the electromagnetic wave absorber is improved. If the aspect ratio of the flat amorphous soft magnetic alloy powder is above ι0, the Less contact 'Increase in the glass of the electromagnetic wave absorber itself' Increase in glass 'The occurrence of overcurrent is suppressed, and the imaginary magnetic permeability in the GHz band [easily above 10' is used. As a result, the electromagnetic wave suppression effect of the electromagnetic wave absorber has an aspect ratio The upper limit is preferably 800 or less. If the aspect ratio is 800 or less, the diamagnetic boundary of the flat amorphous soft magnetic alloy powder itself will not become small. The real part of the composite magnetic permeability in the low frequency band 〆 ( It is hereinafter referred to as that the effective magnetic permeability M , is suppressed to be low, and the imaginary number magnetic permeability is easy to be 6 or more with the irradiation, and the electromagnetic wave suppression effect is improved. The upper limit of the aspect ratio is preferably below 3⑻, if the aspect ratio is below the dove
O:\86\86694.DOC -46- 1229700 扁平化粒子本身的 透磁率的告# 小a灸侍過小,低頻頻帶的複合 处兹丰的實數部分以,(下面稱為 更低,盥μ 吋㈣冉為貝效透磁率"可被抑制得 制效果進—步提高。 …1。以上,電磁波抑 μ本!施型態的電磁波吸收體的密度較佳在3.0 gW以 穷殖I度如果在3〇 g/cm3以上,非晶形軟磁性合金粉末緻 :、、,’扁平粒子彼此的間隙減少,因此GHz頻帶的虛數 、磁率β ”容易在1〇以上,電磁波抑制效果提高。 、包磁波吸收體的密度越高越好,但是如果相當高,扁平 里粒子過於緻欲填充,電磁波吸收體的阻抗降低,産生過 电流’虛數透磁率#”降低。因此較佳以電磁波吸收體密度 的上限為6.5 g/cm3。 本貝施型態電磁波吸收體中扁平型非晶形軟磁性合金粉 末的含有率較佳在3〇體積%以上80體積%以下。如果扁平型 非晶形軟磁性合金粉末的含有率在3〇體積%以上,磁性體 的里足夠’電磁波抑制效果能有效發揮。而且如果含有率 在80體積%以下,合金粉末彼此接觸,阻抗不降低,確實 提高並維持虛數透磁率# ”,能有效發揮電磁波抑制效果。 聚矽氧彈性體或者氣化聚乙烯的含有率是去除扁平型非 晶形軟磁性合金粉末的剩餘部分。 在加入潤滑劑的情況下,相對於電磁波吸收體較佳加入 0.1重量%以上、5重量%以下的範圍。而且,在加入矽烷偶 合劑的情況下,相對於電磁波吸收體較佳加入0 · 1重量。/〇以 上,2重量%以下。 O:\86\86694.DOC -47- 1229700 根據本實施型態的電磁波吸收體,藉由使用將具有優異 軟磁特性的大致球狀的非晶形軟磁性合金粉末扁平化而得 到的扁平化非晶形軟磁性合金粉末,能在絕緣材料中緻密 填充,因此能提高數百MHz〜數GHz的頻率頻帶的電磁 制效果。 另外,本實施型態的電磁波吸收體是混合將藉由水噴霧 =造的本實施型態的A致球狀的非晶形軟磁性合金粉末 製造的扁平化非晶形軟磁性合金粉末與絕緣材料製備的, 因此量產性優異。 上述扁平型非晶形軟磁性合金粉末可用水玻璃塗覆。如 果用水玻璃塗覆扁平化粒子,粒子彼此的絕緣性進一步提 高嫌電磁波吸收體的阻抗進-步提高,能進—步提高高頻 頻π的虛數透磁率# ",提高電磁波抑制效果。 八=為本實施型態的電磁波吸收體使㈣非晶形軟磁性合 :私末’可是主要含有本實施型態的爲平型非晶形軟磁性 ::粉末的’而且’代替本實施型態的扁平型非晶形軟磁 二金粉末’也可使用本實施型態的球狀非晶形軟磁性合 全:末,而且’也可是本實施型態扁平型非晶形軟磁性合 生粉末和球狀非晶形軟磁性合金粉末的混合物。 實施例 實驗例1 : FeCrPCB系合金 旦合金、Fe—P合金、Wr為原料,分別稱 :預:的量,在大氣環境下將此等原料放入圖i所示的高壓 1務裝置的炫融液掛禍中,進行溶解,從溶融液掛禍的O: \ 86 \ 86694.DOC -46- 1229700 The magnetic permeability of the flattened particles itself # 小 aivore is too small, the real part of the low-frequency band compound is called, (hereinafter referred to as lower, μμ ㈣ Ran is the effective magnetic permeability & can be suppressed to further improve the effect.… 1. Above, the electromagnetic wave is suppressed μ! The density of the electromagnetic wave absorber of the application type is preferably 3.0 gW at a colony of 1 degree if Above 30 g / cm3, the amorphous soft magnetic alloy powder causes the gap between the flat particles to decrease, so the imaginary number and magnetic permeability β in the GHz band are easily above 10, and the electromagnetic wave suppression effect is improved. The higher the density of the absorber, the better, but if it is relatively high, the particles in the flat are too eager to fill, the impedance of the electromagnetic wave absorber is reduced, and the overcurrent 'imaginary permeability #' is reduced. Therefore, it is preferable to use the upper limit of the density of the electromagnetic wave absorber. It is 6.5 g / cm3. The content rate of the flat amorphous soft magnetic alloy powder in the Bebesch type electromagnetic wave absorber is preferably 30 vol% or more and 80 vol% or less. The effective rate is more than 30% by volume, and the magnetic substance is sufficient to effectively exert the electromagnetic wave suppression effect. And if the content is less than 80% by volume, the alloy powders contact each other, the impedance does not decrease, and the imaginary number permeability is indeed increased and maintained # ” It can effectively exert the electromagnetic wave suppression effect. The content of polysilicone elastomer or vaporized polyethylene is to remove the remaining part of the flat amorphous soft magnetic alloy powder. In the case of adding a lubricant, it is better than the electromagnetic wave absorber It is added in a range of 0.1% by weight or more and 5% by weight or less. When a silane coupling agent is added, it is preferable to add 0.1 · 1% by weight to the electromagnetic wave absorber. / 0 or more and 2% by weight or less. O: \ 86 \ 86694.DOC -47- 1229700 According to the electromagnetic wave absorber of this embodiment, a flat amorphous soft magnetic alloy powder obtained by flattening a substantially spherical amorphous soft magnetic alloy powder having excellent soft magnetic characteristics is used. Since it can be densely filled in an insulating material, it can improve the electromagnetic effect of the frequency band of hundreds of MHz to several GHz. The type of electromagnetic wave absorber is prepared by mixing a flat amorphous soft magnetic alloy powder and an insulating material, which are produced by water spraying of the A-shaped amorphous soft magnetic alloy powder of this embodiment. The above-mentioned flat amorphous soft magnetic alloy powder can be coated with water glass. If the flat particles are coated with water glass, the insulation between the particles can be further improved, and the impedance of the electromagnetic wave absorber can be further improved, which can be further improved. Increase the imaginary number permeability of high-frequency frequency π to improve the electromagnetic wave suppression effect. Eight = The electromagnetic wave absorber of the present embodiment makes the amorphous soft magnetic combination: private, but the flat type mainly contains the embodiment. Amorphous soft magnetic :: The powder of 'and' instead of the flat amorphous soft magnetic two-gold powder of this embodiment 'can also use the spherical amorphous soft magnetic combination of this embodiment: at the end, but also' this A mixture of flat amorphous soft magnetic composite powder and spherical amorphous soft magnetic alloy powder. Examples Experimental Example 1: FeCrPCB series alloy denier alloy, Fe—P alloy, and Wr are used as raw materials, which are respectively called: pre-quantities, and put these raw materials into the high-voltage service device shown in FIG. I in the atmospheric environment. Dissolve while the melt is in trouble.
0.\86\86694.DOC -48- 1229700 炼融液噴嘴滴加合金溶融液,料,從圖冰示的水嘴霧弓 的水噴射嘴噴射高壓水,使合金溶融液成霧狀,在反應腔 内將霧狀合金炫融液驟冷,製造軟磁性合金粉末,此時, 改變製造條件,製造各種軟磁性合金粉末(Ng i〜3的軟磁 性合金粉末)。 得到的各種軟磁性合金粉末的組成都為 構成的組成。 55 而且對上述組成為Fe^Ci^PnCsB5的各種軟磁性合金粉 末藉由X射線繞射法分析組織結構,此時,所有的合金粉末 的X射線繞射圖譜都表示寬圖譜,可見是由非晶形相構成的 組織構成。因此即使是由Fe、Cr、p、c、B構成的合金, 也可形成由非晶形相構成的非晶形軟磁性合金粉末。 糟由掃描型電子顯微鏡(SEM)觀察上述組成Fe”c^p"0. \ 86 \ 86694.DOC -48- 1229700 The molten metal nozzle is added with the molten alloy solution, and the high-pressure water is sprayed from the water spray nozzle of the nozzle fog bow shown in Figure Bing, so that the alloy molten solution is misted. In the reaction chamber, the mist-like alloy melt is quenched to produce soft magnetic alloy powders. At this time, various manufacturing conditions are changed to produce various soft magnetic alloy powders (Ng i ~ 3 soft magnetic alloy powders). The composition of each of the obtained soft magnetic alloy powders was a composition. 55 Moreover, the structure of various soft magnetic alloy powders with the composition Fe ^ Ci ^ PnCsB5 described above was analyzed by X-ray diffraction method. At this time, the X-ray diffraction patterns of all alloy powders showed a wide spectrum. Structure of crystalline phase. Therefore, even an alloy composed of Fe, Cr, p, c, and B can form an amorphous soft magnetic alloy powder composed of an amorphous phase. The above composition was observed by a scanning electron microscope (SEM) Fe "c ^ p "
CsB5的各種軟磁性合金粉末,研究形狀。結果示於表^。 示於表1者為得到的軟磁性合金粉末的平均粒徑(Dw)、振 實密度、比表面積、氧濃度、長寬比的最小值和最大值的 平均值。 進而,對得到的各種軟磁性合金粉末進行DSC測定 (Differential scanning caloriemetry :示差掃描熱量測定), 測定玻璃轉移溫度Tg、結晶化開始溫度以、居裏溫度^和 熔點Tm,同時求出過冷卻液體的溫度間隔△ 丁乂和Tg/Tm。 此等結果在表2表示。DSC測定時的升溫速度為〇·67 κ/秒。 表2中的Tm*表示合金的融解溫度。 對得到的各種軟磁性合金粉末,藉由振動樣品型磁力計 O:\86\86694.DOC -49- 1229700 (VSM)測疋飽和磁化量σ s。此等結果綜示於表2。 接著’相對於得到的軟磁性合金粉末98.3重量%,混合作 為絕緣材料的聚矽氧樹脂14重量%和作為軟化劑的硬脂酸 辞0.3重1 %,進行造粒,製成造粒粉末。將此等造粒粉末 在大氣環i兄中室溫下乾燥丨2個小時。接著,將乾燥的造粒 粉末分級,選擇粒徑在45微米以上500微米以下範圍内的, 在後續步驟中使用。 將粒徑45微米以上500微米以下的造粒粉末填充至圖3所 不的WC製模具中之後,使用圖4所示的壓製裝置,在大氣 壓’在室溫下,用上下衝孔112、U3對造粒粉末加壓至成 形壓力(Ps)2000 MPa。 然後,在熱處理溫度Ta為573K(30(TC)〜723K(450°C)下 進行3600秒的熱處理,製造各種壓粉核心。此種壓粉核心 的形狀為外徑20 mm、内徑12 mm、厚度7 mm的圓環狀。 測定得到的各種壓粉核心的核心損失(W)。此處的核心損 失是在頻率100 kHz、磁束密度〇·ιτ條件下測定時的核心損 失。其結果綜不於表2。 測定得到的各種壓粉核心的複合透磁率的實數部分(也 稱為實效透磁率)// ’和直流重疊特性(# ’Den⑽)。此處的〆 是在頻率1 kHz條件下測定時的值,#,DC55⑽是測定直流偏 壓磁界5500 Am—1時的實效透磁率。其結果綜示於表2。 O:\86\86694.DOC -50- 1229700 表1Various shapes of soft magnetic alloy powder of CsB5, study shape. The results are shown in Table ^. The values shown in Table 1 are the average values of the average particle diameter (Dw), tap density, specific surface area, oxygen concentration, and minimum and maximum values of the obtained soft magnetic alloy powder. Furthermore, DSC measurement (Differential scanning caloriemetry) was performed on each of the obtained soft magnetic alloy powders, and the glass transition temperature Tg, the crystallization initiation temperature, the Curie temperature, and the melting point Tm were measured, and the supercooled liquid was also determined. The temperature interval △ Ding and Tg / Tm. These results are shown in Table 2. The temperature increase rate during DSC measurement was 0.67 κ / sec. Tm * in Table 2 represents the melting temperature of the alloy. For each of the obtained soft magnetic alloy powders, the saturation magnetization σ s was measured by a vibration sample type magnetometer O: \ 86 \ 86694.DOC -49-1229700 (VSM). These results are summarized in Table 2. Next, based on 98.3% by weight of the obtained soft magnetic alloy powder, 14% by weight of a silicone resin as an insulating material and 0.3% by weight of stearic acid as a softener were mixed, and granulated to obtain a granulated powder. These granulated powders were dried at room temperature in an atmospheric ring for 2 hours. Next, the dried granulated powder is classified and selected to have a particle size in the range of 45 micrometers to 500 micrometers, and used in the subsequent steps. After the granulated powder having a particle diameter of 45 μm to 500 μm is filled into the WC mold shown in FIG. 3, the pressing device shown in FIG. 4 is used to punch holes 112 and U3 at upper and lower pressures at room temperature under atmospheric pressure. The granulated powder was pressed to a forming pressure (Ps) of 2000 MPa. Then, heat treatment is performed at a heat treatment temperature Ta of 573K (30 (TC) to 723K (450 ° C) for 3600 seconds to produce various powder cores. The shape of this powder core is 20 mm outside diameter and 12 mm inside diameter The thickness of the ring is 7 mm. The core loss (W) of the various powder cores obtained is measured. The core loss here is the core loss when measured at a frequency of 100 kHz and a magnetic flux density of 0 · ιτ. The results are summarized. Not shown in Table 2. The real part (also called the effective permeability) of the composite magnetic permeability of the various pressed powder cores measured and the DC overlap characteristics (# 'Den⑽). Here 〆 is at the frequency of 1 kHz The value at the time of measurement, #, DC55⑽ is the effective permeability when the DC bias magnetic field is measured at 5500 Am-1. The results are summarized in Table 2. O: \ 86 \ 86694.DOC -50- 1229700 Table 1
No. 軟磁性合金粉 末組成 形狀 〇50 (微米) 振實密度 (Mg/m3) 比表面積 (m2/g) 氧濃度 (ppm) 長寬 比最 小 長寬 比最 大 長寬^ 比平 均 結構 1 Fe7sCr2P 13C5B5 不定形 115.20 2.80 0.88 5300 1.0 22.0 6.0 非晶 2 Ρ^75^Γ2Ρ 13C5B5 不定形 60.7 3.20 0.59 4500 1.0 15.0 4.5 非晶 3 Fe75Cr2P 13C5B5 大致球狀 3.40 3.93 0.31 1600 卜1.0 3.1 Π 1.2 非晶 表2No. Soft magnetic alloy powder composition and shape 〇50 (micron) tap density (Mg / m3) specific surface area (m2 / g) oxygen concentration (ppm) aspect ratio minimum aspect ratio maximum aspect ratio ^ ratio average structure 1 Fe7sCr2P 13C5B5 Unshaped 115.20 2.80 0.88 5300 1.0 22.0 6.0 Amorphous 2 P ^ 75 ^ Γ2P 13C5B5 Unshaped 60.7 3.20 0.59 4500 1.0 15.0 4.5 Amorphous 3 Fe75Cr2P 13C5B5 Roughly spherical 3.40 3.93 0.31 1600 Bu 1.0 3.1 Π 1.2 Amorphous
No. Tc(K) Tg(K) Tx(K) ΔΤχ(Κ) Tm* Tg/Tm Tx/Tm σ s(Wb.m/kg) W(kW/m3) U' M'dC5500 1 550 731 776 45 1426 0.51 0.54 167 2450 150 24.0 2 550 716 774 58 1426 0.52 0.54 167 1500 125 26.0 * 3 551 733 779 46 1371 0.53 0.57 179 265 56 31.5 由表1、表2所示的結果可見,No_ 1〜2的軟磁性合金粉末 可得到不定形的,平均長寬比、D5G、比表面積、氧濃度大, 而且,振實密度小。此,使用No. 1〜2的軟磁性合金粉末製_ 作的壓粉核心的核心損失大,直流重疊特性低。由於N〇. 1 〜2的軟磁性合金粉末的氧濃度大,因此熱穩定性發生變 化。 與此不同,Νο·3的軟磁性合金粉末得到大致球狀的,比 表面積、氧濃度小,而且,振實密度大,與N〇1〜2的相比, 飽和磁化量σ s也高。使用此種Ν〇·3的軟磁性合金粉末製作 的壓粉核心與使用No·!、]的軟磁性合金粉末製造的壓粉 核心相比’核心、損失大幅度降低,而1,直流重疊特性也 提高。 在實驗例1中’在使組成為FC2Pl3c5B5的軟磁性合金 粉末的平均粒徑(D5Q)為9.G微米以上時,組織為結晶化的。 (實驗例2) 以 Fe、Fe—C合金、pe—p人. 口金、Cr、B或B和Si為原料, 分別稱量預定的量,在大氧瑗& 乳%:1兄下將此等原料放入圖1所示 的高壓水噴霧裝置的熔融液增 咁堝中,進行溶解,從熔融液No. Tc (K) Tg (K) Tx (K) ΔΤχ (Κ) Tm * Tg / Tm Tx / Tm σ s (Wb.m / kg) W (kW / m3) U 'M'dC5500 1 550 731 776 45 1426 0.51 0.54 167 2450 150 24.0 2 550 716 774 58 1426 0.52 0.54 167 1500 125 26.0 * 3 551 733 779 46 1371 0.53 0.57 179 265 56 31.5 As can be seen from the results shown in Table 1 and Table 2, No_ 1 ~ 2 The soft magnetic alloy powder can be amorphous, has a large average aspect ratio, D5G, specific surface area, and large oxygen concentration, and has a small tap density. Therefore, the core loss of the powder core made of the soft magnetic alloy powder No. 1 to 2 is large, and the DC superimposition characteristic is low. Since the soft magnetic alloy powders No. 1 to 2 have a large oxygen concentration, thermal stability is changed. On the other hand, the soft magnetic alloy powder of No. 3 is approximately spherical, has a small specific surface area and a small oxygen concentration, and has a high tap density. Compared with No. 1 to 2, the saturation magnetization σ s is also high. Compared with a powder core made of a soft magnetic alloy powder using No.!], A powder core made of such a soft magnetic alloy powder of No. 3 has a 'core and loss that is greatly reduced, and 1, a DC overlap characteristic It also improves. In Experimental Example 1, when the average particle diameter (D5Q) of the soft magnetic alloy powder having a composition of FC2Pl3c5B5 was 9. G microns or more, the structure was crystallized. (Experimental example 2) Fe, Fe-C alloy, pe-p alloy, gold, Cr, B, or B and Si were used as raw materials, and a predetermined amount was weighed, respectively. These raw materials are put into a melt booster pot of the high-pressure water spraying device shown in FIG.
O:\86\86694.DOC -51 - 1229700 坩堝的熔融液喷嘴滴加合金熔融,之,同時,_所示的水 喷務^的水喷射鳴噴射高壓水,使合金熔融液成霧狀,在 反應腔内將霧狀合金熔融液驟冷,製造軟磁性合金粉末, 此時,改變製造條件’製造各種軟磁性合金粉末(Ν〇·4〜ΐ4 的軟磁性合金粉末)。 lOO-t-y-z-w-χΡ ySitCz 得到的各種軟磁性合金粉末的組成為以O: \ 86 \ 86694.DOC -51-1229700 The molten metal nozzle of the crucible drips the alloy to melt, and at the same time, the high-pressure water is sprayed by the water spray of the water spray shown in the figure, so that the molten alloy is atomized. The misty alloy melt is quenched in the reaction chamber to produce soft magnetic alloy powder. At this time, various manufacturing conditions are changed to produce various soft magnetic alloy powders (soft magnetic alloy powders of No. 4 to ΐ4). The composition of various soft magnetic alloy powders obtained by lOO-t-y-z-w-χΡ ySitCz is
BwCrx構成的組成(其中,2是12〜7原子%,w為5·6〜8 7原 子%,Χ為丨·96〜2原子%,y為8.44〜12.74原子%,t為〇〜4.87 原子/〇)。上述組成式中的ν表示ρ的組成比,或者卩和§丨的合 計組成比。 而且’對上述組成為Fe⑽·t_y z_w xPySitCzBwCrx的各種軟磁 性合金粉末藉由X射線繞射法分析組織結構,此時,所有的 合金粉末的X射線繞射圖譜都表示寬圖譜,可見是由非晶形 相構成的組織構成。因此即使是Fe、Cr、p、c、6或6和以 構成的5至,也可形成由非晶形相構成的非晶形軟磁性合 金粉末。 另外,藉由掃描型電子顯微鏡(SEM)觀察上述組成 以⑽·t-y_z…x(Py或者PySit)CzBwCrx的各種軟磁性合金粉 末’研究形狀。結果在表3表示。 在表3表示得到的軟磁性合金粉末的平均粒徑(Dw)、振實 山度比表面積、氧濃度、長寬比的最小值和最大值的平 均值。 進而,對得到的各種軟磁性合金粉末進行Dsc測定 ⑴曲⑽…sc_ing cal〇riemetry :示差掃描熱量測定),BwCrx composition (wherein 2 is 12 to 7 atomic%, w is 5.6 to 87 atomic%, X is 丨 · 96 to 2 atomic%, y is 8.44 to 12.74 atomic%, and t is 0 to 4.87 atomic / 〇). In the above composition formula, ν represents a composition ratio of ρ, or a total composition ratio of 卩 and § 丨. Moreover, the structure of various soft magnetic alloy powders with the composition of Fe⑽ · t_y z_w xPySitCzBwCrx was analyzed by X-ray diffraction method. At this time, the X-ray diffraction patterns of all alloy powders show a broad spectrum. Structure of crystalline phase. Therefore, even if it is Fe, Cr, p, c, 6 or 6 and 5 to, an amorphous soft magnetic alloy powder composed of an amorphous phase can be formed. In addition, the above composition was observed by a scanning electron microscope (SEM), and various soft magnetic alloy powders of ⑽ · t-y_z ... x (Py or PySit) CzBwCrx 'were examined for shape. The results are shown in Table 3. Table 3 shows the average values of the average particle diameter (Dw), tapped specific surface area, oxygen concentration, and minimum and maximum values of the aspect ratio of the obtained soft magnetic alloy powder. Furthermore, Dsc measurement was performed on each of the obtained soft magnetic alloy powders. (Sc_ing caloriemetry: differential scanning calorimetry),
O:\86\86694.DOC -52- 1229700 測定玻璃轉移溫度Tg、結晶化開始溫度Τχ、居裏溫度Tc和 熔點Tm,同時求出過冷卻液體的溫度間隔△ Tx和Tg/Tm。 此等結果在表4表示。DSC測定時的升溫速度為0.67K/秒。 表4中的Tm*表示合金的熔解溫度。 對得到的各種軟磁性合金粉末,與實驗例1相同地測定飽 和磁化量σ s。此等結果綜示於表4。 接著,除使用該實驗例2得到的軟磁性合金粉末之外,與 上述實驗例1相同地製造造粒粉末,進而,使用上述造粒粉O: \ 86 \ 86694.DOC -52- 1229700 The glass transition temperature Tg, the crystallization start temperature Tx, the Curie temperature Tc, and the melting point Tm were measured, and the temperature intervals ΔTx and Tg / Tm of the supercooled liquid were obtained. These results are shown in Table 4. The temperature increase rate during DSC measurement was 0.67 K / sec. Tm * in Table 4 indicates the melting temperature of the alloy. For each of the obtained soft magnetic alloy powders, the saturation magnetization amount σ s was measured in the same manner as in Experimental Example 1. These results are summarized in Table 4. Next, except that the soft magnetic alloy powder obtained in Experimental Example 2 was used, granulated powders were produced in the same manner as in Experimental Example 1, and further, the granulated powder was used.
末,與上述實驗例1相同地製造各種壓粉核心。 與實驗例1相同測定得到的各種壓粉核心的核心損失 (W)。結果綜示於表4。 與實驗例1相同測定得到的各種壓粉核心的實效透磁率 (和直流重疊特性(// 'DC55GG)。結果綜示於表4。 表3Finally, various powder cores were manufactured in the same manner as in Experimental Example 1 described above. The core loss (W) of each of the powder cores measured in the same manner as in Experimental Example 1. The results are summarized in Table 4. The effective magnetic permeability (and DC overlap characteristics (/ 'DC55GG) of various powder cores obtained by the same measurement as in Experimental Example 1 are shown in Table 4. Table 3 is summarized.
No. 軟磁性合金粉 末組成 形狀 D50 (微米) 振實密度 (Mg/m3) 比表面積 (m2/g) 氧濃度 (ppm) 長寬比 最小 長寬比 最大 長寬比 平均 結構 4 FG70.85Cr2P12.29 C4.65B7Si3.32 大致 球狀 6.00 4.02 0.25 1300 1.0 4.0 1.2 非晶 形的 5 Fe73.4Cr1.90P 12.7 C4.9B7 大致 球狀 5.00 4.00 0.26 1100 1.0 3.3 1.2 非晶 形的 6 Fe76Cr2P9.23C2.2 B7.7S12.87 大致 球狀 5.80 4.01 0.25 1400 1.0 4.1 1.2 非晶 形的 7 Fe76Cr2P9.23Ci.2 B7.7S12.87 大致 球狀 5.80 4.01 0.25 2000 1.0 3.2 1.2 非晶 形的 8 Fe76Cr2P8.44C2.2 B8.7Sl2.66 大致 球狀 5.40 4.03 0.26 1900 1.0 4.0 1.2 非晶 形的 9 Fe7〇Cr2Pn.75C7 B5.6S13.65 大致 球狀 5.70 4.03 0.25 1500 1.0 3.5 1.2 非晶 形的 10 Fe75.2iCr1.98P9.14 C2.18B7.62S13.87 大致 球狀 9.10 4.24 0.22 1300 1.0 3.8 1.1 非晶 形的 11 Fe74.82crl.97p9.09 C2.17B7.58S14.37 大致 球狀 9.10 4.00 0.22 1900 1.0 3.5 1.2 非晶 形的 12 Fe74.43crl.96p9.04 C2.16B7.54S14.87 大致 球狀 9.08 4.09 0.22 2400 1.0 3.7 1.3 非晶 形的 13 Fe75.21crL.98p9.14 C2.18B7.62S13.87 不定形 12.10 2.60 0.65 4500 1.1 15.0 4.0 非晶 形的 14 Fe75.21crl.98p9.14 C2.18B7.62S13.87 大致 球狀 9.10 4.10 0.22 1900 1.0 4.0 1.2 非晶 形的 O:\86\86694.DOC -53- 1229700 表4No. Soft magnetic alloy powder composition shape D50 (micron) Tap density (Mg / m3) Specific surface area (m2 / g) Oxygen concentration (ppm) Aspect ratio Minimum aspect ratio Maximum aspect ratio Average structure 4 FG70.85Cr2P12. 29 C4.65B7Si3.32 approximately spherical 6.00 4.02 0.25 1300 1.0 4.0 1.2 amorphous 5 Fe73.4Cr1.90P 12.7 C4.9B7 approximately spherical 5.00 4.00 0.26 1100 1.0 3.3 1.2 amorphous 6 Fe76Cr2P9.23C2.2 B7. 7S12.87 approximately spherical 5.80 4.01 0.25 1400 1.0 4.1 1.2 amorphous 7 Fe76Cr2P9.23Ci.2 B7.7S12.87 approximately spherical 5.80 4.01 0.25 2000 1.0 3.2 1.2 amorphous 8 Fe76Cr2P8.44C2.2 B8.7Sl2. 66 Roughly spherical 5.40 4.03 0.26 1900 1.0 4.0 1.2 Amorphous 9 Fe7〇Cr2Pn.75C7 B5.6S13.65 Roughly spherical 5.70 4.03 0.25 1500 1.0 3.5 1.2 Amorphous 10 Fe75.2iCr1.98P9.14 C2.18B7. 62S13.87 approximately spherical 9.10 4.24 0.22 1300 1.0 3.8 1.1 amorphous 11 Fe74.82crl.97p9.09 C2.17B7.58S14.37 approximately spherical 9.10 4.00 0.22 1900 1.0 3.5 1.2 amorphous 12 Fe74.43crl.96p9 .04 C2.16B7.54S14.87 roughly spherical 9.08 4.09 0.22 2400 1.0 3.7 1 .3 amorphous 13 Fe75.21crL.98p9.14 C2.18B7.62S13.87 amorphous 12.10 2.60 0.65 4500 1.1 15.0 4.0 amorphous 14 Fe75.21crl.98p9.14 C2.18B7.62S13.87 approximately spherical 9.10 4.10 0.22 1900 1.0 4.0 1.2 Amorphous O: \ 86 \ 86694.DOC -53- 1229700 Table 4
No. Tc(K) Tg(K) Tx(K) ΔΤχ(Κ) Tm* Tg/Tm Tx/Tm 〇 s(Wb.m/kg) W(kW/m3) 〆 β DC5500 4 548 803 845 42 1432 0.56 0.59 149 240 57 32.0 5 554 749 799 50 1367 0.55 0.58 162 267 58 32.0 6 584 751 805 54 1367 0.55 0.59 176 245 58 32.0 7 583 754 806 49 1372 0.55 0.59 170 255 57 32.0 8 591 756 803 47 1385 0.55 0.58 173 251 57 32.0 9 547 802 843 46 1434 0.56 0.59 146 242 57 32.0 10 597 765 812 47 1348 0.57 0.60 174 225 62 32.5 11 604 771 816 48 1343 0.57 0.61 175 235 61 33.0 12 602 780 829 49 1342 0.58 0.62 174 265 63 33.0 13 602 746 812 66 1388 0.54 0.59 170 1900 135 25.5 14 597 765 812 47 1348 0.57 0.60 174 235 61 33.0 由表3、表4的結果可見,No.4〜12的軟磁性合金粉末可 得到大致球狀的。 N 〇 · 4和9的軟磁性合金粉末的P和S i的合計組成比v超過 15原子%,ΛΤχ在46K以下。 與此不同,對於Ρ的組成比或者Ρ和S i的合計組成比ν在15 原子%以下的No.5〜8的軟磁性合金粉末,加入P和Si雙方 時,與單獨加入P相比,可提高△ Tx,加入P和Si雙方時, 組成比ν越大,越能提高△ Tx,越能提高非晶形相形成能 力。而且在實驗例2中,在使組成為F e 70.85 Cr2P12.29C4.65B7 Si3.32的軟磁性合金粉末的平均粒徑(D5G)為9.0微米以上 時,組織結晶化。 對於No.10〜12的軟磁性合金粉末,隨著Si加入量的增 加,△ Tx增大,能提高非晶形相形成能力。 接著,No. 13軟磁性合金粉末得到不定形的,平均長寬 比、D5G、比表面積、氧濃度大,而且,振實密度小。此, 使用No. 1 3的軟磁性合金粉末製造的壓粉核心的核心損失 大,直流重疊特性差。由於No. 13的軟磁性合金粉末的氧濃 度大,因此熱穩定性發生變化。 與此不同,No. 14的軟磁性合金粉末得到大致球狀的,比 O:\86\86694.DOC - 54- 1229700No. Tc (K) Tg (K) Tx (K) ΔΤχ (Κ) Tm * Tg / Tm Tx / Tm 〇s (Wb.m / kg) W (kW / m3) 〆β DC5500 4 548 803 845 42 1432 0.56 0.59 149 240 57 32.0 5 554 749 799 50 1367 0.55 0.58 162 267 58 32.0 6 584 751 805 54 1367 0.55 0.59 176 245 58 32.0 7 583 754 806 49 1372 0.55 0.59 170 255 57 32.0 8 591 756 803 47 1385 0.55 0.58 173 251 57 32.0 9 547 802 843 46 1434 0.56 0.59 146 242 57 32.0 10 597 765 812 47 1348 0.57 0.60 174 225 62 32.5 11 604 771 816 48 1343 0.57 0.61 175 235 61 33.0 12 602 780 829 49 1342 0.58 0.62 174 265 63 33.0 13 602 746 812 66 1388 0.54 0.59 170 1900 135 25.5 14 597 765 812 47 1348 0.57 0.60 174 235 61 33.0 It can be seen from the results of Tables 3 and 4 that the soft magnetic alloy powders No. 4 to 12 can be roughly spherical Like. The total composition ratio v of P and Si of soft magnetic alloy powders of No. 4 and 9 exceeds 15 atomic%, and ΔTχ is 46K or less. In contrast, for the soft magnetic alloy powders No. 5 to No. 5 having a composition ratio of P or a total composition ratio ν of 15 atomic% or less of P and Si, when both P and Si are added, compared with adding P alone, △ Tx can be increased. When both P and Si are added, the larger the composition ratio ν, the more △ Tx can be increased, and the amorphous phase formation ability can be improved. In Experimental Example 2, when the average particle diameter (D5G) of the soft magnetic alloy powder having a composition of F e 70.85 Cr2P12.29C4.65B7 Si3.32 was 9.0 μm or more, the structure crystallized. For the soft magnetic alloy powders No. 10 to 12, as the amount of Si added increases, ΔTx increases, and the ability to form an amorphous phase can be improved. Next, No. 13 soft magnetic alloy powder was amorphous, and the average aspect ratio, D5G, specific surface area, and oxygen concentration were large, and the tap density was small. Therefore, the core loss of the powder core made of the soft magnetic alloy powder of No. 1 3 is large, and the DC overlap characteristics are poor. Since the soft magnetic alloy powder of No. 13 has a large oxygen concentration, its thermal stability changes. In contrast, the soft magnetic alloy powder of No. 14 obtained a roughly spherical shape, which is more than O: \ 86 \ 86694.DOC-54-1229700
表面積、氧濃度小,而且,掂奋分& L 振κ饴度大,而且,與Ν〇·ΐ3的 相比,飽和磁化量σ s也高。㈣此種ν〇·ι4的軟磁性合金 粉末製造的壓粉核心與使用Ν〇13的軟磁性合金粉末製造 的壓粉核心相tb,核心損失大幅度降低,而且,直流重疊 特性也優異。 (實驗例3) 二卜、Fe~C合金、Fe-P合金、B、Si和Cr為原料,分別 稱量預定的量’在大氣環境下將此等原料放人圖1所示的高 壓水喷《置㈣融液掛财’進行溶解,從熔融液时禍 的溶融液喷嘴滴下合金炼融液,同時,從圖i所示的水喷霧 器的水喷射嘴噴射高壓水,使合㈣融液成霧狀,在反應 腔内將霧狀合㈣職驟冷,製造軟磁性合金粉末,此時, 改變製造條件’製造各種軟磁性合金粉末(Nq15〜2i的軟 磁性合金粉末)。而對版17的軟磁性合金粉末在粉末形成 後,在室溫下長時間放置。 得到的各種軟磁性合金粉末的組成為FWh Μ。7 Si2.87 或者 Fe100_t.y_zwxPySitCzBwCrx構成的組成(其中,z是 2.16-2.2^^〇/〇 , 7.54-7.7^^〇/〇 , x^l^8>f^〇/〇,y 為9.04〜9.23原子%,t為2·87〜4·87%原子%,乂是121〜 13 _91原子/〇)上述組成式中的ν表示Ρ和Si的合計組成比。 而且,對上述組成為Fe78p9 23c2 2B7 7Si2 87或者%叫 SitCzBwCrx的各種軟磁性合金粉末藉由χ射線繞射法分析組 織結構,此時,所有的合金粉末的χ射線繞射圖譜都表示寬 圖譜,可見是由非晶形相構成的組織構成。因此即使是以、 O:\86\86694.DOC -55- 1229700The surface area and oxygen concentration are small, and the Fenfen & L vibration κ 饴 degree is large, and the saturation magnetization σ s is also higher than that of No. ΐ3. ㈣The powder core made of such soft magnetic alloy powder ν〇 · ι4 and the powder core phase tb made of soft magnetic alloy powder No. 13 have significantly reduced core loss and excellent DC superposition characteristics. (Experimental example 3) Dibubble, Fe ~ C alloy, Fe-P alloy, B, Si, and Cr were used as raw materials, and a predetermined amount was weighed respectively. 'These raw materials were placed in the high-pressure water shown in Fig. 1 in an atmospheric environment. Spray "Remove the melted liquid" to dissolve, drip the alloy melting solution from the melted liquid nozzle, and simultaneously spray high pressure water from the water spray nozzle of the water sprayer shown in Fig. The molten liquid is formed into a mist shape, and the mist shape is quenched in the reaction chamber to manufacture soft magnetic alloy powder. At this time, the manufacturing conditions are changed to manufacture various soft magnetic alloy powders (soft magnetic alloy powders of Nq15 to 2i). In contrast, the soft magnetic alloy powder of plate 17 was left at room temperature for a long time after the powder was formed. The composition of each of the obtained soft magnetic alloy powders was FWh M. 7 Si2.87 or Fe100_t.y_zwxPySitCzBwCrx (wherein z is 2.16-2.2 ^^ 〇 / 〇, 7.54-7.7 ^^ 〇 / 〇, x ^ l ^ 8 > f ^ 〇 / 〇, y is 9.04 ~ 9.23 atomic%, t is 2.87 to 4.87% atomic%, and 121 is 121 to 13 _91 atoms /%) ν in the above composition formula represents the total composition ratio of P and Si. Moreover, the structure of various soft magnetic alloy powders with a composition of Fe78p9 23c2 2B7 7Si2 87 or% SitCzBwCrx was analyzed by the X-ray diffraction method. At this time, the X-ray diffraction patterns of all alloy powders show a wide spectrum. It can be seen that the structure is composed of an amorphous phase. So even if it is, O: \ 86 \ 86694.DOC -55- 1229700
Cr或者A1 P、c、B、Si構成的合金,也可形成由非晶形相 構成的非晶形軟磁性合金粉末。 另外,藉由掃描型電子顯微鏡(SEM)觀察上述組成 Fe78P9.23C2.2B7.7Si2.87 或者 Fei〇(M,w-xPySitCzBwCrx 的各種 軟磁性合金粉末,研究形狀。結果在表5表示。 在表5表示得到的軟磁性合金粉末的平均粒徑(D^)、振實 山度比表面積、氧濃度、長寬比的最小值和最大值的平 均值。 進而,對得到的各種軟磁性合金粉末進行DSC測定籲 (Differentlai scanning cal〇riemetry ··示差掃描熱量測定), 測定玻璃轉移溫度Tg、結晶化開始溫度。、居理溫度Tc* 炼點Tm,同時求出過冷卻液體的溫度間隔△ 丁乂和Tg/Tm。 此等結果在表6表示。DSC測定時的升溫速度為〇·67 κ/秒。 表6中的Tm*表示合金的融解溫度。 對得到的各種軟磁性合金粉末,與實驗例1相同地測定飽 和磁化量σ s。此等結果綜示於表6。 籲 接著’除使用該實驗例3得到的軟磁性合金粉末之外,與 上述實驗例1相同地製造造粒粉末,進而,使用上述造粒粉 末’與上述實驗例1相同地製造各種壓粉核心。 與貫驗例1相同測定得到的各種聲粉核心的核心損失 * (W)。結果綜示於表6。 與實驗例1相同測定得到的各種壓粉核心的實效透磁率 (β )和直流重$特性(# 1D C 5 5 G 0)。結果綜示於表6。 0-\86\86694.DOC -56- 1229700 表5An alloy composed of Cr or A1 P, c, B, and Si may also be formed into an amorphous soft magnetic alloy powder composed of an amorphous phase. In addition, various soft magnetic alloy powders of the above composition Fe78P9.23C2.2B7.7Si2.87 or Fei0 (M, w-xPySitCzBwCrx) were observed with a scanning electron microscope (SEM), and the shapes were studied. The results are shown in Table 5. 5 represents the average particle diameter (D ^) of the obtained soft magnetic alloy powder, the specific surface area of the tapped mountain, the oxygen concentration, and the minimum and maximum values of the aspect ratio. Furthermore, various soft magnetic alloy powders were obtained. Perform DSC measurement (Differentlai scanning calorimetry), measure the glass transition temperature Tg, crystallization start temperature, Curie temperature Tc * refining point Tm, and calculate the temperature interval of the supercooled liquid Δ D乂 and Tg / Tm. These results are shown in Table 6. The temperature rise rate during DSC measurement was 0.67 κ / sec. Tm * in Table 6 represents the melting temperature of the alloy. For the various soft magnetic alloy powders obtained, and In Experimental Example 1, the saturation magnetization σ s was measured in the same manner. The results are summarized in Table 6. Next, a granulated powder was produced in the same manner as in Experimental Example 1 except that the soft magnetic alloy powder obtained in Experimental Example 3 was used. Furthermore, various granulated powder cores were produced using the granulated powders in the same manner as in Experimental Example 1. The core losses of various acoustic powder cores measured in the same manner as in Test Example 1 (W). The results are summarized in Table 6. The effective magnetic permeability (β) and DC weight characteristics (# 1D C 5 5 G 0) of various powder cores obtained by the same measurement as in Experimental Example 1. The results are summarized in Table 6. 0- \ 86 \ 86694.DOC- 56- 1229700 Table 5
No. 軟磁性合金粉 末組成 形狀 D50 (微米) 振實密度 (Mg/m3) 比表面 積 (m2/g) 氧濃度 (ppm) 長寬 比最 小 長寬比 最大 長寬比 平均 結構 15 Fe78P9.23C2.2B77 Sl2.87 大致 球狀 9.02 4.04 0.22 7500 1.0 4.4 1.2 非晶 形的 16 Ρβ77〇ΓιΡ9.23〇2.2 B7.7si2.87 大致 球狀 4.60 4.00 0.22 1900 1.0 4.0 1.2 非晶 形的 17 Fe76.19crlp9.14c2. 18B7.62S13.87 大致 球狀 3.70 4.00 0.22 3700 1.0 4.0 1.1 非晶 形的 18 Fe73.84cr2.5p9.04 C2.16B7.54S14.87 大致 球狀 9.00 4.12 0.21 1100 1.0 3.8 1.2 非晶 形的 19 Fe73.39cr3p9.04c2. 16B7.54S14.87 大致 球狀 8.80 4.09 0.21 900 1.0 4.1 1.2 非晶 形的 20 Fe72.39cr4p9.04c2. 16B7.54si4.87 大致 球狀 9.00 4.09 0.20 900 1.0 3.3 1.2 非晶 形的 21 Fe68.39cr8p9.04c2. 16B7.54S14.87 大致 球狀 9.02 4.10 0.21 800 1.0 3.8 1.2 非晶 形的 表6No. Soft magnetic alloy powder composition shape D50 (micron) Tap density (Mg / m3) Specific surface area (m2 / g) Oxygen concentration (ppm) Aspect ratio Minimum aspect ratio Maximum aspect ratio Average structure 15 Fe78P9.23C2. 2B77 Sl2.87 Roughly spherical 9.02 4.04 0.22 7500 1.0 4.4 1.2 Amorphous 16 Pβ77〇Γι9.23〇2.2 B7.7si2.87 Roughly spherical 4.60 4.00 0.22 1900 1.0 4.0 1.2 Amorphous 17 Fe76.19 crlp9.14c2. 18B7.62S13.87 approximately spherical 3.70 4.00 0.22 3700 1.0 4.0 1.1 amorphous 18 Fe73.84cr2.5p9.04 C2.16B7.54S14.87 approximately spherical 9.00 4.12 0.21 1100 1.0 3.8 1.2 amorphous 19 Fe73.39cr3p9 .04c2. 16B7.54S14.87 approximately spherical 8.80 4.09 0.21 900 1.0 4.1 1.2 amorphous 20 Fe72.39cr4p9.04c2. 16B7.54si4.87 approximately spherical 9.00 4.09 0.20 900 1.0 3.3 1.2 amorphous 21 Fe68.39cr8p9 .04c2. 16B7.54S14.87 Roughly spherical 9.02 4.10 0.21 800 1.0 3.8 1.2 Amorphous Table 6
No. Tc(K) Tg(K) Tx(K) ΔΤχ(Κ) Tm* Tg/Tm Tx/Tm a s(Wb.m/kg) W(kW/m3) 〆 β DC5500 15 16 610 759 803 44 1323 0.57 0.61 180 245 58 32.0 17 625 766 809 43 1365 0.56 0.59 185 470 55 31.0 18 584 782 829 47 1319 0.59 0.63 167 210 62 31.5 19 563 783 838 55 1296 0.60 0.65 161 202 62 32.0 20 540 785 841 56 1301 0.60 0.65 155 195 62 30.0 21 479 790 845 55 1315 0.60 0.64 140 187 61 28.5 由表5、表6的結果可見,No. 15〜21的軟磁性合金粉末可 得到大致球狀的。 但是No. 15的軟磁性合金粉末的氧濃度大,産生銹,耐腐 蝕性差。No. 17的軟磁性合金粉末的氧濃度大,平均粒徑(D50) 小,使用該合金粉末製造的壓粉核心的核心損失大。No. Tc (K) Tg (K) Tx (K) ΔΤχ (Κ) Tm * Tg / Tm Tx / Tm as (Wb.m / kg) W (kW / m3) 〆β DC5500 15 16 610 759 803 44 1323 0.57 0.61 180 245 58 32.0 17 625 766 809 43 1365 0.56 0.59 185 470 55 31.0 18 584 782 829 47 1319 0.59 0.63 167 210 62 31.5 19 563 783 838 55 1296 0.60 0.65 161 202 62 32.0 20 540 785 841 56 1301 0.60 0.65 155 195 62 30.0 21 479 790 845 55 1315 0.60 0.64 140 187 61 28.5 As can be seen from the results in Tables 5 and 6, the soft magnetic alloy powders No. 15 to 21 can be obtained approximately spherically. However, the soft magnetic alloy powder of No. 15 has a large oxygen concentration, generates rust, and has poor corrosion resistance. The soft magnetic alloy powder of No. 17 has a large oxygen concentration and a small average particle diameter (D50), and a core loss of a powder core manufactured using the alloy powder is large.
Cr的加入量為1〜4原子%的No_16、18〜20的軟磁性合金 粉末與Cr的加入量為8原子%的No_21的軟磁性合金粉末相 比,飽和磁化量大。No.21的軟磁性合金粉末的飽和磁化量 降低,此乃因隨著Cr加入量的增加,Fe濃度相對降低。 另夕卜,對於Cr的加入量為1〜4原子%的No·16、18〜20的 軟磁性合金粉末,伴隨著Cr加入量的增加,△ Tx增大,非 晶形形成能力提南。 (實驗例4) O:\86\86694.DOC -57- 1229700 以Fe、Fe-C合金、Fe—p合金、B、咖為原料,分別 稱量預定的量,在大氣環境下將此㈣料放人圖丨所示的高 壓水喷霧裝置㈣融㈣财,進行溶解,從㈣液掛塥 的溶融液喷嘴滴加合金溶融液,同時,從圖i所示的水噴霧 器的水喷射嘴噴射高壓水,使合纽融液成霧狀,在反應 腔内將霧狀合金熔融液驟冷,製造軟磁性合金粉末,此時, 改變製造條件,製造各種軟磁性合金粉末(Ν〇·22〜48的軟 磁性合金粉末)。 得到的各種軟磁性合金粉末的&成為% eh Μ· C2.16B7.54Si4.87 構成的組成。 而且,對上述組成為Fe74 43Cri 96p9 〇4C2」办义叫μ的各 種軟磁性合金粉末藉由X射線繞射法分析組織結構,此時, 所有的合金粉末的X射線繞射圖譜都表示寬圖譜,可見是由 非晶形相構成的組織構成。因此即使是Fe、Cr、p、c、B、The soft magnetic alloy powders No. 16 and 18 to 20 in which the amount of Cr is 1 to 4 atomic% have a larger saturation magnetization than the soft magnetic alloy powders No. 21 in which the amount of Cr is 8 atomic%. The saturation magnetization of the soft magnetic alloy powder of No. 21 is reduced, because the Fe concentration is relatively decreased with the increase of the Cr addition amount. In addition, as for the soft magnetic alloy powders No. 16, 18 to 20 in which the amount of Cr is added is 1 to 4 atomic%, as the amount of Cr added is increased, ΔTx is increased, and the ability to form an amorphous phase is increased. (Experimental example 4) O: \ 86 \ 86694.DOC -57- 1229700 Using Fe, Fe-C alloy, Fe-p alloy, B, and coffee as raw materials, weigh a predetermined amount, and then measure this in an atmospheric environment. The material is placed in the high-pressure water spray device shown in Figure 丨 to melt and dissolve the alloy solution. The alloy melt is added dropwise from the melt nozzle of the liquid suspension. High-pressure water is sprayed to make the molten alloy liquid into a mist. The molten alloy melt is quenched in the reaction chamber to produce soft magnetic alloy powder. At this time, the manufacturing conditions are changed to produce various soft magnetic alloy powders (NO.22 ~ 48 soft magnetic alloy powder). The & of each of the obtained soft magnetic alloy powders had a composition of% eh M · C2.16B7.54Si4.87. In addition, the various soft magnetic alloy powders with the composition Fe74 43Cri 96p9 〇4C2 as the above-mentioned composition were analyzed by X-ray diffraction method. At this time, the X-ray diffraction patterns of all the alloy powders showed a wide spectrum. It can be seen that the structure is composed of an amorphous phase. So even Fe, Cr, p, c, B,
Si構成的合金,也可形成由非晶形相構成的非晶形軟磁性 合金粉末。圖8中表示藉由限制視野電子線繞射分析ν〇·23 軟磁性合金粉末的狀態。 藉由掃描型電子顯微鏡(SEM)觀察上述組成FhmCn % iV^Cz.^BrnSi4.87的各種軟磁性合金粉末,研究形狀。結 果在表7、表8中表示。而且,在圖1〇中,表示藉由§εμ觀 察No .23的軟磁性合金粉末的結果。而在圖12中,藉由穿透 型電子顯微鏡(TEM)觀察No.23的軟磁性合金粉末的組織狀 怨的結果。 在表7、表8中表示得到的軟磁性合金粉末的平均粒徑 O:\86\86694.DOC -58- 1229700 (D^)、振實密度、比表面積、氧濃度、長寬比的最小值和 最大值的平均值。 進而’對得到的各種軟磁性合金粉末進行DSC測定 (Differential scanning caloriemetry ··示差掃描熱量測定), 測疋玻璃轉移溫度Tg、結晶化開始溫度τχ、居裏溫度]^和 炼點Tm,同時求出過冷卻液體的溫度間隔△丁义和Tg/Tm。 此等結果在表9、表1〇中表示。DSC測定時的升溫速度為〇67 K/秒。而表9、表1〇中的Tm*表示合金的融解溫度。 對得到的各種軟磁性合金粉末,與實驗例丨相同地測定飽 和磁化量σ s。此等結果綜示於表9、表丨〇。 接著,除使用該實驗例4得到的軟磁性合金粉末之外,與 上述實驗例1相同地製造造粒粉末,進而,使用上述造粒粉 末,與上述實驗例1相同地製造各種壓粉核心。 與實驗例1相同測定得到的各種壓粉核心的核心損失 (W)。結果綜示於表9、表1〇。而且與實驗例丨相同測定得到 的各種壓粉核心的實效透磁率(//,)和直流重疊特性(( DC5 5GG)。結果綜示於表9、表1〇。 表7An alloy composed of Si may also be formed into an amorphous soft magnetic alloy powder composed of an amorphous phase. FIG. 8 shows the state of the ν〇 · 23 soft magnetic alloy powder by electron field diffraction analysis with a limited field of view. Various soft magnetic alloy powders having the above composition FhmCn% iV ^ Cz. ^ BrnSi4.87 were observed by a scanning electron microscope (SEM), and the shapes were studied. The results are shown in Tables 7 and 8. Fig. 10 shows the results of observation of the soft magnetic alloy powder No. 23 by §εµ. In Fig. 12, the structure of the soft magnetic alloy powder of No. 23 was observed with a transmission electron microscope (TEM). Tables 7 and 8 show the average particle size of the obtained soft magnetic alloy powder O: \ 86 \ 86694.DOC -58-1229700 (D ^), minimum tap density, specific surface area, oxygen concentration, and minimum aspect ratio. The average of the value and the maximum. Furthermore, 'differential scanning caloriemetry (differential scanning calorimetry) was performed on each of the obtained soft magnetic alloy powders, and the glass transition temperature Tg, the crystallization initiation temperature τχ, and the Curie temperature were measured, and the refining point Tm was calculated simultaneously. The temperature interval △ Ding Yi and Tg / Tm of the supercooled liquid. These results are shown in Tables 9 and 10. The rate of temperature rise during DSC measurement was 067 K / sec. Tm * in Tables 9 and 10 indicates the melting temperature of the alloy. For each of the obtained soft magnetic alloy powders, the saturation magnetization σ s was measured in the same manner as in Experimental Example 丨. These results are summarized in Tables 9 and 0. Next, except that the soft magnetic alloy powder obtained in Experimental Example 4 was used, granulated powders were produced in the same manner as in Experimental Example 1, and further, using the granulated powders, various powder cores were produced in the same manner as in Experimental Example 1. The core loss (W) of each of the powder cores measured in the same manner as in Experimental Example 1. The results are summarized in Tables 9 and 10. Moreover, the effective permeability (//,) and DC overlap characteristics ((DC5 5GG) of the various powder cores obtained by the same measurement as in Experimental Example 丨 are shown in Tables 9 and 10.
O:\86\86694.DOC -59- 1229700 表8O: \ 86 \ 86694.DOC -59- 1229700 Table 8
No. 軟磁性合金粉末 組成 形狀 D50 (微米) 振實密度 (Mg/m3) 比表面積 (m2/g) 氧濃度 (ppm) 長寬比 最小 長寬比最 大 長寬比 平均 結構 36 Fe74.43Cr ι.9όΡ 9.04C2.1 大致 8.94 4.17 0.20 1100 1.0 2.3 1.2 37 6B7.54S14.87 球狀 8.63 4.11 0.22 1000 3.1 1.2 非晶 38 8.86 4.04 0.22 1300 3.4 1.2 39 9.04 3.92 0.25 1300 5.8 1.5 形的 40 9.05 3.78 0.28 1300 5.8 1.8 41 8.86 4.02 0.22 1900 3.8 1.3 42 9.04 3.91 0.25 2400 4.5 1.5 43 9.05 3.78 0.28 2900 5.9 1.9 44 13.08 4.05 0.28 1300 5.9 2.1 45 14.98 4.28 0.24 1400 4.0 1.4 46 29.55 4.39 0.22 1300 4.8 1.6 47 44.32 4.51 0.22 1400 5.7 1.8 48 48.90 4.69 0.22 1400 5.7 1.8 表9No. Soft magnetic alloy powder composition shape D50 (micron) Tap density (Mg / m3) Specific surface area (m2 / g) Oxygen concentration (ppm) Aspect ratio Minimum aspect ratio Maximum aspect ratio Average structure 36 Fe74.43Cr ι .9th 9.04C2.1 approximately 8.94 4.17 0.20 1100 1.0 2.3 1.2 37 6B7.54S14.87 spherical 8.63 4.11 0.22 1000 3.1 1.2 amorphous 38 8.86 4.04 0.22 1300 3.4 1.2 39 9.04 3.92 0.25 1300 5.8 1.5 shaped 40 9.05 3.78 0.28 1300 5.8 1.8 41 8.86 4.02 0.22 1900 3.8 1.3 42 9.04 3.91 0.25 2400 4.5 1.5 43 9.05 3.78 0.28 2900 5.9 1.9 44 13.08 4.05 0.28 1300 5.9 2.1 45 14.98 4.28 0.24 1400 4.0 1.4 46 29.55 4.39 0.22 1300 4.8 1.6 47 44.32 4.51 0.22 1400 5.7 1.8 48 48.90 4.69 0.22 1400 5.7 1.8 Table 9
No. Tc(K) Tg(K) Tx(K) ΔΤχ(Κ) Tm* Tg/Tm Tx/Tm σ s(Wb.m/kg) W(kW/m3) 〆 β D5500 22 602 780 829 49 1342 0.58 0.62 174 508 59 32.0 23 206 70 34.0 24 560 55 32.0 25 335 61 32.5 26 422 62 32.5 27 334 60 32.5 28 244 62 32.5 29 212 62 32.5 30 174 64 33.0 31 210 61 32.5 32 253 63 33.0 33 216 63 33.0 34 201 62 33.0 35 257 69 34.5 表10 No. Tc(K) Tg(K) Tx(K) ΔΤχ(Κ) Tm* Tg/Tm Tx/Tm a s(Wb.m/kg) W(kW/m3) β' β D5500 36 602 780 829 49 1342 0.58 0.62 174 174 63 32.5 37 191 62 32.5 38 200 63 32.5 39 335 63 32.0 40 420 59 32.0 41 245 61 32.0 42 342 58 31.5 43 600 786 830 44 1355 0.58 0.61 171 445 58 31.5 44 602 780 829 49 1342 0.58 0.62 174 440 70 34.0 45 235 70 34.0 46 335 71 34.0 47 445 80 34.5 48 550 85 34.5 由表7〜表10的結果可見,No.22〜48的軟磁性合金粉末 可得到大致球狀的。 但是No.22的軟磁性合金粉末的比表面積大至0.32 m2/g,而且,使用該軟磁性合金粉末製造的壓粉核心的核 心損失大。而No.24的軟磁性合金粉末的振實密度小至3.68 Mg/m3,而且,使用此種軟磁性合金粉末製造的壓粉核心的 O:\86\86694.DOC -60- 1229700 核心知失大。 與此不同,能使D5G大於4微米並且在45微米以下,振實 密度為3.7 Mg/m3以上,比表面積為0.3 m2/g以下,氧濃度 為3000 ppm&下的軟磁性合金粉末(N〇 25、26、27、32、 35、39、40、42、44、45、46)製造的壓粉核心的核心損失 (W)為450 kw/m3以下,而且,能使實效透磁率〆為58〜7卜 而且’使用能使Dw大於4微米並且在16微米以下,振實 密度為4.0Mg/m3以上,比表面積為〇 23m2/g以丁,氧濃度 為2000 ppm以下的軟磁性合金粉末(N〇 23、28、29、3〇、 31 33、34、36、37、38、4丨)製造的壓粉核心的核心損失 (W)為250 kw/m3以下,而且,能使實效透磁率〆為6丨〜7〇, 直流重疊特性# ’DC55GG為32〜34。 由圖10的SEM照片可見,Νο·23的軟磁性合金粉末為大致 球狀。此種Νο_23的軟磁性合金粉末呈現如圖8的繞射點的 分佈形態顯示的非晶特有的暈圈圖,可見由非晶形相構 成。由圖12的ΤΕΜ照片可見,Νο·23的軟磁性合金粉末組織 狀態均勻,結晶相不混合。 (實驗例5) 以Fe、Fe-C合金、Fe_p合金、Β、Si、叫口^或編或〜 為原料,分別稱量預定的量,在大氣環境下將此等原料放 入圖1所示的高壓水喷霧裝置的熔融液坩堝中,進行溶解, 從熔融液坩堝的熔融液噴嘴滴下合金熔融液,同時,從圖] 所示的水噴霧器的水噴射嘴噴射高壓水,使合金溶融:成 O:\86\86694.DOC -61 - 1229700 霧狀,在反應腔内將霧狀合金熔融液驟冷,製造軟磁性合 金粉末,此時,改變製造條件,製造各種軟磁性合金粉末 (Νο·50〜57的軟磁性合金粉末)。 得到的各種軟磁性合金粉末的組成為Fei.t_y_z_w xpySitCz bwmx構成的組成(其中,2是216〜218原子%,界為7.54〜 7.62原子%,x為卜丨·%原子%,y為7〜914原子%,〖為3 87 10原子%)。上述組成式中的Μ表示Cr或者Μ〇·或者V。 Ν〇·56的軟磁性合金粉末與Ν〇·23的組成相同地但是平均 粒徑(DW、振實密度、比表面積、氧濃度、長寬比的平均 值在本發明的範圍之外,Ng.57的軟磁性合金粉末與ν〇·23 的組成相同地藉由水喷霧法製造時的製造條件不同,更具 體地’藉由Ρ♦低喷霧時的水壓,降低溶融液的冷卻速度, 形成不定形和結晶的混相狀態。 對上述組成為Fe1G(M_y_z_w-xpySitCzBwMx的各種軟磁性合 金粉末藉由X射線繞射法分析組織結構,此時,ν〇·5ι、 Ν〇·53曰〜Νο.56的合金粉末的狀線繞射圖譜都表示寬圖譜, 可見是由非晶形相構成的組織構成,ν〇 57 射線繞射圏譜為非寬圖譜。烟中,表示藉由::視野電 子線繞射分析Νο.57的軟磁性合金粉末狀態的結果。 因此對於由 Fe、Cr、P、c、B、Si、M〇^,MM 使平均粒徑(〇5°)、振實密度、比表面積、氧濃度、長寬t 的:均值在本發明的範圍内’可藉由控制用噴霧法製造日 件,可形成由非晶形相構成的非晶形相軟磁… 孟私末(Νο·51、Νο·53〜No.56)。No. Tc (K) Tg (K) Tx (K) ΔΤχ (Κ) Tm * Tg / Tm Tx / Tm σ s (Wb.m / kg) W (kW / m3) 〆β D5500 22 602 780 829 49 1342 0.58 0.62 174 508 59 32.0 23 206 70 34.0 24 560 55 32.0 25 335 61 32.5 26 422 62 32.5 27 334 60 32.5 28 244 62 32.5 29 212 62 32.5 30 174 64 33.0 31 210 61 32.5 32 253 63 33.0 33 216 63 33.0 34 201 62 33.0 35 257 69 34.5 Table 10 No. Tc (K) Tg (K) Tx (K) ΔΤχ (Κ) Tm * Tg / Tm Tx / Tm as (Wb.m / kg) W (kW / m3) β 'β D5500 36 602 780 829 49 1342 0.58 0.62 174 174 63 32.5 37 191 62 32.5 38 200 63 32.5 39 335 63 32.0 40 420 59 32.0 41 245 61 32.0 42 342 58 31.5 43 600 786 830 44 1355 0.58 0.61 171 445 58 31.5 44 602 780 829 49 1342 0.58 0.62 174 440 70 34.0 45 235 70 34.0 46 335 71 34.0 47 445 80 34.5 48 550 85 34.5 It can be seen from the results in Tables 7 to 10 that the soft magnetic alloy powders No. 22 to 48 can Get roughly spherical. However, the specific surface area of the soft magnetic alloy powder of No. 22 is as large as 0.32 m2 / g, and the core loss of the powder core made of the soft magnetic alloy powder is large. The tap density of No.24 soft magnetic alloy powder is as small as 3.68 Mg / m3, and the core of the powder core made of this soft magnetic alloy powder is O: \ 86 \ 86694.DOC -60- 1229700. Big. In contrast, soft magnetic alloy powder (N.O.) that can make D5G greater than 4 microns and less than 45 microns, a tap density of 3.7 Mg / m3 or more, a specific surface area of 0.3 m2 / g or less, and an oxygen concentration of 3000 ppm & 25, 26, 27, 32, 35, 39, 40, 42, 44, 45, 46) The core loss (W) of the powder core is 450 kw / m3 or less, and the effective magnetic permeability 透 can be 58. ~ 7 Bu and 'Use soft magnetic alloy powder (Dw greater than 4 microns and below 16 microns, tap density of 4.0Mg / m3 or more, specific surface area of 023m2 / g butadiene, oxygen concentration of 2000 ppm or less ( No. 23, 28, 29, 30, 31 33, 34, 36, 37, 38, 4 丨) The core loss (W) of the powder core manufactured is less than 250 kw / m3, and the effective magnetic permeability can be made. 〆 is 6 丨 ~ 7〇, and the DC overlap characteristic # 'DC55GG is 32 ~ 34. As can be seen from the SEM photograph of Fig. 10, the soft magnetic alloy powder of No. 23 is approximately spherical. This soft magnetic alloy powder of No. 23 has an amorphous halo pattern as shown in the distribution pattern of the diffraction points in FIG. 8, and it can be seen that it is composed of an amorphous phase. It can be seen from the TEM photo in Fig. 12 that the soft magnetic alloy powder of No. 23 has a uniform microstructure and no mixed crystal phases. (Experimental example 5) Using Fe, Fe-C alloy, Fe_p alloy, B, Si, or ^ or braided or ~ as raw materials, weigh a predetermined amount, respectively, and put these raw materials in the atmospheric environment in Figure 1 In the melt crucible of the high-pressure water spray device shown in the figure, dissolution is performed, and the alloy melt is dropped from the melt nozzle of the melt crucible. At the same time, high-pressure water is sprayed from the water spray nozzle of the water sprayer shown in the figure to melt the alloy. : Into O: \ 86 \ 86694.DOC -61-1229700 In the form of a mist, the molten alloy melt is quenched in the reaction chamber to produce soft magnetic alloy powder. At this time, the manufacturing conditions are changed to produce various soft magnetic alloy powders ( No. 50 ~ 57 soft magnetic alloy powder). The composition of the obtained various soft magnetic alloy powders was a composition consisting of Fei.t_y_z_w xpySitCz bwmx (wherein 2 is 216 to 218 atomic%, the boundary is 7.54 to 7.62 atomic%, x is BU ·% atomic%, and y is 7 to 914 atomic%, [3 87 10 atomic%). M in the above composition formula represents Cr or Mo ·· or V. The composition of the soft magnetic alloy powder of No. 56 is the same as that of No. 23, but the average particle size (DW, tap density, specific surface area, oxygen concentration, and aspect ratio is outside the range of the present invention, and Ng The soft magnetic alloy powder of .57 has the same composition as that of ν〇 · 23 when manufactured by the water spray method, and more specifically, 'the water pressure during spraying is reduced to reduce the cooling of the molten solution. Velocity, forming a mixed phase of amorphous and crystalline. For various soft magnetic alloy powders with the above composition Fe1G (M_y_z_w-xpySitCzBwMx), the structure is analyzed by X-ray diffraction method. At this time, ν〇 · 5ι, Ν〇 · 53, said The diffracted diffraction patterns of the alloy powders of ~ Nο.56 all show a broad spectrum, and it can be seen that the structure is composed of an amorphous phase. The ν〇57 ray diffraction spectrum is a non-broad spectrum. In the smoke, it means that: Visual field electron beam diffraction analysis of the results of the soft magnetic alloy powder No. 57. Therefore, for Fe, Cr, P, c, B, Si, M, MM, the average particle diameter (〇5 °), Density, specific surface area, oxygen concentration, length and width t: the average value is within the scope of the present invention Inside ’can be used to manufacture Japanese articles by the spray method of control, and it is possible to form an amorphous phase soft magnetic field composed of an amorphous phase ... Meng Shimao (No.51, No.53 ~ No.56).
O:\86\86694.DOC -62- 1229700 藉由掃描型電子顯微鏡(SEM)觀察上述組成為Fe⑽+y_z. w-xPySitCzBwMx的各種軟磁性合金粉末,研究形狀。結果在 表11表示。圖11表示藉由SEM觀察No· 56的軟磁性合金粉末 的結果。而在圖13中,表示藉由TEM觀察No. 57的軟磁性合 金粉末的結果。在表12表示得到的軟磁性合金粉末的平均 粒徑(Dm)、振實密度、比表面積、氧濃度、長寬比的最小 值和最大值的平均值。 進而,對得到的各種軟磁性合金粉末進行DSC測定 (Differential scanning caloriemetry :示差掃描熱量測定), 測定玻璃轉移溫度Tg、結晶化開始溫度Τχ、居裏溫度化和 熔點Tm,同時求出過冷卻液體的溫度間隔△ Τχ和Tg/Tm。 此等結果在表12表示。DSC測定時的升溫速度為〇 67 Κ/ 秒。表12中的Tm*表示合金的融解溫度。 對得到的各種軟磁性合金粉末,與實驗例丨相同地測定飽 和磁化量σ s。此等結果綜示於表丨2。 接著,除使用該實驗例5得到的軟磁性合金粉末之外,與 上述實驗例1相同地製造造粒粉末,進而,使用上述造粒粉 末,與上述實驗例1相同地製造各種壓粉核心。 另外,與實驗例1相同測定得到的各種壓粉核心的核心損 失(W)。結果綜不於表12。 與實驗例1相同測定得到的各種壓粉核心的實效透磁率 (# ’)和直流重疊特性(// ’DC55G())。結果綜示於表12。 為進行比較,與實驗例1相同地測定作為通常已知的現有 合金粉末的組成Fe — Cr- Si-B(組成為Fe73Cr2Bi5Sii())的合 O:\86\86694.DOC -63 - 1229700 金粉末(No.52)的組織結構、形狀、平均粒徑(D5G)、振實密 度、比表面積、氧濃度、長寬比的最小值和最大值和平均 值。它們的結果在表11中總和表示。No.52的合金粉末藉由 水喷霧法製造。No.52的合金粉末的組織結構為具有不定形 相和結晶相。O: \ 86 \ 86694.DOC -62- 1229700 A variety of soft magnetic alloy powders with the composition Fe⑽ + y_z. W-xPySitCzBwMx were observed with a scanning electron microscope (SEM), and their shapes were studied. The results are shown in Table 11. Fig. 11 shows the results of observation of the soft magnetic alloy powder No. 56 by SEM. Fig. 13 shows the results of observation of the soft magnetic alloy powder of No. 57 by TEM. Table 12 shows the average values of the minimum and maximum values of the average particle diameter (Dm), tap density, specific surface area, oxygen concentration, and aspect ratio of the obtained soft magnetic alloy powder. Furthermore, DSC measurement (Differential scanning caloriemetry) was performed on each of the obtained soft magnetic alloy powders, and the glass transition temperature Tg, the crystallization start temperature Tx, the Curie temperature, and the melting point Tm were measured, and the supercooled liquid was obtained The temperature interval △ Τχ and Tg / Tm. These results are shown in Table 12. The temperature increase rate during DSC measurement was 0.067 K / sec. Tm * in Table 12 represents the melting temperature of the alloy. For each of the obtained soft magnetic alloy powders, the saturation magnetization σ s was measured in the same manner as in Experimental Example 丨. These results are summarized in Table 丨 2. Next, except that the soft magnetic alloy powder obtained in Experimental Example 5 was used, granulated powders were produced in the same manner as in Experimental Example 1. Furthermore, using the granulated powders, various powder cores were produced in the same manner as in Experimental Example 1. In addition, the core loss (W) of each of the powder cores measured in the same manner as in Experimental Example 1 was measured. The results are not summarized in Table 12. The effective magnetic permeability (# ') and DC superposition characteristics (/' DC55G ()) of various powder cores obtained in the same manner as in Experimental Example 1 were measured. The results are summarized in Table 12. For comparison, as in Experimental Example 1, the composition of Fe—Cr-Si-B (composition Fe73Cr2Bi5Sii ()), which is a conventionally known conventional alloy powder, was measured. The structure, shape, average particle size (D5G), tap density, specific surface area, oxygen concentration, and minimum and maximum values and average values of powder (No.52). Their results are shown in Table 11 in total. The alloy powder of No. 52 was produced by a water spray method. The microstructure of the alloy powder of No. 52 has an amorphous phase and a crystalline phase.
與實驗例1相同地對No. 5 2的合金粉末測定飽和磁化量 σ s。此等結果綜示於表12。除使用No.52的合金粉末之外, 與上述實驗例1相同製造造粒粉末,使用此等造粒粉末,與 上述實驗例1相同地製造壓粉核心,測定該壓粉核心的實效 透磁率(// ’)和直流重疊特性(// ’ DC5500 )。結果綜不於表12。 表11The saturation magnetization σ s was measured on the alloy powder of No. 5 2 in the same manner as in Experimental Example 1. These results are summarized in Table 12. Except that the alloy powder No. 52 was used, granulated powder was produced in the same manner as in Experimental Example 1 above. Using these granulated powders, a pressed powder core was produced in the same manner as in Experimental Example 1 above, and the effective magnetic permeability of the pressed powder core was measured. (// ') and DC overlap characteristics (//' DC5500). The results are not summarized in Table 12. Table 11
No. 軟磁性合金粉末組 形狀 〇50 振實密度 比表面積 氧濃度 長寬比 長寬比 長寬比 結構 成 (微米) (Mg/m3) (m2/g) (ppm) 最小 最大 平均 50 Fe74.43MO1.96P9.O4C2.16 大致 9.03 4.07 0.22 1400 1.0 3.4 1.2 非晶 B7.54 Sl4.87 球狀 形的 51 Fe76.19V1P9· 14C2· 18B7.62 大致 8.83 4.03 0.22 1400 1.0 4.1 1.2 非晶 Sl3.87 球狀 形的 52 Fe73Cr2Bi5Sii〇 大致 8.51 4.13 0.30 1300 1.0 5.8 1.8 非晶 球狀 形的 +結晶 53 F 674.99C r 1.4P9.04C2.1 βΒ 7. 大致 9.21 4.16 0.25 1400 1.0 3.2 1.2 非晶 54S14.87 球狀 形的 54 Fe74.99Cr1.4PsC2.i6B7.54 大致 9.09 4.15 0.25 1500 1.0 3.1 1.2 非晶 Sl4.87 球狀 形的 55 F e77.〇3Cr 1.4P7C2. ιβΒ 7.54 大致 8.94 4.21 0.25 1400 1.0 3.4 1.2 非晶 Sl4.87 球狀 形的 56 Fe74.43crl.96p9.04c2.16B 7.54S14.87 不定形 75.00 2.30 0.65 4500 1.0 17.0 5.5 非晶 形的 57 Fe74.43crl.96p9.04c2.l6B 大致 11.08 4.19 0.24 1300 1.0 3.5 1.2 非晶 7.54S14.87 球狀 形的 +結晶 表12No. Soft magnetic alloy powder group shape 〇50 Tap density Specific surface area Oxygen concentration Aspect ratio Aspect ratio Aspect ratio structure (micron) (Mg / m3) (m2 / g) (ppm) Minimum maximum average 50 Fe74. 43MO1.96P9.O4C2.16 Approximately 9.03 4.07 0.22 1400 1.0 3.4 1.2 Amorphous B7.54 Sl4.87 Spherical 51 Fe76.19V1P9 · 14C2 · 18B7.62 Approximately 8.83 4.03 0.22 1400 1.0 4.1 1.2 Amorphous Sl3.87 Spherical 52 Fe73Cr2Bi5Sii〇 Approximately 8.51 4.13 0.30 1300 1.0 5.8 1.8 Amorphous spherical + crystalline 53 F 674.99C r 1.4P9.04C2.1 βB 7. Approximately 9.21 4.16 0.25 1400 1.0 3.2 1.2 Amorphous 54S14.87 Spherical 54 Fe74.99Cr1.4PsC2.i6B7.54 Roughly 9.09 4.15 0.25 1500 1.0 3.1 1.2 Amorphous Sl4.87 Spherical 55 F e77.〇3Cr 1.4P7C2. ΙβΒ 7.54 Roughly 8.94 4.21 0.25 1400 1.0 3.4 1.2 Amorphous Sl4.87 Spherical 56 Fe74.43crl.96p9.04c2.16B 7.54S14.87 Amorphous 75.00 2.30 0.65 4500 1.0 17.0 5.5 Amorphous 57 Fe74.43crl.96p9.04c2.l6B Approximately 11.08 4.19 0.24 1300 1.0 3.5 1.2 NOT 7.54S14.87 spherical-shaped crystals + Table 12
No. Tc(K) Tg(K) Tx(K) ΔΤχ(Κ) Tm* Tg/Tm Tx/Tm 〇 s(Wb.m/kg) W(Kw/m3) 〆 β DC5500 50 530 780 825 45 1360 0.57 0.61 175 213 63 33.5 51 620 771 815 44 1345 0.57 0.61 180 215 60 34.0 52 654 - 842 — 1436 — 0.59 180 1140 58 33.0 53 609 792 841 49 1355 0.58 0.62 172 190 60 33.6 54 618 783 828 45 1360 0.58 0.61 181 180 61 34.5 55 624 773 815 42 1364 0.57 0.6 189 220 59 35.6 56 600 785 828 43 1355 0.58 0.61 171 2200 175 25.0 57 585 786 815 30 1355 0.58 0.6 163 850 58 32.0 由表11、表12的結果可見,No.52的軟磁性合金粉末是大 O:\86\86694.DOC -64- 1229700 致球狀的,其組織結構由非晶形相(不定形相)和結晶相構 成,而且,使用No.52的合金粉末製造的壓粉核心的核心損 失大至1000 kW/Cm1以上。 另外’攸圖11的SEM照片看’ No·56的軟磁性合金粉末是 不定形的,而從表11〜表12的結果可看出,使用N〇56的軟 磁性合金粉末的壓粉核心的核心損失大,直流重疊特性差。 4 No · 5 7的权磁性合金粉末如圖9的繞射點的分佈型態所 示的那樣,可看至與結晶組織對應形式的多個點,即由非 曰曰形相和結晶相構成。而從圖丨3的TEM的照片可看出,馨 Ν〇·57的軟磁性合金粉末組織狀態不均勻,結晶相和非晶形 相混合。從表11〜表12的結果可看出,使用此種Ν〇·57的軟 磁性合金粉末的壓粉核心的核心損失大。 、與此不同,Νο·51、53、54、55的軟磁性合金粉末是大致 球狀的,其組織結構由非晶形相(不定形相)構成。 (實驗例6) 對造粒粉末的粒徑和流動性進行研究。 戶斤謂流動性是將k + 44 .No. Tc (K) Tg (K) Tx (K) ΔΤχ (Κ) Tm * Tg / Tm Tx / Tm 〇s (Wb.m / kg) W (Kw / m3) 〆β DC5500 50 530 780 825 45 1360 0.57 0.61 175 213 63 33.5 51 620 771 815 44 1345 0.57 0.61 180 215 60 34.0 52 654-842 — 1436 — 0.59 180 1140 58 33.0 53 609 792 841 49 1355 0.58 0.62 172 190 60 33.6 54 618 783 828 45 1360 0.58 0.61 181 180 61 34.5 55 624 773 815 42 1364 0.57 0.6 189 220 59 35.6 56 600 785 828 43 1355 0.58 0.61 171 2200 175 25.0 57 585 786 815 30 1355 0.58 0.6 163 850 58 32.0 It can be seen from the results of Table 11 and Table 12, The soft magnetic alloy powder of No.52 is large O: \ 86 \ 86694.DOC -64- 1229700, and its structure is composed of an amorphous phase (amorphous phase) and a crystalline phase. The core loss of the powder core made of alloy powder is as large as 1000 kW / Cm1 or more. In addition, 'see the SEM photograph of FIG. 11', the soft magnetic alloy powder of No. 56 is amorphous, and from the results of Tables 11 to 12, it can be seen that the core of the pressed powder using the soft magnetic alloy powder of No. 56 Large core loss and poor DC overlap characteristics. As shown in the distribution pattern of the diffraction points of Fig. 9 for the weighted magnetic alloy powder of 4 No. 5 7, a plurality of points corresponding to the crystalline structure can be seen, that is, composed of a non-crystalline phase and a crystalline phase. From the TEM photos in Figure 3, it can be seen that the soft magnetic alloy powder of Xin No. 57 has a non-uniform microstructure, and the crystalline phase and the amorphous phase are mixed. As can be seen from the results in Tables 11 to 12, the core loss of the powder core using the soft magnetic alloy powder of No. 57 was large. Unlike this, the soft magnetic alloy powders of No. 51, 53, 54, and 55 are approximately spherical, and their structure is composed of an amorphous phase (an amorphous phase). (Experimental example 6) The particle size and fluidity of the granulated powder were examined. Households say that liquidity is k + 44.
微米以下、超過500微米、 -65 - 1 〇〇微米以下、300微米以上〜500 、45微米以上〜3〇〇微米以下、45Below micron, more than 500 microns, -65-1000 microns or less, 300 microns or more to 500, 45 microns or more to 300 microns or less, 45
O:\86\86694.DOC 1229700 U米以上〜500微米以下的,用於流動性試驗(JIS 25〇2_ 1958) 〇 …果,造粒粉末粒徑未達45微米時不流動,45微米以上 15〇微米以下時為44.5秒,150微米以上3〇〇微米以下時為 50·4衫,300微米以上5〇〇微米以下時為618秒,超過5〇〇微 米時不流動,45微米以上300微米以下時為45·9秒,45微米 以上5 〇 〇微米以下時為5 0 · 0秒。 因此造粒粉末的粒徑較佳為45微米以上5〇〇微米以下,較 佺為45微米以上3〇〇微米以下,進一步較佳45微米以上15〇 微米以下。 (實驗例7) 對佔整個造粒粉末的粒徑未達45微米的造粒粉末的夾雜 里(重置%)和流動性進行研究。結果在圖5表示。此處所謂 流動性疋將造粒粉末流入直徑2.5 min的孔内時,改變佔整 個造粒粉末50g的粒徑未達45微米的造粒粉末的夾雜量,測 疋藉由孔内的時間(秒)。此處所使用的造粒粉末是將相對於 貫施型態的非晶形軟磁性合金粉末98·3重量%,作為絕緣材 料的聚石夕氧樹脂1.4重量%和作為潤滑劑的硬脂酸鋅〇.3重 量0/。混合造粒的産物。將此製造的造粒粉末分級為粒徑未 達45微米的、超過粒徑45微米和5〇〇微米以下的,用於流動 性試驗(JIS 2502 — 1958)。 由圖5所示的結果可見,粒徑未達45微米的造粒粉末的夾 雜量如果佔整個造粒粉末的17重量%以下,流動性為6〇 秒,如果在15重量%以下,流動性可在5〇秒以下,流動性 O:\86\86694.DOC -66- 1229700 優異。 (實驗例8) 除使用上述實驗例4製造的N 〇 · 2 3的軟磁性合金粉末(組 成為以74 4(^1.96?9.()4。2.1667.548丨4.87)之外,與上述實驗例1相 同製造造粒粉末,進而使用此等造粒粉末,製造與上述實 驗例1相同的實驗例的壓粉核心。 為進行比較’除使用Fe的粉末之外,與上述實驗例1相同 製造造粒粉末’進而使用此等造粒粉末,與上述實驗例1相 同地製造壓粉核心(比較例1)。 為進行比較,除使用現有一般低損失核心中使用的Ni_ Fe—Mo(Mo系坡莫合金)的粉末之外,與上述實驗例工相同 製造造粒粉末,進而,使用該造粒粉末與上述實驗例丨相同 地製造壓粉核心(比較例2)。除使用Fe—A1—Si (仙台鐵矽鋁 磁性合金)之外,與上述實驗例丨相同製造造粒粉末,使用 該造粒粉末,與上述實驗例丨相同地製造壓粉核心(比較例 3)。 測定得到的各種壓粉核心的核心損失(w)、相對實效透磁 率(/〇、直流重疊特性(#,)。 此處的核心損失是在頻率⑴一定為100kHZ、飽和磁束密 度(Bm)為1〇〜l〇〇mH^件下測定的。 相對實效透磁率是用相對值表示頻率⑴在丨〜i〇〇〇 kHz 範圍内改變時貫效透磁率(#,)的測定結果。 直流重疊特性是測定電流i mA、頻率⑴定為1〇〇咖、直 流偏壓磁界(Hm)在0〜8000 Am·!範圍改變時的實效透磁率O: \ 86 \ 86694.DOC 1229700 U-meters to 500 micrometers, used for fluidity test (JIS 25〇2_ 1958) ○ ... if the granulated powder particle size does not reach 45 micrometers, it does not flow, 45 micrometers 44.5 seconds below 150 microns, 50 · 4 shirts below 150 microns and 300 microns below, 618 seconds above 300 microns and 500 microns below, 618 seconds above 500 microns, no flow, 300 above 45 microns It is 45 · 9 seconds below the micron, and 50 · 0 seconds below the 45 micron. Therefore, the particle size of the granulated powder is preferably 45 micrometers or more and 500 micrometers or less, more preferably 45 micrometers or more and 300 micrometers or less, and still more preferably 45 micrometers or more and 150 micrometers or less. (Experimental Example 7) The inclusion (reset%) and fluidity of the granulated powder having a particle diameter of less than 45 m as a whole were examined. The results are shown in FIG. 5. Here, the so-called flowability: when the granulated powder is flowed into a hole having a diameter of 2.5 min, the inclusion amount of the granulated powder with a particle size of less than 45 micrometers, which accounts for 50 g of the whole granulated powder, is changed. second). The granulated powder used here is 98.3% by weight of amorphous soft magnetic alloy powder in a perforated form, 1.4% by weight of polyoxysilane resin as an insulating material, and zinc stearate as a lubricant. .3 weight 0 /. Mix the granulated products. The granulated powder thus produced was classified into particles having a particle size of 45 micrometers or less and 45 micrometers or more and 500 micrometers or less, and used for a fluidity test (JIS 2502-1958). As can be seen from the results shown in FIG. 5, if the inclusion amount of the granulated powder having a particle diameter of less than 45 μm accounts for 17% by weight or less of the entire granulated powder, the fluidity is 60 seconds, and if it is 15% by weight or less, the fluidity It can be less than 50 seconds, and the fluidity is O: \ 86 \ 86694.DOC -66-1229700. (Experimental Example 8) Except for using the soft magnetic alloy powder of No. 23 produced in the above Experimental Example 4 (with a composition of 74 4 (^ 1.96? 9. () 4.2.1667.548 丨 4.87), Granulated powder was produced in the same manner as in Experimental Example 1, and the granulated powder was further used to produce the same powder core as in Experimental Example 1. For comparison, except that Fe powder was used, it was the same as in Experimental Example 1. Production of granulated powder 'Further, using these granulated powders, a pressed powder core (Comparative Example 1) was produced in the same manner as in Experimental Example 1. For comparison, except for the conventional Ni_Fe—Mo (Mo Except for powder of Permalloy, granulated powder was produced in the same manner as in the above-mentioned experimental example, and further, a compressed core was produced using this granulated powder in the same manner as in the above-mentioned experimental example (Comparative Example 2). Except for Si (Sendai iron-silicon-aluminum magnetic alloy), a granulated powder was produced in the same manner as in the above-mentioned Experimental Example 丨, and using this granulated powder, a compacted core was produced in the same manner as in the above-mentioned Experimental Example (Comparative Example 3). Core loss (w) of various powder cores, Relative effective magnetic permeability (/ 〇, DC overlap characteristics (#,). The core loss here is measured at a frequency ⑴ must be 100kHZ and the saturation magnetic flux density (Bm) is 10 ~ 100mH ^. Relative The effective magnetic permeability is a measurement result of the relative effective magnetic permeability (#,) when the frequency is changed in the range of 丨 ~ i00kHz with a relative value. The DC overlap characteristic is a measurement of the current i mA and the frequency is set to 100 The effective magnetic permeability when the magnetic field (Hm) of the DC bias is changed from 0 to 8000 Am ·!
O:\86\86694.DOC -67- 1229700 (#’)。結果在圖14〜圖16表示。 在測定得到的各種壓粉核心的比阻抗(P )時,實驗例的壓 粉核心為307 k Ω .cm,比較例的壓粉核心為〇.5k Ω.cm,比 較例3的壓粉核心為1.7 k Ω .cm。 由圖14的結果可看出,使用ν〇·23的軟磁性合金粉末的實 驗例的壓粉核心與使用Fe粉末的比較例1的壓粉核心、使用 Ni — Fe — Mo的粉末和Fe — A1 — 8丨粉末的比較例2^^^3相比, 壓粉核心低。 核心在使用頻率範圍内透磁率一定為較佳,從圖丨5的結 果可看出,在1 kHz〜1000 kHz (1 MHz)的範圍内,使用Fe 粉末和Ni — Fe - Mo粉末的比較例1〜2的壓粉核心如果頻 率增大’實效透磁率降低的比例增大。與此不同,使用No.23 的軟磁性合金粉末的實驗例的壓粉核心,在頻率1 kHz〜 1000 kHz下,實效透磁率基本一定,而且,在上述頻率範 圍内’比使用F e — A1 — S i粉末的比較例3的壓粉核心實效透 磁率高。 另外,使用核心時,即使直流偏壓磁界增大,透磁率也 盡可能維持一定,因此較佳,但是,從圖16的結果可看出, 使用Ni — Fe — Mo粉末的比較例2的壓粉核心如果磁界增 大’實效透磁率急劇降低,因此難以使用。與此不同,實 驗例的壓粉核心與使用Fe粉末和Fe — A1 — Si粉末的比較例 1和比較例3的壓粉核心相同地即使磁界增大,實效透磁率 的降低比例也小。 藉此,本發明的使用軟磁性合金粉末的實驗例的壓粉核 O:\86\86694.DOC -68- !2297〇〇 心的核心損失低’直至頻率高時,都能顯示一定的透磁率, 作為核心使用時,特性穩定,容易使用。 (實驗例9) 除使用上述實驗例4製造的ν〇.23的大致球狀的軟磁性合 金粉末之外’與上述實驗例1相同製造造粒粉末,進而,使 用該造粒粉末與上述實驗例1相同地製造實驗例的壓粉核 〇 作為比較’除上述實驗例5製造的ν〇·56的不定形合金粉 末(組成為Fe74.43Cri 96p9 Q4c2 i6B7 54Si4 87)之外,與上述實驗 例1相同地製造造粒粉末,進而,使用該造粒粉末,與上述 實驗例1相同製造壓粉核心(比較例4)。 對製造的實驗例和比較例4的壓粉核心測定的核心損失 (W)、初期實效透磁率(#,)、直流重疊特性(#,)。 此處的核心損失是使飽和磁束密度(Bm)為〇· 1T,頻率(f) 在10〜200 kHz範圍改變時的核心損失。 初期貫效透磁率是測定頻率⑴在i〜1〇〇〇 kHz範圍内改 變時的實效透磁率(//,)。 直流重疊特性是測定電流1 mA、頻率(f)定為100 kHz、直 流偏壓磁界(Hm)在〇〜8〇〇〇 Am]範圍改變時的實效透磁率 (#f)。結果在圖17〜圖19表示。 實驗例和比較例4的壓粉核心的密度(D)的測定結果在圖 20表示。 由圖17的結果可看出,使用形狀大致球狀的Ν〇·23的軟磁 卜生合至叙末的貫驗例的壓粉核心,在頻率10〜200 kHz範圍O: \ 86 \ 86694.DOC -67- 1229700 (# ’). The results are shown in FIGS. 14 to 16. When measuring the specific impedance (P) of the various powder cores, the powder core of the experimental example was 307 k Ω .cm, the powder core of the comparative example was 0.5 k Ω.cm, and the powder core of the comparative example 3 It is 1.7 k Ω .cm. From the results in FIG. 14, it can be seen that the powder core of the experimental example using the soft magnetic alloy powder of v.23 and the powder core of Comparative Example 1 using the Fe powder, the powder using Ni—Fe—Mo, and Fe— Compared with the powder of Comparative Example 2 ^^^ 3 of A1-8, the powder core was lower. The magnetic permeability of the core must be better in the frequency range of use. From the results in Figure 5 it can be seen that in the range of 1 kHz to 1000 kHz (1 MHz), a comparative example using Fe powder and Ni — Fe-Mo powder If the frequency of the powder core of 1 to 2 is increased, the effective magnetic permeability is reduced. In contrast, in the powder core of the experimental example using soft magnetic alloy powder No. 23, the effective magnetic permeability is basically constant at a frequency of 1 kHz to 1000 kHz, and in the above frequency range, 'ratio than F e — A1 is used. — The powder core of Comparative Example 3 of S i powder has a high effective magnetic permeability. In addition, when the core is used, it is better to maintain the permeability as constant as possible even if the DC bias magnetic field is increased. However, it can be seen from the results of FIG. 16 that the pressure of Comparative Example 2 using Ni—Fe—Mo powder is smaller. If the magnetic core increases, the effective magnetic permeability decreases sharply, so it is difficult to use. On the other hand, the dust core of the experimental example is the same as the dust cores of Comparative Examples 1 and 3 using Fe powder and Fe—Al—Si powder. Even if the magnetic boundary is increased, the reduction ratio of the effective magnetic permeability is small. With this, the powder core of the experimental example using soft magnetic alloy powder of the present invention: O: \ 86 \ 86694.DOC -68-! 2297〇〇 The core loss is low, and it can show a certain degree of transmission until the frequency is high. Magnetic properties, when used as a core, have stable characteristics and are easy to use. (Experimental Example 9) A granulated powder was produced in the same manner as in Experimental Example 1 except that the approximately spherical soft magnetic alloy powder of v.23 produced in Experimental Example 4 was used. Example 1 The powder core of the experimental example was produced in the same manner as a comparison 'except for the amorphous alloy powder (composition: Fe74.43Cri 96p9 Q4c2 i6B7 54Si4 87) of ν〇 · 56 produced in the above Experimental Example 5 and the same as the above experimental example. 1 A granulated powder was produced in the same manner, and a powder core was produced in the same manner as in Experimental Example 1 using this granulated powder (Comparative Example 4). The core loss (W), the initial effective magnetic permeability (#,), and the DC overlap characteristic (#,) were measured for the pressed powder cores of the manufactured experimental example and comparative example 4. The core loss here is the core loss when the saturation magnetic flux density (Bm) is 0.1 T, and the frequency (f) is changed in the range of 10 to 200 kHz. The initial effective magnetic permeability is the effective magnetic permeability (//,) when the measurement frequency is changed in the range of i to 1000 kHz. The DC superposition characteristic is the effective magnetic permeability (#f) when the measurement current is 1 mA, the frequency (f) is set to 100 kHz, and the DC bias magnetic field (Hm) is changed in the range of 0 to 800,000 Am]. The results are shown in FIGS. 17 to 19. The measurement results of the density (D) of the dust cores of the experimental example and comparative example 4 are shown in FIG. 20. It can be seen from the results in FIG. 17 that the soft magnetic core using the spherical shape of No. 23 soft magnetic powder is used to test the powder core of the conventional example. The frequency ranges from 10 to 200 kHz.
O:\86\86694.DOC -69- 1229700 内,與使用形狀為不定形的Νο·56的軟磁性合金粉末的實驗 例的壓粉核心相比’壓粉核心低。 上述核心在使用頻率範圍内較佳透磁率為一定,但由圖 18的結果可見,在1 kHz〜1000 kHz的範圍内,比較例4的 壓粉核心隨著頻率增大,初期實效透磁率的降低比例增 大。與此不同,實驗例的壓粉核心在上述頻率範圍内具有 大致一定的初期實效透磁率,容易用於作為核心使用的情 況。 從圖19的結果可看出’比較例4的核心如果施加的磁界增 大,實效透磁率驟降。與此不同,實驗例的壓粉核心即使 施加大磁界增大’初期實效透磁率的降低比例也小,並且, 在2500 Am— 1以上時,與比較例4相比,初期實效透磁率增 大。 從圖20的結果可看出,比較例4的壓粉核心的密度約為 5.5 g/cm3,實驗例的壓粉核心的密度約為6 g/cm3,與比較 例4的相比,密度大。 藉此可見,實驗例和比較例4的壓粉核心使用組成相同的 軟磁性合金粉末,由於合金粉末的形狀不同,上述特性不 同’因此使用大致球狀的軟磁性合金粉末的核心損失低, 直至頻率1000 kHz都顯示一定的透磁率,在作為核心使用 時,特性穩定,容易使用。 (實驗例10) 將上述實驗例4製造的Νο·23的大致球狀的軟磁性合金粉 末投入至阿特萊塔中,用阿特萊塔刻度盤4粉碎混合12個 O:\86\86694.DOC -70- 1229700 —製ικ驗例的扁平型軟磁性合金粉末。此處製造的實 驗例的扁平型非晶形軟磁性合金粉末厚度約為0.3〜1微 米’長度約為10〜7^科止々々㈤ ^ ^ , 彳政未乾圍。在圖21表示藉由SEM觀察 製w的實驗例的扁平型軟磁性合金粉末的結果。從圖^可 /狀大致為球形的^^〇23的軟磁性合金粉末扁平化, 是接近圓盤的形狀,並且大小均勻。 接著,相對於實驗例的扁平型軟磁性合金粉末45重量 σ作為絶緣性和黏結劑的材料的聚矽氧彈性體Μ重 ^ 口化成开》為片狀,製造實驗例的電磁波吸收體。 為進行比較,將上述實驗例5製造的Ν〇 · %的不定形軟磁 性合金粉末投人至阿特萊塔巾,用阿特萊塔刻度盤10粉碎 混合16個小時,製造比較例的扁平型軟磁性合金粉末。分 級出製造的比較例的扁平型軟磁性合金粉末中粒徑為〇〜 106微米的。圖22表示分級的比較例的扁平型軟磁性合金粉 末藉由SEM觀察的結果。由圖22可見,使形狀為不定形的 No.56的軟磁性合金粉末扁平化,變細,並且大小也不均勻。 接著,相對於分級的比較例的扁平型軟磁性合金粉末45 重里%混合作為絕緣性和黏結劑的材料的聚矽氧彈性體Μ 重里/〇,固化成形為片狀,製造比較例的電磁波吸收體。 對製造的實驗例和比較例的電磁波吸收體測定在i MHz 〜1000 MHz範圍内改變頻率時的實效透磁率(/z ,)和虛數透 磁率(//’’)。結果在圖23表示。 由圖23的結果可見,使用Νο·23的大致球狀的軟磁性合金 私末扁平化所仔粉末的實驗例的電磁波吸收體,在2 μηζ O:\86\86694.DOC -71 - 1229700 〜1000 MHz的範圍内,與使用將N〇56對不定形軟磁性合金 粕末扁平化所得粉末的比較例的電磁波吸收體相比,實效 透磁率咼而且’貫驗例的電磁波吸收體在7 MHz〜1〇〇〇 MHz的範圍内,與比較例的電磁波吸收體相比,虛數透磁 率提同,電磁波抑制效果優異,特別是在20 MHz以上,能 獲得/Z”在15以上(最高ι8)的值。 以上詳細說明的本發明的非晶形軟磁性合金粉末兼具高 飽和磁化置和低核心損失,並且,本發明的非晶形軟磁性 合金粉末能藉由水噴霧法製造,因此製造裝置可大型化, 並且,可藉由高壓水粉碎合金熔融液,提高量産性,而且, 即使不使用高價的惰性氣體,也能降低生産成本。 此種非晶形軟磁性合金粉末藉由水噴霧法以結晶球形的 形狀形成,因此有體積密度高,表面凹凸少的優點。 【圖式簡單說明】 圖1表示本發明非晶形軟磁性合金粉末製造用的高壓水 嘴務裝置一例的截面示意圖。 圖2表示本發明壓粉核心的第1實施型態的立體圖。 圖3表示本發明壓粉核心製造用模具一例的分解立體圖。 圖4是本發明壓粉核心製造時使用的放電電漿燒結裝置 的關鍵部分示意圖。 圖5表示粒徑未達45微米的造粒粉末的夾雜量和流動性 關係的曲線。 圖6表示本發明壓粉核心的其他實施型態例的立體圖。 圖7表示本發明壓粉核心的其他實施型態例的立體圖。 O:\86\86694.DOC -72- 1229700 圖8表示Νο·23的軟磁性合金粉末的電子線繞射結果的 圖。 圖9表示Νο.57軟磁性合金粉末的電子線繞射結果的圖。 圖10是No.23的軟磁性合金粉末的SEM照片。 圖11是No.56的軟磁性合金粉末的SEM照片。 圖12是Νο·23的軟磁性合金粉末的TEM照片。 圖13是Νο·57的軟磁性合金粉末的ΤΕΜ照片。 圖14表示實驗例和比較例1〜3的壓粉核心的核心損失測 定結果圖。 圖15表示實驗例和比較例1〜3的壓粉核心的相對實效透 磁率測定結果圖。 圖16表示貫驗例和比較例1〜3的壓粉核心的直流重疊特 性測定結果圖。 圖17表示貫驗例和比較例4的壓粉核心的核心損失測定 結果圖。 圖1 8表示實驗例和比較例4的壓粉核心的初期實效透磁 率測定結果圖。 圖19表示貫驗例和比較例4的壓粉核心的直流重疊特性 測定結果圖。 圖20表示實驗例和比較例4的壓粉核心的密度測定結果 圖。 圖21是實驗例的扁平型軟磁性合金粉末的SEm照片。 圖22是比較例的扁平型軟磁性合金粉末的SEM照片。 圖23表示實驗例和比較例的電磁波吸收體的實效透磁率 O:\86\86694.DOC -73- 1229700 和虛數透磁率之頻率取決性的示意圖。 【圖式代表符號說明】 1 壓水喷霧裝置 2 溶融液掛塌 3 水喷霧器 4 反應腔 5 合金溶融液 6 熔融液喷嘴 7 導入流路 8 水喷射喷嘴 10 高壓水 21 、 31 、 41 壓粉核心 g 高壓水流 P 喷霧點 Θ 水喷射角 OA86\86694.DOC -74-O: \ 86 \ 86694.DOC -69-1229700, compared with the powder core of the experimental example using a soft magnetic alloy powder of No. 56 having an irregular shape, the powder core is lower. The magnetic permeability of the above-mentioned core is preferably constant in the frequency range of use. However, it can be seen from the results in FIG. 18 that in the range of 1 kHz to 1000 kHz, the powder core of Comparative Example 4 has an initial effective magnetic permeability as the frequency increases. The reduction ratio increases. On the other hand, the dust core of the experimental example has a substantially constant initial effective magnetic permeability in the above-mentioned frequency range, and it is easy to use it as a core. From the results of Fig. 19, it can be seen that if the applied magnetic boundary of the core of Comparative Example 4 increases, the effective magnetic permeability decreases sharply. On the other hand, the powder core of the experimental example has a small percentage reduction in initial effective magnetic permeability even when a large magnetic field is applied. When the initial effective magnetic permeability is higher than 2500 Am-1, the initial effective magnetic permeability increases compared to Comparative Example 4. . It can be seen from the results of FIG. 20 that the density of the powder core of Comparative Example 4 is about 5.5 g / cm3, and the density of the powder core of the Experimental Example is about 6 g / cm3, which is larger than that of Comparative Example 4. . From this, it can be seen that the powder cores of the experimental example and comparative example 4 use soft magnetic alloy powders with the same composition. Due to the different shapes of the alloy powders, the above characteristics are different. Therefore, the core loss using the soft magnetic alloy powders that are approximately spherical is low until The frequency of 1000 kHz shows a certain permeability. When used as a core, the characteristics are stable and easy to use. (Experimental Example 10) The substantially spherical soft magnetic alloy powder of No. 23 produced in the above Experimental Example 4 was put into Atleta, and 12 O: \ 86 \ 86694 were crushed and mixed with Atleta dial 4 .DOC -70- 1229700 — Flat type soft magnetic alloy powder for ικ test. The flat amorphous soft magnetic alloy powder of the experimental example manufactured here has a thickness of about 0.3 to 1 micrometer 'and a length of about 10 to 7 ^ kezhi々々㈤ ^ ^, and the government is not yet dry. Fig. 21 shows the results of observing the flat-type soft magnetic alloy powder of the experimental example of w production by SEM. From the figure, the soft magnetic alloy powder, which can be roughly spherical, is flattened, has a shape close to a disk, and has a uniform size. Next, a polysilicone elastomer M, which is a material of insulation and a binder, 45 weights with respect to 45 weights of the flat-type soft magnetic alloy powder of the experimental example was formed into a sheet shape, and an electromagnetic wave absorber of the experimental example was manufactured. For comparison, the amorphous soft magnetic alloy powder of No.% produced in the above Experimental Example 5 was injected into the Atleta towel, and the Atleta dial 10 was pulverized and mixed for 16 hours to produce a flattened sheet of the Comparative Example. Soft magnetic alloy powder. The flat soft magnetic alloy powder of the comparative example produced was classified into particles having a particle size of 0 to 106 m. Fig. 22 shows the results of observing the flat-type soft magnetic alloy powder of the comparative example by SEM. As can be seen from Fig. 22, the soft magnetic alloy powder of No. 56 having an irregular shape is flattened, thinned, and the size is not uniform. Next, a polysiloxane elastomer M as a material for insulation and a binder was mixed with 45% by weight of the flat-type soft magnetic alloy powder of the comparative example of classification, and the curing was formed into a sheet to produce electromagnetic wave absorption of the comparative example. body. The electromagnetic wave absorbers manufactured in the experimental examples and comparative examples were measured for the effective magnetic permeability (/ z,) and imaginary magnetic permeability (/ '') when the frequency was changed in the range of i MHz to 1000 MHz. The results are shown in Fig. 23. From the results in FIG. 23, it can be seen that the electromagnetic wave absorber of the experimental example using the substantially spherical soft magnetic alloy flattened powder of No. 23 is 2 μηζ O: \ 86 \ 86694.DOC -71-1229700 ~ In the range of 1000 MHz, compared with the electromagnetic wave absorber of the comparative example using a powder obtained by flattening No. 56 amorphous soft magnetic alloy powder, the effective magnetic permeability is higher and the electromagnetic wave absorber of the conventional example is at 7 MHz. In the range of ~ 100MHz, compared with the electromagnetic wave absorber of the comparative example, the imaginary number magnetic permeability is improved, and the electromagnetic wave suppression effect is excellent. Especially above 20 MHz, it can obtain / Z ”above 15 (maximum ι8) The amorphous soft magnetic alloy powder of the present invention described in detail above has both high saturation magnetization and low core loss, and the amorphous soft magnetic alloy powder of the present invention can be manufactured by a water spray method, so the manufacturing apparatus can be It can be increased in size, and the molten alloy can be pulverized by high-pressure water to improve mass productivity, and the production cost can be reduced even if no expensive inert gas is used. This type of amorphous soft magnetic alloy powder It is formed in a crystalline spherical shape by the water spray method, so it has the advantages of high bulk density and less unevenness on the surface. [Simplified illustration of the drawing] Fig. 1 shows an example of a high-pressure nozzle device for manufacturing amorphous soft magnetic alloy powder according to the present invention. A schematic cross-sectional view. Fig. 2 is a perspective view of a first embodiment of the powder core of the present invention. Fig. 3 is an exploded perspective view of an example of a mold for manufacturing a powder core of the present invention. The schematic diagram of the key parts of the slurry sintering device. Figure 5 shows the relationship between the inclusion amount and fluidity of the granulated powder with a particle size of less than 45 microns. Figure 6 is a perspective view of another embodiment of the powder core of the present invention. Figure 7 O: \ 86 \ 86694.DOC -72- 1229700 Fig. 8 is a diagram showing the results of electron beam diffraction of soft magnetic alloy powder No. · 23. Fig. 9 shows Fig. 10 is an electron diffraction result of the soft magnetic alloy powder. Fig. 10 is a SEM photograph of the soft magnetic alloy powder of No. 23. Fig. 11 is a SEM photograph of the soft magnetic alloy powder of No. 56. Fig. 12 It is a TEM photograph of a soft magnetic alloy powder of No. 23. Fig. 13 is a TEM photograph of a soft magnetic alloy powder of No. 57. Fig. 14 shows a core loss measurement result of the powder core of the experimental example and comparative examples 1 to 3. Fig. 15 is a graph showing the measurement results of the relative effective permeability of the powder cores of the experimental examples and comparative examples 1 to 3. Fig. 16 is a graph showing the measurement results of the DC overlap characteristics of the powder cores of the inspection examples and comparative examples 1 to 3. Fig. 17 Figures showing the core loss measurement results of the pressed powder cores of the Comparative Example and Comparative Example 4. Figure 18 shows the results of the initial effective magnetic permeability measurement results of the powder cores of the Experimental Example and Comparative Example 4. Figure 19 shows the comparison examples and Comparison A graph of measurement results of DC superimposition characteristics of the powder core of Example 4. FIG. 20 is a graph showing the results of measuring the density of the dust cores of the experimental example and the comparative example 4. FIG. 21 is a SEm photograph of a flat-type soft magnetic alloy powder according to an experimental example. 22 is a SEM photograph of a flat-type soft magnetic alloy powder according to a comparative example. FIG. 23 is a schematic diagram showing the frequency dependence of the effective magnetic permeability O: \ 86 \ 86694.DOC -73-1229700 and the imaginary magnetic permeability of the electromagnetic wave absorbers of the experimental example and the comparative example. [Illustration of representative symbols in the figure] 1 Pressurized water spraying device 2 Melt liquid slump 3 Water sprayer 4 Reaction chamber 5 Alloy molten liquid 6 Melt liquid nozzle 7 Introduction channel 8 Water spray nozzle 10 High-pressure water 21, 31, 41 Powder core g High-pressure water flow P Spray point Θ Water spray angle OA86 \ 86694.DOC -74-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002265549 | 2002-09-11 | ||
JP2003101836A JP3771224B2 (en) | 2002-09-11 | 2003-04-04 | Amorphous soft magnetic alloy powder and powder core and radio wave absorber using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200413546A TW200413546A (en) | 2004-08-01 |
TWI229700B true TWI229700B (en) | 2005-03-21 |
Family
ID=32827502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092122125A TWI229700B (en) | 2002-09-11 | 2003-08-12 | Amorphous soft magnetic alloy powder, and green compact core and radio wave absorber using the same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP3771224B2 (en) |
KR (1) | KR100561891B1 (en) |
CN (1) | CN1238868C (en) |
TW (1) | TWI229700B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI644332B (en) * | 2017-07-24 | 2018-12-11 | 理研股份有限公司 | Near field noise suppression film |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4358016B2 (en) * | 2004-03-31 | 2009-11-04 | 明久 井上 | Iron-based metallic glass alloy |
JP4562022B2 (en) | 2004-04-22 | 2010-10-13 | アルプス・グリーンデバイス株式会社 | Amorphous soft magnetic alloy powder and powder core and electromagnetic wave absorber using the same |
KR100690281B1 (en) * | 2004-11-22 | 2007-03-09 | 경북대학교 산학협력단 | Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase |
JP2006339525A (en) * | 2005-06-03 | 2006-12-14 | Alps Electric Co Ltd | Coil inclusion dust core |
JP2007123376A (en) * | 2005-10-26 | 2007-05-17 | Matsushita Electric Ind Co Ltd | Compound magnetic substance and magnetic device using same, and method of manufacturing same |
CN100442402C (en) * | 2005-11-16 | 2008-12-10 | 安泰科技股份有限公司 | Iron-base non-crystal alloy powder, magnetic powder core with excellent high frequency performance and preparation process thereof |
US8048191B2 (en) | 2005-12-28 | 2011-11-01 | Advanced Technology & Material Co., Ltd. | Compound magnetic powder and magnetic powder cores, and methods for making them thereof |
CN101572153B (en) * | 2006-02-02 | 2012-10-24 | Nec东金株式会社 | Amorphous soft magnetic alloy and inductance component using the same |
JP4849545B2 (en) * | 2006-02-02 | 2012-01-11 | Necトーキン株式会社 | Amorphous soft magnetic alloy, amorphous soft magnetic alloy member, amorphous soft magnetic alloy ribbon, amorphous soft magnetic alloy powder, and magnetic core and inductance component using the same |
JP2008305823A (en) * | 2007-06-05 | 2008-12-18 | Tamura Seisakusho Co Ltd | Dust core and manufacturing method therefor |
JP2009021403A (en) | 2007-07-12 | 2009-01-29 | Alps Electric Co Ltd | Electromagnetic wave suppressing sheet |
JP5248065B2 (en) * | 2007-08-31 | 2013-07-31 | 株式会社タムラ製作所 | Core material and core using the same, choke coil using the core |
CN101226803B (en) * | 2007-11-27 | 2011-01-19 | 安泰科技股份有限公司 | Iron base amorphous soft-magnetic alloy powder and magnetic powder core containing said powder as well as method for preparing said magnetic powder core |
JP4636113B2 (en) * | 2008-04-23 | 2011-02-23 | Tdk株式会社 | Flat soft magnetic material and method for producing the same |
JP4566255B2 (en) * | 2008-08-21 | 2010-10-20 | アルプス電気株式会社 | Magnetic sheet manufacturing method, magnetic sheet and magnetic sheet manufacturing apparatus |
WO2010084900A1 (en) | 2009-01-23 | 2010-07-29 | アルプス電気株式会社 | Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy |
JP4523063B1 (en) * | 2009-03-30 | 2010-08-11 | エンパイア テクノロジー ディベロップメント エルエルシー | Magnetic composite, method for manufacturing the same, and shield structure |
JP5382923B2 (en) * | 2009-04-30 | 2014-01-08 | Necトーキン株式会社 | Amorphous soft magnetic alloy powder, dust core and inductor |
WO2011016275A1 (en) | 2009-08-07 | 2011-02-10 | アルプス・グリーンデバイス株式会社 | Fe-based amorphous alloy, dust core formed using the fe-based amorphous alloy, and dust core with embedded coil |
JP2011042811A (en) * | 2009-08-19 | 2011-03-03 | Sumitomo Electric Ind Ltd | Method for producing soft magnetic material, soft magnetic material, and powder magnetic core |
JP5332025B2 (en) * | 2010-06-09 | 2013-11-06 | アルプス・グリーンデバイス株式会社 | Coil-enclosed dust core, device having coil-enclosed dust core, method for producing coil-enclosed dust core, and method for producing device |
KR101158070B1 (en) * | 2010-08-20 | 2012-06-22 | 주식회사 포스코 | Fe Based Amorphous Alloys with High Carbon Content by using hot pig iron and the manufacturing Method thereof |
TWI441929B (en) * | 2011-01-17 | 2014-06-21 | Alps Green Devices Co Ltd | Fe-based amorphous alloy powder, and a powder core portion using the Fe-based amorphous alloy, and a powder core |
DE102011089517A1 (en) * | 2011-12-22 | 2013-06-27 | Robert Bosch Gmbh | Method for producing a machine element and machine element for an electrical machine |
JP5455258B2 (en) * | 2012-02-21 | 2014-03-26 | Necトーキン株式会社 | Noise suppression sheet |
CN102610348B (en) * | 2012-04-11 | 2015-04-29 | 安泰科技股份有限公司 | Iron-based nanocrystalline soft magnetic alloy material and preparing method thereof |
JP5650702B2 (en) * | 2012-10-15 | 2015-01-07 | 株式会社タムラ製作所 | Powder magnetic core and manufacturing method thereof |
JP6075117B2 (en) * | 2013-02-28 | 2017-02-08 | セイコーエプソン株式会社 | Amorphous alloy powder, dust core, magnetic element and electronic device |
JP6189633B2 (en) * | 2013-05-16 | 2017-08-30 | 山陽特殊製鋼株式会社 | Soft magnetic flat powder for magnetic sheets having excellent sheet surface smoothness and high permeability, magnetic sheet using the same, and method for producing soft magnetic flat powder |
EP3067899B1 (en) * | 2013-11-07 | 2019-04-24 | Kabushiki Kaisha Toshiba | Magnetic material, permanent magnet, motor, and power generator |
JP6446863B2 (en) * | 2014-06-30 | 2019-01-09 | セイコーエプソン株式会社 | Amorphous alloy powder, dust core, magnetic element and electronic device |
KR101646986B1 (en) | 2014-11-21 | 2016-08-09 | 공주대학교 산학협력단 | Apparatus and method for producing amorphous alloy powder |
TWI582800B (en) * | 2014-12-12 | 2017-05-11 | Metal Ind Res And Dev Centre | Method of making soft magnetic material |
JP6422568B2 (en) * | 2015-03-20 | 2018-11-14 | アルプス電気株式会社 | Soft magnetic powder, molded member, dust core, electric / electronic component, electric / electronic device, magnetic sheet, communication component, communication device, and electromagnetic interference suppression member |
KR101708114B1 (en) | 2015-06-11 | 2017-02-21 | 한국생산기술연구원 | Soft magnetic amorphous alloy |
TWI547706B (en) * | 2015-07-28 | 2016-09-01 | 中國鋼鐵股份有限公司 | Measuring method of powder magnetic property and measuring base thereof |
WO2017022595A1 (en) | 2015-07-31 | 2017-02-09 | 株式会社村田製作所 | Soft magnetic powder |
US10071421B2 (en) | 2016-01-22 | 2018-09-11 | Kabushiki Kaisha Toshiba | Flaky magnetic metal particles, pressed powder material, rotating electric machine, motor, and generator |
EP3199264A1 (en) * | 2016-02-01 | 2017-08-02 | Höganäs Ab (publ) | New composition and method |
WO2017154561A1 (en) | 2016-03-07 | 2017-09-14 | アルプス電気株式会社 | Fe-based alloy composition, soft magnetic material, magnetic member, and electrical/electronic part and instrument |
JP2018019062A (en) * | 2016-07-27 | 2018-02-01 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Inductor |
CN106584012B (en) * | 2016-12-30 | 2019-07-12 | 常州世竟液态金属有限公司 | A kind of amorphous alloy shaping methods |
JP6871922B2 (en) * | 2017-01-27 | 2021-05-19 | Jfeスチール株式会社 | Manufacturing method of soft magnetic iron powder |
JP6309149B1 (en) | 2017-02-16 | 2018-04-11 | 株式会社トーキン | Soft magnetic powder, dust core, magnetic component, and method for manufacturing dust core |
JP6902695B2 (en) * | 2017-05-17 | 2021-07-14 | パナソニックIpマネジメント株式会社 | Powder magnetic core and mixed soft magnetic powder |
KR101883780B1 (en) | 2017-09-18 | 2018-08-01 | 한국생산기술연구원 | Fe-based magnetic alloy and preparing method thereof |
US11972884B2 (en) | 2018-01-12 | 2024-04-30 | Tdk Corporation | Soft magnetic alloy and magnetic device |
JP6451877B1 (en) * | 2018-01-12 | 2019-01-16 | Tdk株式会社 | Soft magnetic alloys and magnetic parts |
KR102092169B1 (en) * | 2018-01-26 | 2020-03-23 | 공주대학교 산학협력단 | Fe-Cr-Co-X system Alloy Powder for Counterfeit Prevention, and Method for Manufacturing The Same |
KR102072054B1 (en) | 2018-01-30 | 2020-01-31 | 공주대학교 산학협력단 | Apparatus and Method for Producing Alloy Powder by the Gas and Water Hybrid Process |
CN111886088B (en) * | 2018-03-23 | 2023-01-17 | 株式会社村田制作所 | Iron alloy particles and method for producing iron alloy particles |
KR20200141043A (en) * | 2018-04-13 | 2020-12-17 | 타니오비스 게엠베하 | Metal powder for 3D-printing |
CN108630372B (en) * | 2018-04-24 | 2020-04-07 | 广东省材料与加工研究所 | Iron-silicon composite magnetic powder core and preparation method thereof |
TWI812620B (en) * | 2018-05-03 | 2023-08-21 | 日商麥克賽爾股份有限公司 | Electromagnetic wave absorbing sheet |
JP6680309B2 (en) | 2018-05-21 | 2020-04-15 | Tdk株式会社 | Soft magnetic powder, green compact and magnetic parts |
US10937576B2 (en) | 2018-07-25 | 2021-03-02 | Kabushiki Kaisha Toshiba | Flaky magnetic metal particles, pressed powder material, rotating electric machine, motor, and generator |
JP2020077845A (en) * | 2018-11-01 | 2020-05-21 | パナソニック株式会社 | Powder magnetic core and manufacturing method of the same |
CN112090428A (en) * | 2019-06-18 | 2020-12-18 | 长春美禾科技发展有限公司 | Alloy catalyst and preparation method, related equipment and application thereof |
CN110176337B (en) * | 2019-07-03 | 2020-12-22 | 深圳市麦捷微电子科技股份有限公司 | High-filling-rate metal soft magnetic powder and preparation method thereof |
CN210156233U (en) | 2019-07-26 | 2020-03-17 | 株式会社东金 | Inductor |
JP6835170B2 (en) * | 2019-09-09 | 2021-02-24 | Tdk株式会社 | Soft magnetic powder, green compact and magnetic parts |
KR102444318B1 (en) * | 2020-10-29 | 2022-09-20 | 한국재료연구원 | Alloy having excellent glass forming ability and powder and core manufactured therefrom |
CN112533442B (en) * | 2020-11-20 | 2022-08-05 | 内蒙古工业大学 | Microelectronic high-efficiency heat dissipation device |
CN114367667B (en) * | 2022-01-10 | 2022-10-14 | 北京德普润新材料科技有限公司 | Novel powder collecting system of gas atomization powder process equipment |
CN116043138B (en) * | 2023-01-03 | 2024-09-13 | 深圳市铂科新材料股份有限公司 | Iron-based amorphous soft magnetic material and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2574174B2 (en) * | 1988-12-29 | 1997-01-22 | ティーディーケイ株式会社 | Amorphous alloy soft magnetic powder and magnetic shielding material |
JP2001303111A (en) * | 2000-04-25 | 2001-10-31 | Fukuda Metal Foil & Powder Co Ltd | Method for producing flat soft magnetic metal powder |
JP3442375B2 (en) * | 2000-11-29 | 2003-09-02 | アルプス電気株式会社 | Amorphous soft magnetic alloy |
JP2002249802A (en) * | 2001-02-26 | 2002-09-06 | Alps Electric Co Ltd | Amorphous soft magnetic alloy compact, and dust core using it |
-
2003
- 2003-04-04 JP JP2003101836A patent/JP3771224B2/en not_active Expired - Fee Related
- 2003-08-12 TW TW092122125A patent/TWI229700B/en not_active IP Right Cessation
- 2003-08-18 CN CNB03154553XA patent/CN1238868C/en not_active Expired - Lifetime
- 2003-09-05 KR KR1020030062064A patent/KR100561891B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI644332B (en) * | 2017-07-24 | 2018-12-11 | 理研股份有限公司 | Near field noise suppression film |
Also Published As
Publication number | Publication date |
---|---|
TW200413546A (en) | 2004-08-01 |
JP3771224B2 (en) | 2006-04-26 |
KR100561891B1 (en) | 2006-03-16 |
CN1238868C (en) | 2006-01-25 |
CN1487536A (en) | 2004-04-07 |
KR20040023534A (en) | 2004-03-18 |
JP2004156134A (en) | 2004-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI229700B (en) | Amorphous soft magnetic alloy powder, and green compact core and radio wave absorber using the same | |
JP4562022B2 (en) | Amorphous soft magnetic alloy powder and powder core and electromagnetic wave absorber using the same | |
TWI451452B (en) | Soft magnetic alloy and magnetic component including the same as well as method for fabricating the same | |
EP2390377B1 (en) | Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy | |
JP5537534B2 (en) | Fe-based nanocrystalline alloy powder and manufacturing method thereof, and dust core and manufacturing method thereof | |
JP2004140322A (en) | Electric wave absorber and manufacturing method of the same | |
EP2463396B1 (en) | Fe-based amorphous alloy, dust core formed using the fe-based amorphous alloy, and dust core with embedded coil | |
US20070258842A1 (en) | Fe-based amorphous magnetic powder, magnetic powder core with excellent high frequency properties and method of making them | |
JP2016003366A (en) | Soft magnetic alloy powder, dust magnetic core using the powder and production method of the magnetic core | |
JP2014075528A (en) | Soft magnetic alloy powder, powder-compact magnetic core arranged by use thereof, and manufacturing method thereof | |
WO2016121950A1 (en) | Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor | |
KR102369149B1 (en) | Magnetic flat powder and magnetic sheet containing same | |
CN109215920A (en) | Compressed-core | |
JP2019021906A (en) | Dust core | |
JP2002249802A (en) | Amorphous soft magnetic alloy compact, and dust core using it | |
JPH02290002A (en) | Fe-si based alloy dust core and its manufacture | |
JP6898057B2 (en) | Powder magnetic core | |
JP3897552B2 (en) | Radio wave absorber and method of manufacturing radio wave absorber | |
JPH02125801A (en) | Flat-state fe base soft magnetic alloy fine powder and manufacture thereof | |
JP2015201481A (en) | Powder-compact magnetic core arranged by use of nanocrystal soft magnetic alloy powder, and manufacturing method thereof | |
JP2005264317A (en) | Fe-Ni-Mo FLAKY METAL SOFT MAGNETIC POWDER AND MAGNETIC COMPOSITE MATERIAL CONTAINING SOFT MAGNETIC POWDER | |
KR20190056314A (en) | Soft magnetic metal powder, method for producing the same, and soft magnetic metal dust core | |
JP3980828B2 (en) | Dust core | |
JP6245393B1 (en) | Soft magnetic alloy | |
JP2002151317A (en) | Dust core and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |