TWI223402B - Whirlpool-like microstructure having spiral conductor layer and manufacturing method thereof - Google Patents

Whirlpool-like microstructure having spiral conductor layer and manufacturing method thereof Download PDF

Info

Publication number
TWI223402B
TWI223402B TW91108650A TW91108650A TWI223402B TW I223402 B TWI223402 B TW I223402B TW 91108650 A TW91108650 A TW 91108650A TW 91108650 A TW91108650 A TW 91108650A TW I223402 B TWI223402 B TW I223402B
Authority
TW
Taiwan
Prior art keywords
microstructure
substrate
vortex
conductive layer
spiral
Prior art date
Application number
TW91108650A
Other languages
Chinese (zh)
Inventor
Weu-Su Chen
Hui-Chi Su
Yi-Shiau Chen
Chao-Chiun Liang
Cheng-Homg Lee
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW91108650A priority Critical patent/TWI223402B/en
Application granted granted Critical
Publication of TWI223402B publication Critical patent/TWI223402B/en

Links

Abstract

The present invention provides a whirlpool-like microstructure having spiral conductor layer and manufacturing method thereof. The method comprises forming a 3D structure on the substrate; forming the required microstructure model of photoresist on the surface of the 3D structure; electroplating metal conductor layer on the surface of the 3D structure; and removing the microstructure model of photoresist, so as to form the floating and whirlpool-like microstructure having spiral conductor layer. The whirlpool-like microstructure having spiral conductor layer of the present invention is applied in the micro-inductor structure of microelectronic system.

Description

12234021223402

修正_____ 五、發明說明u) 【發明所屬之技術領域】 本發明疋關於-種具有螺旋形導電層之旋渦狀微結構 及其製造方法,特別是關於一種應用於微電子系統的微電 感結構旅具有螺旋形導電層之漩渦狀微結構及其製造方 法0 【先前技術】 電感為射頻積體電路中最為關鍵之被動元件,目前最 常使用之射頻電感為平面螺旋電感。平面螺旋電感容易產 生各項雜亂效應如寄生電容和渦電流,造成品質因子 (Quality Factor)無法提升。影響電感品質因子的因素有 金屬導線渦電流、金屬導線直流電阻、基板渦電流及金屬 導線與基板間的寄生電容等;同時,平面螺旋電感佔據相 當大的基板面積而限制了基板的電路密度。為改善其品質 因子及減少電感佔據的基板面積,一方面可藉由懸浮元件 的方式來減少與基板接觸面積,以降低基板渦電流及金屬 導線與基板間之寄生電容的影響;另一方面則可針對改變 結,設計來避免各項雜亂效應和增強機械強度。如立體螺 線管電感(3D Solenoid Inductor)即是利用懸浮的螺線管 電感結構,使基板與電感隔離降低雜亂效應。不過,由於 其所產生的磁場為平行晶片表面方向,相同距離的相鄰電 值會比平面螺旋電感大,因此為降低互感需加大 立體螺線管電感的間距,導致基板能使用的電路面積減 平面螺旋電感的金屬導線渦電流起因於外圈導線所產 對内圈導線感應產生满電流,其主要發生在螺旋Correction _____ V. Description of the invention u) [Technical field to which the invention belongs] The present invention relates to a vortex-like microstructure with a spiral conductive layer and a method for manufacturing the same, and particularly to a microinductor structure applied to a microelectronic system The spiral microstructure with a spiral conductive layer and its manufacturing method 0 [Previous technology] Inductors are the most critical passive components in RF integrated circuits. At present, the most commonly used RF inductors are planar spiral inductors. Planar spiral inductors are prone to produce various clutter effects such as parasitic capacitance and eddy currents, making it impossible to improve the Quality Factor. Factors affecting the quality factor of the inductor include metal wire eddy current, metal wire DC resistance, substrate eddy current, and parasitic capacitance between the metal wire and the substrate. At the same time, the planar spiral inductor occupies a relatively large substrate area and limits the circuit density of the substrate. In order to improve its quality factor and reduce the area of the substrate occupied by the inductor, on the one hand, the contact area with the substrate can be reduced by levitation components to reduce the influence of the substrate eddy current and the parasitic capacitance between the metal wire and the substrate; Can be designed to change the knot to avoid various clutter effects and enhance mechanical strength. For example, the 3D Solenoid Inductor uses a floating solenoid inductor structure to isolate the substrate from the inductor and reduce clutter effects. However, because the magnetic field generated is parallel to the surface of the wafer, the adjacent electrical values of the same distance will be larger than the planar spiral inductance. Therefore, in order to reduce the mutual inductance, the distance between the three-dimensional solenoid inductance needs to be increased, resulting in a circuit area that can be used on the substrate. The eddy current of the metal wire with reduced planar spiral inductance is caused by the full current induced on the inner wire by the outer wire, which mainly occurs in the helix.

麵IH 第6頁 i^J402 盡號 五、發明說明(2) 電感直徑較小的内圈部分 小的部分磁場越大,同時 解決的方式為減少平面螺 方式相對的會增加金屬導 其最佳功效。 【發明内容】 本發明針對上述問題 狀微結構及其製造方法, 感結構。本發明可應用於 導電層之懸浮微結構,可 到改善其品質因子及減少 根據本發明所揭露之 形導電層之漩渦狀微結構 旋形導電層,立體螺旋形 漩渦狀微結構。本發明應 其立體螺旋形導電層可經 少金屬導線直流電阻,而 並且,由於立體螺旋形導 螺旋形金屬導線並非在同 的磁場對内圈導線感應產 形成於基板表面組成之旋 基板的雜亂效應,如基板 生電容等,並且可增加基 根據本發明所揭露之 形導電層之旋渦狀微結構 曰 ,因為平面螺 造成的金屬導 旋電感内圈的 線直流電阻, 舰 旋電感結構直徑越 線渦電流也越大; 金屬線寬’但是此 造成電感無法發揮 ,提供 以應用 電感’ 降低電 電感佔 技術, ,包含 導電層 用於微 由增加 不會因 電層為 一平面 生之渦 滿狀微 渦電流 板所能 技術, 的製造 具有螺 於微電 由於其 感與基 據之基 本發明 :一基 形成於 電子系 螺旋形 此增加 三維之 上,可 電流; 結構為 及金屬 使用的 本發明 方法, 旋形導電層 子系統的微 為具有立體 板的雜亂效 板面積的目 提供一種具 板,以及一 基板表面並 統的微電感 導電層的厚 金屬導線渦 立體空間結 減少外圈導 立體螺旋形 懸浮結構, 導線與基板 之漩渦 電子電 螺旋形 應,達 的0 有螺旋 立體螺 組成一 結構, 度來減 電流, 構’其 線產生 導電層 可減少 間之寄 電路面積。 提供一種具有螺旋 包含下列步驟:提IH, page 6 i ^ J402 Number five, description of the invention (2) The smaller the diameter of the inner ring, the smaller the magnetic field, and the larger the magnetic field. At the same time, the solution is to reduce the plane screw method, which will increase the metal conduction. efficacy. [Summary of the Invention] The present invention is directed to the above-mentioned problem-like microstructure and a method for manufacturing the same, and senses the structure. The invention can be applied to the suspended microstructure of the conductive layer, which can improve its quality factor and reduce the vortex microstructure of the conductive layer disclosed in the present invention. The spiral conductive layer, the three-dimensional spiral vortex microstructure. According to the present invention, the three-dimensional spiral conductive layer can pass through the direct current resistance of a few metal wires, and because the three-dimensional spiral conductive helix metal wires are not in the same magnetic field as the inner coil wires, the clutter formed on the surface of the substrate is induced into clutter. Effect, such as substrate capacitance, and can increase the vortex-like microstructure of the conductive layer disclosed in accordance with the present invention. Because the linear DC resistance of the inner ring of the metal spiral inductor caused by the plane screw, The line eddy current is also larger; the metal line width is' but the inductance cannot be played, and the application of the inductance is provided to reduce the electrical inductance occupation technology. The conductive layer is included for micro-increase and will not be caused by the electrical layer being a plane. The technology of the shape of the micro-eddy current plate is based on the basic invention of spiral microelectronics due to its sense and basis: a base is formed in the spiral of the electronic system, which can increase the current in three dimensions; the structure is used for metal. In the method of the invention, the micro of the spin-shaped conductive layer subsystem provides a method for the clutter plate area of the three-dimensional plate. A thick metal wire with a plate and a micro-inductive conductive layer integrated on the surface of the substrate reduces the three-dimensional spiral suspension structure of the outer ring and the vortex electrons of the conductor and the substrate. A structure is formed to reduce the current, and the structure of the line to generate a conductive layer can reduce the area of the circuit. Provide a spiral with the following steps:

第7頁 1223402Page 7 1223402

供一基板,並於基板上蝕刻出所需形狀的凹槽,在凹槽上 形成一螺旋形導電層以組成一旋渦狀微結構,並去除^板 不需要之部分。〃土 【實施方式】 本發明提供一種微結構及其製造方法,特別是應用於 微電子系統的微電感結構,其微電感結構能藉由有效的架 構發揮最大的功效。本發明透過於基板表面形成螺旋形導 電層並組成一漩渦狀微結構來實現前述目的。 本發明之第一實施例係應用於射頻積體電路(RF IC)的 微電感結構,其為一種具有螺旋狀導電層的旋渦狀微結 構。此種微結構不僅限於微電感結構,還可包含微電子共 振器結構、微電子電感耦合微電子電容結構、微電子波導 結構、微機械彈簧結構、微電子連接器結構、微電磁閥門 結構、微機電電阻微孔加熱器結構以及微磁懸浮結構。 於本發明之微結構中,其螺旋形導電層形成的漩渦狀 微結構之漩渦中心端點指向基板方向或是指向離開基板的 方向,且本發明並未排除於基板上形成具有其他功能之中 間層,本發明之具有螺旋形導電層之漩渦狀微結構,其開 口端的長與寬為50"111至900 "111 ,其高為5〇"m至6〇〇"m。 第1圖至第9圖即為本發明第一實施例之微電感結構的 一系列製程的截面圖及上視圖,此種微電感結構可應用於 半導體積體電路微電子架構。如第丨圖所示為本發明第一 實施例之半導體積體電路微電感結構製程的截面圖,包含 下列步驟·提供一矽單晶基板,分別在矽單晶基板底面與 表面形成第一保護層11和第二保護層,再以光微影技術於A substrate is provided, and a groove of a desired shape is etched on the substrate. A spiral conductive layer is formed on the groove to form a vortex-like microstructure, and unnecessary portions of the plate are removed. [Earth Embodiment] The present invention provides a microstructure and a manufacturing method thereof, particularly a microinductor structure applied to a microelectronic system. The microinductor structure can exert the maximum effect by an effective structure. The present invention achieves the aforementioned object by forming a spiral conductive layer on the surface of the substrate and forming a vortex microstructure. The first embodiment of the present invention is a micro-inductive structure applied to a radio frequency integrated circuit (RF IC), which is a vortex-like microstructure having a spiral conductive layer. Such microstructures are not limited to microinductor structures, but also include microelectronic resonator structures, microelectronic inductive coupling microelectronic capacitor structures, microelectronic waveguide structures, micromechanical spring structures, microelectronic connector structures, microelectromagnetic valve structures, micro Electromechanical resistance micro-hole heater structure and micro magnetic levitation structure. In the microstructure of the present invention, the vortex center end of the vortex microstructure formed by the spiral conductive layer is directed toward the substrate or away from the substrate, and the present invention does not exclude the formation of an intermediate having other functions on the substrate. Layer, the spiral-shaped microstructure with a spiral conductive layer of the present invention, the length and width of the open end of which are 50 " 111 to 900 " 111, and the height of which is 50 " m to 600 " m. 1 to 9 are cross-sectional views and a top view of a series of processes of a micro-inductance structure according to the first embodiment of the present invention. Such a micro-inductance structure can be applied to a microelectronic architecture of a semiconductor integrated circuit. As shown in Figure 丨, this is a cross-sectional view of a semiconductor integrated circuit micro-inductive structure manufacturing process according to the first embodiment of the present invention, which includes the following steps. A silicon single crystal substrate is provided, and a first protection is formed on the bottom surface and the surface of the silicon single crystal substrate, respectively. Layer 11 and second protective layer, and then using photolithography technology

第8頁 1223402 修正 案號 91108fiRn 五、發明說明(4) 矽單晶基板表面定義第二保護層形成第二保護層 a’、12b’12c其中’碎單晶基板(無論是否經過離子摻 雜)為(100)矽單晶基板,矽單晶基板的厚度約為50 至 600 "m。第一保護層和第二保護層12a, 12b,12c可使用在 半導體積體電路微電子架構的習知技術中常使用之保護層 材料,其材料可以選自氧化矽、氮化矽、氮氧矽化合物等 ,質保護材料以及光阻保護材料。本發明實施例的第一保 ,層11和第二保護層12a,12b,12c皆採用氮化矽之硬質保 濩材料’其厚度為80 0埃(Angstroms)至1 0000埃 (Angstroms)以上。第!圖所示之相鄰的第二保護層 12a,12b,12c,其第二保護層12a*12b以及第二保護層12b 和1 2c之間均固定具有一相同間距,此間距約為7〇 β爪至 70 0 。更進一步說明第1圖,其相鄰的第二保護層 12a,12b,12c之間距是用以定義單晶矽基板的一對開孔孔 徑。 、第2圖所示為本發明第一實施例之半導體積體電路微 電感結構製程的截面圖,其為第丨圖後續的製程步驟,包 含··利用單晶矽基板第二保護層12a,12b,12c進行非等向 性蝕刻並以第一保護層U作為蝕刻停止層,蝕刻形成單晶 矽基板1 0 a,1 〇 b,.1 0 C (如第2圖所示),並經由單晶矽基板 l〇a,10b, l〇c所包圍之區域來定義凹槽16a與凹槽丨⑼,即 為第2圖所示之截面為倒金字塔角錐形的凹槽Ua與凹槽 16b。 、曰 本發明第一實施例之單晶矽基板是使用2 5 %至3 5 %重量 百分率的氫氧化卸(K0H)溶液作為钱刻劑,並維持蝕刻溫 第9頁 1223402 __案號91108650__年月日 條正_ 五、發明說明(5) 度在攝氏八十度至九十度以上,如第2圖所示,單晶矽基 板10a,10b,10c是由蝕刻後具有一傾斜角度(54.7度)之壁 面構成,此傾斜角度符合(1〇〇)單晶矽基板之結晶面,本 發明第一實施例應用非等向性蝕刻方法加以蝕刻單晶矽基 板。本發明第一實施例利用習知的氫氧化鉀(K〇H)溶液對 (1 0 0 )單晶矽基板進行非等向性蝕刻,在單晶矽基板蝕刻 出具有傾斜角度(54.7度)之壁面的倒金字塔角錐形之凹 槽。本發明使用之單晶矽基板可應用於導電基板、半導體 基板和介電基板;本發明之凹槽形狀不限於倒金字塔角錐 形,可包含有圓錐形,橢圓錐形,不規則錐體,三角錐 形’長方錐形及多邊形錐體,本發明所揭露的凹槽形狀皆 為立體結構。 第3圖所示為本發明第一實施例之半導體積體電路微 電感結構製程的截面圖,第3圖所繪示者為第2圖後續的製 程步驟。第3圖所示為使用緩衝過之氫氟酸(β0Ε)去除單 晶矽基板之第二保護層1 2a,1 2b,1 2c以及第一保護層11 ; 再以低壓化學氣相沉積法(LPCVD)成長2 //m的高矽含量之氮 化石夕(S i N X )層作為低應力層,氮化石夕層之石夕與氮的比例約 為3比4(Si3N4)至1比l(SiN),其氮化矽層之厚度約為1〇〇〇 埃(Angstroms)至5000 埃(Angstroms)。此外,還有許多 方法可應用於成長低應力層,如電漿增強式化學氣相沉積 法(PECVD),射頻電漿化學氣相沉積法(RPCVD)、微波電漿 化學氣相沉積法(MPCVD)等。 第4圖所示為本發明第一實施例之半導體積體電路微 電感結構製程的俯視圖’第4圖所繪示者為第3圖的俯視Page 8 1223402 Amendment No. 91108fiRn 5. Description of the invention (4) Definition of the surface of the silicon single crystal substrate The second protective layer forms the second protective layer a ', 12b'12c, among which' single single crystal substrate (whether or not ion-doped) It is a (100) silicon single crystal substrate, and the thickness of the silicon single crystal substrate is about 50 to 600 m. The first protective layer and the second protective layer 12a, 12b, 12c can be used as a protective layer material commonly used in the conventional technology of semiconductor integrated circuit microelectronic architecture. The material can be selected from silicon oxide, silicon nitride, and silicon oxynitride. Compounds, quality protection materials and photoresist protection materials. The first protective layer 11 and the second protective layers 12a, 12b, and 12c according to the embodiment of the present invention are all made of silicon nitride. The thickness of the material is 80 Angstroms to 10,000 Angstroms or more. Number! The adjacent second protective layers 12a, 12b, and 12c shown in the figure, the second protective layers 12a * 12b, and the second protective layers 12b and 12c are fixed with a same pitch, and this pitch is about 70 °. Claw to 70 0. To further illustrate Fig. 1, the distance between the adjacent second protective layers 12a, 12b, and 12c is used to define a pair of apertures of a single crystal silicon substrate. Fig. 2 is a cross-sectional view showing the manufacturing process of the micro-inductor structure of the semiconductor integrated circuit according to the first embodiment of the present invention, which is a subsequent process step of Fig. 丨, including the use of the second protective layer 12a of the single crystal silicon substrate, 12b and 12c are anisotropically etched and the first protective layer U is used as an etch stop layer to etch to form a single crystal silicon substrate 10a, 10b, .1 0C (as shown in FIG. 2), and then The regions surrounded by the monocrystalline silicon substrates 10a, 10b, and 10c define the grooves 16a and the grooves, that is, the grooves Ua and the grooves 16b of the inverted pyramid pyramid shape as shown in FIG. 2 . The monocrystalline silicon substrate of the first embodiment of the present invention uses a 25% to 35% by weight hydroxide off (K0H) solution as a money engraving agent, and maintains the etching temperature. Page 9 12234402 __case number 91108650_ _ 年月 日 条 正 _ V. Description of the invention (5) The degree is between 80 and 90 degrees Celsius. As shown in Figure 2, the single crystal silicon substrates 10a, 10b, and 10c have an inclined angle after etching. (54.7 degrees) wall structure, this inclination angle conforms to the crystal surface of (100) single crystal silicon substrate. The first embodiment of the present invention applies a non-isotropic etching method to etch the single crystal silicon substrate. The first embodiment of the present invention uses a conventional potassium hydroxide (KOH) solution to anisotropically etch a (100) monocrystalline silicon substrate, and the monocrystalline silicon substrate is etched with a tilt angle (54.7 degrees). Inverted pyramidal pyramidal groove on the wall. The single crystal silicon substrate used in the present invention can be applied to conductive substrates, semiconductor substrates, and dielectric substrates; the shape of the grooves of the present invention is not limited to an inverted pyramid pyramid shape, and may include a cone shape, an elliptical cone shape, an irregular cone shape, a triangle The shape of the conical 'rectangular cone' and the polygonal cone is a three-dimensional structure. FIG. 3 is a cross-sectional view showing the manufacturing process of the micro-inductor structure of the semiconductor integrated circuit according to the first embodiment of the present invention, and FIG. 3 shows the process steps subsequent to FIG. 2. Figure 3 shows the use of buffered hydrofluoric acid (β0E) to remove the second protective layer 12a, 12b, 12c and the first protective layer 11 of the single crystal silicon substrate; and then using a low pressure chemical vapor deposition method ( LPCVD) grows 2 // m high silicon content nitride nitride (S i NX) layer as a low stress layer, the ratio of nitride to nitrogen of the nitride nitride layer is about 3 to 4 (Si3N4) to 1 to 1 ( SiN). The thickness of the silicon nitride layer is about 1000 Angstroms to 5000 Angstroms. In addition, there are many methods that can be applied to grow low stress layers, such as plasma enhanced chemical vapor deposition (PECVD), radio frequency plasma chemical vapor deposition (RPCVD), microwave plasma chemical vapor deposition (MPCVD) )Wait. Fig. 4 is a plan view of a semiconductor integrated circuit micro-inductive structure manufacturing process according to the first embodiment of the present invention. Fig. 4 is a plan view of Fig. 3

第10頁 1223402Page 10 1223402

拔&第4圖顯示單晶矽基板的凹槽1 6a與凹槽16b之倒金字 ^雖形俯視圖。第5圖為本發明第一實施例之半導體積 % 路微電感結構製程的截面圖,第5圖所繪示者為第3圖 ^ ^的製程步驟。提供一接著層以接合單晶石夕基板與互補 •半導體積體電路晶片(CM〇S ic Wafer)22形成半導體 積體電路某; 人土板20 ’使早晶矽基板的凹槽16a與凹槽16b分別 導位接合互補金氧半導體積體電路晶片22的導電層22a與 #電層22b ;再以氧電漿去除凹槽16a與凹槽16b底部的接 ^劑露出互補金氧半導體積體電路晶片22之導電層22a與 電層22b ’使用化學機械拋光法(chemicai mechanicai ish,CMP)磨除單晶矽基板表面之低應力層,僅保留凹 槽16a内部壁面之應力層14a與凹槽16b内部壁面之應力層 Mb,接著層材料可使用習知的半導體技 ς 著材料、_高分子接著材料、聚氨基高分子二接 料、光反應高分子接著材料及光阻接著材料等其中之一, 接著層的厚度約為1 至10 //m。 ^ 本發明第一實施例之半導體積體電路基板20包含一矽 單晶基板並於其内部以及表面形成(除了導電層22a與 層22b之外):(1)複數個微電子裝置及(2)複數個附加層 結構(如介電層和介電結構以及導電層和導電結構);一 & 習知技術所使用之微電子基板皆可作為本發明之般 體電路基板。 守體積 如第5圖所示,其為本發明第一實施例之半導體 電路微電感結構製程的截面圖,具有凹槽16&與凹样Figure 4 shows the inverted gold characters of the grooves 16a and 16b of the single crystal silicon substrate. FIG. 5 is a cross-sectional view of the semiconductor integrated circuit micro-inductance structure manufacturing process of the first embodiment of the present invention, and FIG. 5 shows the process steps of FIG. 3 ^ ^. Provide an adhesive layer to join the monocrystalline substrate and the complementary semiconductor integrated circuit wafer (CMosic Wafer) 22 to form a semiconductor integrated circuit. The man-made plate 20 'enables the grooves 16a and recesses of the early-crystal silicon substrate. The grooves 16b are respectively conductively bonded to the conductive layers 22a and #electric layers 22b of the complementary metal-oxide-semiconductor integrated circuit wafer 22; and then the adhesive at the bottom of the groove 16a and the groove 16b is removed by an oxygen plasma to expose the complementary metal-oxide semiconductor integrated circuit. The conductive layer 22a and the electrical layer 22b of the circuit wafer 22 are chemically polished (chemicai mechanicai ish, CMP) to remove the low stress layer on the surface of the single crystal silicon substrate, leaving only the stress layer 14a and the groove on the inner wall surface of the groove 16a. The stress layer Mb on the inner wall surface of 16b, and the material of the bonding layer can use conventional semiconductor materials, polymer bonding materials, polyamino polymer bonding materials, photoreactive polymer bonding materials, and photoresist bonding materials. First, the thickness of the subsequent layer is about 1 to 10 // m. ^ The semiconductor integrated circuit substrate 20 of the first embodiment of the present invention includes a silicon single crystal substrate and is formed inside and on the surface (except for the conductive layers 22a and 22b): (1) a plurality of microelectronic devices and (2 ) A plurality of additional layer structures (such as a dielectric layer and a dielectric structure and a conductive layer and a conductive structure); all microelectronic substrates used in the conventional technology can be used as the general circuit substrate of the present invention. Conservation Volume As shown in FIG. 5, it is a cross-sectional view of a semiconductor circuit micro-inductance structure manufacturing process according to a first embodiment of the present invention, with a recess 16 &

第11頁 1223402Page 11 1223402

=2胃2形成半導體積體電路基板2〇,以化學機械拋光法磨除 單晶矽基板的表面覆蓋之低應力層14,僅保留凹槽16a内 部壁面之應力層14a與凹槽16b内部壁面之應力層Ub,以 及去除單晶矽基板之凹槽1 6 a與凹槽1 6 b底部的接著劑露出 互補金氧半導體積體電路晶片22之導電層22a與導電層 22b。第6圖為第$圖的俯視圖,如第6圖所示之本發明第一 實施例之半導體積體電路微電感結構製程的俯視圖,將單 晶石夕基板接合互補金氧半導體積體電路晶片22,單晶石夕基 板之凹槽16a與凹槽16b對準金氧半導體積體電路晶片22的 導電層2 2a與導電層2 2b,並去除凹槽16a與凹槽16b底部之 樹脂露出導電層22a與導電層22b,以及磨除單晶矽基板的 表面覆蓋之低應力層14,僅保留凹槽16a内部壁面之低應 力層14a與凹槽16b内部壁面之低應力層14b。 第7圖所示為本發明第一實施例之半導體積體電路微 電感結構製程的截面圖,第7圖所繪示者為第5圖後續的製 程步驟。蒸鍍一層銅種子層(c〇pper seed layer)在單晶 矽基板之凹槽16a與凹槽16b,並電鍍一層均勻之電鍍光阻 在銅種子層的表面;以符合凹槽形狀的接觸式光罩對準凹 槽曝光顯影形成光阻微結構模型,電鍍導電層於光阻微結 構模型上再去除不需要之銅種子層和光阻,如第7圖所 不’即形成所需要的螺旋形導電層26並與凹槽表面之低應 力層14a,14b結合成為漩渦狀微結構;其螺旋形導電層26 的厚度約為0埃(Angstrom)至100000埃(Angstrom),線寬 約為Ομιη至50 /zm。第8圖為第7圖的俯視圖,第8圖為本發 _明第一實施例之半導體積體電路架構製程的俯視圖,在凹= 2 Stomach 2 forms a semiconductor integrated circuit substrate 20, and the low-stress layer 14 covered by the surface of the single crystal silicon substrate is removed by chemical mechanical polishing, leaving only the stress layer 14a on the inner wall surface of the groove 16a and the inner wall surface of the groove 16b. The stress layer Ub and the adhesive at the bottom of the grooves 16 a and 16 b of the single crystal silicon substrate are exposed to expose the conductive layer 22 a and the conductive layer 22 b of the complementary metal-oxide semiconductor integrated circuit wafer 22. FIG. 6 is a plan view of FIG. 6. As shown in FIG. 6, a plan view of a microinductance structure manufacturing process of a semiconductor integrated circuit according to the first embodiment of the present invention is shown. A single crystal substrate is bonded to a complementary metal-oxide semiconductor integrated circuit chip. 22, the grooves 16a and 16b of the single crystal substrate are aligned with the conductive layers 22a and 2b of the metal oxide semiconductor integrated circuit wafer 22, and the resin at the bottom of the grooves 16a and 16b is exposed to conduct electricity The layer 22a and the conductive layer 22b, and the low-stress layer 14 covered by the surface of the single-crystal silicon substrate are ground away, and only the low-stress layer 14a on the inner wall surface of the groove 16a and the low-stress layer 14b on the inner wall surface of the groove 16b remain. FIG. 7 is a cross-sectional view showing the manufacturing process of the micro-inductor structure of the semiconductor integrated circuit according to the first embodiment of the present invention, and FIG. 7 is a process step subsequent to FIG. 5. A copper seed layer is vapor-deposited on the grooves 16a and 16b of the single crystal silicon substrate, and a uniform plating photoresist is plated on the surface of the copper seed layer; The photomask is aligned with the grooves and exposed to develop a photoresist microstructure model. The electroconductive layer is electroplated on the photoresist microstructure model and the unnecessary copper seed layer and photoresist are removed. As shown in Figure 7, the required spiral shape is formed. The conductive layer 26 is combined with the low stress layers 14a and 14b on the surface of the groove to form a vortex-like microstructure; the thickness of the spiral conductive layer 26 is about 0 Angstrom to 100,000 Angstrom and the line width is about 0 μm to 50 / zm. FIG. 8 is a top view of FIG. 7, and FIG. 8 is a top view of the semiconductor integrated circuit architecture process of the first embodiment of the present invention.

第12頁 1223402Page 12 1223402

槽16a與凹槽16b表面 本發明之螺旋形導電 本發明第二實施例之 的俯視圖。雖然本發 凹槽16a與凹槽16b表 2 6 ’本發明可涵蓋具 本發明第一實施例中 電層之旋渦狀微結構 方向’本發明也包含 向的具有螺旋形導電 面之凸塊表面形成螺 端點指向離開基板方 構0 形成串聯之雙迴圈螺旋形導電層2 6, 層另有一種迴圈圖形如第9圖所示之 半導體積體電路微電感串聯迴圈圖形 明第一實施例如第8圖和第9圖所示於 面僅各具有兩圈導線之螺旋形導電層 有0圈至500圈導線之螺旋形導電層, 第1圖至第10圖所示的具有螺旋形導 ’其漩渦狀微結構之端點為指向基板 旋渦狀微結構之端點指向離開基板方 層之旋渦狀微結構,在突起於基板表 旋形導電層即可形成旋渦狀微結構之 向的具有螺旋形導電層之漩渦狀微結 、$ 1 0圖所示為本發明第一實施例之半導體積體電路微 1感、纟"構製程的截面圖,第10圖所繪示者為第7圖後續的 ,,步驟,利用蝕刻方法去除矽單晶基板區域,僅保留矽 單晶基板之低應力層形成的懸浮結構即完成本發明第一實 施例之雙龍捲風式電感(Twin-Tornado Inductor),其餘 刻方法可利用氫氧化鉀(K〇H)溶液進行濕式蝕刻或利用電 聚進行乾式蝕刻,如第1 〇圖所示之本發明第一實施例之半 導體積體電路架構製程的截面圖,矽單晶基板之低應力層 14a,14b與螺旋狀導電層26形成懸浮結構並透過接著層24 結合互補金氧半導體積體電路晶片22。 【發明功效】 以本發明具有螺旋形導電層之漩渦狀微結構及其製造Surfaces of grooves 16a and grooves 16b. Spiral conductive of the present invention. Top view of a second embodiment of the present invention. Although the grooves 16a and 16b of the present invention are shown in Table 2 6 'The present invention can cover the direction of the vortex-like microstructure with the electric layer in the first embodiment of the present invention' The present invention also includes a convex surface with a spiral conductive surface The spiral end point is formed to point away from the substrate square structure 0 to form a double-loop spiral conductive layer 2 6 in series. The layer also has a loop pattern as shown in Figure 9 of the semiconductor integrated circuit micro-inductance series loop pattern. Examples 8 and 9 show a spiral conductive layer having only two turns of a conductive wire on the surface, and a spiral conductive layer having 0 to 500 turns of a conductive wire. The spiral conductive layers shown in FIGS. 1 to 10 have a spiral shape. The end of the vortex-like microstructure is directed toward the substrate. The end of the vortex-like microstructure is directed toward the vortex-like microstructure away from the square layer of the substrate. The vortex-like microstructure can be formed when it protrudes from the conductive layer on the substrate surface. A vortex-shaped microjunction with a spiral conductive layer is shown in FIG. 10. This is a cross-sectional view of the semiconductor integrated circuit micro-inductance and fabrication process of the first embodiment of the present invention. Figure 7 follow-up, step, using etching The method removes the silicon single crystal substrate region and only retains the suspended structure formed by the low stress layer of the silicon single crystal substrate to complete the Twin-Tornado Inductor of the first embodiment of the present invention. For the other engraving methods, potassium hydroxide can be used. (KOH) solution for wet etching or dry etching with electropolymerization, as shown in Figure 10, a cross-sectional view of the semiconductor integrated circuit architecture process of the first embodiment of the present invention, low stress on a silicon single crystal substrate The layers 14a, 14b and the spiral conductive layer 26 form a suspension structure, and the complementary metal-oxide-semiconductor integrated circuit wafer 22 is bonded through the bonding layer 24. [Effect of the invention] According to the present invention, the spiral-shaped microstructure with a spiral conductive layer and its manufacture

第13頁 1223402 ------ 案號91108650_年月日 倏正__ 五、發明說明(9) 方去完成的雙龍捲風式電感(Twin-Tornado Inductor) ’ 能有致降低射頻積體電路(RF I C)於基板表面佔據面積,提 向基板表面之電路密度,同時可與互補金氧半導體積體電 路(CMOS 1C)分開製作而不會互相干擾降低良率;對於消 除各項雜亂效應亦具效果,雙龍捲風式電感之懸浮結構設 計可消除積體電路基板的寄生電容和渦電流;立體的旋渦 狀微結構也可避免產生平面之螺旋電感常發生的金屬線渦 電流,一般之平面螺旋電感為了避免產生金屬線渦電流, 其線寬不允許太寬使得平面螺旋電感的電阻不易降低,立 體的漩渦狀微結構可透過增加螺旋形導電層厚度的方式降 低電阻而不需要增加線寬。因此,本發明實施例之雙龍捲 風式電感(Twin-Tornado Inductor) —方面可選擇適當的 螺旋形導電層線寬來降低渦電流效應,一方面則可透過增 加螺旋形導電層厚度盡可能降低電阻。 以上所述者,僅為本創作其中的較佳實施例而已,並 非用來限定本創作的實施範圍;即凡依本創作申請專利範 圍所作的均等變化與修飾,皆為本創作專利範圍所涵蓋。Page 13 1223402 ------ Case No. 91108650_Year Month Date __ V. Description of the invention (9) Twin-Tornado Inductor completed by Fang 'can reduce the RF integrated circuit (RF IC) occupies an area on the surface of the substrate, and it can lift the circuit density to the surface of the substrate. At the same time, it can be manufactured separately from the complementary metal-oxide semiconductor integrated circuit (CMOS 1C) without interfering with each other to reduce the yield; it can also eliminate various clutter effects. Effective, the suspension structure design of the double tornado inductor can eliminate the parasitic capacitance and eddy current of the integrated circuit substrate; the three-dimensional vortex-like microstructure can also avoid the eddy current of the metal wire which is often generated by the planar spiral inductor, and the general planar spiral In order to avoid the eddy current of the metal wire, the inductance should not be too wide to make the resistance of the planar spiral inductor difficult to reduce. The three-dimensional spiral microstructure can reduce the resistance by increasing the thickness of the spiral conductive layer without increasing the line width. Therefore, the Twin-Tornado Inductor of the embodiment of the present invention can select an appropriate spiral conductive layer line width to reduce the eddy current effect, and can increase the thickness of the spiral conductive layer to reduce the resistance as much as possible. . The above are only the preferred embodiments of this creation, and are not intended to limit the scope of implementation of this creation; that is, all equivalent changes and modifications made in accordance with the scope of the patent application for this creation are covered by the scope of this creation patent .

1223402 _案號 91108650_年月日__ 圖式簡單說明 第1圖為本發明第一實施例之半導體積體電路微電感 結構製程的截面圖; 第2圖為本發明第一實施例之半導體積體電路微電感 結構製程的截面圖; 第3圖為本發明第一實施例之半導體積體電路微電感 結構製程的截面圖; 第4圖為本發明第一實施例之半導體積體電路微電感 結構製程的俯視圖; 第5圖為本發明第一實施例之半導體積體電路微電感 結構製程的截面圖; 第6圖為本發明第一實施例之半導體積體電路微電感 結構製程的俯視圖; 第7圖為本發明第一實施例之半導體積體電路微電感 結構製程的截面圖; 第8圖為本發明第一實施例之半導體積體電路微電感 結構製程的俯視圖; 第9圖為本發明第二實施例之半導體積體電路微電感 並聯迴圈圖形的俯視圖;及 第10圖為本發明第一實施例之半導體積體電路微電感 結構製程的截面圖。 【圖式符號說明】 10a 单晶碎基板 10b 早晶碎基板 10c 早晶碎基板1223402 _Case No. 91108650_ 年月 日 __ Brief Description of Drawings Figure 1 is a cross-sectional view of the microinductor structure manufacturing process of a semiconductor integrated circuit according to the first embodiment of the present invention; Figure 2 is a semiconductor device according to the first embodiment of the present invention Cross-sectional view of a micro-inductor structure manufacturing process of integrated circuit; FIG. 3 is a cross-sectional view of a micro-inductance structure manufacturing process of a semiconductor integrated circuit according to a first embodiment of the present invention; FIG. Top view of the manufacturing process of the inductor structure; FIG. 5 is a sectional view of the manufacturing process of the micro-inductance structure of the semiconductor integrated circuit according to the first embodiment of the present invention; and FIG. 6 is a plan view of the manufacturing process of the micro-inductance structure of the semiconductor integrated circuit according to the first embodiment of the present invention. FIG. 7 is a cross-sectional view of a process of manufacturing a micro-inductance structure of a semiconductor integrated circuit according to a first embodiment of the present invention; FIG. 8 is a plan view of a process of manufacturing a micro-inductance structure of a semiconductor integrated circuit according to a first embodiment of the present invention; Top view of a parallel pattern of a micro-inductor for a semiconductor integrated circuit according to a second embodiment of the present invention; and FIG. 10 is a micro-inductor for a semiconductor integrated circuit according to the first embodiment of the present invention Cross-sectional view of the configuration process. [Symbol description] 10a single crystal chip substrate 10b premature chip chip substrate 10c premature chip chip substrate

第15頁 1223402 案號91108650 年月日 修正Page 15 1223402 Case No. 91108650 Revised

圖式簡單說明 11 第一保護層 12a 第二保護層 12b 第二保護層 12c 第二保護層 14 低應力層 14a 低應力層 14b 低應力層 16a 凹槽 16b 槽 20 半導體積體電路基板 22 互補金氧半導體積體電路 22a 導電層 22b 導電層 24 接著層 26 螺旋狀導電層 片 第16頁Brief description of the drawings 11 First protective layer 12a Second protective layer 12b Second protective layer 12c Second protective layer 14 Low stress layer 14a Low stress layer 14b Low stress layer 16a Groove 16b Slot 20 Semiconductor integrated circuit substrate 22 Complementary gold Oxygen semiconductor integrated circuit 22a conductive layer 22b conductive layer 24 next layer 26 spiral conductive layer sheet

Claims (1)

Ϊ223402 $號 91108650 申請專利範圍 一種微結構,其包含有: 一基板;及 一立體螺旋形導電層;該螺旋形導電層係形成於該 基板表面組成一漩渦狀微結構,開口端的長與寬係為 5〇/zm 至 900/zm,高為 5〇/zm 至 600//Π1。 如申請專利範圍第1項所述之微結構,其中該漩渦狀微 結構之漩渦中心端點係指向該基板方向。 如申請專利範圍第1項所述之微結構,其中該旋渦狀微 結構之漩渦中心端點係指向離開該基板的方向。 一種微電子結構,其包含有: 一微電子基板;及 一立體螺旋形導電層;該螺旋形導電層係形成於該 微電子基板表面組成一漩渦狀微結構,開口端的長與寬 係為 50 //m 至 900 μπι,高為50 //m 至 6 0 0 β m。 如申請專利範圍第4項所述之微電子結構,其中該螺旋 形導電層係應用於微電感結構。 如申請專利範圍第4項所述之微電子結構,其中該漩渦 狀微結構之旋渦中心端點係指向該基板方向。 7·如申請專利範圍第4項所述之微電子結構,其中該漩渦 狀微結構之漩渦中心端點係指向離開該基板的方向。 8 · —種微結構之製造方法,包含有: 提供一基板,並於基板上飯刻出所需形狀的一凹 槽;及 在該凹槽上形成一螺旋形導電層以組成一漩渦狀 六 4. 6. 月 曰 修正Ϊ223402 $ No. 91108650 The scope of the patent application is a microstructure, which includes: a substrate; and a three-dimensional spiral conductive layer; the spiral conductive layer is formed on the surface of the substrate to form a vortex microstructure, and the length and width of the open end are It is 50 / zm to 900 / zm, and the height is 50 / zm to 600 // Π1. The microstructure according to item 1 of the scope of patent application, wherein the vortex center end point of the vortex-shaped microstructure points toward the substrate. The microstructure according to item 1 of the scope of the patent application, wherein the vortex center end point of the vortex-like microstructure is directed away from the substrate. A microelectronic structure includes: a microelectronic substrate; and a three-dimensional spiral conductive layer; the spiral conductive layer is formed on the surface of the microelectronic substrate to form a vortex microstructure, and the length and width of the open end are 50 // m to 900 μπι, with a height of 50 // m to 6 0 0 β m. The microelectronic structure according to item 4 of the scope of patent application, wherein the spiral conductive layer is applied to a microinductor structure. The microelectronic structure according to item 4 of the scope of patent application, wherein the vortex center end point of the vortex-shaped microstructure is directed toward the substrate. 7. The microelectronic structure according to item 4 of the scope of the patent application, wherein the vortex center end point of the vortex-like microstructure is directed away from the substrate. 8 · A method for manufacturing a microstructure, comprising: providing a substrate, and engraving a groove in a desired shape on the substrate; and forming a spiral conductive layer on the groove to form a spiral six 4. 6. Month correction 第17頁 『223402 六 案號91108650 __务月日 修矣_ 申請專利範圍 微結構,該漩渦狀結構之開口端的長與寬係為5 0 // in至 9 〇 0 //m,高為 5 0 # m 至 6 〇 〇 # ffl。 9 ·如申請專利範圍第8項所述之微結構之製造方法,其中 該旋渦狀微結構之旋渦中心端點係指向基板方向。 1 〇·如申請專利範圍第8項所述之微結構之製造方法,其中 該漩渦狀微結構之漩渦中心端點係指向離開基板的方 向0 一種微電子結構之製造方法’包含有· 11 提供一微電子基板;及 在該微電子基板上形成一螺旋形導電層以組成一 漩渦狀微結構,該漩渦狀結構之開口端的長與寬係為 50#m 至 900"m,高為 5〇Am 至 600em。 1 2 ·如申請專利範圍第丨丨項所述之微電子結構之製造方 法,其中該螺旋形導電層係應用於微電感結構。 1 3 ·如申請專利範圍第丨丨項所述之微電子結構之製造方 法,其中該漩渦狀微結構之旋满中心端點係指向基板 方向。 1 4 ·如申請專利範圍第1 1項所述之微電子結構之製造方 法,其中該旋渦狀微結構之旋滿中心端點係指向離開 基板的方向。Page 17 "223402 Six case number 91108650 __ 务 月 日 修 矣 _ Patent application scope microstructure, the length and width of the open end of the vortex structure are 5 0 // in to 9 〇 0 // m, the height is 5 0 # m to 6 〇〇 # ffl. 9. The method for manufacturing a microstructure according to item 8 of the scope of the patent application, wherein the vortex center end point of the vortex-like microstructure is directed toward the substrate. 1 〇 · The manufacturing method of the microstructure as described in item 8 of the scope of the patent application, wherein the vortex center end point of the vortex-shaped microstructure points away from the substrate 0 A method for manufacturing a microelectronic structure 'includes A microelectronic substrate; and forming a spiral conductive layer on the microelectronic substrate to form a vortex microstructure, the length and width of the open end of the vortex structure are 50 # m to 900 " m, and the height is 50. Am to 600em. 1 2 · The method for manufacturing a microelectronic structure according to item 丨 丨 of the scope of patent application, wherein the spiral conductive layer is applied to a microinductor structure. 1 3 · The method for manufacturing a microelectronic structure as described in item 丨 丨 of the scope of patent application, wherein the spiral center end of the vortex-shaped microstructure is directed toward the substrate. 14 · The method of manufacturing a microelectronic structure as described in item 11 of the scope of the patent application, wherein the spiral center end of the vortex-like microstructure is directed away from the substrate. 第18頁Page 18
TW91108650A 2002-04-26 2002-04-26 Whirlpool-like microstructure having spiral conductor layer and manufacturing method thereof TWI223402B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91108650A TWI223402B (en) 2002-04-26 2002-04-26 Whirlpool-like microstructure having spiral conductor layer and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91108650A TWI223402B (en) 2002-04-26 2002-04-26 Whirlpool-like microstructure having spiral conductor layer and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TWI223402B true TWI223402B (en) 2004-11-01

Family

ID=34546047

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91108650A TWI223402B (en) 2002-04-26 2002-04-26 Whirlpool-like microstructure having spiral conductor layer and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI223402B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133568A (en) * 2017-09-22 2020-05-08 朗姆研究公司 System and method for redistribution layer fabrication to prevent etching of redistribution layers
TWI759053B (en) * 2020-12-31 2022-03-21 汎銓科技股份有限公司 A method of preparing a specimen for physical analysis by utilizing a conductive adhesive protective film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133568A (en) * 2017-09-22 2020-05-08 朗姆研究公司 System and method for redistribution layer fabrication to prevent etching of redistribution layers
CN111133568B (en) * 2017-09-22 2024-04-09 朗姆研究公司 System and method for preventing fabrication of a redistribution layer of an etch redistribution layer
TWI759053B (en) * 2020-12-31 2022-03-21 汎銓科技股份有限公司 A method of preparing a specimen for physical analysis by utilizing a conductive adhesive protective film

Similar Documents

Publication Publication Date Title
TW522561B (en) Via/line inductor on semiconductor material
TWI244206B (en) Photolithographically-patterned variable capacitor structures and method of making
TW561519B (en) Photolithographically-patterned out-of-plane coil structures and method of making
US8907447B2 (en) Power inductors in silicon
US7408434B2 (en) Inductor embedded in substrate, manufacturing method thereof, micro device package, and manufacturing method of cap for micro device package
US8847365B2 (en) Inductors and methods for integrated circuits
TW556235B (en) Integrated toroidal coil inductors for IC devices
CN105027236B (en) Vertical coupled transformer with gap structure
JP2002525846A (en) Integrated inductive element and method of manufacturing the same
JP2003533897A (en) Three-dimensional coil structure by photolithographic pattern formation and manufacturing method
CN109215979A (en) A kind of patch type inductance and preparation method thereof
US8722443B2 (en) Inductor structures for integrated circuit devices
KR100469248B1 (en) MicroInductor for Wireless Communication Module
TWI223402B (en) Whirlpool-like microstructure having spiral conductor layer and manufacturing method thereof
JP2009065042A (en) High-frequency passive element and method of manufacturing the same
CN208834878U (en) A kind of patch type inductance
KR102656751B1 (en) Method for manufacturing hollow MEMS structures
KR100394875B1 (en) Integrated three-dimensional solenoid inductor and fabrication method thereof
JP2009182188A (en) Chip coil and method for manufacturing same
JP2005079286A (en) Inductor and its manufacturing method
Dai et al. Fabrication of integrated chip with microinductors and micro-tunable capacitors by complementary metal–oxide–semiconductor postprocess
CN111200062B (en) Miniaturized inductor manufacturing method based on nanoparticle filling process and inductor
TW511288B (en) Manufacturing method of microinductor and the structure thereof
CN107946323B (en) Bias device and manufacturing method
JP2008172048A (en) Method for manufacturing chip component

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees