TWI222150B - An in-situ CD feedforward system and CD control method - Google Patents

An in-situ CD feedforward system and CD control method Download PDF

Info

Publication number
TWI222150B
TWI222150B TW92123696A TW92123696A TWI222150B TW I222150 B TWI222150 B TW I222150B TW 92123696 A TW92123696 A TW 92123696A TW 92123696 A TW92123696 A TW 92123696A TW I222150 B TWI222150 B TW I222150B
Authority
TW
Taiwan
Prior art keywords
layer
control method
size
scope
patent application
Prior art date
Application number
TW92123696A
Other languages
Chinese (zh)
Other versions
TW200509277A (en
Inventor
Chia-Jen Chen
Fang-Cheng Chen
Li-Shiun Chen
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW92123696A priority Critical patent/TWI222150B/en
Application granted granted Critical
Publication of TWI222150B publication Critical patent/TWI222150B/en
Publication of TW200509277A publication Critical patent/TW200509277A/en

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

An in-situ CD feedforward system and CD control method. A substrate with a pre-etch layer is provided, forming a mask layer thereon. The mask layer is defined to form a pattern and the first CD of the mask layer is measured, trimming the mask layer according to the first CD thereafter. The measuring and subsequent trimming step are repeated to ensure the mask layer reaching the target second CD.

Description

12221501222150

發明所屬之技術領域 本發明係有關於一種半導體尺寸的控制方法及系統 特別有關一種關鍵尺寸的控制方法和系統。 先前技術 目前積體電路製程主要是在晶圓上對導體、半導體、 及絕緣材料施以薄膜沈積、微影步驟、及蝕刻、摻雜等 術’以形成高集積度之電子元件,如電晶體或電容等。$ 而隨著進入極大型積體電路製程(ULSI)後,由於關鍵尺^ (critical dimension)之縮減(shrink)及多層 寸 (multi-layer)堆疊製程之繁複,關鍵尺寸的精準度要长 大為提高’因此關鍵尺寸控制方法的改進也就顯得&更加 要。 ϋ重 然而’就晶圓製造的品管控制而言,若晶粒間關鍵尺 寸控制不佳,則會造成同一晶圓上的各線寬粗細不同,因 而^成所生產的半導體晶片良率參差不齊,例如晶片速率 快慢不一’如此則無法有效控制品質的穩定性。因此,晶 粒間=鍵尺寸控制係決定晶圓整體品質是否一致的要素。 習知的關鍵尺寸控制方法如第丨A圖所示··首先,提供 一基板1 0 〇,其中有一待蝕刻層1 0 2在基板上,其後形成一 罩幕>^104於待姓刻層上並形成一光阻層1〇6於罩幕層1〇4 。定義光阻層1 〇 6以形成一圖案且以一光學量測法量測 光阻層的第一關鍵尺寸。接下來,如第1B圖所示,以其光 阻層1 0 6為第一罩幕姓刻罩幕層1 〇4成為圖形化的罩幕層TECHNICAL FIELD The present invention relates to a method and system for controlling semiconductor size, and more particularly, to a method and system for controlling critical size. In the prior art, the current integrated circuit manufacturing process mainly uses thin film deposition, lithography steps, and etching and doping on the wafer to form conductors, semiconductors, and insulating materials to form high-integration electronic components, such as transistors. Or capacitors. $ After entering the ultra-large integrated circuit manufacturing process (ULSI), due to the shrinkage of the critical dimension ^ and the complexity of the multi-layer stacking process, the accuracy of the critical dimension will grow. In order to improve, so the improvement of the key size control method becomes even more important. However, as far as the quality control of wafer manufacturing is concerned, if the critical size control between grains is not good, it will cause the thickness of each line on the same wafer to be different, so the yield of semiconductor wafers produced will be uneven. For example, if the speed of the wafer is different, the stability of the quality cannot be effectively controlled. Therefore, the inter-grain = bond size control factor determines whether the overall wafer quality is consistent. The conventional key dimension control method is shown in FIG. 丨 A. First, a substrate 100 is provided, in which a to-be-etched layer 102 is formed on the substrate, and then a mask is formed> ^ 104 to be surnamed A photoresist layer 106 is formed on the engraved layer and the mask layer 104 is formed. The photoresist layer 106 is defined to form a pattern and a first critical dimension of the photoresist layer is measured by an optical measurement method. Next, as shown in FIG. 1B, with the photoresist layer 106 as the first mask, the mask layer 10 is engraved into a patterned mask layer.

