TWI812620B - Electromagnetic wave absorbing sheet - Google Patents
Electromagnetic wave absorbing sheet Download PDFInfo
- Publication number
- TWI812620B TWI812620B TW107115002A TW107115002A TWI812620B TW I812620 B TWI812620 B TW I812620B TW 107115002 A TW107115002 A TW 107115002A TW 107115002 A TW107115002 A TW 107115002A TW I812620 B TWI812620 B TW I812620B
- Authority
- TW
- Taiwan
- Prior art keywords
- electromagnetic wave
- wave absorbing
- absorbing sheet
- layer
- iron oxide
- Prior art date
Links
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 94
- 229920001971 elastomer Polymers 0.000 claims abstract description 55
- 239000005060 rubber Substances 0.000 claims abstract description 55
- 239000011230 binding agent Substances 0.000 claims abstract description 53
- 239000011358 absorbing material Substances 0.000 claims abstract description 43
- 239000010410 layer Substances 0.000 claims description 137
- 229910000704 hexaferrum Inorganic materials 0.000 claims description 43
- 239000012790 adhesive layer Substances 0.000 claims description 27
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 17
- 229910000859 α-Fe Inorganic materials 0.000 claims description 14
- 229920002379 silicone rubber Polymers 0.000 claims description 13
- 239000004945 silicone rubber Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 229910052712 strontium Inorganic materials 0.000 claims description 10
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 9
- 229920000800 acrylic rubber Polymers 0.000 claims description 7
- 229920000058 polyacrylate Polymers 0.000 claims description 7
- 239000006247 magnetic powder Substances 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 description 76
- 239000000843 powder Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 17
- -1 ethylene formate Ester Chemical class 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- 239000003973 paint Substances 0.000 description 14
- 239000002245 particle Substances 0.000 description 14
- 230000007423 decrease Effects 0.000 description 13
- 239000000853 adhesive Substances 0.000 description 11
- 230000001070 adhesive effect Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 11
- 229920003023 plastic Polymers 0.000 description 10
- 239000004033 plastic Substances 0.000 description 10
- 238000005096 rolling process Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 description 8
- 239000005020 polyethylene terephthalate Substances 0.000 description 8
- 239000006096 absorbing agent Substances 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 7
- 239000002270 dispersing agent Substances 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000010354 integration Effects 0.000 description 6
- AJCDFVKYMIUXCR-UHFFFAOYSA-N oxobarium;oxo(oxoferriooxy)iron Chemical compound [Ba]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O AJCDFVKYMIUXCR-UHFFFAOYSA-N 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- 239000010948 rhodium Substances 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 239000002042 Silver nanowire Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 229910052703 rhodium Inorganic materials 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QLZHNIAADXEJJP-UHFFFAOYSA-N Phenylphosphonic acid Chemical compound OP(O)(=O)C1=CC=CC=C1 QLZHNIAADXEJJP-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 150000003016 phosphoric acids Chemical class 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229920003049 isoprene rubber Polymers 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- BAERPNBPLZWCES-UHFFFAOYSA-N (2-hydroxy-1-phosphonoethyl)phosphonic acid Chemical compound OCC(P(O)(O)=O)P(O)(O)=O BAERPNBPLZWCES-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 241000276425 Xiphophorus maculatus Species 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- NLPUNLRMKSIKAU-UHFFFAOYSA-N decyl(silyl)silane Chemical compound CCCCCCCCCC[SiH2][SiH3] NLPUNLRMKSIKAU-UHFFFAOYSA-N 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- IBDMRHDXAQZJAP-UHFFFAOYSA-N dichlorophosphorylbenzene Chemical compound ClP(Cl)(=O)C1=CC=CC=C1 IBDMRHDXAQZJAP-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 1
- PEZBJHXXIFFJBI-UHFFFAOYSA-N ethanol;phosphoric acid Chemical compound CCO.OP(O)(O)=O PEZBJHXXIFFJBI-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- GATNOFPXSDHULC-UHFFFAOYSA-N ethylphosphonic acid Chemical compound CCP(O)(O)=O GATNOFPXSDHULC-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- UCNNJGDEJXIUCC-UHFFFAOYSA-L hydroxy(oxo)iron;iron Chemical compound [Fe].O[Fe]=O.O[Fe]=O UCNNJGDEJXIUCC-UHFFFAOYSA-L 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- NJGCRMAPOWGWMW-UHFFFAOYSA-N octylphosphonic acid Chemical compound CCCCCCCCP(O)(O)=O NJGCRMAPOWGWMW-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001631 strontium chloride Inorganic materials 0.000 description 1
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
本發明係一種電磁波吸收薄片,其中,可良好地吸收毫米波區帶以上之高頻率的電磁波,且可實現對於面方向具有延伸之彈性的電磁波吸收薄片。具有包含在毫米波區帶以上的頻率區帶產生磁性共鳴之電磁波吸收材料的磁性氧化鐵(1a)與橡膠製結合料(1b)的電磁波吸收層(1)之電磁波吸收薄片,其中,在前述電磁波吸收薄片之面內的一方向之彈性域的最大延伸率為20~200%。The present invention is an electromagnetic wave absorbing sheet that can well absorb high-frequency electromagnetic waves above the millimeter wave range and has elasticity that extends in the plane direction. An electromagnetic wave absorbing sheet having an electromagnetic wave absorbing layer (1) including magnetic iron oxide (1a), an electromagnetic wave absorbing material that generates magnetic resonance in a frequency band above the millimeter wave band, and a rubber binder (1b), wherein in the above The maximum elongation rate of the elastic domain in one direction within the surface of the electromagnetic wave absorbing sheet is 20~200%.
Description
本揭示係有關吸收電磁波之電磁波吸收薄片,特別是具有經由磁性共振而吸收電磁波之電磁波吸收材料,而吸收毫米波區帶以上之高頻率的電磁波,具有延伸於面內方向之彈性之電磁波吸收薄片。 The present disclosure relates to an electromagnetic wave absorbing sheet that absorbs electromagnetic waves, in particular, an electromagnetic wave absorbing material that absorbs electromagnetic waves through magnetic resonance, absorbs high frequency electromagnetic waves above the millimeter wave zone, and has elasticity extending in the in-plane direction. .
為了迴避自電性電路等釋放外部之洩漏電磁波,或非期望所反射的電磁波之影響,而加以使用吸收電磁波之電磁波吸收薄片。 In order to avoid the influence of external leakage electromagnetic waves released from electrical circuits, etc., or the influence of unintended reflected electromagnetic waves, electromagnetic wave absorbing sheets that absorb electromagnetic waves are used.
近年係在行動電話等之移動體通信或無線LAN,費用自動收受系統(ETC)等,作為具有數千兆赫(GHz)之頻率區帶的厘米波,更且具有30吉赫至300吉赫之頻率的毫米波區帶,超過毫米波區帶之高的頻率區帶的電磁波,利用具有1兆赫(THz)的頻率之電磁波的技術研究亦進展著。 In recent years, it has been used in mobile communications such as mobile phones, wireless LAN, automatic charge collection system (ETC), etc., as centimeter waves with a frequency band of several gigahertz (GHz), and has a range of 30 GHz to 300 GHz. Research on technology utilizing electromagnetic waves with a frequency of 1 MHz (THz) is also progressing in the millimeter wave band, electromagnetic waves in frequency bands higher than the millimeter wave band.
對應於利用如此之更高頻率之電磁波的技術趨勢,在吸收不要的電磁波之電磁波吸收體或形成為薄片狀之電磁波吸收薄片中,亦對於可吸收千兆赫區帶至兆赫區帶之電磁波的構成之需求則增高。 In response to the technological trend of utilizing such higher frequency electromagnetic waves, electromagnetic wave absorbers that absorb unnecessary electromagnetic waves or electromagnetic wave absorbing sheets formed into thin sheets are also designed to absorb electromagnetic waves from the gigahertz zone to the megahertz zone. The demand will increase.
作為吸收毫米波帶以上之高頻率區帶的電磁波之電磁波吸收體,加以提案有:具有在25~100千兆赫的範圍,磁變相位地具有發揮電磁波吸收性能之ε-氧化鐵(ε-Fe2O3)結晶之粒子的充填構造之電磁波吸收體(參照專利文獻1)。另外,作為將ε-氧化鐵之細微粒子,與結合劑同時進行混勻,在結合劑之乾燥硬化時,自外部施加磁場而提高ε-氧化鐵粒子之磁場配向性,對於薄片狀之配向體的提案(參照專利文獻2)。 As an electromagnetic wave absorber that absorbs electromagnetic waves in high-frequency bands above the millimeter wave band, ε-iron oxide (ε-Fe oxide) has been proposed to exhibit electromagnetic wave absorption properties in a magnetically variable phase in the range of 25 to 100 GHz. 2 O 3 ) Electromagnetic wave absorber with a filling structure of crystal particles (see Patent Document 1). In addition, the fine particles of ε-iron oxide are mixed with the binder at the same time. When the binder is dried and hardened, a magnetic field is applied from the outside to improve the magnetic field alignment of the ε-iron oxide particles. For the flake-shaped alignment body proposal (see Patent Document 2).
更且,作為具有彈性之電磁波吸收薄片,提案有:可吸收使奈米碳管分散於矽橡膠之厘米波的電磁波吸收薄片(參照專利文獻3)。 Furthermore, as an electromagnetic wave absorbing sheet having elasticity, an electromagnetic wave absorbing sheet capable of absorbing centimeter waves in which carbon nanotubes are dispersed in silicone rubber has been proposed (see Patent Document 3).
另外,作為可吸收75~77GHz之頻率帶的電磁波,具備作為民生用途之收益性的低成本之電磁波吸收薄片,加以提案:於金屬體的表面,使碳化矽的粉末分散於橡膠製之矩陣樹脂中的構成(參照專利文獻4)。更且,作為接著於可撓式印刷配線板而遮蔽來自外部的電磁波之接著薄片,加以提案:由將層積含有導電性微粒子之導電層與絕緣層的薄片之反彈力保持為特定範圍者,與可撓式印刷配線板同時具備可彎曲之耐彎曲性與耐熱性的構成(參照專利文獻5)。 In addition, as a low-cost electromagnetic wave absorbing sheet that can absorb electromagnetic waves in the frequency band of 75 to 77 GHz and is profitable for public use, a matrix resin made of rubber is dispersed with silicon carbide powder on the surface of a metal body. (Refer to Patent Document 4). Furthermore, as an adhesive sheet that is adhered to a flexible printed wiring board and blocks electromagnetic waves from the outside, it is proposed that the repulsive force of the sheet in which a conductive layer and an insulating layer containing conductive fine particles are laminated is maintained in a specific range. It has a flexible printed wiring board that has both bending resistance and heat resistance (see Patent Document 5).
專利文獻1:日本特開2008-60484號公報 Patent Document 1: Japanese Patent Application Publication No. 2008-60484
專利文獻2:日本特開2016-135737號公報 Patent Document 2: Japanese Patent Application Publication No. 2016-135737
專利文獻3:日本特開2011-233834號公報 Patent Document 3: Japanese Patent Application Publication No. 2011-233834
專利文獻4:日本特開2005-57093號公報 Patent Document 4: Japanese Patent Application Publication No. 2005-57093
專利文獻5:日本特開2013-4854號公報 Patent Document 5: Japanese Patent Application Publication No. 2013-4854
遮蔽來自產生電磁波之產生源的洩漏電磁波之情況,對於被覆成為對象之電路構件的框體等,有必要配置電磁波吸收材,但,特別是對於配置場所的形狀並非平面形狀之情況,使用具備可撓性或延伸於面內方向之彈性之電磁波吸收薄片則較使用固形體的電磁波吸收體便利性為高。 When shielding leakage electromagnetic waves from a source that generates electromagnetic waves, it is necessary to install electromagnetic wave absorbing materials on the frame covering the target circuit component. However, especially when the shape of the installation place is not planar, it is necessary to use an electromagnetic wave absorbing material that can Flexible or elastic electromagnetic wave absorbing sheets extending in the in-plane direction are more convenient than using solid electromagnetic wave absorbers.
但,例如記載於專利文獻3之電磁波吸收薄片係無法吸收毫米區帶之數十吉赫以上之頻率數的電磁波者。另外,記載於專利文獻4之電磁波吸收薄片係加以層積於無伸縮性的金屬體者,而記載於專利文獻5之接著薄片係熱壓著於可撓式印刷配線板之構成之故,均非為具有彈性之構成。 However, the electromagnetic wave absorbing sheet described in Patent Document 3, for example, cannot absorb electromagnetic waves with frequencies of tens of gigahertz or more in the millimeter range. In addition, the electromagnetic wave absorbing sheet described in Patent Document 4 is laminated on a non-stretchable metal body, and the adhesive sheet described in Patent Document 5 is heat-compressed to a flexible printed wiring board. It is not a flexible structure.
但,作為可吸收毫米波區帶之數十吉赫以上頻率之電磁波的電磁波吸收構件,具有彈性之薄片狀的電磁波吸收薄片係未被實現。 However, as an electromagnetic wave absorbing member capable of absorbing electromagnetic waves with a frequency of several tens of gigahertz or higher in the millimeter wave region, an elastic sheet-shaped electromagnetic wave absorbing sheet has not yet been realized.
本揭示係為了解決以往的課題,其目的為可良好地吸收毫米波區帶以上之高頻率的電磁波,且實現具 有延伸於面內方向之彈性之電磁波吸收薄片者。 The purpose of this disclosure is to solve past problems, and its purpose is to well absorb electromagnetic waves with high frequencies above the millimeter wave zone and achieve effective An elastic electromagnetic wave absorbing sheet extending in the in-plane direction.
為了解決上述課題,在本申請所揭示之電磁波吸收薄片係具有包含在毫米波區帶以上的頻率區帶產生磁性共振之電磁波吸收材料的磁性氧化鐵與橡膠製結合料的電磁波吸收層之電磁波吸收薄片,其特徵為在前述電磁波吸收薄片之面內的一方向之彈性域的最大延伸率為20~200%者。 In order to solve the above problems, the electromagnetic wave absorbing sheet disclosed in this application is an electromagnetic wave absorbing sheet having an electromagnetic wave absorbing layer containing an electromagnetic wave absorbing material that generates magnetic resonance in a frequency band above the millimeter wave band and a rubber binder. The sheet is characterized in that the maximum elongation of the elastic domain in one direction within the plane of the electromagnetic wave absorbing sheet is 20 to 200%.
在本申請所揭示之電磁波吸收薄片係於電磁波吸收層,作為電磁波吸收材料而具備在毫米波區帶以上之高頻率區帶產生磁性共振之磁性氧化鐵之故,可將數十吉赫以上之高頻率區帶的電磁波,變換為熱而吸收者。另外,具備橡膠製之結合料,在對於面內方向之彈性域的最大延伸率為20~200%之故,對於所期望的部分之配置則成為容易,更且,可實現可被覆可動部分之電磁波吸收薄片。 Since the electromagnetic wave absorbing sheet disclosed in this application has an electromagnetic wave absorbing layer as an electromagnetic wave absorbing material and has magnetic iron oxide that generates magnetic resonance in a high frequency band above the millimeter wave band, it can absorb frequencies of tens of gigahertz or more. Electromagnetic waves in high frequency areas are converted into heat and absorbed. In addition, since the rubber binder has a maximum elongation of the elastic domain in the in-plane direction of 20 to 200%, it becomes easy to arrange the desired parts, and it is possible to cover the movable parts. Electromagnetic wave absorbing sheet.
1:電磁波吸收層 1: Electromagnetic wave absorption layer
1a:ε-氧化鐵(磁性氧化鐵) 1a:ε-iron oxide (magnetic iron oxide)
1b:橡膠製結合料 1b: Rubber binder
2:接著層 2:Add layer
3:反射層 3: Reflective layer
圖1係說明有關第1實施形態之電磁波吸收薄片的構成之剖面圖。 FIG. 1 is a cross-sectional view illustrating the structure of the electromagnetic wave absorbing sheet according to the first embodiment.
圖2係說明置換Fe位置之一部分的ε-氧化鐵之電磁波吸收特性的圖。 FIG. 2 is a diagram illustrating the electromagnetic wave absorption characteristics of ε-iron oxide that partially replaces Fe positions.
圖3係對於具備包含橡膠製之結合料的電磁波吸收層之電磁波吸收薄片,則自外部加上拉伸應力情況之延伸而加以說明的圖。圖3(a)係顯示當超過最大延伸率時,引起斷裂之電磁波吸收薄片的延伸率的變化。圖3(b)係顯示當超過最大延伸率時,引起塑性變形之電磁波吸收薄片的延伸率的變化。 FIG. 3 is a diagram illustrating the extension of an electromagnetic wave absorbing sheet having an electromagnetic wave absorbing layer containing a rubber binder when tensile stress is applied from the outside. Figure 3(a) shows the change in the elongation of the electromagnetic wave absorbing sheet that causes fracture when the maximum elongation is exceeded. Figure 3(b) shows the change in the elongation of the electromagnetic wave absorbing sheet that causes plastic deformation when the maximum elongation is exceeded.
圖4係顯示在實施例之電磁波吸收薄片中,自外部所施加之拉伸應力與延伸率的關係的圖。 FIG. 4 is a graph showing the relationship between the tensile stress applied from the outside and the elongation in the electromagnetic wave absorbing sheet of the Example.
圖5係顯示經由有關第1實施形態之電磁波吸收薄片之延伸的電磁波吸收特性之變化的圖。 FIG. 5 is a graph showing changes in electromagnetic wave absorption characteristics due to extension of the electromagnetic wave absorbing sheet according to the first embodiment.
圖6係顯示有關第1實施形態之電磁波吸收薄片之厚度與電磁波吸收量之關係的圖。 FIG. 6 is a graph showing the relationship between the thickness of the electromagnetic wave absorbing sheet and the amount of electromagnetic wave absorption according to the first embodiment.
圖7係說明有關第2實施形態之電磁波吸收薄片的構成之剖面圖。 Fig. 7 is a cross-sectional view explaining the structure of the electromagnetic wave absorbing sheet according to the second embodiment.
圖8係顯示在有關第2實施形態之電磁波吸收薄片中,電磁波吸收薄片的延伸率產生變化時之電磁波吸收特性的變化的圖。 FIG. 8 is a graph showing changes in electromagnetic wave absorption characteristics when the elongation of the electromagnetic wave absorbing sheet changes in the electromagnetic wave absorbing sheet according to the second embodiment.
圖9係顯示有關第2實施形態之電磁波吸收薄片之厚度與電磁波衰減量之關係的圖。 FIG. 9 is a graph showing the relationship between the thickness of the electromagnetic wave absorbing sheet and the amount of electromagnetic wave attenuation in the second embodiment.
在本申請所揭示之電磁波吸收薄片係具有包 含在毫米波區帶以上的頻率區帶產生磁性共振之電磁波吸收材料的磁性氧化鐵與橡膠製結合料的電磁波吸收層之電磁波吸收薄片,其中,在面內的一方向之彈性域的最大延伸率為20~200%者。 The electromagnetic wave absorbing sheet disclosed in this application has the properties of An electromagnetic wave absorbing sheet containing an electromagnetic wave absorbing layer of an electromagnetic wave absorbing material of magnetic iron oxide that generates magnetic resonance in a frequency band above the millimeter wave band and a rubber binder, in which the maximum extension of the elastic domain in one direction within the plane The rate is 20~200%.
由如此作為者,在本申請所揭示之電磁波吸收薄片係可經由電磁波吸收材料之磁性氧化鐵的磁性共振,而吸收毫米波區帶之30吉赫以上之高頻率區帶的電磁波者。另外,使用電磁波吸收材料與橡膠製結合料,可實現具有在面內方向之最大延伸率為20~200%之高伸縮性的電磁波吸收薄片者。因此,對於配置電磁波吸收薄片於收容有成為遮蔽對象之電子電路的框體等之情況,電磁波吸收薄片之處理的容易性則提升,特別是於複雜彎曲的面,配置電磁波吸收薄片者則成為容易。更且,可被覆臂構件等關節部分等形狀產生變化的構件之可動部分,而防止不期望之電磁波的放射或進入者。 As a result, the electromagnetic wave absorbing sheet disclosed in the present application can absorb electromagnetic waves in the millimeter wave zone and high frequency zones above 30 GHz through the magnetic resonance of the magnetic iron oxide as the electromagnetic wave absorbing material. In addition, by using an electromagnetic wave absorbing material and a rubber binder, a highly stretchable electromagnetic wave absorbing sheet with a maximum elongation of 20 to 200% in the in-plane direction can be realized. Therefore, when arranging the electromagnetic wave absorbing sheet in a housing containing electronic circuits to be shielded, the ease of handling the electromagnetic wave absorbing sheet is improved. Especially on complex curved surfaces, it becomes easier to arrange the electromagnetic wave absorbing sheet. . Furthermore, it can cover movable parts of members whose shapes change, such as joint parts such as arm members, to prevent the emission or entry of unintended electromagnetic waves.
在本申請所揭示之電磁波吸收薄片中,前述磁性氧化鐵則為ε-氧化鐵者為佳。由作為電磁波吸收材料而使用吸收較30吉赫為高頻率的電磁波之ε-氧化鐵者,可實現吸收高頻率的電磁波之電磁波吸收薄片。 In the electromagnetic wave absorbing sheet disclosed in the present application, the magnetic iron oxide is preferably ε-iron oxide. By using ε-iron oxide, which absorbs electromagnetic waves with a frequency higher than 30 GHz, as an electromagnetic wave absorbing material, an electromagnetic wave absorbing sheet that absorbs electromagnetic waves with a high frequency can be realized.
在此情況中,前述ε-氧化鐵的Fe位置之一部分則以3價的金屬原子而加以置換者為佳。由如此作為者,經由置換Fe位置之材料而發揮磁性共振頻率不同之ε-氧化鐵的特性,而可實現吸收所期望之頻率區帶的電磁波之電磁波吸收薄片者。 In this case, it is preferable that a part of the Fe position of the ε-iron oxide is replaced with a trivalent metal atom. In this way, the electromagnetic wave absorbing sheet can be realized as an electromagnetic wave absorbing sheet that absorbs electromagnetic waves in a desired frequency band by replacing the material at the Fe position and exhibiting the characteristics of ε-iron oxide with different magnetic resonance frequencies.
另外,在前述電磁波吸收層之前述磁性氧化鐵的體積含率為30%以上者為佳。由如此作為者,可增加電磁波吸收層之透磁率虛部(μ")的值,而實現具備高電磁波吸收特性之電磁波吸收薄片者。 In addition, the volume content of the magnetic iron oxide in the electromagnetic wave absorbing layer is preferably 30% or more. By doing this, the value of the imaginary part (μ") of the magnetic permeability of the electromagnetic wave absorbing layer can be increased, thereby realizing an electromagnetic wave absorbing sheet with high electromagnetic wave absorbing properties.
更且,作為前述橡膠製結合料係使用丙烯酸橡膠或聚矽氧橡膠之任一者為佳。由使用耐熱性高之橡膠材料者,可實現信賴性高之電磁波吸收薄片者。 Furthermore, it is preferable to use either acrylic rubber or silicone rubber as the rubber binder. By using a rubber material with high heat resistance, a highly reliable electromagnetic wave absorbing sheet can be realized.
更且,前述電磁波吸收層係在延長5~75%彈性域的最大的延伸率之狀態的輸入阻抗值,則與空氣中的阻抗值整合者為佳。由如此作為者,遍布於電磁波吸收薄片之延伸率的寬廣範圍,可將輸入阻抗值作為接近於空氣中的阻抗值,而可維持高電磁波吸收特性者。 Furthermore, the input impedance value of the electromagnetic wave absorbing layer in a state where the maximum elongation rate of the elastic domain is extended by 5 to 75% is preferably integrated with the impedance value in the air. By doing this, the input impedance value can be made close to the impedance value in air over a wide range of the elongation rate of the electromagnetic wave absorbing sheet, and high electromagnetic wave absorption characteristics can be maintained.
另外,前述電磁波吸收層在彈性域的範圍內加以延長時之輸入阻抗值則為360Ω~450Ω者為佳。由如此作為者,即使在電磁波吸收薄片則在其彈性範圍內伸縮之情況,亦可迴避輸入阻抗值則與空氣中的阻抗值大大隔開,而發揮一定以上之電磁波吸收特性者。 In addition, when the electromagnetic wave absorbing layer is extended within the elastic domain, the input impedance value is preferably 360Ω~450Ω. By doing this, even when the electromagnetic wave absorbing sheet expands and contracts within its elastic range, it can be avoided that the input impedance value is greatly separated from the impedance value in the air and the electromagnetic wave absorption characteristics are exerted above a certain level.
又另外,在本申請所揭示之電磁波吸收薄片中,加以形成接觸於前述電磁波吸收層之一方的面,反射透過前述電磁波吸收層之電磁波的反射層者為佳。由如此作為者,可確實地進行毫米波區帶以上的高頻率區帶之電磁波的遮蔽與吸收,可實現以所謂反射型之電磁波吸收薄片者。 Furthermore, in the electromagnetic wave absorbing sheet disclosed in the present application, it is preferable to form a reflective layer that is in contact with one surface of the electromagnetic wave absorbing layer and reflects electromagnetic waves transmitted through the electromagnetic wave absorbing layer. By doing this, it is possible to reliably shield and absorb electromagnetic waves in high-frequency bands above the millimeter wave band, and to realize a so-called reflective electromagnetic wave absorbing sheet.
另外,更具備可貼著前述電磁波吸收薄片之 接著層者為佳。由如此作為者,具備高電磁波吸收特性之同時,可實現可容易地配置於所期望的場所,對於處理容易性優越之電磁波吸收薄片者。 In addition, it also has a surface that can be attached to the electromagnetic wave absorbing sheet mentioned above. The next layer is better. By doing this, it is possible to realize an electromagnetic wave absorbing sheet that has high electromagnetic wave absorption properties, can be easily placed in a desired place, and is excellent in handling ease.
在本申請所揭示之第2電磁波吸收薄片係具備包含電磁波吸收材料與橡膠製結合料的電磁波吸收層,和接觸於前述電磁波吸收層之一方的面,反射透過前述電磁波吸收層之電磁波的反射層,前述電磁波吸收材料則對於特定的頻率之電磁波而言產生電性共振之磁性氧化鐵,而前述電磁波吸收層則在延長於面內的一方向之狀態的輸出阻抗值則與空氣中的阻抗值整合。 The second electromagnetic wave absorbing sheet disclosed in the present application includes an electromagnetic wave absorbing layer including an electromagnetic wave absorbing material and a rubber binder, and a reflective layer that is in contact with one surface of the electromagnetic wave absorbing layer and reflects electromagnetic waves transmitted through the electromagnetic wave absorbing layer. , the aforementioned electromagnetic wave absorbing material is a magnetic iron oxide that generates electrical resonance for electromagnetic waves of a specific frequency, and the output impedance value of the aforementioned electromagnetic wave absorbing layer in a state extending in one direction in the plane is equal to the impedance value in the air. Integrate.
在本申請所揭示之第2電磁波吸收薄片係由作為如此之構成者,對於實際使用時係將電磁波吸收薄片則成為某種程度延長之狀態情況,作為前提,可在延伸率的寬範圍進行空氣中的阻抗值與輸入阻抗值之整合,而可使在具有彈性之電磁波吸收薄片之實際使用狀態的電磁波吸收特性提升者。 The second electromagnetic wave absorbing sheet disclosed in the present application is constituted in such a way that when actually used, the electromagnetic wave absorbing sheet is in a state of being stretched to some extent. As a premise, it is possible to perform air conditioning in a wide range of elongation. The integration of the impedance value and the input impedance value can improve the electromagnetic wave absorption characteristics of the elastic electromagnetic wave absorbing sheet in the actual use state.
以下,對於在本申請所揭示之電磁波吸收薄片,參照圖面而加以說明。 Hereinafter, the electromagnetic wave absorbing sheet disclosed in this application will be described with reference to the drawings.
然而,「電波」係更廣義而言,可作為電磁波的一種而把握之故,在本說明書中,作為使用將電磁波吸收體稱為電磁波吸收體等「電磁波」之用語。 However, since "radio wave" can be understood as a type of electromagnetic wave in a broader sense, in this specification, the term "electromagnetic wave" such as calling an electromagnetic wave absorber an electromagnetic wave absorber is used.
首先,作為在本申請所揭示之電磁波吸收薄片的第1 實施形態,對於未具備反射入射至電磁波吸收薄片之電磁波的反射層,所謂透過型之電磁波吸收薄片而加以說明。 First, as the first electromagnetic wave absorbing sheet disclosed in this application The embodiment will be described with respect to a so-called transmission type electromagnetic wave absorbing sheet that does not include a reflective layer that reflects electromagnetic waves incident on the electromagnetic wave absorbing sheet.
圖1係顯示有關本申請之第1實施形態之電磁波吸收薄片之構成的剖面圖。 FIG. 1 is a cross-sectional view showing the structure of the electromagnetic wave absorbing sheet according to the first embodiment of the present application.
然而,圖1係均為為了容易理解有關本實施形態之電磁波吸收薄片之構成所記載的圖,對於圖中所示之構件的尺寸與厚度係並非根據現實所表示之構成。 However, FIG. 1 is a diagram for easy understanding of the structure of the electromagnetic wave absorbing sheet of this embodiment, and the dimensions and thickness of the members shown in the drawings are not representations of actual structures.
在本實施形態所例示之電磁波吸收薄片係具備含有粒子狀的電磁波吸收材料之磁性氧化鐵1a與橡膠製之結合料1b的電磁波吸收層1。然而,圖1所示之電磁波吸收薄片係於電磁波吸收層1之背面側(在圖1之下方側),加以形成為了作為可貼著電磁波吸收薄片於電子機器之框體的內表面,或外表面等之特定處的接著層2。 The electromagnetic wave absorbing sheet illustrated in this embodiment is provided with an electromagnetic wave absorbing layer 1 including magnetic iron oxide 1a which is a particulate electromagnetic wave absorbing material and a rubber binder 1b. However, the electromagnetic wave absorbing sheet shown in Fig. 1 is formed on the back side of the electromagnetic wave absorbing layer 1 (on the lower side in Fig. 1) so that the electromagnetic wave absorbing sheet can be attached to the inner surface or outer surface of the frame of the electronic device. Adhesion layer 2 at specific locations on the surface, etc.
有關本實施形態之電磁波吸收薄片係由含於電磁波吸收層1之磁性氧化鐵1a引起磁性共振者,經由磁性損失而將電磁波變換為熱能量而吸收之構成之故,而可未設置反射層於電磁波吸收層1之一方的表面,而作為吸收透過電磁波吸收層1之電磁波之所謂透過型的電磁波吸收薄片而使用者。 The electromagnetic wave absorbing sheet according to this embodiment is composed of the magnetic iron oxide 1a contained in the electromagnetic wave absorbing layer 1 which causes magnetic resonance and converts electromagnetic waves into thermal energy and absorbs it through magnetic loss. Therefore, the reflective layer does not need to be provided. One surface of the electromagnetic wave absorbing layer 1 is used as a so-called transmission type electromagnetic wave absorbing sheet that absorbs electromagnetic waves transmitted through the electromagnetic wave absorbing layer 1 .
另外,本實施形態之電磁波吸收薄片係作為構成電磁波吸收層1之結合料1b,加以利用各種之橡膠材料。因此,特別是在電磁波吸收薄片之面內方向中,可得 到容易伸縮之電磁波吸收薄片者。然而,有關本實施形態之電磁波吸收薄片係於橡膠製之結合料1b,含有磁性氧化鐵1a而加以形成電磁波吸收層之故,為彈性高之電磁波吸收薄片之同時,可撓性亦為高,在電磁波吸收薄片之處理時,可彎曲電磁波吸收薄片,另外,可沿著彎曲面而容易地配置電磁波吸收薄片者。 In addition, the electromagnetic wave absorbing sheet of this embodiment uses various rubber materials as the binder 1b constituting the electromagnetic wave absorbing layer 1. Therefore, especially in the in-plane direction of the electromagnetic wave absorbing sheet, we can obtain to electromagnetic wave absorbing sheets that are easily stretchable. However, since the electromagnetic wave absorbing sheet of this embodiment is formed of an electromagnetic wave absorbing layer using a rubber binder 1b containing magnetic iron oxide 1a, it is an electromagnetic wave absorbing sheet with high elasticity and high flexibility. When processing the electromagnetic wave absorbing sheet, the electromagnetic wave absorbing sheet can be bent, and the electromagnetic wave absorbing sheet can be easily arranged along the curved surface.
更且,本實施形態之電磁波吸收薄片係呈容易貼著於配置在高頻率電磁波的產生源周圍之構件表面等之所期望處地,加以層積接著層2於電磁波吸收層1之一方的表面。然而,具有接著層2之情況係在有關本實施形態之電磁波吸收薄片中,並非必須之條件。 Furthermore, the electromagnetic wave absorbing sheet of this embodiment is easily adhered to a desired location on the surface of a member arranged around a source of high-frequency electromagnetic waves, and the adhesive layer 2 is laminated on one surface of the electromagnetic wave absorbing layer 1. . However, having the adhesive layer 2 is not a necessary condition in the electromagnetic wave absorbing sheet according to this embodiment.
在有關本實施形態之電磁波吸收薄片中,作為電磁波吸收材料,可使用ε-氧化鐵磁性粉,鋇鐵氧磁體磁性粉,鍶鐵氧體磁性粉等之磁性氧化鐵的粉體者。此等之中,ε-氧化鐵係鐵原子之電子則進行旋轉運動時之歲差運動的頻率為高,吸收厘米區帶之30~300吉赫,或其以上之高頻率的電磁波之效果為高之故,作為電磁波吸收材料為特別適合。 In the electromagnetic wave absorbing sheet according to this embodiment, as the electromagnetic wave absorbing material, magnetic iron oxide powder such as ε-iron oxide magnetic powder, barium ferrite magnetic powder, strontium ferrite magnetic powder, etc. can be used. Among them, the electrons of ε-iron oxide iron atoms have the highest frequency of precessional motion when rotating, and the effect of absorbing electromagnetic waves with high frequencies of 30 to 300 GHz in the centimeter range or above is the highest. Therefore, it is particularly suitable as an electromagnetic wave absorbing material.
ε-氧化鐵(ε-Fe2O3)係在氧化鐵(Fe2O3)中,出現於α相(α-Fe2O3)與γ相(γ-Fe2O3)之間的相,而成為呈經由逆微胞法與溶膠凝膠法的奈米微粒合成法,可以單相的狀態得到之磁性材料。 ε-Iron oxide (ε-Fe 2 O 3 ) is in iron oxide (Fe 2 O 3 ) and appears between α phase (α-Fe 2 O 3 ) and γ phase (γ-Fe 2 O 3 ). phase, and becomes a magnetic material that can be obtained in a single-phase state through the nanoparticle synthesis method of the reverse microcell method and the sol-gel method.
ε-氧化鐵係雖為數nm至數十nm的微細粒子,但作為在常溫約20kOe之金屬氧化物而具備最大的矯頑磁力,更且,經由依據歲差運動之旋磁效應的自然磁性共振則在數十吉赫以上之所謂厘米波帶的頻率區帶產生。 Although the ε-iron oxide system has fine particles ranging from several nm to several tens of nm, it has the largest coercive force as a metal oxide of approximately 20 kOe at room temperature. Moreover, it has natural magnetic resonance through the gyromagnetic effect based on precessional motion. It is generated in the frequency range of the so-called centimeter wave band above tens of gigahertz.
更且,ε-氧化鐵係由將結晶之Fe位置的一部分,作為置換為鋁(Al)、鎵(Ga)、銠(Rh)、銦(In)等之3價的金屬元素之結晶者,可使磁性共振頻率,即,於作為電磁波吸收材料所使用情況吸收之電磁波的頻率數,作為不同者。 Moreover, ε-iron oxide is a crystal obtained by replacing part of the Fe site of the crystal with a trivalent metal element such as aluminum (Al), gallium (Ga), rhodium (Rh), indium (In), etc. The magnetic resonance frequency, that is, the frequency of electromagnetic waves absorbed when used as an electromagnetic wave absorbing material, can be made different.
圖2係顯示使置換為Fe位置之金屬元素作為不同情況之ε-氧化鐵的矯頑磁力Hc與自然共振頻率f之關係。然而,自然共振頻率f係與吸收之電磁波的頻率一致。 Figure 2 shows the relationship between the coercive force Hc and the natural resonance frequency f of ε-iron oxide in different cases where a metal element is substituted for the Fe position. However, the natural resonance frequency f is consistent with the frequency of the absorbed electromagnetic wave.
自圖2了解到,置換Fe位置之一部的ε-氧化鐵係經由置換為所置換之金屬元素的種類的量,自然共振頻率則為不同。另外,自然共振頻率的值越高,該ε-氧化鐵的矯頑磁力則變越大者。 It can be understood from Figure 2 that the natural resonance frequency of the ε-iron oxide system that replaces a part of the Fe position is different depending on the type of the replaced metal element. In addition, the higher the value of the natural resonance frequency, the greater the coercive force of the ε-iron oxide becomes.
更具體而言,對於鎵置換的ε-氧化鐵,即ε-GaxFe2-xO3之情況係由調整置換量「x」者,在30吉赫至150吉赫程度為止之頻率區帶,具有吸收的峰值,而對於鋁置換的ε-氧化鐵,即ε-AlxFe2-xO3之情況係由調整置換量「x」者,在100吉赫至190吉赫程度為止之頻率區帶,具有吸收的峰值。因此,呈成為欲由電磁波吸收薄片吸收之頻率的自然共振頻率地,決定置換為ε-氧化鐵之Fe位置的 元素之種類,更且,由調整與Fe之置換量者,可將所吸收之電磁波的頻率作為所期望的值。更且,對於將置換的金屬作為銠之ε-氧化鐵,即ε-RhxFe2-xO3之情況係自180吉赫至其以上時,可將所吸收之電磁波的頻率區帶,位移至更高之方向。 More specifically, in the case of gallium-substituted ε-iron oxide, that is, ε-Ga x Fe 2-x O 3 , by adjusting the substitution amount "x", the frequency range is from about 30 GHz to 150 GHz. The band has an absorption peak, and in the case of aluminum-substituted ε-iron oxide, that is, ε - Al The frequency band has an absorption peak. Therefore, the natural resonance frequency of the frequency to be absorbed by the electromagnetic wave absorbing sheet determines the type of element that is substituted for the Fe position of ε-iron oxide. Furthermore, by adjusting the amount of substitution with Fe, the absorbed element can be The frequency of the electromagnetic wave serves as the desired value. Furthermore, when the replacement metal is ε-iron oxide of rhodium, that is, ε-Rh x Fe 2-x O 3 is from 180 GHz to above, the frequency range of the electromagnetic wave absorbed can be divided into: Displacement to a higher direction.
ε-氧化鐵係包含金屬置換一部分的Fe位置之構成而加以市售之故,可容易地取得。然而,ε-氧化鐵粉之理想的粒徑係作為平均粒徑為約5nm~50nm,作為略球形或短竿形狀(棒狀)。 Since ε-iron oxide has a structure in which a part of the Fe positions are replaced with metal and is commercially available, it can be easily obtained. However, the ideal particle size of the ε-iron oxide powder is about 5 nm to 50 nm as an average particle size, and has a roughly spherical shape or a short rod shape (rod shape).
鋇鐵氧磁體(BaFe12O19)、鍶鐵氧體(SrFe12O19)係均為六方晶鐵氧磁體,而從磁性異向性為大之情況而具有矯頑磁力。 Barium ferrite magnets (BaFe 12 O 19 ) and strontium ferrite (SrFe 12 O 19 ) systems are both hexagonal ferrite magnets, and have coercive force because of their large magnetic anisotropy.
鋇鐵氧磁體,或鍶鐵氧體之粉體係鐵(Fe)與鋇或鍶的氯化物(BaCl2、SrCl2)、因應必要而更加地作為原料而調配,混合,造粒含有Ba、Sr之金屬氧化物之後,將此燒成者而進行合成,再將燒成體粉碎而作為具有特定的粒度之粉體而可製造者。然而,燒成條件係作為一例,可作為溫度為1200~1300℃、燒成環境係為大氣,燒成時間係1~8h程度者。 Barium ferrite magnets or strontium ferrite powder system iron (Fe) and barium or strontium chloride (BaCl 2 , SrCl 2 ) are prepared, mixed, and granulated as raw materials according to necessity, containing Ba and Sr The metal oxide is synthesized by calcining it, and then the calcined body is pulverized to produce a powder with a specific particle size. However, the firing conditions are as an example, and the temperature can be 1200 to 1300° C., the firing environment can be the atmosphere, and the firing time can be about 1 to 8 hours.
所製作之粉體的尺寸係可經由在粉碎時所加上之負荷的大小而作調整,對於得到比較大的粉體之情況,係可利用將燒成體提供於經由鎚碎機之衝擊粉碎與濕式粉碎(研磨機,星式球磨機等)之方法等。另外亦可僅經由鎚碎機之衝擊粉碎而進行粒度調整者。鋇鐵氧磁體,或 鍶鐵氧體之粉體的理想粒徑係在中號(D50)為1μm~5μm。 The size of the powder produced can be adjusted by the load applied during crushing. To obtain relatively large powder, the calcined body can be subjected to impact crushing by a hammer crusher. And wet grinding (grinder, star ball mill, etc.) method, etc. In addition, the particle size can also be adjusted only through impact crushing by a hammer crusher. barium ferrite magnet, or The ideal particle size of strontium ferrite powder is medium (D50), which is 1μm~5μm.
對於構成電磁波吸收層1之橡膠製的結合料1b係可利用天然橡膠(NR)、異戊二烯橡膠(IR)、丁二烯橡膠(BR)、苯乙烯‧丁二烯橡膠(SBR)、丁基橡膠(IIR)、丁腈橡膠(NBR)、乙烯‧丙烯橡膠(EPDM)、氯丁二烯橡膠(CR)、丙烯酸橡膠(ACM)、氯磺化聚乙烯橡膠(CSR)、腔甲酸乙酯橡膠(PUR)、矽橡膠(Q)、氟橡膠(FKM)、乙烯‧醋酸乙烯酯橡膠(EVA)、表氯醇橡膠(CO)、多硫化橡膠(T)等之各種的橡膠材料。 As the rubber binder 1b constituting the electromagnetic wave absorbing layer 1, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), Butyl rubber (IIR), nitrile rubber (NBR), ethylene propylene rubber (EPDM), chloroprene rubber (CR), acrylic rubber (ACM), chlorosulfonated polyethylene rubber (CSR), ethylene formate Ester rubber (PUR), silicone rubber (Q), fluorine rubber (FKM), ethylene vinyl acetate rubber (EVA), epichlorohydrin rubber (CO), polysulfide rubber (T) and other rubber materials.
在此等橡膠材料之中,從耐熱性為高之情況,可適當地使用丙烯酸橡膠,矽橡膠者。丙烯酸橡膠之情況,即使放置於高溫環境下,耐油性為優異之同時,對於比較廉價,成本效率亦為優異。另外,矽橡膠之情況係加上於耐熱性,耐寒性也高。更且,對於物理特性的溫度而言之依存性則在合成橡膠中為最少,對於耐溶劑性,耐臭氧性,耐候性亦為優異。更且,對於電性絕緣性亦為優越,遍布於寬溫度範圍,及頻率範圍,物質性安定。 Among these rubber materials, acrylic rubber and silicone rubber can be suitably used when heat resistance is high. In the case of acrylic rubber, even if it is placed in a high temperature environment, it has excellent oil resistance and is relatively cheap and has excellent cost efficiency. In addition, the silicone rubber has high heat resistance and high cold resistance. Furthermore, its physical properties have the least dependence on temperature among synthetic rubbers, and it is also excellent in solvent resistance, ozone resistance, and weather resistance. Moreover, it has excellent electrical insulation properties, covers a wide temperature range and frequency range, and is physically stable.
在有關本實施形態之電磁波吸收薄片的電磁波吸收層1中,作為電磁波吸收材料1a而例如使用ε-氧化鐵粉之情況,ε-氧化鐵粉係如上述,粒徑為數nm至數十nm之微細的奈米粒子之故,在電磁波吸收層1之形成時,於結合料1b內良好地使ε-氧化鐵粉分散者則成為重要。因 此,在有關本實施形態之電磁波吸收薄片中,於電磁波吸收層1,含有苯基膦酸,苯基膦酸二氯化物等之芳基磺酸,甲基膦酸,乙基膦酸,辛基膦酸,丙基膦酸等之烷基膦酸,或者,羥基乙叉二膦酸,硝基三亞甲基膦酸等之多官能膦酸等之磷酸化合物。此等磷酸化合物係具有難燃性之同時,作為微細之磁性氧化鐵粉的分散劑而發揮機能之故,可使結合料內之ε-氧化鐵粒子良好地分散者。 In the electromagnetic wave absorbing layer 1 of the electromagnetic wave absorbing sheet according to this embodiment, for example, ε-iron oxide powder is used as the electromagnetic wave absorbing material 1a. The ε-iron oxide powder has a particle diameter of several nm to several tens of nm as described above. Because of the fine nanoparticles, when forming the electromagnetic wave absorbing layer 1, it is important to disperse the ε-iron oxide powder well in the binder 1b. because Therefore, in the electromagnetic wave absorbing sheet according to this embodiment, the electromagnetic wave absorbing layer 1 contains arylsulfonic acid such as phenylphosphonic acid and phenylphosphonic acid dichloride, methylphosphonic acid, ethylphosphonic acid, and octylphosphonic acid. Phosphoric acid compounds such as alkylphosphonic acids such as hydroxyethylidenediphosphonic acid and nitrotrimethylenephosphonic acid. These phosphoric acid compounds are flame retardant and function as a dispersant for fine magnetic iron oxide powder, thereby enabling the ε-iron oxide particles in the binder to be well dispersed.
更具體而言係作為分散劑,係可使用日本和光純藥工業股份有限公司製、或日本日產化學工業股份有限公司製之苯基膦酸(PPA)、日本城北化學工業股份有限公司製之氧化磷酸酯「JP-502」(製品名)等。 More specifically, as a dispersing agent, phenylphosphonic acid (PPA) manufactured by Wako Pure Chemical Industries, Ltd., or Nissan Chemical Industries, Ltd., or oxidizing agent manufactured by Johoku Chemical Industries, Ltd. Phosphate ester "JP-502" (product name), etc.
但在熱硬化性附加型之矽橡膠中,有著經由磷酸化合物之添加而引起加硫阻礙之情況。此時,使用磷酸化合物以外的高分子分散劑,矽烷,矽烷耦合劑者為佳。例如,最佳可使用癸基甲矽烷基矽烷「KBM-3103」(商品名:日本信越化學股份有限公司製)等。 However, in thermosetting additional silicone rubber, vulcanization may be hindered by the addition of phosphoric acid compounds. In this case, it is preferable to use a polymer dispersant other than a phosphate compound, silane, or a silane coupling agent. For example, decylsilylsilane "KBM-3103" (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.) can be preferably used.
然而,作為電磁波吸收層1之組成係作為一例,對於ε-氧化鐵粉(磁性氧化鐵)100份而言,可將橡膠製結合料作為2~50份,磷酸化合物的含有量作為0.1~15份者。當橡膠製結合料較2份少時,無法良好地使磁性氧化鐵分散者。另外,成為無法維持作為電磁波吸收薄片之形狀之同時,不易得到電磁波吸收薄片之延伸。當較50份為多時,可得到電磁波吸收薄片之延伸,但在電磁波吸收薄片之中,磁性氧化鐵的體積含率則變小,而透磁率變低之 故,電磁波吸收效果則變小。 However, as an example of the composition of the electromagnetic wave absorbing layer 1, for 100 parts of ε-iron oxide powder (magnetic iron oxide), the rubber binder can be 2 to 50 parts, and the phosphate compound content can be 0.1 to 15 parts. Those who share. When the rubber binder is less than 2 parts, the magnetic iron oxide cannot be dispersed well. In addition, it becomes impossible to maintain the shape of the electromagnetic wave absorbing sheet, and it is difficult to extend the electromagnetic wave absorbing sheet. When it is more than 50 parts, the extension of the electromagnetic wave absorbing sheet can be obtained. However, in the electromagnetic wave absorbing sheet, the volume content of magnetic iron oxide becomes smaller and the magnetic permeability becomes lower. Therefore, the electromagnetic wave absorption effect becomes smaller.
當磷酸化合物的含有量則較0.1份少時,無法使用橡膠製結合料而良好地使磁性氧化鐵分散者。當較15分為多時,良好地使磁性氧化鐵分散之效果則飽和。在電磁波吸收薄片之中,磁性氧化鐵的體積含率則變小,而透磁率變低之故,電磁波吸收的效果則變小。 When the content of the phosphoric acid compound is less than 0.1 part, the magnetic iron oxide cannot be dispersed satisfactorily using a rubber binder. When it is more than 15 points, the effect of dispersing the magnetic iron oxide well is saturated. In the electromagnetic wave absorbing sheet, the volume content of magnetic iron oxide becomes smaller, and the magnetic permeability becomes lower, so the electromagnetic wave absorption effect becomes smaller.
在此,有關本實施形態之電磁波吸收薄片的電磁波吸收層1之製造方法加以說明。在本實施形態之電磁波吸收薄片中,製作至少含有磁性氧化鐵粉與橡膠製結合料之磁性塗料,經由以特定的厚度而將此進行塗佈,乾燥之後進行延壓處理之時,形成電磁波吸收層1。延壓處理係並非必須,但可減少電磁波吸收薄片中之空隙而使磁性氧化鐵粉的充填程度提升之故,進行延壓處理者為佳。 Here, a method for manufacturing the electromagnetic wave absorbing layer 1 of the electromagnetic wave absorbing sheet according to this embodiment will be described. In the electromagnetic wave absorbing sheet of this embodiment, magnetic paint containing at least magnetic iron oxide powder and a rubber binder is prepared, coated with a specific thickness, dried and then subjected to a rolling process to form electromagnetic wave absorption. Layer 1. The rolling treatment is not necessary, but it is preferable because it can reduce the gaps in the electromagnetic wave absorbing sheet and improve the filling degree of the magnetic iron oxide powder.
首先,製作磁性塗料。 First, make the magnetic paint.
磁性塗料係得到作為磁性氧化物之ε-氧化鐵粉與分散劑的磷酸化合物,橡膠製結合料之混勻物,以溶劑稀釋此等,在更加分散之後,可經由以過濾器過濾而得到。混勻物係作為一例,經由加壓式之分批式混勻機而進行混勻而得到。另外,混勻物之分散係作為一例而可使用充填鋯等之珠粒的砂磨,作為分散液而得到。然而,此時,可因應必要而調配交聯劑者。 Magnetic paint is obtained by obtaining a mixture of epsilon-iron oxide powder as a magnetic oxide, a phosphoric acid compound as a dispersant, and a rubber binder. The mixture is diluted with a solvent, further dispersed, and then filtered through a filter. As an example, the kneaded material is mixed with a pressurized batch mixer. In addition, the dispersion system of the kneaded product can be obtained as a dispersion liquid by sanding with beads filled with zirconium or the like, as an example. However, at this time, a cross-linking agent can be prepared as necessary.
將所得到之磁性塗料,於具有剝離性的支持 體,作為一例,經由聚矽氧塗佈而於剝離處理之厚度38μm之聚乙烯對苯二甲酸酯(PET)的薄片上,使用平台塗佈機或棒塗佈機等而塗佈。 Put the obtained magnetic paint on a peelable support As an example, the body is coated on a peel-treated polyethylene terephthalate (PET) sheet with a thickness of 38 μm through polysiloxane coating using a flatbed coater or a rod coater.
之後,以80℃將wet狀態之磁性塗料進行乾燥,更且使用延壓裝置,以特定溫度與壓力進行延壓處理,可形成電磁波吸收層於支持體上。 After that, the wet magnetic paint is dried at 80°C, and a rolling device is used to perform rolling processing at a specific temperature and pressure to form an electromagnetic wave absorbing layer on the support.
作為一例,由將在塗佈支持體上之wet狀態的磁性塗料的厚度作為1mm者,可將乾燥後的厚度作為400μm、延壓處理後之電磁波吸收層之厚度作為300μm。 As an example, assuming that the thickness of the wet magnetic coating on the coating support is 1 mm, the thickness after drying can be 400 μm, and the thickness of the electromagnetic wave absorbing layer after rolling treatment can be 300 μm.
由如此作為,作為電磁波吸收材料1a而使用之nm級別之微細的ε-氧化鐵粉則可形成良好地分散於橡膠製結合料1b內之狀態的電磁波吸收層1者。 In this way, the nanometer-level fine ε-iron oxide powder used as the electromagnetic wave absorbing material 1a can form the electromagnetic wave absorbing layer 1 in a state of being well dispersed in the rubber binder 1b.
然而,作為製作磁性塗料之其他方法,作為磁性塗料成分,至少將磁性氧化鐵粉,和分散劑之磷酸化合物,和橡膠製結合料,以高速攪拌機進行高速混合而調製混合物,之後,即使將所得到之混合物,以砂磨進行分散處理,亦可得到磁性塗料。 However, as another method of producing magnetic paint, at least magnetic iron oxide powder, a phosphate compound of a dispersant, and a rubber binder are mixed at high speed with a high-speed mixer to prepare a mixture, and then the mixture is prepared. The obtained mixture is dispersed by sand grinding to obtain magnetic coating.
如圖1所示,有關本實施形態之電磁波吸收薄片,係於電磁波吸收層1的背面,形成接著層2。 As shown in FIG. 1 , the electromagnetic wave absorbing sheet according to this embodiment has an adhesive layer 2 formed on the back surface of the electromagnetic wave absorbing layer 1 .
由設置接著層2者,可將電磁波吸收層1,貼合於收納電性電路之框體的內面,或電性機器之內面或外面之所期望的位置者。特別是,本實施形態之電磁波吸收 薄片係電磁波吸收層1則具有彈性之構成之故,對於經由接著層2而彎曲的曲面上,亦可容易地貼合者,電磁波吸收薄片之處理容易性則提升。然而,講究接著層2的材料,形成厚度,形成狀態等,接著層2則呈未妨礙經由電磁波吸收層1之彈性變形的延伸地,例如使用玻璃點溫度(Tg)為低之丙烯酸系黏著劑或聚矽氧系黏著劑,橡膠系的黏著劑等者為佳。 By providing the adhesive layer 2, the electromagnetic wave absorbing layer 1 can be bonded to the inner surface of a frame housing an electrical circuit, or a desired position on the inner or outer surface of an electrical device. In particular, the electromagnetic wave absorption of this embodiment Since the electromagnetic wave absorbing layer 1 of the sheet has an elastic structure, it can be easily adhered to a curved surface through the adhesive layer 2. This improves the ease of handling of the electromagnetic wave absorbing sheet. However, the material of the adhesive layer 2, its thickness, the state of formation, etc. are particular. The adhesive layer 2 can extend so as not to hinder the elastic deformation of the electromagnetic wave absorbing layer 1. For example, an acrylic adhesive with a low glass point temperature (Tg) can be used. Or silicone-based adhesives, rubber-based adhesives, etc. are preferred.
作為接著層2,可使用作為黏著膠帶等之接著層所利用之公知的材料,丙烯酸系黏著劑,橡膠系黏著劑,聚矽氧系黏著劑等。特別是,作為橡膠製結合料而使用聚矽氧橡膠之情況係為了不使電磁波吸收層與接著層之密著力下降,作為接著層之材料而使用聚矽氧系黏著劑者為佳。 As the adhesive layer 2, well-known materials used as adhesive layers for adhesive tapes, etc., such as acrylic adhesives, rubber adhesives, polysiloxane adhesives, etc. can be used. In particular, when using silicone rubber as the rubber binder, it is preferable to use a silicone-based adhesive as the material of the adhesive layer in order not to reduce the adhesion between the electromagnetic wave absorbing layer and the adhesive layer.
另外,為了對於被著體而言之黏著力的調節,糊殘留的減低,亦可使用黏著賦予劑或交聯劑者。對於被著體之黏著力係5N/10mm~12N/10mm為佳。黏著力較5N/10mm為小時,電磁波吸收薄片則容易自被著體剝離,以及偏移者。另外,黏著力則較12N/10mm為大時,不易自被著體剝離電磁波吸收薄片。 In addition, in order to adjust the adhesion to the adherend and reduce the paste residue, an adhesion-imparting agent or a cross-linking agent can also be used. The adhesion force for the adhered body is preferably 5N/10mm~12N/10mm. If the adhesion force is lower than 5N/10mm, the electromagnetic wave absorbing sheet will be easily peeled off from the adhered body and offset. In addition, when the adhesion force is greater than 12N/10mm, the electromagnetic wave absorbing sheet will not be easily peeled off from the adhered body.
另外,接著層2之厚度係20μm~100μm為佳。當接著層的厚度較20μm為薄時,黏著力則變小,而電磁波吸收薄片則容易自被著體剝離,以及偏移者。當接著層的厚度較100μm為大時,電磁波吸收薄片全體的厚度則變厚之故,而有可撓性變小之虞。另外,當接著層2為厚 時,不易自被著體剝離電磁波吸收薄片。另外,接著層2之凝集力為小之情況係剝離電磁波吸收薄片之情況,有著產生有糊殘留於被著體之情況。 In addition, the thickness of the adhesive layer 2 is preferably 20 μm to 100 μm. When the thickness of the adhesive layer is thinner than 20 μm, the adhesion force becomes smaller, and the electromagnetic wave absorbing sheet is easily peeled off from the adherend and displaced. When the thickness of the adhesive layer is larger than 100 μm, the thickness of the entire electromagnetic wave absorbing sheet becomes thicker, and the flexibility may become smaller. In addition, when the adhesive layer 2 is thick When used, the electromagnetic wave absorbing sheet is not easily peeled off from the attached body. In addition, when the cohesive force of the adhesive layer 2 is small, the electromagnetic wave absorbing sheet is peeled off, which may cause paste to remain on the adherend.
然而,在本申請說明書中,接著層2係為不可剝離地貼著之接著層2之同時,進行可剝離之貼著的接著層2亦可。 However, in this specification, the adhesive layer 2 may be a non-releasably adhered adhesive layer 2, or the adhesive layer 2 may be releasably adhered.
另外,對於將電磁波吸收薄片貼著於特定的面時,即使電磁波吸收薄片未具備接著層2,亦可作為呈於配置有電磁波吸收薄片之構件側的表面,具備接著性而貼上僅形成在電磁波吸收層1之電磁波吸收薄片者。另外,由使用兩面膠帶或接著劑者,可貼著電磁波吸收薄片於特定的部位。在此點中,接著層2係並非在本實施形態所示之電磁波吸收薄片中必須的構成要件,但電磁波吸收薄片則具備接著層2之構成係未使用兩面膠帶或接著劑而可貼著電磁波吸收薄片於特定部位之故而為理想。 In addition, when the electromagnetic wave absorbing sheet is adhered to a specific surface, even if the electromagnetic wave absorbing sheet does not have the adhesive layer 2, it can be formed as a surface on the side of the member on which the electromagnetic wave absorbing sheet is arranged, which has adhesiveness and is attached only to the surface. The electromagnetic wave absorbing layer 1 is an electromagnetic wave absorbing sheet. In addition, by using double-sided tape or adhesive, the electromagnetic wave absorbing sheet can be attached to a specific location. In this regard, the adhesive layer 2 is not an essential component of the electromagnetic wave absorbing sheet shown in this embodiment. However, the electromagnetic wave absorbing sheet is provided with the adhesive layer 2 so that it can adhere to electromagnetic waves without using double-sided tape or adhesive. This sheet is ideal because it can be absorbed into specific areas.
接著,對於在有關本實施形態之電磁波吸收薄片的面內方向之延伸加以說明。 Next, the extension in the in-plane direction of the electromagnetic wave absorbing sheet according to this embodiment will be described.
圖3係顯示在有關本實施形態之電磁波吸收薄片中,加上於面內方向的應力(拉伸應力)與電磁波吸收薄片延伸率的關係圖。圖3(a)則顯示當超過最大延伸率時,產生斷裂之電磁波吸收薄片的應力與延伸率的關係。另外,圖3(b)則顯示當超過最大延伸率時,引起塑性變形 之電磁波吸收薄片中的應力與延伸率的關係。 FIG. 3 is a graph showing the relationship between the stress (tensile stress) applied in the in-plane direction and the elongation of the electromagnetic wave absorbing sheet in the electromagnetic wave absorbing sheet according to this embodiment. Figure 3(a) shows the relationship between stress and elongation of the electromagnetic wave absorbing sheet that breaks when the maximum elongation is exceeded. In addition, Figure 3(b) shows that when the maximum elongation is exceeded, plastic deformation is caused. The relationship between stress and elongation in electromagnetic wave absorbing sheets.
在此,「延伸率」係指將經由加上應力於一方向情況而延伸之電磁波吸收薄片的延伸量,以%而顯示以原本之長度除上的數值者。即,將應力0時之長度作為L1、將施加特定應力時之長度作為L2時,加上此特定應力時之「延伸率」係作為(L2-L1)/L1×100而表示。然而,此「延伸率」係亦稱為「偏移」。 Here, "elongation" refers to the elongation amount of an electromagnetic wave-absorbing sheet that is elongated by applying stress in one direction, and is expressed in % as a value divided by the original length. That is, when the length at zero stress is L1 and the length when a specific stress is applied is L2, the "elongation" when the specific stress is added is expressed as (L2-L1)/L1×100. However, this "elongation" is also called "offset".
如圖3(a)所示,在超過最大延伸率時產生斷裂之電磁波吸收薄片中,至到達於最大延伸率之170%為止,自外部所加上之應力變大時,略直線狀地電磁波吸收薄片的延伸率則增加(符號11之部分)。之後,當超過最大延伸率之170%而加上應力時,電磁波吸收薄片則產生斷裂,延伸率的值係為自最大延伸率之170%變大(符號12之部分)。 As shown in Figure 3(a), in an electromagnetic wave-absorbing sheet that breaks when the maximum elongation is exceeded, when the stress applied from the outside becomes larger until it reaches 170% of the maximum elongation, the electromagnetic wave will appear in a slightly straight line. The elongation of the absorbent sheet increases (part of symbol 11). Then, when stress is applied exceeding 170% of the maximum elongation, the electromagnetic wave absorbing sheet breaks, and the value of the elongation increases from 170% of the maximum elongation (part of symbol 12).
另一方面,如圖3(b)所示,在超過最大延伸率時,引起塑性變形的電磁波吸收薄片中,到達至顯示最大應力之延伸率的延伸率30%為止,係所加上的應力變大時,比較緩和地延伸率則上升(符號13之部分)。之後,在到達至顯示最大應力之延伸率30%之後,更加地拉伸電磁波吸收薄片時,引起塑性變形而到達至延伸率230%為止,電磁波吸收薄片則延伸(符號14之部分)。因此,應力係徐緩地降低。然而,引起塑性變形之故,在符號14所示之狀態的電磁波吸收薄片係喪失彈性,即使解除拉伸電磁波吸收薄片的力,薄片的長度係亦未變短。 On the other hand, as shown in Figure 3(b), in the electromagnetic wave absorbing sheet that causes plastic deformation when the maximum elongation is exceeded, the stress applied until the elongation reaches 30%, which shows the elongation of the maximum stress. As it becomes larger, the elongation rate rises relatively gently (part of symbol 13). Thereafter, when the electromagnetic wave absorbing sheet is further stretched after reaching the elongation rate of 30% showing the maximum stress, plastic deformation occurs until the elongation rate reaches 230%, and the electromagnetic wave absorbing sheet is elongated (part 14). Therefore, the stress decreases slowly. However, due to plastic deformation, the electromagnetic wave absorbing sheet in the state indicated by reference numeral 14 loses elasticity, and the length of the sheet does not become shorter even if the force to stretch the electromagnetic wave absorbing sheet is released.
然而,作為結合料1b所使用之橡膠材料的彈性變形範圍係可由使用適宜選擇之加硫劑而進行調整者。另外,從使用用途等之關係,對於要求不能斷裂之電磁波吸收薄片的情況,係認為作為未斷裂而塑性變形之形態者亦為有效。 However, the elastic deformation range of the rubber material used as the binder 1b can be adjusted by using an appropriately selected vulcanizer. In addition, depending on the intended use, etc., when an electromagnetic wave absorbing sheet that cannot be broken is required, it is considered that a form that is not broken but is plastically deformed is also effective.
另外,作為電磁波吸收薄片之延伸大小之範圍係輸入阻抗值則自空氣中的阻抗值大大地偏移,無法取得阻抗整合之故,作為電磁波吸收能力降低之範圍,上限係作為200%。另外,電磁波吸收薄片之延伸則過大時,電磁波吸收薄片之厚度則變薄,而電磁波吸收材料的密度則降低之故,電磁波吸收能力亦下降。更且,在電磁波吸收薄片之延伸則超過200%之狀態中,電磁波吸收薄片之可撓性或彎曲性則降低。 In addition, since the input impedance value in the extended size range of the electromagnetic wave absorbing sheet greatly deviates from the impedance value in the air and impedance integration cannot be achieved, the upper limit of the range in which the electromagnetic wave absorbing capability decreases is set to 200%. In addition, if the extension of the electromagnetic wave absorbing sheet is too large, the thickness of the electromagnetic wave absorbing sheet will become thinner, and the density of the electromagnetic wave absorbing material will decrease, so the electromagnetic wave absorbing capability will also decrease. Furthermore, in a state where the electromagnetic wave absorbing sheet is extended by more than 200%, the flexibility or bendability of the electromagnetic wave absorbing sheet decreases.
另一方面,電磁波吸收薄片之延伸則較20%為小時,在貼著於曲面狀的被著體時,未充分使其延長,而作業性則降低。另外,無法對應對於形狀產生變化之可動部的貼著,而無法發揮具有彈性之有關本實施形態之電磁波吸收薄片的特徵者。 On the other hand, the elongation of the electromagnetic wave absorbing sheet is smaller than 20%, and when it is attached to a curved substrate, it is not fully elongated, and the workability is reduced. In addition, the electromagnetic wave absorbing sheet of the present embodiment cannot cope with the adhesion of the movable part that changes in shape, and cannot exhibit the elastic characteristics of the electromagnetic wave absorbing sheet of the present embodiment.
在此,對於有關本實施形態之電磁波吸收薄片,實際製作磁性氧化鐵與橡膠製結合料的種類不同之構成,測定來自外部的拉伸應力與電磁波吸收薄片之延伸率的關係。 Here, the electromagnetic wave absorbing sheet according to this embodiment was actually made with different types of magnetic iron oxide and rubber binders, and the relationship between the tensile stress from the outside and the elongation of the electromagnetic wave absorbing sheet was measured.
第1電磁波吸收薄片(實施例1)係作為磁性氧化鐵而使用ε-氧化鐵,而作為橡膠製結合料,使用丙烯酸 橡膠。於表1,顯示使用於第1電磁波吸收薄片之製作的材料與其比例。 The first electromagnetic wave absorbing sheet (Example 1) uses ε-iron oxide as the magnetic iron oxide and acrylic as the rubber binder. Rubber. Table 1 shows the materials used in the production of the first electromagnetic wave absorbing sheet and their proportions.
第2電磁波吸收薄片(實施例2)係作為磁性氧化鐵而與第1電磁波吸收薄片同樣地使用ε-氧化鐵,而作為橡膠製結合料,使用矽橡膠。於表2,顯示使用於第2電磁波吸收薄片之製作的材料與其比例。 The second electromagnetic wave absorbing sheet (Example 2) uses ε-iron oxide as the magnetic iron oxide in the same manner as the first electromagnetic wave absorbing sheet, and uses silicone rubber as the rubber binder. Table 2 shows the materials used in the production of the second electromagnetic wave absorbing sheet and their proportions.
第3電磁波吸收薄片(實施例3)係作為磁性氧化鐵而使用鍶鐵氧體,而作為橡膠製結合料,與第2電磁波吸收薄片同樣地使用矽橡膠。於表3,顯示使用於第3電磁波吸收薄片之製作的材料與其比例。 The third electromagnetic wave absorbing sheet (Example 3) uses strontium ferrite as the magnetic iron oxide, and uses silicone rubber as the rubber binder in the same manner as the second electromagnetic wave absorbing sheet. Table 3 shows the materials used in the production of the third electromagnetic wave absorbing sheet and their proportions.
以加壓式的分批式混勻機而混勻表1~表3所示之各組成之材料,再以甲基乙基甲酮170份而稀釋所得到之混勻物之後,使用充填氧化鋯珠粒的砂磨而製作分散液。 Use a pressurized batch mixer to mix the materials of each composition shown in Tables 1 to 3, dilute the resulting mixture with 170 parts of methyl ethyl ketone, and use a filling oxidizer. Zirconium beads are sanded to prepare a dispersion.
於經由聚矽氧塗層而進行剝離處理的厚度38μm之聚乙烯對苯二甲酸酯(PET)薄片上,以枚葉式之塗佈器而進行塗佈上述表1所示之分散液。 The dispersion liquid shown in Table 1 was applied with a blade-type applicator on a polyethylene terephthalate (PET) sheet with a thickness of 38 μm that was peeled off through the polysiloxane coating.
另外,於經由非聚矽氧系剝離劑而進行剝離處理的厚度38μm之聚乙烯對苯二甲酸酯(PET)薄片上,以枚葉式之塗佈器而進行塗佈上述表2與表3所示之分散液。 In addition, on a polyethylene terephthalate (PET) sheet with a thickness of 38 μm that was peeled off with a non-polysilicone-based release agent, the above-mentioned Table 2 and Table 2 were coated with a blade-type applicator. The dispersion shown in 3.
以80℃將wet狀態的塗料進行乾燥,經由延壓處理而延壓後的厚度則呈成為500μm地,形成電磁波吸收層。 The wet paint was dried at 80°C and subjected to a rolling process so that the thickness after rolling became 500 μm, forming an electromagnetic wave absorbing layer.
將如此作為所製作之厚度500μm的電磁波吸收層,以5片重疊,經由延壓裝置而進行熱壓縮同時,製作2500μm之單膜的電磁波吸收層。然而,接著層係未形成而作成僅電磁波吸收層所成之電磁波吸收薄片。 The electromagnetic wave absorbing layer with a thickness of 500 μm thus produced was stacked in five sheets and thermally compressed using a rolling device to produce a single-film electromagnetic wave absorbing layer of 2500 μm. However, the subsequent layer is not formed and an electromagnetic wave absorbing sheet composed of only the electromagnetic wave absorbing layer is produced.
作為所製作成之各電磁波吸收薄片而言,使 用拉伸試驗機而測定延伸率。具體而言,作為Minebea股份有限公司製之TGE-1kN型試驗機(製品名),測壓元件而使用TT3E-200N,測定以拉伸速度10mm/min之條件而使作成20mm×50mm之薄片延伸時之延伸率。然而,延伸率測定係在溫度23℃、濕度50%Rh之環境下進行。 As each electromagnetic wave absorbing sheet produced, Elongation was measured using a tensile testing machine. Specifically, a TGE-1kN type testing machine (product name) manufactured by Minebea Co., Ltd. was used, and a TT3E-200N load cell was used to measure the elongation of a 20 mm × 50 mm sheet at a tensile speed of 10 mm/min. Time elongation. However, the elongation measurement was performed in an environment with a temperature of 23°C and a humidity of 50% Rh.
將如此作為而測定之3個電磁波吸收薄片的延伸率,示於圖4。 The elongation of the three electromagnetic wave absorbing sheets measured in this manner is shown in Figure 4 .
在圖4中,各以實線(符號15)而顯示第1電磁波吸收薄片的延伸率,以點線(符號16)而顯示第2電磁波吸收薄片的延伸率,以二點鏈線(符號17)而顯示第3電磁波吸收薄片的延伸率。 In FIG. 4 , the elongation rate of the first electromagnetic wave absorbing sheet is shown by a solid line (symbol 15), the elongation rate of the second electromagnetic wave absorbing sheet is shown by a dotted line (symbol 16), and the elongation rate of the second electromagnetic wave absorbing sheet is shown by a two-dot chain line (symbol 17). ) shows the elongation of the third electromagnetic wave absorbing sheet.
如圖4所示,作為實施例而製作之3個電磁波吸收薄片係均成為在超過作為圖3(a1)所示之最大延伸率時產生斷裂形式的電磁波吸收薄片,而最大延伸率係成為195%~200%。如上述,在有關本實施形態之電磁波吸收薄片中,最大延伸率係作為200%者為佳,而所製作之3個電磁波吸收薄片係在電磁波吸收特性,可撓性,彎曲性中為理想之範圍者。 As shown in Figure 4, the three electromagnetic wave absorbing sheets produced as examples were all electromagnetic wave absorbing sheets that broke when exceeding the maximum elongation shown in Figure 3 (a1), and the maximum elongation was 195 %~200%. As mentioned above, in the electromagnetic wave absorbing sheet of this embodiment, the maximum elongation is preferably 200%, and the three electromagnetic wave absorbing sheets produced are ideal in terms of electromagnetic wave absorbing properties, flexibility, and bendability. Scope person.
當比較3個電磁波吸收薄片時,為了成為相同延伸率而必要的應力係第1電磁波吸收薄片15則成為最大,而第3電磁波吸收薄片17則成為最小。此係認為所使用之丙烯酸橡膠則硬度較矽橡膠為高,另外,使用於第2電磁波吸收薄片之矽橡膠的硬度則較使用於第3電磁波吸收薄片之矽橡膠的硬度為高之故。另外,在第1電磁波吸 收薄片中,與作為磁性氧化鐵而使用ε-氧化鐵做比較,於第3電磁波吸收薄片,作為磁性氧化鐵而使用鍶鐵氧體之粒子徑為大之故,而比表面積變小而分散性變高,認為可抑制電磁波吸收薄片之硬度。 When the three electromagnetic wave absorbing sheets are compared, the first electromagnetic wave absorbing sheet 15 has the largest stress required to achieve the same elongation, while the third electromagnetic wave absorbing sheet 17 has the smallest stress. This is considered because the acrylic rubber used has a higher hardness than silicone rubber, and the silicone rubber used for the second electromagnetic wave absorbing sheet has a higher hardness than the silicone rubber used for the third electromagnetic wave absorbing sheet. In addition, in the first electromagnetic wave absorption In the thinning sheet, compared with using ε-iron oxide as the magnetic iron oxide, in the third electromagnetic wave absorbing sheet, using strontium ferrite as the magnetic iron oxide has a larger particle diameter, and the specific surface area becomes smaller and dispersed. It is thought that the hardness of the electromagnetic wave absorbing sheet can be suppressed due to the high resistance.
接著,對於有關本實施形態之電磁波吸收薄片,測定施加應力於薄片而延伸時之電磁波吸收特性的變化。 Next, regarding the electromagnetic wave absorbing sheet according to this embodiment, changes in the electromagnetic wave absorption characteristics when stress is applied to the sheet and the sheet is stretched are measured.
測定係對於上述之第1電磁波吸收薄片而言,使用自由空間法而測定電磁波吸收量(電磁波衰減量)。具體而言,使用Agilent Technologies股份有限公司製之毫米波網路分析器ME7838AN5250C(商品名),自送訊天線,藉由介電體透鏡,照射特定頻率之輸入波(毫米波)於電磁波吸收薄片,計測以配置於電磁波吸收薄片的背側之收訊天線透過之電磁波。將所照射之電磁波的強度與所透過之電磁波的強度,各作為電壓值而把握,自其強度差以dB求取電磁波衰減量。 The measurement system uses the free space method to measure the electromagnetic wave absorption amount (electromagnetic wave attenuation amount) of the above-mentioned first electromagnetic wave absorbing sheet. Specifically, the millimeter wave network analyzer ME7838AN5250C (trade name) manufactured by Agilent Technologies Co., Ltd. is used, and the input wave (millimetre wave) of a specific frequency is irradiated on the electromagnetic wave absorbing sheet through a dielectric lens from the transmitting antenna. , measuring the electromagnetic waves transmitted through the receiving antenna arranged on the back side of the electromagnetic wave absorbing sheet. The intensity of the irradiated electromagnetic wave and the intensity of the transmitted electromagnetic wave are each grasped as voltage values, and the amount of electromagnetic wave attenuation is calculated in dB from the intensity difference.
圖5係顯示在有關本實施形態之第1電磁波吸收薄片中,在未加上張力於電磁波吸收薄片之狀態的電磁波吸收特性,和施加張力於電磁波吸收薄片,於電磁波吸收薄片產生有延伸之同時,在減少其厚度之狀態的電磁波吸收特性的圖。 FIG. 5 shows the electromagnetic wave absorption characteristics of the first electromagnetic wave absorbing sheet according to the present embodiment, when no tension is applied to the electromagnetic wave absorbing sheet, and when tension is applied to the electromagnetic wave absorbing sheet, the electromagnetic wave absorbing sheet is stretched. , a diagram of electromagnetic wave absorption characteristics in a state where its thickness is reduced.
在圖5中,作為符號21而顯示之實線則未加上張力於電磁波吸收薄片之狀態,即延伸率為0%狀態的電磁波吸收特性。然而,此時之電磁波吸收薄片的厚度係 製作時之2500μm。 In FIG. 5 , the solid line shown as symbol 21 shows the electromagnetic wave absorption characteristics in a state where no tension is applied to the electromagnetic wave absorbing sheet, that is, when the elongation rate is 0%. However, the thickness of the electromagnetic wave absorbing sheet at this time is 2500μm at the time of production.
如圖5所示,第1電磁波吸收薄片係在電磁波吸收物質之ε-氧化鐵的共振頻率之75.5GHz中,顯示電磁波吸收量(來自透過於背面側之電磁波的入射波之衰減量)為26dB之高電磁波吸收特性。 As shown in Figure 5, the first electromagnetic wave absorbing sheet shows an electromagnetic wave absorption amount (attenuation amount from an incident electromagnetic wave transmitted through the back side) of 26 dB at the resonance frequency of 75.5 GHz of ε-iron oxide, which is an electromagnetic wave absorbing material. High electromagnetic wave absorption properties.
對此,加上張力於電磁波吸收薄片,呈成為延伸率75%地延長時之電磁波吸收特性係成為呈在圖5中作為符號22所示之點線。然而,此情況之電磁波吸收薄片的厚度係1950μm。 In this regard, when tension is applied to the electromagnetic wave absorbing sheet and the electromagnetic wave absorption characteristics are extended to an elongation rate of 75%, the electromagnetic wave absorption characteristics become a dotted line shown as 22 in FIG. 5 . However, the thickness of the electromagnetic wave absorbing sheet in this case is 1950 μm.
如於圖5作為符號22所示之點線,在延伸率75%狀態之電磁波吸收薄片中,在75.5GHz之電磁波吸收量為約19dB,而與延伸率為0%之情況(符號21)做比較時,了解到電磁波吸收收特性下降者。此係認為因電磁波吸收薄片則由拉伸於其面內方向者而厚度變薄,在電磁波吸收薄片內,在電磁波所透過之方向的電磁波吸收物質之含有量則實質上降低引起者。 As shown by the dotted line shown as symbol 22 in Figure 5, in the electromagnetic wave absorbing sheet with an elongation rate of 75%, the electromagnetic wave absorption amount at 75.5 GHz is approximately 19 dB, which is the same as the case where the elongation rate is 0% (symbol 21). When compared, it was found that the electromagnetic wave absorption characteristics were reduced. This is thought to be caused by the fact that the thickness of the electromagnetic wave absorbing sheet becomes thinner when stretched in the in-plane direction, and the content of the electromagnetic wave absorbing material in the electromagnetic wave absorbing sheet substantially decreases in the direction through which the electromagnetic wave passes.
即,如第1電磁波吸收薄片之透過型的電磁波吸收薄片之情況係由電磁波吸收薄片拉伸於其面內方向者,了解到電磁波吸收特性降低者。 That is, in the case of the transmission-type electromagnetic wave absorbing sheet as the first electromagnetic wave absorbing sheet, when the electromagnetic wave absorbing sheet is stretched in the in-plane direction, it is found that the electromagnetic wave absorption characteristics are reduced.
因此,本發明者們係測定更加大電磁波吸收薄片之延伸率時之電磁波吸收特性,在由拉伸於面內方向者而厚度變薄之電磁波吸收薄片中,測定電磁波吸收薄片的厚度與電磁波吸收量之關係。將測定結果示於圖6。 Therefore, the present inventors measured the electromagnetic wave absorption characteristics when the elongation rate of the electromagnetic wave absorbing sheet was larger. In the electromagnetic wave absorbing sheet whose thickness became thinner due to stretching in the in-plane direction, the thickness and electromagnetic wave absorption of the electromagnetic wave absorbing sheet were measured. Quantitative relationship. The measurement results are shown in Figure 6 .
圖6係顯示對於上述之第1電磁波吸收薄片與 第3電磁波吸收薄片,將電磁波吸收薄片拉伸於面內之一方向時之薄片厚度與在其狀態中之頻率75.5GHz之電磁波吸收量(透過之電磁波的衰減量:透過衰減量)之關係者。 Figure 6 shows the above-mentioned first electromagnetic wave absorbing sheet and The third electromagnetic wave absorbing sheet is the relationship between the thickness of the electromagnetic wave absorbing sheet when the electromagnetic wave absorbing sheet is stretched in one direction in the plane and the electromagnetic wave absorption amount (the attenuation amount of the transmitted electromagnetic wave: the transmission attenuation amount) at the frequency of 75.5 GHz in its state. .
在圖6中,以黑圈與實線31所示者則為第1電磁波吸收薄片的電磁波吸收量之變化,而以黑四角與點線32所示者則為第3電磁波吸收薄片的電磁波吸收量之變化。 In Figure 6, what is shown by the black circle and the solid line 31 is the change in the electromagnetic wave absorption amount of the first electromagnetic wave absorbing sheet, and what is shown by the black square and the dotted line 32 is the electromagnetic wave absorption of the third electromagnetic wave absorbing sheet. Quantity changes.
如圖6所示,在第1電磁波吸收薄片與第3電磁波吸收薄片中,頻率為75.5GHz之電磁波的吸收量(31、32)係可確認到均對於電磁波吸收薄片之厚度略成比例,而更強地拉伸電磁波吸收薄片而其厚度變越薄,電磁波吸收特性則越降低者。 As shown in Figure 6, in the first electromagnetic wave absorbing sheet and the third electromagnetic wave absorbing sheet, it can be confirmed that the absorption amount (31, 32) of the electromagnetic wave with a frequency of 75.5 GHz is slightly proportional to the thickness of the electromagnetic wave absorbing sheet, and When the electromagnetic wave absorbing sheet is stretched more strongly and its thickness becomes thinner, the electromagnetic wave absorbing properties decrease.
如此,在本實施形態之電磁波吸收薄片中,對於加上拉伸力於薄片而延伸時,因應此時之延伸率的大小而電磁波吸收特性則直線性地降低。從此情況,在可得到所期望之電磁波吸收量的範圍內,且電磁波吸收薄片之最大延伸率的範圍內,只要位於彈性範圍中,可拉伸電磁波吸收薄片而使用者。 In this way, in the electromagnetic wave absorbing sheet of this embodiment, when a tensile force is applied to the sheet and the sheet is stretched, the electromagnetic wave absorption characteristics decrease linearly depending on the extent of the elongation at that time. From this point of view, as long as the electromagnetic wave absorbing sheet is in the elastic range within the range where the desired electromagnetic wave absorption amount is obtained and the maximum elongation of the electromagnetic wave absorbing sheet is within the range, the electromagnetic wave absorbing sheet can be stretched and used.
接著,對於形成反射層於在本申請所揭示之電磁波吸收薄片之第2構成例的電磁波吸收層之背面,所謂反射型之電磁波吸收薄片,顯示具體的實施形態同時而加以說 明。 Next, a specific embodiment of a so-called reflective electromagnetic wave absorbing sheet, which is formed on the back surface of the electromagnetic wave absorbing layer in the second structural example of the electromagnetic wave absorbing sheet disclosed in the present application, will be shown and explained. bright.
於圖7,顯示第2實施形態之電磁波吸收薄片的剖面構成。 FIG. 7 shows the cross-sectional structure of the electromagnetic wave absorbing sheet according to the second embodiment.
然而,圖7係與說明有關第1實施形態之電磁波吸收薄片的構成之圖1同樣地,為了容易理解其構成所記載的圖,對於圖中所示之構件的尺寸與厚度係並非根據現實所表示之構成。另外,對於與構成有關圖1所示之第1實施形態的電磁波吸收薄片者相同構件,係附上相同符號而省略詳細之說明。 However, FIG. 7 is the same as FIG. 1 illustrating the structure of the electromagnetic wave absorbing sheet according to the first embodiment. It is a diagram for easy understanding of the structure. The sizes and thicknesses of the members shown in the figure are not based on reality. Express the composition. In addition, the same components as those constituting the electromagnetic wave absorbing sheet of the first embodiment shown in FIG. 1 are assigned the same reference numerals, and detailed descriptions thereof are omitted.
在本申請所揭示之電磁波吸收薄片係作為電磁波吸收材料而與橡膠製之結合料同時,形成電磁波吸收層,經由ε-氧化鐵或鋇鐵氧磁體,鍶鐵氧體等之磁性氧化鐵的磁性共振而吸收電磁波之構成。因此,除了作為未具備作為第1實施形態所示之反射層的透過型之電磁波吸收薄片而構成之外,可採用於與電磁波吸收層之電磁波所入射側相反側的表面,具備反射電磁波之反射層,作為反射型之電磁波吸收薄片的構成者。 The electromagnetic wave absorbing sheet disclosed in this application is used as an electromagnetic wave absorbing material and forms an electromagnetic wave absorbing layer together with a rubber binder through the magnetic properties of magnetic iron oxide such as ε-iron oxide, barium ferrite magnets, and strontium ferrite. It resonates and absorbs electromagnetic waves. Therefore, in addition to being configured as a transmissive electromagnetic wave absorbing sheet without the reflective layer shown in the first embodiment, the electromagnetic wave absorbing layer can be used on the surface opposite to the side on which the electromagnetic wave is incident, and has the ability to reflect the electromagnetic wave. layer, as a component of the reflective electromagnetic wave absorbing sheet.
在第2實施形態所示之電磁波吸收薄片係於包含電磁波吸收材料之磁性氧化鐵1a,和橡膠製之結合料1b的電磁波吸收層1之背面側(在圖7中的下方側),接觸於電磁波吸收層1之表面而加以形成反射層3。 The electromagnetic wave absorbing sheet shown in the second embodiment is in contact with the back side (the lower side in FIG. 7 ) of the electromagnetic wave absorbing layer 1 composed of magnetic iron oxide 1a as an electromagnetic wave absorbing material and a rubber binder 1b. The surface of the electromagnetic wave absorbing layer 1 forms a reflecting layer 3 .
然而,在圖7所示之第2實施形態的電磁波吸收薄片中,於反射層3之又背面側,加以形成可貼著電磁波吸收薄片於特定處之接著層2。與有關上述第1實施形態 之電磁波吸收薄片之情況同樣地,在有關第2實施形態之電磁波吸收薄片中,接著層2係並非必須之構成要件,而亦可形成未具備接著層2之電磁波吸收薄片者,但由電磁波吸收薄片作為具備接著層2之構成者,未使用兩面膠帶或接著劑而可貼著電磁波吸收薄片於特定部位之故而為理想。 However, in the electromagnetic wave absorbing sheet of the second embodiment shown in FIG. 7, an adhesive layer 2 that can adhere to the electromagnetic wave absorbing sheet at a specific place is formed on the back side of the reflective layer 3. Related to the above-mentioned first embodiment In the case of the electromagnetic wave absorbing sheet, similarly, in the electromagnetic wave absorbing sheet of the second embodiment, the adhesive layer 2 is not an essential component, and an electromagnetic wave absorbing sheet without the adhesive layer 2 can also be formed. However, the electromagnetic wave absorbing sheet is formed by electromagnetic wave absorption. The sheet is preferably composed of an adhesive layer 2 because the electromagnetic wave absorbing sheet can be adhered to a specific location without using double-sided tape or adhesive.
反射層3係如為密著形成於電磁波吸收層1之背面的金屬層即可。但在本實施形態之電磁波吸收薄片中,由使用橡膠製之結合料1b者而電磁波吸收薄片則具有彈性之故,作為反射層3係作為使用網目狀之導電體,或銀奈米線(Ag-NW)、導電性高分子膜等,電磁波吸收層1則即使在延伸的情況,其表面阻抗值則未上升而作為呈可維持1Ω/□程度之阻抗值。 The reflective layer 3 may be a metal layer formed in close contact with the back surface of the electromagnetic wave absorbing layer 1 . However, in the electromagnetic wave absorbing sheet of this embodiment, since the rubber binder 1b is used and the electromagnetic wave absorbing sheet has elasticity, a mesh-shaped conductor or silver nanowire (Ag) is used as the reflective layer 3. -NW), conductive polymer film, etc., even when the electromagnetic wave absorbing layer 1 is stretched, its surface impedance does not rise and maintains an impedance value of approximately 1Ω/□.
作為形成反射層於電磁波吸收層1之背面的方法,係可採用將銀奈米線,或導電性高分子,噴上或塗佈於電磁波吸收薄片之背面側的方法。另外,可採用於與反射層同樣的橡膠製結合料,製作分散銀奈米線或導電性高分子之反射層3,熱壓著具有彈性之反射層3於電磁波吸收層之方法,更且,於具有彈性之反射層3,塗佈為了製作電磁波吸收層1之塗料,形成電磁波吸收層1於反射層3上之方法。 As a method of forming the reflective layer on the back side of the electromagnetic wave absorbing layer 1, silver nanowires or conductive polymers can be sprayed or coated on the back side of the electromagnetic wave absorbing sheet. In addition, the same rubber binder as the reflective layer can be used to make the reflective layer 3 with dispersed silver nanowires or conductive polymers, and the elastic reflective layer 3 can be heat-pressed on the electromagnetic wave absorbing layer. Furthermore, A method for forming the electromagnetic wave absorbing layer 1 on the reflective layer 3 by coating the elastic reflective layer 3 with a paint for forming the electromagnetic wave absorbing layer 1 .
然而,對於構成反射層3之金屬的種類係未特別限定,除了作為奈米線而使用的銀以外,亦可使用鋁或銅,鉻等電性阻抗盡可能為小,耐蝕性高之金屬者。 However, the type of metal constituting the reflective layer 3 is not particularly limited. In addition to silver used as nanowires, metals such as aluminum, copper, and chromium that have an electrical resistance as small as possible and have high corrosion resistance may also be used. .
在圖7所示之有關第2實施形態之電磁波吸收薄片中,由設置反射層3於電磁波吸收層1之背面者,可確實地迴避電磁波貫通電磁波吸收薄片之事態。因此,特別作為防止自以高頻率所驅動之電性電路構件等釋放於外部之電磁波的洩漏之電磁波吸收薄片,可最佳地使用者。 In the electromagnetic wave absorbing sheet according to the second embodiment shown in FIG. 7, by providing the reflective layer 3 on the back surface of the electromagnetic wave absorbing layer 1, the electromagnetic wave penetrating the electromagnetic wave absorbing sheet can be reliably avoided. Therefore, it can be optimally used as an electromagnetic wave absorbing sheet that prevents leakage of electromagnetic waves emitted to the outside from electrical circuit components driven at high frequencies.
在有關第2實施形態之反射型的電磁波吸收薄片中,與第1實施形態之電磁波吸收薄片同樣地,於拉伸電磁波吸收層1而延伸之情況,根據經由電磁波吸收層1之厚度產生變化之輸入阻抗值的變化而產生,產生有經由阻抗整合之失配的電磁波吸收特性之變化,和經由電磁波吸收層1之電磁波所通過部分之電磁波吸收物質的量變少之電磁波吸收特性的變化。 In the reflective electromagnetic wave absorbing sheet of the second embodiment, similarly to the electromagnetic wave absorbing sheet of the first embodiment, when the electromagnetic wave absorbing layer 1 is stretched and stretched, the thickness of the electromagnetic wave absorbing layer 1 changes depending on the thickness. Changes in the input impedance value produce changes in electromagnetic wave absorption characteristics due to mismatch in impedance integration, and changes in electromagnetic wave absorption characteristics in which the amount of electromagnetic wave absorbing material in the portion through which electromagnetic waves pass through the electromagnetic wave absorbing layer 1 decreases.
更且,反射型之電磁波吸收薄片的情況,係存在有必須使電磁波吸收薄片之輸入阻抗值整合於空氣中的阻抗值之課題。電磁波吸收薄片之輸入阻抗值則自空氣中的阻抗值之377Ω(嚴格來說係真空中之阻抗值)大不同時,因在入射電磁波於電磁波吸收薄片時,產生有反射或散射,而成為損及作為反射型之電磁波吸收薄片的電磁波吸收特性,即,使入射之電磁波之反射波降低之特性的結果之故。 Furthermore, in the case of a reflective electromagnetic wave absorbing sheet, there is a problem that the input impedance value of the electromagnetic wave absorbing sheet must be integrated with the impedance value in the air. The input impedance value of the electromagnetic wave absorbing sheet is greatly different from the impedance value in air of 377Ω (strictly speaking, the impedance value in vacuum). This is because when the electromagnetic wave is incident on the electromagnetic wave absorbing sheet, reflection or scattering occurs, causing damage. And it is the result of the electromagnetic wave absorption characteristics of the reflective electromagnetic wave absorbing sheet, that is, the characteristic of reducing the reflected wave of the incident electromagnetic wave.
在此,在作為電磁波吸收材料而具備磁性氧化鐵之電磁波吸收薄片中,電磁波吸收層1之阻抗Zin係作 為下述的數式(1)而加以表示。 Here, in the electromagnetic wave absorbing sheet including magnetic iron oxide as the electromagnetic wave absorbing material, the impedance Z in of the electromagnetic wave absorbing layer 1 is expressed as the following mathematical formula (1).
在上述的式(1)中,μr係電磁波吸收層1之複透磁率,εr係電磁波吸收層1之複介電率,λ係入射之電磁波的波長,d係電磁波吸收層1之厚度。因此,於電磁波吸收薄片延伸之情況,有電磁波吸收層1之厚度d則變小而電磁波吸收材料之磁性氧化鐵的含有量降低者,電磁波吸收層1之透磁率與介電率則同時產生變化。其結果,電磁波吸收薄片之輸入阻抗值(Zin)係成為由形成電磁波吸收層1結合料1b的厚度所左右,而意味伴隨電磁波吸收薄片之伸縮,其厚度產生變動時,電磁波吸收薄片的輸入阻抗值(Zin)則產生變動者。 In the above formula (1), μ r is the complex magnetic permeability of the electromagnetic wave absorbing layer 1 , ε r is the complex dielectric permittivity of the electromagnetic wave absorbing layer 1 , λ is the wavelength of the incident electromagnetic wave, and d is the thickness of the electromagnetic wave absorbing layer 1 . Therefore, when the electromagnetic wave absorbing sheet is extended, the thickness d of the electromagnetic wave absorbing layer 1 becomes smaller and the content of magnetic iron oxide in the electromagnetic wave absorbing material decreases, the magnetic permeability and dielectric constant of the electromagnetic wave absorbing layer 1 change simultaneously. . As a result, the input impedance value (Zin) of the electromagnetic wave absorbing sheet is determined by the thickness of the binder 1b forming the electromagnetic wave absorbing layer 1. This means that when the thickness of the electromagnetic wave absorbing sheet changes due to expansion and contraction of the electromagnetic wave absorbing sheet, the input impedance of the electromagnetic wave absorbing sheet changes. The value (Zin) changes.
根據此情況,本申請發明之發明者們,並非在電磁波吸收薄片的定常狀態,即,未加上來自外部的力而電磁波吸收薄片之延伸率為0%之狀態,而在電磁波吸收薄片則在以某種程度之延伸率而延伸之狀態,由使電磁波吸收薄片的輸入阻抗值,與空氣中之輸入阻抗值整合者,想到可在實用狀態中,實現最佳地吸收以更寬範圍的條件而入射之電磁波的電磁波薄片者。 According to this situation, the inventors of the present invention are not in a steady state of the electromagnetic wave absorbing sheet, that is, a state in which the elongation rate of the electromagnetic wave absorbing sheet is 0% without any external force, but in the state where the electromagnetic wave absorbing sheet is in By integrating the input impedance value of the electromagnetic wave absorbing sheet with the input impedance value in the air by extending it at a certain degree of elongation, it is thought that optimal absorption can be achieved in a practical state under a wider range of conditions. And the electromagnetic wave thin slice of the incident electromagnetic wave.
因此,實際上製作反射型之電磁波吸收薄片,驗證對於在以一定的延伸率而延伸之狀態使電磁波吸 收薄片之輸入阻抗值,與空氣中之阻抗值整合的效果。 Therefore, a reflective electromagnetic wave absorbing sheet was actually produced to verify the effectiveness of absorbing electromagnetic waves in a state of being extended at a certain elongation rate. The effect of integrating the input impedance value of the thin film with the impedance value in the air.
首先,作為第4電磁波吸收薄片(實施例4),製作反射型之電磁波吸收薄片。 First, as the fourth electromagnetic wave absorbing sheet (Example 4), a reflective electromagnetic wave absorbing sheet was produced.
第4電磁波吸收薄片之反射型的電磁波吸收薄片係與上述之第1電磁波吸收薄片同樣,以加壓式的分批式混勻機而混勻表1所示組成之混合材料,在以甲基乙基酮170分而稀釋所得到之混勻物之後,使用充填氧化鋯珠粒的砂磨而製作分散液。 The reflective electromagnetic wave absorbing sheet of the fourth electromagnetic wave absorbing sheet is the same as the above-mentioned first electromagnetic wave absorbing sheet. The mixed materials having the composition shown in Table 1 are mixed with a pressurized batch mixer. After diluting the resulting mixture with 170% of ethyl ketone, a dispersion liquid was prepared using sand milling filled with zirconia beads.
於經由聚矽氧塗層而進行剝離處理的厚度38μm之聚乙烯對苯二甲酸酯(PET)薄片上,以枚葉式之塗佈器而進行塗佈上述之分散液。 The above-mentioned dispersion liquid was applied with a leaf-type applicator on a 38 μm-thick polyethylene terephthalate (PET) sheet that had been peeled off through the polysiloxane coating.
以80℃將wet狀態的塗料進行乾燥,經由延壓處理而延壓後的厚度則作為呈成為410μm地,形成電磁波吸收層。 The wet paint was dried at 80° C. and subjected to a rolling process so that the thickness after rolling was 410 μm, forming an electromagnetic wave absorbing layer.
接著,於電磁波吸收層的背面,形成反射層。 Then, a reflective layer is formed on the back side of the electromagnetic wave absorbing layer.
反射層之形成係由塗佈銀奈米線於電磁波吸收層之背面側者而加以進行。 The reflective layer is formed by coating silver nanowires on the back side of the electromagnetic wave absorbing layer.
第4電磁波吸收層之電磁波吸收特性的測定係與在上述透過型之電磁波吸收薄片之電磁波吸收測定同樣地,使用自由空間法而進行。但為了測定反射型之電磁波吸收薄片之特性,將入射至電磁波吸收薄片之電磁波的輸出,和自電磁波吸收薄片所釋放之反射波的輸出,配置送訊天線與收訊天線於電磁波吸收薄片之前面側而加以測 定。 The electromagnetic wave absorption characteristics of the fourth electromagnetic wave absorbing layer were measured using the free space method in the same manner as the electromagnetic wave absorption measurement of the above-mentioned transmission type electromagnetic wave absorbing sheet. However, in order to measure the characteristics of the reflective electromagnetic wave absorbing sheet, the output of the electromagnetic wave incident on the electromagnetic wave absorbing sheet and the output of the reflected wave released from the electromagnetic wave absorbing sheet were placed in front of the electromagnetic wave absorbing sheet. test sideways Certainly.
然而,作為第4電磁波吸收薄片所製作,具備作為結合料而將丙烯酸橡膠作為主成分之電磁波吸收層之電磁波吸收薄片係作為圖3(b)而示,決定特定之最大延伸率(具體而言,第4電磁波吸收薄片之情況係30%),而對於超過此之情況,引起塑性變形之電磁波吸收薄片。 However, the electromagnetic wave absorbing sheet produced as the fourth electromagnetic wave absorbing sheet and having an electromagnetic wave absorbing layer containing acrylic rubber as a binder as a main component is shown in Figure 3(b) and determines a specific maximum elongation (specifically, , the case of the fourth electromagnetic wave absorbing sheet is 30%), and in the case of exceeding this, the electromagnetic wave absorbing sheet causes plastic deformation.
另外,在第4電磁波吸收薄片中,延伸率11%時,厚度則成為370μm,而在此厚度370μm之狀態的電磁波吸收薄片之輸入阻抗值則成為與空氣中之阻抗值整合之377Ω。 In addition, in the fourth electromagnetic wave absorbing sheet, when the elongation is 11%, the thickness becomes 370 μm, and the input impedance value of the electromagnetic wave absorbing sheet in this state of 370 μm thickness becomes 377Ω, which is integrated with the impedance value in air.
圖8係在第4電磁波吸收薄片中,顯示改變延伸率之狀態的電磁波吸收特性之變化。 Figure 8 shows changes in the electromagnetic wave absorption characteristics of the fourth electromagnetic wave absorbing sheet when the elongation is changed.
在圖8中,以符號41所示之實線則顯示第4電磁波吸收薄片之定常狀態,即,延伸率為0%之狀態的電磁波吸收量(以反射之電磁波的衰減量)。此時,第4電磁波吸收薄片的厚度係410μm。另外,以符號42所示之點線則以延伸率3%而延伸第4電磁波吸收薄片之狀態,此時之電磁波吸收薄片的厚度係400μm。更且,以符號43所示之一點鎖鏈線則以延伸率11%而延伸第4電磁波吸收薄片之狀態,此時之電磁波吸收薄片的厚度係370μm,以符號44所示之二點鎖鏈線則以延伸率22%而延伸第4電磁波吸收薄片之狀態,此時之電磁波吸收薄片的厚度係335μm。 In FIG. 8 , the solid line indicated by symbol 41 shows the electromagnetic wave absorption amount (the attenuation amount of the reflected electromagnetic wave) in the steady state of the fourth electromagnetic wave absorbing sheet, that is, the elongation rate is 0%. At this time, the thickness of the fourth electromagnetic wave absorbing sheet was 410 μm. In addition, the dotted line indicated by symbol 42 indicates a state in which the fourth electromagnetic wave absorbing sheet is stretched with an elongation rate of 3%. At this time, the thickness of the electromagnetic wave absorbing sheet is 400 μm. Moreover, a one-point chain line shown by the symbol 43 is the state in which the fourth electromagnetic wave absorbing sheet is extended with an elongation rate of 11%. The thickness of the electromagnetic wave absorbing sheet at this time is 370 μm, and a two-point chain line shown by the symbol 44 is When the fourth electromagnetic wave absorbing sheet is stretched with an elongation rate of 22%, the thickness of the electromagnetic wave absorbing sheet at this time is 335 μm.
如圖8所示,在第4電磁波吸收薄片中,使輸入阻抗整合之狀態的電磁波吸收薄片則以延伸率11%延伸 的狀態之電磁波吸收量,則成為最大之約23dB。對此,顯示延伸率為3%時之電磁波吸收量成為約18dB、延伸率為0%時之電磁波吸收量成為約15dB,經由電磁波吸收薄片延伸之時而電磁波吸收量則降低,成為與顯示在第1電磁波吸收薄片之電磁波吸收特性的圖5,圖6不同之結果。也就是,在第2實施形態中,當延伸率變高時,電磁波吸收量變高,成為與第1實施形態相反的結果。 As shown in Figure 8, in the fourth electromagnetic wave absorbing sheet, the electromagnetic wave absorbing sheet in a state where the input impedance is integrated is stretched at an elongation rate of 11%. The amount of electromagnetic wave absorption in this state reaches a maximum of about 23dB. In this regard, it is shown that the amount of electromagnetic wave absorption when the elongation is 3% is about 18dB, and when the elongation is 0%, the amount of electromagnetic wave absorption is about 15dB. When the electromagnetic wave absorbing sheet is stretched, the electromagnetic wave absorption decreases, becoming the same as shown in The electromagnetic wave absorption characteristics of the first electromagnetic wave absorbing sheet are shown in Figure 5 and Figure 6, respectively. That is, in the second embodiment, when the elongation becomes higher, the amount of electromagnetic wave absorption becomes higher, which is the opposite result to that in the first embodiment.
此情況係在反射型的電磁波吸收薄片中,經由電磁波吸收薄片之延伸,較經由電磁波吸收層之電磁波所通過之部分的電磁波吸收物質的量變少者之電磁波吸收量的下降,經由電磁波吸收層之厚度產生變化之輸入阻抗值之變化而產生,經由阻抗整合之失配的電磁波吸收量之降低者則顯示更強的影響。 This is because in a reflective electromagnetic wave absorbing sheet, as the electromagnetic wave absorbing sheet extends, the amount of electromagnetic wave absorbing material in the part through which the electromagnetic wave passes through the electromagnetic wave absorbing layer decreases. The amount of electromagnetic wave absorption decreases through the electromagnetic wave absorbing layer. It is caused by the change in the input impedance value due to the change in thickness, and the reduction in electromagnetic wave absorption through the mismatch of impedance integration shows a stronger impact.
隨之,在反射型之電磁波吸收薄片中,考慮伴隨電磁波吸收薄片之延伸率的變化之電磁波吸收層之輸入的阻抗值的變化,進行電磁波吸收薄片之輸入阻抗值與空氣中之阻抗值的整合者為佳。 Accordingly, in the reflective electromagnetic wave absorbing sheet, the input impedance value of the electromagnetic wave absorbing sheet and the impedance value in the air are integrated by taking into account the change in the input impedance value of the electromagnetic wave absorbing layer accompanying the change in the elongation of the electromagnetic wave absorbing sheet. Whichever is better.
圖9係顯示在第4電磁波吸收薄片之電磁波吸收薄片的厚度與電磁波吸收量之關係的圖,而圖8所示,以其他的表現形式而顯示在第4電磁波吸收薄片之電磁波吸收特性的變化之圖。 Figure 9 is a graph showing the relationship between the thickness of the electromagnetic wave absorbing sheet and the amount of electromagnetic wave absorption in the fourth electromagnetic wave absorbing sheet, and Figure 8 shows the change in the electromagnetic wave absorption characteristics of the fourth electromagnetic wave absorbing sheet in another form of expression. picture.
自圖9中,符號51則顯示延伸率為0%之狀態(厚度410μm)、符號52則顯示延伸率為3%之狀態(厚度400μm)、符號52則顯示延伸率為11%之狀態(厚度 370μm)、符號54則顯示延伸率為22%之狀態(厚度335μm)之電磁波吸收量的值。 In Figure 9, symbol 51 shows a state with an elongation of 0% (thickness 410 μm), symbol 52 shows a state with an elongation of 3% (thickness 400 μm), and symbol 52 shows a state with an elongation of 11% (thickness 410 μm). 370 μm), symbol 54 shows the value of electromagnetic wave absorption in the state with an elongation of 22% (thickness 335 μm).
如圖9所示,在第4電磁波吸收薄片中,由在電磁波吸收薄片則以延伸率11%延伸,厚度成為370μm之狀態而進行輸入阻抗之整合者,可將從延伸率為0%之狀態至延伸率成為22%狀態為止之間,電磁波吸收量,維持認為實用上理想之15dB以下,即,作為電磁波吸收量而可維持92%以上之特性。 As shown in Figure 9, in the fourth electromagnetic wave absorbing sheet, the electromagnetic wave absorbing sheet is stretched at an elongation rate of 11% and has a thickness of 370 μm. When the input impedance is integrated, the elongation rate is 0%. Until the elongation reaches a state of 22%, the electromagnetic wave absorption amount is maintained below 15 dB, which is considered ideal for practical use. That is, the electromagnetic wave absorption amount can maintain a characteristic of 92% or more.
如此,有關本實施形態之電磁波吸收薄片係具有彈性域的最大延伸率為20%~200%之延伸性的電磁波吸收薄片,而在此範圍延伸而加以使用,亦可維持電磁波吸收量的電磁波吸收薄片。更且,有關本實施形態之電磁波吸收薄片係彈性域的最大延伸率為20%~200%,且在彈性域的最大延伸率之5~75%延伸之情況,可維持特定之電磁波吸收量之電磁波吸收薄片。 In this way, the electromagnetic wave absorbing sheet according to the present embodiment is an electromagnetic wave absorbing sheet with extensibility such that the maximum elongation rate in the elastic domain is 20% to 200%. When used in this range, the electromagnetic wave absorption capacity can be maintained while maintaining the electromagnetic wave absorption capacity. flakes. Furthermore, the electromagnetic wave absorbing sheet of this embodiment has a maximum elongation rate of the elastic domain of 20% to 200%, and can maintain a specific electromagnetic wave absorption amount when the elastic domain is extended by 5% to 75% of the maximum elongation rate. Electromagnetic wave absorbing sheet.
如在上述的說明了解到,在將經由磁性共振而吸收電磁波之磁性構件,作為電磁波吸收材料而具備之電磁波吸收薄片中,對於薄片則具備彈性而其厚度產生變化之情況,在某程度伸長電磁波吸收薄片之狀態,將電磁波吸收層之輸入阻抗值,與空氣中之阻抗值整合者為佳。 As can be understood from the above description, in an electromagnetic wave absorbing sheet including a magnetic member that absorbs electromagnetic waves through magnetic resonance as an electromagnetic wave absorbing material, when the sheet has elasticity and its thickness changes, the electromagnetic wave is stretched to a certain extent. In the state of the absorbing sheet, it is better to integrate the input impedance value of the electromagnetic wave absorbing layer with the impedance value in the air.
此情況係作為第2實施形態而說明過,對於電磁波吸收材料則對於毫米波以上之高頻率區帶之電磁波而言產生磁性共振之構成係無加以限定。但以經由分散於橡膠製之結合料中的電磁波吸收材料之磁性共振而吸收電 磁波,具有彈性之反射型的電磁波吸收薄片所有中,在某程度伸長電磁波吸收薄片之狀態,可將電磁波吸收層之輸入阻抗值,與空氣中之阻抗值整合者為佳者。 This case has been described as the second embodiment, and there is no limitation on the structure of the electromagnetic wave absorbing material that generates magnetic resonance for electromagnetic waves in a high frequency band of millimeter waves or higher. However, the electromagnetic wave absorbing material dispersed in the rubber binder absorbs electricity through the magnetic resonance. Among all elastic reflective electromagnetic wave absorbing sheets, it is better to extend the electromagnetic wave absorbing sheet to a certain extent so that the input impedance of the electromagnetic wave absorbing layer can be integrated with the impedance in the air.
在第2實施形態中說明過具體例之第4電磁波吸收薄片中,在最大延伸率為30%之電磁波吸收薄片中,延伸率11%,即,在與最大延伸率之比較中係在約37%的延伸率之狀態,進行輸入阻抗值的整合。作為在以預先特定量之延伸率延伸之狀態,進行阻抗整合之基準,係作為結合料所使用之橡膠材料,經由特別延伸為最大延伸率以上時之變形的種類所左右,但對於最大延伸率而言由將5~75%延伸之狀態作為基準者,在實用上之廣泛範圍中,電磁波吸收薄片之輸入阻抗值與空氣中之阻抗值的差則變無,而可限制入射至電磁波吸收薄片之電磁波,因反射或散射引起之電磁波吸收特性的降低者。 In the fourth electromagnetic wave absorbing sheet as a specific example described in the second embodiment, the electromagnetic wave absorbing sheet with a maximum elongation of 30% has an elongation of 11%, that is, in comparison with the maximum elongation, it is about 37 % elongation state, the input impedance value is integrated. The basis for impedance integration in a state of being stretched by a predetermined amount of elongation is determined by the type of deformation of the rubber material used as a binder when it is stretched beyond the maximum elongation. However, for the maximum elongation Taking the state of 5~75% extension as a standard, in a wide range of practical applications, the difference between the input impedance value of the electromagnetic wave absorbing sheet and the impedance value in the air becomes zero, and the incidence of the electromagnetic wave absorbing sheet can be restricted. Electromagnetic waves are the reduction of electromagnetic wave absorption characteristics caused by reflection or scattering.
另外,以相反的視點而言,由將電磁波吸收薄片的輸入阻抗值,在其彈性域的範圍維持接近於空氣中的阻抗值之377Ω的值者,在電磁波吸收薄片的實用範圍中,可得到一定以上之阻抗整合的項,而可迴避電磁波吸收薄片的電磁波吸收量之降低者。如根據發明者們之檢討,其數值範圍係360Ω~450Ω。電磁波吸收薄片的輸入阻抗值則對於較260Ω為小之情況,或較450Ω為大之情況,在電磁波吸收薄片的表面之空間與電磁波吸收薄片的邊界面中,入射至電磁波吸收薄片的電磁波則產生大散射,加以反射之故,而無法使電磁波吸收薄片本身所具有之電磁 波吸收特性發揮者。 In addition, from the opposite point of view, by maintaining the input impedance value of the electromagnetic wave absorbing sheet at a value close to the impedance value in air of 377Ω in the elastic domain, it can be obtained that within the practical range of the electromagnetic wave absorbing sheet, The term of impedance integration above a certain level can avoid the reduction of the electromagnetic wave absorption amount of the electromagnetic wave absorbing sheet. According to the review of the inventors, the value range is 360Ω~450Ω. When the input impedance value of the electromagnetic wave absorbing sheet is smaller than 260Ω or larger than 450Ω, the electromagnetic wave incident on the electromagnetic wave absorbing sheet is generated in the space between the surface of the electromagnetic wave absorbing sheet and the boundary surface of the electromagnetic wave absorbing sheet. Due to large scattering and reflection, the electromagnetic wave cannot be absorbed by the electromagnetic wave possessed by the sheet itself. A player of wave absorption properties.
然而,使電磁波吸收薄片的輸入阻抗值,與空氣中之阻抗值整合之情況,並非未延伸有電磁波吸收薄片之延伸量0%之狀態,而經由將電磁波吸收薄片對於其最大延伸率而言為5~75%延伸之狀態作為基準之時,即使電磁波吸收薄片的延伸量產生變化之情況,亦可良好地吸收電磁波之情況係並非限定於作為第2實施形態所說明之反射型的電磁波吸收薄片,而在第1實施形態所說明之透過型的電磁波吸收薄片中亦為同樣。 However, when the input impedance value of the electromagnetic wave absorbing sheet is integrated with the impedance value in the air, it is not a state in which the electromagnetic wave absorbing sheet is not extended with an extension amount of 0%. Instead, the maximum elongation of the electromagnetic wave absorbing sheet is When the state of 5 to 75% elongation is used as a standard, even if the amount of elongation of the electromagnetic wave absorbing sheet changes, the situation in which electromagnetic waves can be absorbed well is not limited to the reflective type electromagnetic wave absorbing sheet explained as the second embodiment. , and the same applies to the transmission type electromagnetic wave absorbing sheet described in the first embodiment.
在第1實施形態所示之透過型的電磁波吸收薄片中,與在第2實施形態所示之反射型的電磁波吸收薄片不同,而散射‧反射於電磁波所入射的側之電磁波的強度則未直接影響於電磁波吸收特性(電磁波衰減量)之高低,但例如,抑制對於來自成為電磁波放射源之電性電路的電磁波之外部的洩漏同時,作為呈在電磁波吸收薄片表面之反射波則未對於該電性電路帶來不良影響之情況等,認為未降低在透過型之電磁波吸收薄片之電磁波入射側的反射波之情況。對於如此之情況係即使為透過型之電磁波吸收薄片,延伸率即使產生變化,亦將其輸入阻抗接近於空氣中的阻抗者為佳,將電磁波吸收薄片之最大延伸率而言為5~75%延伸之狀態作為基準,將其輸入阻抗設定為377Ω者為佳。 The transmission type electromagnetic wave absorbing sheet shown in the first embodiment is different from the reflective electromagnetic wave absorbing sheet shown in the second embodiment in that the intensity of the electromagnetic wave scattered and reflected on the side where the electromagnetic wave is incident is not directly affected. It affects the level of electromagnetic wave absorption characteristics (electromagnetic wave attenuation), but for example, while suppressing the external leakage of electromagnetic waves from an electrical circuit that becomes the source of electromagnetic wave radiation, it does not affect the electromagnetic wave as a reflected wave that appears on the surface of the electromagnetic wave absorbing sheet. It is considered that the reflected wave on the electromagnetic wave incident side of the transmission type electromagnetic wave absorbing sheet has not been reduced, such as adverse effects on the electrical circuit. In this case, even if the elongation of the transmissive electromagnetic wave absorbing sheet changes, it is better to keep the input impedance close to the impedance in the air. The maximum elongation of the electromagnetic wave absorbing sheet is 5 to 75%. Using the extended state as a reference, it is better to set the input impedance to 377Ω.
另外,如圖8所示,在第4電磁波吸收薄片中,即使延伸率產生變化而其厚度產生變化之情況,在各 厚度之電磁波吸收特性中,顯示最大之吸收量的輸入電磁波的頻率係在75.5吉赫未有變化。此係與在第1實施形態所說明之第1電磁波吸收薄片同樣,在本申請所揭示之電磁波吸收薄片中,經由電磁波吸收材料之磁性氧化鐵的磁性共振而吸收入射之電磁波之故,顯示最大的吸收特性之電磁波之頻率係電磁波吸收材料如為相同,未有由電磁波吸收層之厚度所左右者之表示。 In addition, as shown in FIG. 8 , in the fourth electromagnetic wave absorbing sheet, even if the elongation changes and the thickness changes, in each case Among the electromagnetic wave absorption characteristics of thickness, the frequency of the input electromagnetic wave that shows the maximum amount of absorption remains unchanged at 75.5 GHz. This is because, like the first electromagnetic wave absorbing sheet described in the first embodiment, the electromagnetic wave absorbing sheet disclosed in the present application absorbs the incident electromagnetic waves through the magnetic resonance of the magnetic iron oxide as the electromagnetic wave absorbing material, showing the maximum If the frequency of electromagnetic waves is the same as that of the electromagnetic wave absorbing material, the absorption characteristics are not affected by the thickness of the electromagnetic wave absorbing layer.
對此,可吸收毫米波區帶的電磁波,且作為具有彈性之構成而目前所市售的電磁波吸收薄片係經由介電體層與反射層之層積而加以形成,由將入射之電磁波之相位挪移1/2波長者而使反射波的強度衰減,所謂波長干涉型之電磁波吸收薄片。在波長干涉型之電磁波吸收薄片中,當介電體層之厚度產生變化時,所吸收之電磁波的波長產生變化之故,而電磁波吸收薄片具有彈性而以特定的延伸率延伸時,其厚度產生變化時,所吸收之電磁波的峰值頻率的值亦產生變化。其結果,例如為了吸收車載雷達等之特定波長的電磁波所配置之電磁波吸收薄片則具有彈性之故,而反而會有產生使所期望之頻率的電磁波的吸收特性降低之問題之虞。 In this regard, the electromagnetic wave absorbing sheet currently on the market as an elastic structure that can absorb electromagnetic waves in the millimeter wave region is formed by laminating a dielectric layer and a reflective layer, thereby shifting the phase of the incident electromagnetic wave. 1/2 wavelength attenuates the intensity of the reflected wave, so-called wavelength interference type electromagnetic wave absorbing sheet. In the wavelength interference type electromagnetic wave absorbing sheet, when the thickness of the dielectric layer changes, the wavelength of the absorbed electromagnetic wave changes. When the electromagnetic wave absorbing sheet is elastic and extends at a specific elongation, its thickness changes. At this time, the value of the peak frequency of the absorbed electromagnetic wave also changes. As a result, for example, the electromagnetic wave absorbing sheet arranged to absorb electromagnetic waves of specific wavelengths such as in-vehicle radars may have a problem of degrading the absorption characteristics of electromagnetic waves of a desired frequency due to its elasticity.
對於在本申請所揭示之電磁波吸收薄片之情況,係最大所吸收的電磁波之頻率係未有變化之故,而未有產生如此之問題者。 In the case of the electromagnetic wave absorbing sheet disclosed in this application, since the frequency of the maximum absorbed electromagnetic wave does not change, no such problem occurs.
然而,在上述第1及第2實施形態中,對於作為含於電磁波吸收層之電磁波吸收材料的磁性氧化鐵,主要例示使用ε-氧化鐵之構成而說明。如上述,由使用ε-氧化鐵者,可形成吸收毫米區帶之30吉赫至300吉赫的電磁波之電磁波吸收薄片者。另外,作為置換Fe位置之金屬材料,經由使用銠等之時,可實現吸收作為電磁波所規定之最高頻率的1兆赫之電磁波的電磁波吸收薄片。 However, in the above-mentioned first and second embodiments, the magnetic iron oxide as the electromagnetic wave absorbing material contained in the electromagnetic wave absorbing layer is mainly explained by exemplifying the structure using ε-iron oxide. As mentioned above, by using ε-iron oxide, it is possible to form an electromagnetic wave absorbing sheet that absorbs electromagnetic waves in the millimeter range of 30 GHz to 300 GHz. In addition, by using rhodium or the like as a metal material that replaces the Fe position, an electromagnetic wave absorbing sheet that absorbs electromagnetic waves of 1 MHz, which is the highest frequency specified for electromagnetic waves, can be realized.
但在本申請所揭示之電磁波吸收薄片中,作為電磁波吸收層之電磁波吸收材料所使用之磁性氧化鐵係不限於ε-氧化鐵。 However, in the electromagnetic wave absorbing sheet disclosed in the present application, the magnetic iron oxide used as the electromagnetic wave absorbing material of the electromagnetic wave absorbing layer is not limited to ε-iron oxide.
作為鐵氧磁體系電磁吸收體的六方晶鐵氧磁體之鋇鐵氧磁體,以及作為一部分之實施例亦顯示之鍶鐵氧體係對於數吉赫至數十吉赫區帶的電磁波而言,發揮良好之電磁波吸收特性。因此,除了ε-氧化鐵以外,由使用在如此毫米區帶之30吉赫至300吉赫中具有電磁波吸收特性之磁性氧化鐵的粒子,和橡膠製結合料而形成電磁波吸收層者,可實現吸收毫米波區帶的電磁波而具有彈性之電磁波吸收薄片者。 Barium ferrite magnets, which are hexagonal ferrite magnets as electromagnetic absorbers of the ferrite magnetic system, and strontium ferrite systems, which are also shown in some of the embodiments, play an important role in electromagnetic waves in the range of several gigahertz to tens of gigahertz. Good electromagnetic wave absorption properties. Therefore, in addition to epsilon-iron oxide, it is possible to form an electromagnetic wave absorbing layer by using particles of magnetic iron oxide, which has electromagnetic wave absorption properties in the millimeter range of 30 GHz to 300 GHz, and a rubber binder. An elastic electromagnetic wave absorbing sheet that absorbs electromagnetic waves in the millimeter wave zone.
然而,例如,六方晶鐵氧磁體之粒子係與在上述實施形態所例示之ε-氧化鐵的粒子做比較,粒子徑則為大的數μm程度,另外,粒子形狀亦並非略球狀而成為板狀或針狀的結晶。因此,在使用橡膠製結合料而形成磁性塗料時,在分散劑之使用,或調整與結合料的混勻條件,作為磁性塗料而塗布之狀態中,在盡可能均一地分散 磁性氧化鐵粉於電磁波吸收層中的狀態,且空隙率則盡可能變小地進行調整者為佳。 However, for example, compared with the particles of ε-iron oxide exemplified in the above embodiment, the particle diameter of the hexagonal ferrite magnet is about several μm larger, and the particle shape is not approximately spherical. Platy or needle-shaped crystals. Therefore, when forming a magnetic paint using a rubber binder, it is necessary to use a dispersant or adjust the mixing conditions with the binder to disperse the magnetic paint as uniformly as possible in the state where the magnetic paint is applied. It is preferable to adjust the state of the magnetic iron oxide powder in the electromagnetic wave absorbing layer and adjust the void ratio to be as small as possible.
在上述實施形態所說明之電磁波吸收薄片係由作為構成電磁波吸收層之結合料而使用橡膠製之構成者,可實現具備彈性之電磁波吸收薄片者。特別是,作為電磁波吸收材料,由具備在毫米區帶以上之高頻率區帶產生磁性共振的磁性氧化鐵者,吸收高頻率之電磁波,且可實現具有彈性之電磁波吸收薄片。 The electromagnetic wave absorbing sheet described in the above embodiment is made of rubber as a binder constituting the electromagnetic wave absorbing layer, and can realize an elastic electromagnetic wave absorbing sheet. In particular, as an electromagnetic wave absorbing material, magnetic iron oxide that generates magnetic resonance in a high frequency band above the millimeter band absorbs high frequency electromagnetic waves and can realize an elastic electromagnetic wave absorbing sheet.
然而,對於作為電磁波吸收材料,使用經由磁性共振而吸收電磁波之磁性氧化鐵的電磁波吸收薄片之情況,係由提高在電磁波吸收薄片中之電磁波吸收材料的體積含有率者,可實現更大之電磁波吸收效果。但在另一方面,在具備由橡膠製之結合料與電磁波吸收材料而加以構成之電磁波吸收層的電磁波吸收薄片中,在確保經由使用結合料之彈性上,必然性地訂定有電磁波吸收材料之體積含有率的上限。在本申請所揭示之電磁波吸收薄片中,由將在電磁波吸收材料之磁性氧化鐵的電磁波吸收層之體積含有率作為30%以上者,特別是反射型之電磁波吸收薄片之情況,可確保-15dB以上之反射衰減量者。 However, when an electromagnetic wave absorbing sheet using magnetic iron oxide that absorbs electromagnetic waves through magnetic resonance is used as the electromagnetic wave absorbing material, a larger electromagnetic wave can be achieved by increasing the volume content of the electromagnetic wave absorbing material in the electromagnetic wave absorbing sheet. absorption effect. On the other hand, in an electromagnetic wave absorbing sheet having an electromagnetic wave absorbing layer composed of a rubber binder and an electromagnetic wave absorbing material, the electromagnetic wave absorbing material must be included in order to ensure elasticity through the use of the binder. The upper limit of volume content rate. In the electromagnetic wave absorbing sheet disclosed in the present application, when the volume content of the electromagnetic wave absorbing layer of magnetic iron oxide in the electromagnetic wave absorbing material is 30% or more, especially in the case of a reflective electromagnetic wave absorbing sheet, -15 dB can be ensured. The above reflection attenuation amount.
另外,將在電磁波吸收層之橡膠製結合料的體積含有率,作為40%~70%者為佳。由將橡膠製結合料的體積含有率作為此範圍者,容易將在電磁波吸收薄片之面內的一方向之彈性域的最大延伸率,設定為所期望之20%~200%之範圍。 In addition, the volume content of the rubber binder in the electromagnetic wave absorbing layer is preferably 40% to 70%. By setting the volume content of the rubber binder as this range, it is easy to set the maximum elongation of the elastic domain in one direction within the surface of the electromagnetic wave absorbing sheet to the desired range of 20% to 200%.
然而,在上述的說明中,作為形成電磁波吸收層之方法,對於製作磁性塗料而塗佈,乾燥此等之方法加以說明過。作為在本申請所揭示之電磁波吸收薄片的製作方法係除了塗佈上述磁性塗料的方法之外,例如考慮使用壓出成型法者。 However, in the above description, as a method of forming the electromagnetic wave absorbing layer, a method of preparing a magnetic paint, applying it, and drying it has been described. As a method for producing the electromagnetic wave absorbing sheet disclosed in the present application, in addition to the method of applying the above-mentioned magnetic paint, it is conceivable to use an extrusion molding method, for example.
更具體而言係將磁性氧化鐵粉,和橡膠製結合料,和因應必要,將分散劑等預先進行混合,將混合之此等材料,自壓出成型機的樹脂供給口,供給至可塑性汽缸內。然而,作為壓出成型機係可使用具備可塑性汽缸,和設置於可塑性汽缸前端之壓模,和旋轉自由地配設於可塑性汽缸內之推進器,和使推進器驅動之驅動機構的通常之壓出成型機。經由壓出成型機之帶式加熱器而可塑化的熔融材料則經由推進器的旋轉而傳送至前方,自前端壓出成薄片狀者。由將所壓出的材料,進行乾燥,加壓成形,延壓處理等者而可得到特定厚度之電磁波吸收薄片。 More specifically, magnetic iron oxide powder, a rubber binder, and a dispersant are mixed in advance if necessary, and the mixed materials are supplied to the plastic cylinder from the resin supply port of the extrusion molding machine. within. However, as the extrusion molding machine, a normal press having a plastic cylinder, a die installed at the front end of the plastic cylinder, a pusher disposed freely rotatable in the plastic cylinder, and a driving mechanism for driving the pusher can be used. Out of the molding machine. The molten material plasticized by the belt heater of the extrusion molding machine is sent to the front through the rotation of the propeller, and is extruded into a thin sheet from the front end. An electromagnetic wave absorbing sheet with a specific thickness can be obtained by drying, press-forming, and calendering the extruded material.
更且,作為形成電磁波吸收層之方法係可採用製作含有磁性氧化鐵粉與橡膠製結合料的磁性複合物,以特定厚度沖壓成型處理此磁性複合物之方法者。 Furthermore, as a method of forming the electromagnetic wave absorbing layer, a magnetic composite containing magnetic iron oxide powder and a rubber binder is produced, and the magnetic composite is press-molded to a specific thickness.
具體而言係首先,製作電磁波吸收性組成物之磁性複合物。磁性複合物係混勻磁性氧化鐵粉,和橡膠製結合料,對於所得到之混勻物混合交聯劑而可調整黏度者。 Specifically, first, a magnetic composite of an electromagnetic wave absorbing composition is produced. The magnetic composite is a mixture of magnetic iron oxide powder and rubber binder, and a cross-linking agent is mixed into the resulting mixture to adjust the viscosity.
將作為由如此作為所得到之電磁波吸收性組成物之磁性複合物,作為一例,使用油壓沖壓機而以溫度 170℃,交聯‧成型為薄片狀。之後,在恆溫槽內,例如以溫度170℃施以2次交聯處置,可作為特定形狀之電磁波吸收薄片者。 As an example, the magnetic composite of the electromagnetic wave absorbing composition obtained in this way is pressed with a temperature using a hydraulic press. 170℃, cross-linked and formed into thin sheets. After that, it is cross-linked twice in a constant temperature bath at a temperature of, for example, 170°C, and can be used as an electromagnetic wave absorbing sheet of a specific shape.
另外,在上述實施形態中,對於以一層而加以構成電磁波吸收層之電磁波吸收薄片已做過說明,但作為電磁波吸收層而可採用層積複數的層之構成者。對於作為第1實施形態所示之透過型之電磁波吸收薄片的情況,係作為電磁波吸收層而具備某種程度以上之厚度者,則電磁波吸收特性則提升。另外,在作為第2實施形態所示之反射型之電磁波吸收薄片中,由調整電磁波吸收層之厚度而使其輸入阻抗值,與空氣中的阻抗值調整者,更可使電磁波吸收特性提升。因此,對於經由形成電磁波吸收層之電磁波吸收材料或結合料的特性,無法以一層形成特定厚度之電磁波吸收層之情況,係將電磁波吸收層作為層積體而形成者則為有效。 In the above-mentioned embodiment, the electromagnetic wave absorbing sheet constituting the electromagnetic wave absorbing layer is described as a single layer. However, the electromagnetic wave absorbing layer may be formed by laminating a plurality of layers. In the case of the transmission-type electromagnetic wave absorbing sheet shown in the first embodiment, if the electromagnetic wave absorbing layer has a thickness of a certain level or more, the electromagnetic wave absorbing properties are improved. In addition, in the reflective electromagnetic wave absorbing sheet shown as the second embodiment, the electromagnetic wave absorption characteristics can be improved by adjusting the thickness of the electromagnetic wave absorbing layer to adjust the input impedance value and the impedance value in air. Therefore, when the electromagnetic wave absorbing layer cannot be formed with a specific thickness in one layer due to the characteristics of the electromagnetic wave absorbing material or binder forming the electromagnetic wave absorbing layer, it is effective to form the electromagnetic wave absorbing layer as a laminate.
在本申請所揭示之電磁波吸收薄片係吸收毫米區帶以上之高頻率區帶的電磁波,更且,作為具有彈性之電磁波吸收薄片而為有用。 The electromagnetic wave absorbing sheet disclosed in the present application absorbs electromagnetic waves in high-frequency bands above the millimeter band, and is useful as an elastic electromagnetic wave absorbing sheet.
1‧‧‧電磁波吸收層 1‧‧‧Electromagnetic wave absorption layer
1a‧‧‧ε-氧化鐵(磁性氧化鐵) 1a‧‧‧ε-iron oxide (magnetic iron oxide)
1b‧‧‧橡膠製結合料 1b‧‧‧Rubber binder
2‧‧‧接著層 2‧‧‧Adhering layer
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107115002A TWI812620B (en) | 2018-05-03 | 2018-05-03 | Electromagnetic wave absorbing sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107115002A TWI812620B (en) | 2018-05-03 | 2018-05-03 | Electromagnetic wave absorbing sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201948019A TW201948019A (en) | 2019-12-16 |
TWI812620B true TWI812620B (en) | 2023-08-21 |
Family
ID=69583093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107115002A TWI812620B (en) | 2018-05-03 | 2018-05-03 | Electromagnetic wave absorbing sheet |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI812620B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004186371A (en) * | 2002-12-03 | 2004-07-02 | Daido Steel Co Ltd | Thin flame-retardant sheet for absorbing electromagnetic wave |
TW200413546A (en) * | 2002-09-11 | 2004-08-01 | Alps Electric Co Ltd | Noncrystalline soft magnetic alloy powder, and green compact core and electromagnetic wave absorber using the same |
CN1773634A (en) * | 2004-11-08 | 2006-05-17 | Tdk株式会社 | Method for producing electromagnetic wave absorbing sheet, method for classifying powder |
JP2009188322A (en) * | 2008-02-08 | 2009-08-20 | New Industry Research Organization | Radio wave absorber and method for manufacturing the same |
US20100238063A1 (en) * | 2006-09-01 | 2010-09-23 | Ohkoshi Shin-Ichi | Magnetic crystal for radio wave absorbing material and radio wave absorbent |
TW201338692A (en) * | 2011-11-30 | 2013-09-16 | Seiji Kagawa | Composite electromagnetic wave absorbing sheet |
JP2013201359A (en) * | 2012-03-26 | 2013-10-03 | Nitto Denko Corp | Electromagnetic wave absorber and method for manufacturing the same |
US20140132439A1 (en) * | 2012-07-10 | 2014-05-15 | Kabushiki Kaisha Riken | Electromagnetic wave absorber |
-
2018
- 2018-05-03 TW TW107115002A patent/TWI812620B/en active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200413546A (en) * | 2002-09-11 | 2004-08-01 | Alps Electric Co Ltd | Noncrystalline soft magnetic alloy powder, and green compact core and electromagnetic wave absorber using the same |
JP2004186371A (en) * | 2002-12-03 | 2004-07-02 | Daido Steel Co Ltd | Thin flame-retardant sheet for absorbing electromagnetic wave |
CN1773634A (en) * | 2004-11-08 | 2006-05-17 | Tdk株式会社 | Method for producing electromagnetic wave absorbing sheet, method for classifying powder |
US20100238063A1 (en) * | 2006-09-01 | 2010-09-23 | Ohkoshi Shin-Ichi | Magnetic crystal for radio wave absorbing material and radio wave absorbent |
JP2009188322A (en) * | 2008-02-08 | 2009-08-20 | New Industry Research Organization | Radio wave absorber and method for manufacturing the same |
TW201338692A (en) * | 2011-11-30 | 2013-09-16 | Seiji Kagawa | Composite electromagnetic wave absorbing sheet |
JP2013201359A (en) * | 2012-03-26 | 2013-10-03 | Nitto Denko Corp | Electromagnetic wave absorber and method for manufacturing the same |
US20140132439A1 (en) * | 2012-07-10 | 2014-05-15 | Kabushiki Kaisha Riken | Electromagnetic wave absorber |
Non-Patent Citations (3)
Title |
---|
Coupling Hollow Fe3O4-Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material Materials & Interfaces, Vol.8 Bin Qu 2016年2月 3734~3735頁 * |
期刊 Bin Qu,"Coupling Hollow Fe3O4−Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material", Applied Materials & Interfaces, Vol. 8, February 2016, pages 3730-3735。 Coupling Hollow Fe3O4−Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material Materials & Interfaces, Vol.8 Bin Qu 2016年2月 3734~3735頁 |
期刊 Bin Qu,"Coupling Hollow Fe3O4-Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material", Applied Materials & Interfaces, Vol. 8, February 2016, pages 3730-3735 * |
Also Published As
Publication number | Publication date |
---|---|
TW201948019A (en) | 2019-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7351967B2 (en) | Electromagnetic wave absorption sheet | |
JP7267912B2 (en) | electromagnetic wave absorption sheet | |
JP7493006B2 (en) | Electromagnetic wave absorbing composition, electromagnetic wave absorber | |
WO2017221992A1 (en) | Electric wave absorption sheet | |
KR20160067051A (en) | Electromagnetic wave absorber and film forming paste | |
WO2018084234A1 (en) | Electromagnetic-wave-absorbing sheet | |
JP7464944B2 (en) | Radio wave absorbing laminated film, its manufacturing method, and element including same | |
JPWO2018235952A1 (en) | Electromagnetic wave absorbing composition, electromagnetic wave absorbing sheet | |
TWI787517B (en) | Electromagnetic wave absorber and composition for electromagnetic wave absorber | |
TWI812620B (en) | Electromagnetic wave absorbing sheet | |
EP3817533A1 (en) | Electromagnetic wave absorber | |
TWI787258B (en) | Electromagnetic wave absorbing sheet | |
TWI756419B (en) | Electromagnetic wave absorbing sheet |