^22150 五、發明說明(2) --------- ,之後並根據第一關鍵尺寸修飾罩幕層104a成為 b。如第1C圖所示,再以修飾後的罩幕層1041}為第二 寸虫刻待蝕刻層1 〇 2以使待蝕刻層丨〇 2趨近目標之關鍵尺 但是,一般而言晶圓製程可能包括複數單一製程,例 ^積塗層、曝光、顯影、烘烤、蝕刻等,即所謂複數 \ Stage )。如第2圖所示即為習知晶圓製程之各單一製 私之一例。第2圖之範例中,晶圓2〇 〇首先送入薄膜沈 進行薄膜沈積(Film Dep〇siti〇n),然後送入底層抗 反射層(Bottom Anti-Resist Coating,BARC)塗層室3〇 進行BARC塗層,其次在光阻塗層室4 〇中進行光卩且塗層 (Resist Coating ),在軟性烘烤熱平板5〇進行軟性烘烤 (Soft Baking),然後送入步進曝光機6〇進行曝光製程 (Exposure),在硬性烘烤熱平板7〇進行硬性烘烤(“以 Baking),並經由顯影室顯影(Devei〇ping),最後經 由姓刻室90進行光阻蝕刻(Resist 而完成晶圓 製程,得到晶圓2 5 0。 上述的這些單一製程均會影響晶圓之晶粒間關鍵尺 寸。舉例而言,光阻塗層的均勻度會決定晶粒間關鍵尺寸 的差異。烘烤的溫度則會影響線寬的粗細,通常1。C約造 成6〜1 Onm的線寬改變。而且,如第2圖所示,一般的晶圓 製程設備中’各單一製程所使用之製造模組均不只一個, 例如薄膜沈積室20包括三個薄膜沈積室dpi、Dp〗、j)p3, BARC塗層室30包括BARC1與BARC2,光阻塗層室40包括兩個^ 22150 V. Description of the invention (2) ---------, and then modify the mask layer 104a to b according to the first key dimension. As shown in FIG. 1C, the modified mask layer 1041} is used as the second inch to etch the to-be-etched layer 102 so that the to-be-etched layer approaches the target. However, in general, wafers The manufacturing process may include a plurality of single processes, for example, coating, exposure, development, baking, etching, etc. (the so-called plural \ Stage). As shown in Figure 2, this is an example of a single manufacturer of conventional wafer processes. In the example in FIG. 2, the wafer 200 is firstly sent to a thin film sink for film deposition (Film Dep siti ON), and then is sent to a bottom anti-resist coating (BARC) coating chamber 3. BARC coating is performed, followed by photoresist coating in a photoresist coating chamber 40, and a soft baking on a soft baking hot plate 50, followed by feeding into a stepper. 60 exposure process (Exposure), hard baking hot plate 70 (baking), and development through the development chamber (Deveioping), and finally through the photoresist 90 etching resist (Resist The wafer process is completed to obtain the wafer 250. The above-mentioned single processes will affect the critical size of the wafer between the grains. For example, the uniformity of the photoresist coating will determine the difference in critical size of the grains. The baking temperature will affect the thickness of the line width, usually 1. C will change the line width of 6 to 1 Onm. Moreover, as shown in Figure 2, in general wafer processing equipment, 'each single process is used There are more than one manufacturing module, such as thin film deposition chamber 2 0 includes three thin film deposition chambers dpi, Dp, j) p3, BARC coating chamber 30 includes BARC1 and BARC2, and photoresist coating chamber 40 includes two

0503-9976TWf(Nl) * TSMC2003-0031;wayne.ptd 第6頁 1222150 五、發明說明(3) 光阻塗層室RC1與RC2,軟性烘烤熱平板5〇包括SHpi、 SHP2、SHP3,曝光使用三台步進曝光機STpi、STp2、 STP3,硬性烘烤熱平板70包括ΗΗρι、HHp2、HHp3,顯影 用$個顯影室DVPi與DVP2,而光阻蝕刻則具有兩個光阻餘 刻室ETCH1與ETCH2。每個單一製程之模組均可能在晶 程中加以使用,例如第2圖所示之各製程模組可能產生I 1 296種組合,相當於1 29 6種製程模組群組,各製程模組 此之間不同的搭配也會造成對關鍵尺寸的累加影響不同。 由於每個單一製程之不同模組之間具有差異,因此 於關鍵尺寸的控制會分別造成各種不同的影響。缺而習知 的關鍵尺寸控制方法只能針對每一批晶圓量測一補償植, 並依據補償植在蝕刻基台設定不同的程式做約略性的調 整,此種方法只能做到一批和一批之間的關鍵尺寸的控 並不能針對每一片晶圓做調整,且習知的方法所控制二 鍵尺寸的精確度也不足。 美國專利第56 74409號案有揭示一種產生奈米 方法,其藉著形成一比目標線寬較大的光阻層,並''藉著氧 氣灰化(ashing)以使非揮發性的物質聚集在光阻^的中 心區域,並藉此減小線寬,以使目標尺寸更加精確。美國 專利第6 2 3 5 4 4 0號案有揭示一種控制閘極關鍵尺寸的方法 (Method to control gate CD),其係為一種減少晶圓 和晶圓間關鍵尺寸變動的方法。其首先增加線寬一固定數 值,並確定所有線寬比最小的需求線寬要大,並使用一經 修改資料產生的標線定義光阻及產生關鍵尺寸值,如果此0503-9976TWf (Nl) * TSMC2003-0031; wayne.ptd Page 6 1222150 V. Description of the invention (3) Photoresist coating chamber RC1 and RC2, soft baking hot plate 50, including SHpi, SHP2, SHP3, for exposure use Three step exposure machines STpi, STp2, STP3, hard baking hot plate 70 including ΗΗρι, HHp2, HHp3, development using DVPi and DVP2 development chambers, and photoresist etching has two photoresistance chambers ETCH1 and ETCH2. Each module of a single process may be used in the crystal process. For example, each process module shown in Figure 2 may generate I 1 296 combinations, which is equivalent to 1 29 6 process module groups. Each process module Different combinations between groups can also cause different cumulative effects on key dimensions. Due to the differences between the different modules of each single process, the control of critical dimensions will have different effects respectively. The conventional key size control method can only measure a compensation plant for each batch of wafers, and make different adjustments based on different programs set on the etching abutment. This method can only achieve one batch. The control of the critical size between a batch and a batch cannot be adjusted for each wafer, and the accuracy of the two-bond size controlled by the conventional method is insufficient. U.S. Patent No. 56 74409 discloses a method for generating nanometers by forming a photoresist layer having a larger width than the target line and `` ashing by oxygen to gather non-volatile substances In the central area of the photoresistor, and thereby reduce the line width to make the target size more accurate. U.S. Patent No. 6 2 354 4 0 discloses a method to control the critical dimension of the gate (Method to control gate CD), which is a method to reduce the critical dimension variation between the wafer and the wafer. It first increases the line width by a fixed value, and determines that all required line widths with the smallest line width are larger, and uses the ruled lines generated by the modified data to define the photoresist and generate critical dimension values.

niim 0503-9976TWf(Nl) ; TSMC2003-0031;wayne.ptd 第7頁 1222150 五、發明說明(4) 關鍵尺寸超過可允許的關鍵尺寸,即決定其和目標關鍵尺 1的變動值,並依此變動值提供給一程式以計算決定灰化 私序的步驟,如此在灰化之後可以得到需求的正確的關鍵 尺寸值。 發明内容 有鑑於此,為了解決上述問題,本發明之目的在於提 =一種關鍵尺寸的内前饋式控制方法及系統,其可以對每 :片曰曰曰圓做到精確的關鍵尺寸的控制,使每一片晶圓的關 :玄尺寸都達到目標值’卩有效控制品質的穩定性及提高良 本發明之另一目的在提供一種關鍵 制方法及系統,其可以即時監控蝕刻製 修正,以達到精確的目標關鍵尺寸。 為達成上述目的,本發明 式控制方法,包括下列步驟: 一待蝕刻層在基板上。形成軍 幕層以形成罩幕層圖案。其後 寸並根據第一關鍵尺寸修飾罩 及後績的修飾该罩幕層的步驟 關鍵尺寸。 為達成上述目的,本發明 的控制系統,其包括下列元件 板,以及一光學關鍵尺寸量測 尺寸的内前饋式控 程後的尺寸並做出 提供一種關鍵尺寸的内前饋 首先,提供一基板,其中有 幕層於待蝕刻層上並定義罩 ,量測罩幕層的第一關鍵尺 幕層。最後,重複量測步驟 以使罩幕層達到目標的第二 提供一種内前饋式關鍵尺寸 ·· 一钱刻機台用以蝕刻一基 裝置設於蝕刻機台内,其可niim 0503-9976TWf (Nl); TSMC2003-0031; wayne.ptd Page 7 1222150 V. Description of the invention (4) If the critical dimension exceeds the allowable critical dimension, that is to determine the change value between the critical dimension and the target critical scale 1, and follow this The change value is provided to a program to calculate the steps to determine the private order of ashing, so that after the ashing, the correct critical dimension value can be obtained. SUMMARY OF THE INVENTION In view of this, in order to solve the above-mentioned problems, the object of the present invention is to provide an internal feedforward control method and system for a critical size, which can accurately control the critical size of each circle. Make the size of each wafer reach the target value, effectively control the stability of the quality and improve the quality. Another object of the present invention is to provide a key manufacturing method and system that can monitor the etching correction in real time to achieve Precise target key dimensions. To achieve the above object, the method of the present invention includes the following steps: A layer to be etched is on the substrate. The military curtain layer is formed to form a mask curtain layer pattern. The subsequent steps are to modify the cover according to the first critical dimension and the steps to modify the cover layer of the subsequent critical dimension. In order to achieve the above object, the control system of the present invention includes the following component boards, and an optical feed-forward measurement of an internal feed-forward type after measuring the size of the optical key size and providing an internal feed-forward of a critical size. First, provide a The substrate has a curtain layer on the layer to be etched and defines a mask, and measures the first key scale curtain layer of the mask curtain layer. Finally, repeat the measurement steps to achieve the second goal of the cover layer. Provide an inner feed-forward key size. A coin carving machine is used to etch a substrate. The device is set in the etching machine.

1222150 五、發明說明(5) 以量测基板之關鍵尺寸並回矜 的蝕刻製程。 、° d機σ以控制蝕刻機台 明顯易懂讓ί :ί上f : f他目的、特徵、和優點能更 詳細說明如ΐ特舉一争乂佳實施例,並配合所附圖示,作 實施方式 實施例 内前饋式關鍵尺寸的控制系統 本發明提供—㈣前饋式關鍵尺寸的 =先,其其包包:一= 連接到舳U/至〇4,一製程氣體通入管路3 06 =4外1辟 通入製程氣體,一磁場線圈3〇8於姓刻 =4外側壁以供電襞的維持,—夾盤31〇位 i 3〇4以承載晶片3 02 ’ 一抽離管路312連接到敍刻室 ,、田j產。口抽離,一RF功率供應器314連接到夾盤3ι〇 $ 一光f關鍵尺寸量測裝置31 6連接蝕刻室3〇4,此光學關 尺寸i測裝置3 1 6在本實施例中係為一微距量測儀,包 括一光束發射裝置3 1 8,及一光束接收裝置3 2 〇,其係應用 光束發射裝置318發射入射光束3 22至基板3 〇2表面,並根 據基板302表面圖案輪廓326的不同,所產生的反射光束 3 24和入射光束3 22的波長差異,並依此計算基板3〇2表面 圖案輪廓3 2 6的關鍵尺寸,因其光學關鍵尺寸量測裝置3 i 6 是結合I虫刻機台30 0,其所量得基板302表面圖案輪廓3 0503-9976TWf(Nl) ; TSMC2003-0031; wayne.ptd 第9頁 12221501222150 V. Description of the invention (5) An etching process for measuring the critical dimensions of the substrate and returning to the etching. , ° d machine σ to control the etching machine is obviously easy to understand, letting: 上 上 f: f his purpose, characteristics, and advantages can be explained in more detail, such as the best embodiment, and with the accompanying drawings, This embodiment provides a feedforward key size control system according to the present invention. The present invention provides-a feedforward key size = first, its package: one = connected to 舳 U / to 0, a process gas inlet pipeline 3 06 = 4 outside 1 to enter the process gas, a magnetic field coil 3〇8 is carved on the outer side of the = 4 to maintain the power supply,-the chuck 3130 position i 3 04 to carry the wafer 3 02 'a withdrawal The pipeline 312 is connected to the narrative chamber. An RF power supply 314 is connected to the chuck 3, and a key f measurement device 31 6 is connected to the etching chamber 3 04. This optical measurement device 3 1 6 is connected in this embodiment. It is a macro measuring instrument, which includes a beam emitting device 3 1 8 and a beam receiving device 3 2 0. The beam emitting device 318 is used to emit the incident beam 3 22 to the surface of the substrate 3 02, and according to the surface of the substrate 302 The difference between the pattern profile 326 and the wavelength difference between the reflected beam 3 24 and the incident beam 3 22 is calculated. Based on this, the key dimensions of the pattern profile 3 2 6 on the surface of the substrate 30 are calculated, because of the optical key size measuring device 3 i 6 is combined with I insect carving machine 30 0, and the surface pattern contour 3 of the substrate 302 measured 3 0503-9976TWf (Nl); TSMC2003-0031; wayne.ptd page 9 1222150

=鍵尺寸’可直接回饋給敍刻機台300,並根據關鍵 、’子蝕刻機台3 0 0内蝕刻製程做即時的控制。 建圖H本發明關 式控制方法之第一實施例之示意w。 丁的内别饋= Key size ’can be directly fed back to the engraving machine 300, and real-time control is performed according to the key and the etching process in the sub-etching machine 300. Schematic diagram H of the first embodiment of the closed control method of the present invention. Ding's Inner Feed

如第4A圖所示,首先提供一基板4〇〇,且其 蝕刻層402於基板上400。其待蝕刻層4〇2可以是半 I 層或是其組合。其較佳之半導體層為多 曰曰矽層或非晶矽層,較佳之金屬層為鎢金屬、鈦金 、鎳金屬、鈦金屬、鋁金屬或銅金屬,較佳之介電層 為鼠化矽、二氧化矽或氮氧化矽。其後,形成一罩幕層曰 4〇4於待蝕刻層402上以提供為後續的蝕刻罩幕,其罩^層 404可以是由一種介電層形成的硬式罩幕(“以),曰 其較佳為氮化矽或是氮氧化矽。接著,以一旋轉塗佈法形 成光阻層406於罩幕層404上並以曝光顯影的方式定義光阻 層406以形成圖案。As shown in FIG. 4A, a substrate 400 is first provided, and an etching layer 402 of the substrate 400 is provided on the substrate 400. The layer to be etched 402 may be a semi-I layer or a combination thereof. The preferred semiconductor layer is a silicon layer or an amorphous silicon layer. The preferred metal layer is tungsten metal, titanium gold, nickel metal, titanium metal, aluminum metal, or copper metal. The preferred dielectric layer is siliconized silicon. Silicon dioxide or silicon oxynitride. Thereafter, a mask layer is formed on the to-be-etched layer 402 to provide a subsequent etching mask. The mask layer 404 may be a hard mask formed by a dielectric layer. It is preferably silicon nitride or silicon oxynitride. Next, a photoresist layer 406 is formed on the mask layer 404 by a spin coating method, and the photoresist layer 406 is defined by exposure and development to form a pattern.

以製作目標線寬85nm的閘極的第一晶圓為例,因為曝 光機的限制其定義的光阻層4 〇 6線寬需較目標線寬為大, 例如為1 0 5nm。如第4B圖所示,以光阻層4 〇 6為第一罩幕經 由一餘刻系統蝕刻罩幕層4 0 4成為圖形化的罩幕層4 〇 4 a。 後續,以一内前饋式關鍵尺寸量測裝置(In — Si tu CD feed forward measurement)量測罩幕層404的第一關鍵 尺寸。由於其钱刻傾向(Etch bias)的影響其第一關鍵 尺寸的線寬要較光阻層4 0 6線寬為小,其例如是93nm。如 第4C圖所示,由於其内前饋式關鍵尺寸量測裝置係設置於Take the first wafer with a gate line with a target line width of 85 nm as an example. Because of the limitation of the exposure device, the line width of the photoresist layer 406 defined by the exposure line needs to be larger than the target line width, for example, 105 nm. As shown in FIG. 4B, the photoresist layer 4 06 is used as the first mask, and the mask layer 4 04 is etched into the patterned mask layer 4 04 a after a short period of time. Subsequently, the first critical dimension of the cover curtain layer 404 is measured with an In-Si tu CD feed forward measurement device. Due to the influence of its Etch bias, the line width of its first critical dimension is smaller than the line width of the photoresist layer 406, which is, for example, 93 nm. As shown in Figure 4C, since the feedforward key size measurement device is set at

1222150 五、發明說明(7) #刻系統内,其可以在不破真空的環境下,直接根據第_ 關鍵尺寸修飾罩幕層4 〇 4 a,在本實施例中使用氮化矽為罩 幕層’其修飾罩幕層的方法可以是以CHF 3為蝕刻氣體的等 向性蝕刻法。接下來,如第4D圖所示,重複量測及後續的 修飾該罩幕層的步驟以使罩幕層4 〇 4 b達到較目標線寬稍大 之第二關鍵尺寸40 4C,其例如是87nm。最後,如第4E圖所 示,以罩幕層4 〇 4為第二罩幕蝕刻待蝕刻層4 〇 2以達成待蝕 刻層40 2為目標線寬85nm。需注意的是因為蝕刻傾向的影 響其第二關鍵尺寸需較最後目標線寬為大一個蝕刻傾向 (Etch Bias )的值。 以製作目標線寬85nm的閘極的第二晶圓為另一例,其 係因為曝光能量的變動,經定義光阻層,並以光阻層為第 一罩幕蝕刻罩幕層,量測得到罩幕層的第一關鍵尺寸較第 一晶圓的第一關鍵尺寸稍大,其可以是98nm,可依實際的 狀況需要,重複的量測及修飾步驟以達到目標線寬。例如 其可經修飾罩幕層的及量測得到第二關鍵尺寸為93nm,再 重複修飾及量測罩幕層得到第三關鍵尺寸為87·,最後以 罩幕層為第二罩幕蝕刻待蝕刻層以達成待蝕刻層&目標線 18 5 n m ’以使其線寬和第一晶圓相同。 易言之,此方法可以依實際上每一片晶片的實際裝 況,例如:在光阻塗層室中進行光阻塗層的厚度不同,在 ㈣烘烤熱平板進行軟μ烤的溫度不同,步進曝光機中 曝先的能量” ’在硬性烘烤熱平板進行硬性烘烤的溫度 不同或顯影室中顯影的時間不同,所造成曝光顯影後其蝕1222150 V. Description of the invention (7) #In the engraving system, it can directly modify the masking layer 4 〇 4 a according to the _ key dimension without breaking the vacuum. In this embodiment, silicon nitride is used as the masking layer. 'The method of modifying the mask layer may be an isotropic etching method using CHF 3 as an etching gas. Next, as shown in FIG. 4D, the measurement and subsequent steps of modifying the mask layer are repeated so that the mask layer 4 〇 4 b reaches a second key dimension 40 4C which is slightly larger than the target line width, which is, for example, 87nm. Finally, as shown in FIG. 4E, the to-be-etched layer 4 2 is etched with the mask layer 4 04 as the second mask to achieve the to-be-etched layer 40 2 with a target line width of 85 nm. It should be noted that because the influence of the etching tendency on the second critical dimension must be greater than the final target line width by an etching tendency (Etch Bias) value. Take a second wafer with a gate line with a target line width of 85nm as another example. The photoresist layer is defined because of changes in exposure energy, and the photoresist layer is used as the first mask to etch the mask layer. The first critical dimension of the mask layer is slightly larger than the first critical dimension of the first wafer, which can be 98nm. Repeat the measurement and modification steps to achieve the target line width according to the actual situation. For example, it can be modified and measured to obtain a second critical dimension of 93nm, and then repeatedly modified and measured to obtain a third critical dimension of 87 ·, and finally use the mask as the second mask for etching. The layer is etched to reach the layer to be etched & target line 18 5 nm 'so that its line width is the same as the first wafer. In other words, this method can be based on the actual loading conditions of each wafer, for example: the thickness of the photoresist coating in the photoresist coating chamber is different, and the temperature of soft μ baking in the hot-baking hot plate is different. The energy of the first exposure in the stepping exposure machine "'The temperature of the hard baking on the hard baking hot plate is different or the developing time in the developing chamber is different.

0503-9976TWf(Nl) ; TSMC2003-0031;wayne.ptd 第11頁 1222150 五、發明說明(8) 刻形成罩幕層的線寬不一樣,經即時量測及修飾以達成每 一片晶圓最後的目標線寬相同。 特徵與 明之特 統,其 在蝕刻 到精確 關鍵尺 ,以有 本發明 明’任 ,當可 後附之 徵在於提供一種關鍵尺寸 係將一前餹式吾測裝置設 蝕刻的尺 饋式量 時監控 鍵尺寸 ,使每 質的穩 實施例 技藝者 更動與 範圍所 本發明之 本發 方法及系 内,可以 正,以達 到精確的 到目標值 雖然 限定本發 和範圍内 範圍當視 優I 製程後即 的目標關 寸的控制 效控制品 已以較佳 何熟習此 作些許之 申請專利 定性及提 揭露如上 ,在不脫 潤飾,因 界定者為 的内前饋式控制 置於蝕刻系統 寸,並做出修 。並可以對每一片晶圓做 一片晶圓的關鍵尺寸都達 高良率。 ’然其並非用以 離本發明之精神 此本發明之保護 準。0503-9976TWf (Nl); TSMC2003-0031; wayne.ptd Page 11 1222150 V. Description of the invention (8) The line width of the mask layer is not the same, and it is measured and modified in real time to achieve the final value of each wafer. The target line width is the same. Features and the special system, which are etched to the precise key scale, so as to have the present invention, when the appended feature is to provide a key dimension is a front-end type measurement device with an etched ruler-type measurement The key size is monitored to make the artist of each embodiment stable and change the scope of the invention. The method and system of the invention can be positive to reach the target value. Although the scope and scope of the invention are limited, it is considered as the best process. The control effect control target of the target position has been better acquainted with the qualitative application and disclosure of the patent application as mentioned above. Without retouching, the inner feed-forward control is defined as the position of the etching system. And make repairs. And the key dimension of each wafer can be high yield. However, it is not intended to depart from the spirit of the invention, the protection criterion of the invention.

0503-9976TWf(Nl) ; TSMC2003-0031;wayne.ptd 第12頁 1222150 圖式簡單說明 第1 A至1 C圖顯示習知關鍵尺寸控制法的示意圖。 第2圖顯示習知晶圓製程之各單一製程使用之模組的 示意圖。 第3圖顯示本發明内前饋式關鍵尺寸的控制系統示意 圖。 第4A至4E圖顯示本發明實施例之剖面示意圖。 3 0 8〜磁場線圈; 3 1 2〜抽離管路; 3 1 6〜光學關鍵尺寸量測裝置 4 0 2〜待蝕刻層; 4 0 6〜光阻層。 符號說明 習知技術 1 0 0〜基板; 104〜罩幕層; 2 0 0〜晶圓; 3 0〜塗層室; 60〜步進曝光機; 8 0〜顯影室; 25 0〜晶圓。 本發明技術 3 0 0〜蝕刻機台; 3 0 4〜蝕刻室; 1 0 2〜待蝕刻層; 1 0 6〜光阻層; 2 0〜薄膜沈積室; 4 0〜光阻塗層室; 7 0〜硬性烘烤熱平板 9 0〜蝕刻室; 3 0 2〜基板; 306〜程氣體通入管路 3 1 0〜炎盤; 314〜RF功率供應器; 4 0 0〜基板; 4 04〜罩幕層;0503-9976TWf (Nl); TSMC2003-0031; wayne.ptd Page 12 1222150 Brief description of the drawings Figures 1 A to 1 C show the schematic diagrams of the conventional key size control method. Figure 2 shows a schematic diagram of the modules used in each single process of the conventional wafer process. Fig. 3 shows a schematic diagram of a control system of the feedforward key size of the present invention. 4A to 4E are schematic cross-sectional views of an embodiment of the present invention. 3 0 8 ~ magnetic field coil; 3 1 2 ~ extraction pipeline; 3 1 6 ~ optical key size measurement device 4 0 2 ~ to be etched layer; 4 0 6 ~ photoresist layer. Explanation of symbols Conventional technology 100 to substrate; 104 to cover layer; 2000 to wafer; 30 to coating chamber; 60 to step exposure machine; 80 to developing chamber; 250 to wafer. The technology of the present invention is 300 ~ etching machine; 304 ~ etching chamber; 102 ~ layer to be etched; 106 ~ photoresist layer; 20 ~ thin film deposition chamber; 40 ~ photoresist coating chamber; 7 0 ~ Hard baking hot plate 9 0 ~ Etching chamber; 30 2 ~ Substrate; 306 ~ Cycle gas inlet pipe 3 1 ~ Pan plate; 314 ~ RF power supply; 4 0 ~ Substrate; 4 04 ~ Cover layer

0503-9976TWf(Nl) ; TSMC2003-0031;wayne.ptd 第13頁0503-9976TWf (Nl); TSMC2003-0031; wayne.ptd p. 13

Claims (1)

1222150 六、申請專利範圍 1. 一種關鍵尺寸的内前饋式控制方法,包括下列步 驟: 提供一基板,其中有一待蝕刻層在該基板上; 形成一罩幕層於該待餘刻層上; 定義該罩幕層以形成一罩幕層圖案; 量測該罩幕層的一第一關鍵尺寸; 根據該第一關鍵尺寸修飾該罩幕層;以及 重複該量測步驟及後續的修飾該罩幕層的步驟以使該 罩幕層趨近一目標尺寸之第二關鍵尺寸。 2. 如申請專利範圍第1項所述之關鍵尺寸的内前饋式 控制方法,其中該基板是一半導體基板。 3. 如申請專利範圍第1項所述之關鍵尺寸的内前饋式 控制方法,其中該待钱刻層是一半導體層、一金屬層、一 介電層或是其組合。 4. 如申請專利範圍第3項所述之關鍵尺寸的内前饋式 控制方法,其中該半導體層是一多晶矽層或是一非晶矽 層。 5. 如申請專利範圍第3項所述之關鍵尺寸的内前饋式 控制方法,其中該金屬層是鋁、銅、鎢、鎳、鈷或鈦所組 成。 6. 如申請專利範圍第3項所述之關鍵尺寸的内前饋式 控制方法,其中該介電層是二氧化矽、氮化矽或氮氧化矽 所組成。 7. 如申請專利範圍第1項所述之關鍵尺寸的内前饋式1222150 Scope of patent application 1. A critical size internal feedforward control method, including the following steps: providing a substrate, wherein a layer to be etched is formed on the substrate; forming a mask layer on the layer to be etched; Define the mask layer to form a mask pattern; measure a first critical dimension of the mask layer; modify the mask layer according to the first critical dimension; and repeat the measurement steps and subsequent modification of the mask The step of the curtain layer makes the cover curtain layer approach a second critical dimension of a target size. 2. The critical-size inner feedforward control method as described in item 1 of the patent application scope, wherein the substrate is a semiconductor substrate. 3. The key size inner feedforward control method as described in item 1 of the scope of the patent application, wherein the engraved layer is a semiconductor layer, a metal layer, a dielectric layer, or a combination thereof. 4. The critical-size inner feedforward control method as described in item 3 of the patent application scope, wherein the semiconductor layer is a polycrystalline silicon layer or an amorphous silicon layer. 5. The critical size inner feed-forward control method as described in item 3 of the patent application scope, wherein the metal layer is composed of aluminum, copper, tungsten, nickel, cobalt, or titanium. 6. The critical size inner feedforward control method as described in item 3 of the patent application scope, wherein the dielectric layer is composed of silicon dioxide, silicon nitride or silicon oxynitride. 7. Key size inner feed-forward as described in the first patent application 0503-9976TWf(Nl) ; TSMC2003-0031;wayne.ptd 第14頁 1222150 六、申請專利範圍 化妙、氮切或是氮氧 控制方法,其中該罩幕層是 化石夕所組成。 & 8 ·如申請專利範圍第j 控制方法’其中該量測是以斤述之關鍵尺寸的内前饋 9 ·如申請專利範圍第8 ^ 光學量測法量測。 二 控制方法,其中該光學量測1所曰述之關鍵尺寸的内前饋式 測。 / π在一蝕刻系統内進行量 I 0 ·如申請專利範圍第丨項 、 控制方法,其中修飾該罩幕居、斤述之關鍵尺寸的内前饋式 II ·如申請專利範圍第丨^ 7方法是一等向性蝕刻法。 控制方法,其中該第二關鍵尺7述,關鍵尺寸的内前饋式 1 2 ·如申請專利範圍第i 、較第一關鍵尺寸小。 控制方法,其方法尚包括後浐=述之關鍵尺寸的内前饋式 該待蝕刻達到目標之關鍵尺=。、蝕刻該待蝕刻層步驟以使 1 3 ·如申請專利範圍第1 控制方法,其中該第二關鍵尺迷J關鍵尺寸的内前饋式 傾向Utch Bias)的值尺寸較該目標尺寸大一個蚀刻 驟广.一種關鍵尺寸的内前饋式控制方法,包括下列步 '低 ^ τ ^ 侍蝕刻層在該基板上 形成一罩幕層於該待钱刻層上,· 形成一光阻層於該待蝕刻層上; 定義該光阻層以形成一圖案; 以該光阻層為一第一罩幕蝕刻該罩幕層;0503-9976TWf (Nl); TSMC2003-0031; wayne.ptd Page 14 1222150 VI. Scope of patent application Chemical control, nitrogen cutting or nitrogen and oxygen control method, in which the cover layer is composed of fossils. & 8 · As in the scope of application for the jth control method ', where the measurement is an inner feedforward of the key dimensions described 9 · As in the scope of the application for patents 8 ^ Optical measurement. Two control methods, in which the optical measurement of the key size described in the first feed-forward type measurement. / π The amount I 0 is performed in an etching system. For example, the scope of the patent application, control method, in which the feed-forward type II that modifies the key dimensions of the housing, as described in the scope of patent application, ^^ 7 The method is an isotropic etching method. The control method, wherein the second key scale 7 is described, the inner feedforward type of the key size 1 2 is smaller than the first key size if the scope of the patent application is i. The control method also includes an internal feed-forward type of the critical dimension described later. The critical dimension of the target to be etched =. Step of etching the layer to be etched so that 1 3 · As in the first control method of the scope of patent application, the value size of the second key ruler J key size (forward feed-forward tendency Utch Bias) is one etch larger than the target size Su Guang. A key size internal feed-forward control method, including the following steps: 'low ^ τ ^ etched layer on the substrate to form a mask layer on the etched layer, forming a photoresist layer on the On the layer to be etched; defining the photoresist layer to form a pattern; using the photoresist layer as a first mask to etch the mask layer; Q5Q3-9976TWf(N1) . TSMC2QQ3-0031;wayne.ptd 第 15 頁 ^22150 六、申請專利範圍 里測該罩幕層的一第一關鍵尺寸; 根據該第一關鍵尺寸修飾該罩幕層; 重複該量測步驟及後續的修飾該罩幕層的步驟以 卓幕層趨近目標尺寸之第二關鍵尺寸;以及 ^ 以5亥罩幕層為^一第二罩幕餘刻該待餘刻層。 、1 5 ·如申請專利範圍第1 4項所述之關鍵尺寸的内前饋 式控制方法,其中該基板是一半導體基板。 、1 6 ·如申請專利範圍第1 4項所述之關鍵尺寸的内前饋 式控制方法,其中該待蝕刻層是一半導體層、一金屬層、 —介電層或是其組合。 、1 7 ·如申請專利範圍第1 β項所述之關鍵尺寸的内前饋 式控制方法,其中該半導體層是一多晶石夕層或是一非晶石夕 層。 1 8 ·如申請專利範圍第丨6項所述之關鍵尺寸的内前饋 式控制方法,其中該金屬層是紹、銅、鶴、鎳、始或鈦所 組成。 、1 9 ·如申請專利範圍第1 6項戶斤述之關鍵尺寸的内岫饋 式控制方法,其中該介電層是二氧化矽、氮化矽或是氮氧 化矽所組成 2〇 ·如申請專利範圍第1 4項所述之關鍵尺寸的内前饋 式控制方法,其中該罩幕層是由 > 氧化矽、氮化矽或是氮 氧化秒所組成。 21 ·如中請專利範圍第i 4項戶斤述之關鍵尺寸的内前饋 式控制方法,纟中該内前饋式關鍵尺寸量測法是一光學量 0503-9976TWf(Nl) ; TSMC2003-0031;wayne.ptd 第16貢 1222150 六、申請專利範圍 量測儀。 0503-9976TWf(Nl) ; TSMC2003-0031;wayne.ptd 第18頁Q5Q3-9976TWf (N1). TSMC2QQ3-0031; wayne.ptd Page 15 ^ 22150 6. Measure a first critical dimension of the mask layer within the scope of the patent application; modify the mask layer according to the first key dimension; repeat The measurement step and the subsequent step of modifying the mask layer are to reach the second critical dimension of the target size with the curtain layer; and ^ using the 5 mask layer as a second mask layer and the remaining layer to be etched. . 15. The inner-feedforward control method for a critical size as described in item 14 of the scope of patent application, wherein the substrate is a semiconductor substrate. 16. The feedforward control method of the critical size as described in item 14 of the scope of the patent application, wherein the layer to be etched is a semiconductor layer, a metal layer, a dielectric layer or a combination thereof. 1, 7 · The inner-feedforward control method for a critical size as described in item 1 β of the patent application scope, wherein the semiconductor layer is a polycrystalline layer or an amorphous layer. 1 8 · The inner feedforward control method of the critical size as described in item 6 of the patent application scope, wherein the metal layer is composed of Shao, copper, crane, nickel, starting or titanium. · 19 · According to the internal size feedback control method of the key size described in Item 16 of the patent application scope, wherein the dielectric layer is composed of silicon dioxide, silicon nitride or silicon oxynitride. The key size internal feed-forward control method described in the scope of application patent No. 14 wherein the cover layer is composed of> silicon oxide, silicon nitride or oxynitride. 21 · If the key size of the inner feedforward control method described in item i 4 of the patent scope is requested, the inner feedforward key size measurement method is an optical quantity 0503-9976TWf (Nl); TSMC2003- 0031; wayne.ptd 16th tribute 1222150 Sixth, the scope of patent application measuring instrument. 0503-9976TWf (Nl); TSMC2003-0031; wayne.ptd page 18
TW92123696A 2003-08-28 2003-08-28 An in-situ CD feedforward system and CD control method TWI222150B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92123696A TWI222150B (en) 2003-08-28 2003-08-28 An in-situ CD feedforward system and CD control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92123696A TWI222150B (en) 2003-08-28 2003-08-28 An in-situ CD feedforward system and CD control method

Publications (2)

Publication Number Publication Date
TWI222150B true TWI222150B (en) 2004-10-11
TW200509277A TW200509277A (en) 2005-03-01

Family

ID=34433007

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92123696A TWI222150B (en) 2003-08-28 2003-08-28 An in-situ CD feedforward system and CD control method

Country Status (1)

Country Link
TW (1) TWI222150B (en)

Also Published As

Publication number Publication date
TW200509277A (en) 2005-03-01

Similar Documents

Publication Publication Date Title
CN106154767B (en) Method for reducing extreme ultraviolet sensitivity using shrinkage and growth
KR100938636B1 (en) Methodology for repeatable post etch cd in a production tool
KR101116589B1 (en) Apparatus and method for controlling etch depth
US20070296980A1 (en) Integrated phase angle and optical critical dimension measurement metrology for feed forward and feedback process control
US6924088B2 (en) Method and system for realtime CD microloading control
CN102804933A (en) Switchable neutral beam source
US9362185B2 (en) Uniformity in wafer patterning using feedback control
CN108292110B (en) Overlay error correction
JP2007081160A (en) Method for manufacturing semiconductor device
US7306746B2 (en) Critical dimension control in a semiconductor fabrication process
US20050070034A1 (en) Real-time gate etch critical dimension control by oxygen monitoring
TWI222150B (en) An in-situ CD feedforward system and CD control method
US20070239305A1 (en) Process control systems and methods
US7674350B2 (en) Feature dimension control in a manufacturing process
US20050245088A1 (en) Method for barc over-etch time adjust with real-time process feedback
JP2007521660A (en) Method for forming TEOS cap layer at low temperature and low deposition rate
US20130071955A1 (en) Plasma etching method
KR100850134B1 (en) Measurement method of a thickness in an epitaxial process using a surface step
CN109065465B (en) Method for measuring height stability of shallow trench isolation step
CN113013236A (en) Monitoring method for forming process of nitrogen-doped gate oxide layer
JP2012521659A (en) Plasma etching method
KR20070069982A (en) Method for controling critical dimension of photo-resist pattern
JPH01256126A (en) Manufacture of semiconductor device
Luo et al. Dummy gate critical dimension uniformity improvement for 14nm and beyond
Tajima et al. Advanced process control for 40 nm gate fabrication

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent