TWI222083B - Data output circuit in combined SDR/DDR semiconductor memory device - Google Patents
Data output circuit in combined SDR/DDR semiconductor memory device Download PDFInfo
- Publication number
- TWI222083B TWI222083B TW092125959A TW92125959A TWI222083B TW I222083 B TWI222083 B TW I222083B TW 092125959 A TW092125959 A TW 092125959A TW 92125959 A TW92125959 A TW 92125959A TW I222083 B TWI222083 B TW I222083B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- output
- clock
- pull
- data output
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1051—Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
- G11C7/106—Data output latches
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/409—Read-write [R-W] circuits
- G11C11/4093—Input/output [I/O] data interface arrangements, e.g. data buffers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1051—Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1051—Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
- G11C7/1066—Output synchronization
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2207/00—Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
- G11C2207/10—Aspects relating to interfaces of memory device to external buses
- G11C2207/108—Wide data ports
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Dram (AREA)
- Logic Circuits (AREA)
- Static Random-Access Memory (AREA)
Abstract
Description
玖、發明說明: 相關申請案交叉參照 本申請案要求2002年9月19日向韓國智慧財產局申請之 韓國專利申請案第2002-57454號之優先權,基於所有目的 將該案以引用方式全部併入本文中。 【發明所屬之技術領域】 本揭示内容係關於一種半導體記憶體裝置,更特定言之 ,係關於一種合併單資料率/雙資料率(smgle data rate/double data rate ; SDR/DDR)同步半導體記憶體裝置中 的一資料輸出電路。 【先前技術】 一般而言,同步半導體記憶體裝置以一單資料率模式運 作,其中在一時脈週期期間,針對各資料輸入/輸出接針輸 入/輸出一位元資料。然而,為改善一資料輸入/輸出率,已 使用在一雙資料率模式下運作的半導體記憶體裝置,其中 在一時脈週期期間針對各資料輸入/輸出接針輸入/輸出二 位元資料。 一半導體記憶體裝置包括若干資料輸出電路,各資料輸 出電路皆被指$ _ 卜 疋—/貝料接針並包括一資料輸出缓衝器以及 一資料輸出驅動哭,、,^ 郎 以♦從記憶體單元讀取的内邵資料向 外部輸出。 傳、'无口併早資料率/雙資料率半導體記憶體裝置中,因 料L、之、斤有貝料輸出緩衝器皆可用作合併單資料率/雙資 ^衝器’⑨資料輸出缓衝器的數目增加,資 87976 料輸出缓衝器的效率劣化。 的圖1Λ傳統合併單資料率/雙資料率半㈣記憶體裝置中 的一貧料輸出電路的方塊圖。 1考圖1 “料輸出€路包括—資料輸出缓衝器100及 -貧料輸出驅動器200。此處,該資料輸出緩衝器1〇〇包括 四個資料鎖存器⑴至114與兩個驅動器121及122。 假定該半導體記憶體裝置運作於—雙資料率模式。在此 種情形下,該等第-及第三資料鎖存器⑴及⑴回應一偶 數時脈CLK—E而鎖存偶數資料D—Ε,並轉換已鎖存之資料的 位準以輸出該資料。因此,該等第—及第三資料鎖存器⑴ 及113鎖存欲在—時脈之上升邊緣輸出之資料,而第二及第 四鎖存器112及114則鎖存欲在該時脈之下降邊緣輸出之資 料。 驅動器121及122驅動從資料鎖存器丨丨丨至丨14接收的資料 ,以便輸出一上拉控制信號PB及一下拉控制信號Νβ。 貝料輸出驅動器200包括一上拉電晶體pM〗及一下拉電 晶體Ν Μ1。 此處,上拉電晶體ΡΜ1係由一 PMOS電晶體所形成,而下 拉電晶體Ν Μ1係由一 Ν Μ 0 S電晶體所形成。上拉電晶體p M j 及下拉電晶體NM1受到閘控,以分別回應從資料輸出緩衝 器100輸出的上拉控制信號PB及下拉控制信號NB。當上拉 控制信號PB處於一低位準時,上拉電晶體pM1被開啟,以 輸出一高位準的輸出資料DQ。當上拉控制信號nb處於一高 位準時,下拉電晶體NM1被開啟,以輸出一低位準的輸出 87976 1222083 資料dq。 同時,假定該半導體記憶體裝置運作於一單資料率模式 。在此種情形下,未使用第二及第四資料鎖存器丨丨2及j i 4 。換言之,第一及第三鎖存器Π1及113在一資料輸出時脈 CLKDQ的上升邊緣鎖存資料D1,並轉換已鎖存之資料的位 準以輸出該資料。 驅動器121及122驅動從資料鎖存器111至! 14接收的資料 ’以輸出上拉控制信號PB及下拉控制信號nb,就如在雙資 料率模式情形下一般。 資料輸出驅動器200將輸出資料DQ輸出至外部,以回靡 上拉控制信號PB及下拉控制信號NB。 如上所述’傳統資料輸出緩衝器1 〇〇在單資料率模式下鎖 存並輸出一位元資料,而在雙資料率模式下則鎖存並輸出 二位元資料。发明 Description of the invention: Cross-reference to related applications This application claims the priority of Korean Patent Application No. 2002-57454, which was filed with the Korean Intellectual Property Office on September 19, 2002. This case is fully incorporated by reference for all purposes. Included in this article. [Technical field to which the invention belongs] The present disclosure relates to a semiconductor memory device, and more specifically, to a combined single data rate / double data rate (Smgle data rate / double data rate; SDR / DDR) synchronous semiconductor memory A data output circuit in the body device. [Prior Art] Generally, a synchronous semiconductor memory device operates in a single data rate mode, in which one bit of data is input / output for each data input / output pin during a clock cycle. However, in order to improve a data input / output rate, a semiconductor memory device operating in a dual data rate mode has been used in which two-bit data is input / output for each data input / output pin during a clock cycle. A semiconductor memory device includes a number of data output circuits, each of which is referred to as a $ _ 卜 — / shell pin and includes a data output buffer and a data output driver. The internal data read by the memory unit is output to the outside. It is said that, in the semiconductor memory device with no data rate and dual data rate, the data output buffers of L, Z, and Kelvin can be used as the combined single data rate / dual data ^ punch. The number of buffers increases, and the efficiency of the output buffer is 87976 degraded. Fig. 1 is a block diagram of a lean output circuit in a conventional combined single-data-rate / dual-data-rate half-memory device. 1 Consider Figure 1. "Data output includes-data output buffer 100 and-lean output driver 200. Here, the data output buffer 100 includes four data latches ⑴ to 114 and two drivers. 121 and 122. It is assumed that the semiconductor memory device operates in a dual data rate mode. In this case, the first and third data latches ⑴ and ⑴ latch an even number in response to an even clock CLK-E. Data D-E, and the level of the latched data is converted to output the data. Therefore, the first and third data latches ⑴ and 113 latch data to be output on the rising edge of the clock, The second and fourth latches 112 and 114 latch the data to be output at the falling edge of the clock. The drivers 121 and 122 drive the data received from the data latches 丨 丨 丨 丨 14 to output a The pull-up control signal PB and the pull-down control signal Nβ. The shell material output driver 200 includes a pull-up transistor pM and a pull-down transistor NM1. Here, the pull-up transistor PM1 is formed of a PMOS transistor, The pull-down transistor NM1 is a NM0S transistor. The pull-up transistor p M j and the pull-down transistor NM1 are gated to respond to the pull-up control signal PB and the pull-down control signal NB output from the data output buffer 100 respectively. When the pull-up control signal PB is at a low level On time, the pull-up transistor pM1 is turned on to output a high-level output data DQ. When the pull-up control signal nb is at a high level, the pull-down transistor NM1 is turned on to output a low-level output 87976 1222083 data dq. Meanwhile, it is assumed that the semiconductor memory device operates in a single data rate mode. In this case, the second and fourth data latches 2 and ji 4 are not used. In other words, the first and third latches Π1 and 113 latch data D1 at the rising edge of the data output clock CLKDQ and switch the level of the latched data to output the data. Drivers 121 and 122 drive the data received from data latches 111 to! 14 'To output the pull-up control signal PB and pull-down control signal nb, as in the case of the dual data rate mode. The data output driver 200 outputs the output data DQ to the outside in order to return to the pull-up control. No. PB and pull-down control signal NB. As described above, the traditional data output buffer 100 latches and outputs one bit of data in single data rate mode, and latches and outputs two bits in dual data rate mode data.
衝為。當薇半導體記憶體裝置運作於χ8雙資料率模式下時Rush for. When Wei Semiconductor's memory device operates in χ8 dual data rate mode
87976 換言之,除圖1之合併單資 卜’傳統半導體記憶體裝置 1222083 還需要-專用單資料率資料輸出電路。 圖2為傳統早貧料率/雙資料率半導體記憶體 合併單資料率/雙資料率資料輸出電路的電路圖、-该傳統單資料率/雙資料率半 d 資料率資料輸出電路的電路圖。下文將透過=== 之資料輸出電路之比較來說明傳統資料輸出電路。 太因此’傳料資料率/雙資料率半導體記憶體裝置所 ^料‘出、U衝器數目等於資料輸入/輸出接針的數目,且二 丰貧料輸讀衝器❹料用單資料率資料輸出緩衝哭, 並且無法在雙資料率模式下使用。 叩 本發明之具體實施例解決傳統技術中的此等及其他缺點。 【發明内容】 ^ 本發明之具體實施例提供一種資料輸出電路,其藉由在 合併單資料率/雙資料率(sdr/ddr)半導體記憶體裝^中合 併貝料車則出緩衝益,而得以減少資料輸出缓衝器的數目, 並小晶片的尺寸。 【實施方式】 現在將參考呈現本發明較佳具體實施例之附圖來詳細說 明本發明。 圖4為根據本發明一項具體實施例之合併單資料率/雙資 料率(SDR/DDR)半導體記憶體裝置中之資料輸出電路的方 塊圖。蒼考圖4,貧料輸出黾路包括一資料輸出緩衝哭3 0 0 與第一及第二資料輸出驅動器410及420。此處,資料輸出 瑗衝器300包括第一至第四貧料鎖存器311至314、第一至第 87976 I2220B3 四驅動器321至324,以及複數個開關SW1至SW4。 弟一 ’假足$亥半導體元憶體裝置運作於一單資料率模式 。在此種情形下,第一及第三開關SW1及SW3被關閉,且 第二及第四開關SW2及SW4被開啟。 第一至第四資料鎖存器311至314分別鎖存第一資料〇1或 第二貧料D2 ’以回應一資料輸出時脈CLKDQ,並轉換已鎖87976 In other words, in addition to the combined single-chip semiconductor device 1222083 of FIG. 1, a dedicated single-data-rate data output circuit is also required. FIG. 2 is a circuit diagram of a conventional early-lean data rate / dual data rate semiconductor memory combined single data rate / dual data rate data output circuit, and a conventional single data rate / dual data rate half-d data rate data output circuit. The following will explain the traditional data output circuit by comparing the data output circuits of ===. Therefore, the 'data transfer rate / dual data rate of the semiconductor memory device', the number of U punches is equal to the number of data input / output pins, and the single data rate of Erfeng's lean input and output punches The data output buffer is crying and cannot be used in dual data rate mode.具体 Specific embodiments of the present invention address these and other disadvantages of conventional techniques. [Summary of the Invention] ^ A specific embodiment of the present invention provides a data output circuit, which combines buffering materials in a single data rate / dual data rate (sdr / ddr) semiconductor memory device to provide a buffer benefit, and It is possible to reduce the number of data output buffers and to reduce the size of the chip. [Embodiment] The present invention will now be described in detail with reference to the drawings showing preferred embodiments of the present invention. FIG. 4 is a block diagram of a data output circuit in a combined single data rate / dual data rate (SDR / DDR) semiconductor memory device according to a specific embodiment of the present invention. According to FIG. 4, the lean output output path includes a data output buffer 300 and first and second data output drivers 410 and 420. Here, the data output buffer 300 includes first to fourth lean latches 311 to 314, first to 87976 I2220B3 four drivers 321 to 324, and a plurality of switches SW1 to SW4. The younger one ‘the fake foot semiconductor device operates in a single data rate mode. In this case, the first and third switches SW1 and SW3 are turned off, and the second and fourth switches SW2 and SW4 are turned on. The first to fourth data latches 311 to 314 respectively latch the first data 〇1 or the second lean material D2 ′ in response to a data output clock CLKDQ and switch the locked data.
存之貝料的仏準以輸出该貧料。此處’資料輸出時脈ClkdQ 係一回應一時脈之上升邊緣或下降邊緣而產生的時脈信號 。在此種情形下,假定會回應該時脈之上升邊緣而產生資 料輸出時脈CLKDQ。 第一及第三資料鎖存器311及313鎖存第一資料di,該第 一資料D1係經由第一資料輸出驅動器41〇輸出至一第一資 料輸入/輸出接針(未顯示)。第二及第四 3H鎖存第:娜2,㈣:娜勒由第;:資㈣出 驅動器420輸出至一第二資料輸入/輸出接針(未顯示)。 第一至第四驅動器321至324分別預驅動從第一至第四資 料鎖存器311至314輸出的資料,以輪出第一及第二上拉控 制信號削及PB2與第-及第二下拉控制信號㈣及贈。工 第-資料輸出驅動器410回應第—上拉控制信號削及第 -下拉控制信號顧而驅動—第一輪出觸點區(未顯示),以 在該時脈的上升邊緣輸出―位元的輪出資料吻,其為一 單資料率資料。此外,第二資料輸出驅動器❽❹第二上 拉控制信細2及第二下拉控制信號咖而驅動—第二輸 出觸點區(未顯示),以在該時脈之上升邊緣輸出另一位元的 87976 -10 - 1222083 輸出資料DQ2,其為單資料率資料。 結果’真料輪出缓衝器3 0 0鎖存並輸出二位元資料,其在 單貧料率模式下將同時輸出至兩個資料輸入/輪出接針。 現在將詳細說明第一資料輸出驅動器4 1 0的結構。第一資 料輸出驅動器410包括一上拉電晶體ρΜΓ& —下拉電晶體 ΝΜ1。此處,該上拉電晶體ρμι係由一 PMOS電晶體所形成 ,而該下拉電晶體ΝΜ1則是由一 NMOS電晶體所形成。上拉 電晶體ΡΜ1係形成於一外部源電壓與該輸出觸點區之間, 下拉電晶體ΝΜ1係形成於接地與輸出觸點區之間。第二資 料輸出驅動器420的結構與第一資料輸出驅動器41〇的結構 相同,因此不再重複說明第二資料輸出驅動器42〇的結構。 同時,假定該半導體記憶體裝置運作於一雙資料率模式 。在此種情形下,第一及第三開關SW1及SW3被開啟,且 第二及第四開關S W2及S W4被關閉。 該等第一及第三資料鎖存器31〗及313回應一偶數時脈 CLK一E而鎖存偶數資料D—E,並轉換已鎖存之資料的位準以 输出該資料。該等第二及第四資料鎖存器312及314回應一 奇數時脈CLK—0而鎖存奇數資料D—〇,並轉換已鎖存之資 料的位準以輸出該資料。 此處’偶數時脈CLK_E為—回應—時脈之上升邊緣而產 生的時脈信號,而且奇數時脈CLK_〇為回應該時脈之下降 邊緣而產生的時脈信號。 □為第一及第四開關SW2及SW4處於關閉狀態,故第一 及第四驅動益322及324不運作。第-驅動器321接收從第— 87976 -11 - 1222083 及第二資料鎖存器311及312輸出的資料,以輸出第一上拉 控制信號PB1。第三驅動器323接收從第三及第四資料鎖存 器3 1 3及3 14輸出的資料,以輸出第一下拉控制信號NB j。 因此’會該時脈的上升邊緣與下降邊緣分別產生第一上拉 控制信號PB 1及第一下拉控制信號nb 1。 第一貧料輸出驅動器4 1 〇回應第一上拉控制信號pB丨及第 一下拉控制信號NB 1而驅動第一輸出觸點區(未輸出),以在 一時脈週期期間輸出二位元資料,即一雙資料率資料。此 處,泫等一位元貧料包括在該時脈之上升邊緣的一位元資 料及在該時脈之下降邊緣的一位元資料。 在圖4心万塊圖中,回應雙資料率模式或單資料率模式, 使用開關SWiSSWA而得以使第一至第四資料鎖存器311 至3 14的輸出被輸入至適當的資料輸出驅動器。 或者亦可使用其他類型的互連來代替使用開關作為互 f。例如,在雙資料率模式下,形成金屬線路以將第二及 第四貝料鎖存器312及314的輸出透過第一及第三驅動器 321及323連接至第一資料輸出驅動器4丨〇。此外,在單資料 a模式下形成金屬線路以將第二及第四資料鎖存器3丨2及 的鈿出逐過第二及第四驅動器322及3連接至第二資 料輸出驅動器420。 ” 根據本發明之合併單資料率/雙資料率半導體記憶 二且中〈用於雙貧料率模式的資料輸出電路之電路圖。 換° H圖合併單資料率/雙資料率輸出電路係設定為 又貝料率才旲式〈貧料輸出電路。參考圖4及5,資料輸 87976 -12 - 1222083 出緩衝器300包括第一至第四資料鎖存器31 1至314,該等第 一至第四資料鎖存器311至314分別包括資料鎖存裝置331 至3 34、位準轉換單元341至344及緩衝器351至354。此夕卜, 因為圖5之資料輸出電路專用於雙資料率模式,故第一資料 輸出驅動器410係透過第一及第三驅動器321及323連接至 資料輸出缓衝器300 ;然而,第二資料輸出驅動器420未連 · 接至資料輸出缓衝器300。 * 更明確地說,第一資料鎖存器3 1 1包括第一資料鎖存裝置 · 331、第一位準轉換單元341及第一緩衝器351。 第一資料鎖存裝置33 1接收偶數緩衝器控制信號 PTRST_E、偶數時脈CLK_E及偶數資料D_E。此處,偶數缓 衝器控制信號PTRST—E控制偶數資料D—E的輸出。換言之, 當偶數緩衝器控制信號PTRST_E係致動至一預定位準(即 本發明之一高位準)時,會回應偶數時脈CLK_E而輸出有效 偶數資料1)_£。 更明確地說,第一資料鎖存裝置331係由反相器IV1、反 籲 相器IV2、NAND閘極NANDI、NOR閘極NOR1及NOR閘極 N0R2所組成。反相器IV2反轉偶數缓衝器控制信號 PTRST_E 〇 NOR閘極NOR2對偶數資料D—Ξ的反轉資料及偶 數緩衝器控制信號?丁尺8丁3的反轉信號執行N〇R運算。 NAND閘極NAND1對偶數時脈CLK—E的輸出及NOR閘極 N0R2的輸出執行NAND運算,以輸出一第一輸出信號OT1。 NOR閘極NOR1對偶數時脈CLK—E的反轉信號及NOR閘 極NOR2的輸出執行一 NOR運算,以輸出一第二輸出信號 87976 -13 - 1222083 OT2。 第一位準轉換單元34 1將第一輸出信號〇T 1的内部電壓 位準轉換成外部電壓位準。更明確地說,第一位準轉換單 元341係由一反相器INV與交叉耦合之PMOS電晶體ΡΤ1、 ΡΤ2及NMOS電晶體ΝΤ1、ΝΤ2所形成。 當第一輸出信號ΟΤ1係處於一高位準時,NMOS電晶體 · ΝΤ1被開啟,而得以開啟PMOS電晶體ΡΤ2,故輸入至第一 · 缓衝器351之一 PMOS電晶體ΡΤ3之閘極的信號之位準變高。鲁 當第一輸出信號ΟΤ1係處於低位準時,NMOS電晶體ΝΤ2被 開啟,故輸入至第一缓衝器351之一 NMOS電晶體NT3之閘 極的信號之位準變低。 第二資料鎖存器312亦包括第二資料鎖存裝置332、第二 位準轉換單元342及第二緩衝器352。因為第二資料鎖存裝 置332、第二位準轉換單元342及第二缓衝器352之結構相同 於第一資料鎖存裝置331、第一位準轉換單元341及第一缓 衝器3 5 1之結構相同,故此處不再對其進行重複說明。 鲁 此處,第二資料鎖存裝置332接收一奇數缓衝器控制信號 ” PTRS丁—〇、奇數時脈CLK—〇及奇數資料D —〇。奇數缓衝器 控制信號PTRST—〇控制奇數資料D_〇的輸出。換言之,僅 當奇數缓衝器控制信號PTRST_0致動至一高位準時,才回 應奇數時脈CLK—〇而輸出有效奇數資料D—〇。 第三資料鎖存器313包括第三資料鎖存裝置333、第三位 準轉換單元343及第三緩衝器3 53。因為第三位準轉換單元 343及第三缓衝器353之結構相同於第一位準轉換單元341 87976 -14 - 1222083 及第緩衝杂3 51,故此處不再對其進行重複說明。第三資 料鎖存裝置333及第一資料鎖存裝置331之結構的差異在於 第二貝料鎖存器333包括一 NANE^ 極NAND2,而非第一 貝料鎖存I置33 1之反相器IV2及NOR閘極n〇R2。 第四資料鎖存器3i4包括第四資料鎖存裝置334、第四位 準轉換單元344及第四缓衝器354。因為第四資料鎖存裝置 〕34、第四位準轉換單元344及第四缓衝器之結構相同於 第三資料鎖存裝置333、第三位準轉換單元343及第三缓衝 器353之結構,故此處不再對其進行重複說明。 現在將說明圖5之資料輸出電路的運作。 首先,假定偶數緩衝器控制信號PTRST—E及奇數緩衝器 控制信號PTRST一0皆被致動至一高位準。 若當偶數時脈CLK_E處於上升邊緣或高位準時偶數資料 D一E處於一高位準,則第一資料鎖存裝置331輸出一低位準 的仏唬,且第二貧料鎖存裝置3 3 3輸出一低位準的信號。因 此,第一及第三緩衝器351及353之PM〇s電晶體被開啟,且 第一及第二節點N1及N2之電壓位準變高。 第一至第四驅動器321至324係以反相器類型所形成。因 此,第—及第三缓衝器351及353之輸出被反轉而變成第一 上拉控制信號PB 1及第一下拉控制信號NB丨。因此,根據一 低位準的第—上拉控制信號PB 1而開啟上拉電晶體PM1,以 便將一向位準的資料DQ向外部輸出。 若當偶數時脈CLK—E處於上升邊緣或高位準時偶數資料 D-E處於一低位準’則第一資料鎖存裝置33 1輸出一高位準 87976 -15- 1222083 的信號,且第三資料鎖存裝置33 3輸出一高位準的信號。因 此,第一及第三緩衝器351及353的NMOS電晶體被開啟,第 一及第二節點N1及N2的電壓位準變低。 結果,會根據一高位準的第一下拉控制信號NB 1來開啟 下拉電晶體NM1,以便將一低位準的資料DQ向外部輸出。 當偶數時脈CLK_E處於一上升邊緣或高位準時,奇數時 · 脈CLK—Ο處於一下降邊緣或低位準。當奇數時脈CLK—Ο處 · 於一下降邊緣或低位準時,會將一高位準信號及一低位準 _ 信號分別輸入至第二缓衝器352中的PMOS電晶體及NMOS 電晶體。會將相同的信號輸入至第四緩衝器354。因此,當 偶數時脈CLK—E處於一上升邊緣或高位準時,第二及第四 緩衝器352及354處於一關閉狀態。 當奇數時脈CLK_〇處於一上升邊緣或高位準時,會根據 奇數資料D—0來決定第一及第二節點N1及N2的狀態,從而 決定輸出資料。當奇數資料D_〇處於一高位準時,會將一 高位準的輸出資料DQ向外部輸出,且當奇數資料0_0處於 _ 一低位準時,會將一低位準的輸出資料DQ向外部輸出。 . 當奇數時脈CLK_〇處於一上升邊緣或高位準時,偶數時 脈CLK_E處於一下降邊緣或低位準,故第一及第三缓衝器 3 5 1及3 5 3處於一關閉狀態。 當偶數缓衝器控制信號PTRST_E&奇數緩衝器控制信號 PTRST_〇被停用至一低位準時,資料輸出電路運作如下。 當偶數缓衝器控制信號於一低位準時,第一 資料鎖存裝置331的NOR閘極NOR2輸出一低位準的信號。 87976 -16 -Save the raw materials to export the lean materials. Here, the data output clock ClkdQ is a clock signal generated in response to a rising edge or a falling edge of a clock. In this case, it is assumed that the rising edge of the clock will respond to the data output clock CLKDQ. The first and third data latches 311 and 313 latch the first data di, and the first data D1 is output to a first data input / output pin (not shown) via the first data output driver 410. The second and fourth 3H latches are: No. 2, No .: No. from No. :: Data output. The driver 420 outputs to a second data input / output pin (not shown). The first to fourth drivers 321 to 324 pre-drive the data output from the first to fourth data latches 311 to 314, respectively, to turn out the first and second pull-up control signals and cut PB2 and the first and second. Pull down the control signal and give it away. The data-output driver 410 responds to the first-pull-up control signal and the second-pull-down control signal to drive—the first round out of the contact area (not shown) to output a bit-bit at the rising edge of the clock. Rotate the data kiss, which is a single data rate data. In addition, the second data output driver is driven by the second pull-up control letter 2 and the second pull-down control signal—the second output contact area (not shown) to output another bit at the rising edge of the clock 87076 -10-1222083 output data DQ2, which is single data rate data. As a result, the "real material round-out buffer 300" latches and outputs two-bit data, which will output to two data input / round-out pins at the same time in the single lean rate mode. The structure of the first data output driver 410 will now be described in detail. The first data output driver 410 includes a pull-up transistor pMΓ & -pull-down transistor NM1. Here, the pull-up transistor ρμι is formed by a PMOS transistor, and the pull-down transistor NM1 is formed by an NMOS transistor. The pull-up transistor PM1 is formed between an external source voltage and the output contact area, and the pull-down transistor NM1 is formed between ground and the output contact area. The structure of the second data output driver 420 is the same as the structure of the first data output driver 41o, and therefore the description of the structure of the second data output driver 42o will not be repeated. Meanwhile, it is assumed that the semiconductor memory device operates in a dual data rate mode. In this case, the first and third switches SW1 and SW3 are turned on, and the second and fourth switches SW2 and SW4 are turned off. The first and third data latches 31 and 313 respond to an even-numbered clock CLK-E to latch even-numbered data D-E, and convert the level of the latched data to output the data. The second and fourth data latches 312 and 314 latch the odd data D-0 in response to an odd clock CLK-0, and convert the level of the latched data to output the data. Here, the 'even-numbered clock CLK_E is a clock signal generated in response to the rising edge of the clock, and the odd-numbered clock CLK_0 is a clock signal generated in response to the falling edge of the clock. □ Because the first and fourth switches SW2 and SW4 are in the off state, the first and fourth drives 322 and 324 do not operate. The first driver 321 receives data output from the first 87976-11-1222083 and the second data latches 311 and 312 to output the first pull-up control signal PB1. The third driver 323 receives data output from the third and fourth data latches 3 1 3 and 3 14 to output a first pull-down control signal NB j. Therefore, the rising edge and the falling edge of the clock generate the first pull-up control signal PB 1 and the first pull-down control signal nb 1 respectively. The first lean output driver 4 1 〇 drives the first output contact area (not output) in response to the first pull-up control signal pB 丨 and the first pull-down control signal NB 1 to output two bits during a clock cycle Data, which is a pair of data rate data. Here, waiting for one yuan poor material includes one yuan data on the rising edge of the clock and one yuan data on the falling edge of the clock. In the block diagram of FIG. 4, in response to the dual data rate mode or the single data rate mode, the switches SWiSSWA are used to enable the outputs of the first to fourth data latches 311 to 314 to be input to an appropriate data output driver. Alternatively, other types of interconnections can be used instead of using switches as mutual f. For example, in the dual data rate mode, a metal circuit is formed to connect the outputs of the second and fourth shell latches 312 and 314 to the first data output driver 4 through the first and third drivers 321 and 323. In addition, a metal line is formed in the single data a mode to connect the second and fourth data latches 3, 2 and 2 to the second data output driver 420 through the second and fourth drivers 322 and 3. "According to the present invention, the combined single data rate / dual data rate semiconductor memory is two and the circuit diagram of the data output circuit used in the dual lean rate mode. Change the ° H graph to merge the single data rate / dual data rate output circuit. The material output rate type is lean output circuit. With reference to Figures 4 and 5, the data input 87976 -12-1222083 output buffer 300 includes the first to fourth data latches 31 1 to 314, the first to fourth The data latches 311 to 314 include data latching devices 331 to 34, level conversion units 341 to 344, and buffers 351 to 354. Furthermore, because the data output circuit of FIG. 5 is dedicated to the dual data rate mode, Therefore, the first data output driver 410 is connected to the data output buffer 300 through the first and third drivers 321 and 323; however, the second data output driver 420 is not connected to the data output buffer 300. * More specific In other words, the first data latch 3 1 1 includes a first data latch device 331, a first level conversion unit 341, and a first buffer 351. The first data latch device 33 1 receives an even buffer control signal PTRST_E, even clock CLK_ E and even data D_E. Here, the even buffer control signal PTRST_E controls the output of the even data D_E. In other words, when the even buffer control signal PTRST_E is actuated to a predetermined level (that is, one of the present invention) High level), it will respond to the even-numbered clock CLK_E and output valid even-numbered data 1) _. More specifically, the first data latching device 331 is composed of inverter IV1, phase-inverter IV2, and NAND gate NANDI. , NOR gate NOR1 and NOR gate N0R2. Inverter IV2 inverts the even buffer control signal PTRST_E 〇 NOR gate NOR2 pairs of even data D-Ξ inversion data and even buffer control signal? The 8-to-3 reversal signal performs a NOR operation. The NAND gate NAND1 performs a NAND operation on the output of the even clock CLK_E and the output of the NOR gate N0R2 to output a first output signal OT1. NOR gate NOR1 Perform a NOR operation on the inversion signal of the even clock CLK-E and the output of the NOR gate NOR2 to output a second output signal 87976 -13-1222083 OT2. The first level conversion unit 34 1 converts the first output signal 〇T 1 internal voltage level is converted to external voltage More specifically, the first level conversion unit 341 is formed by an inverter INV and cross-coupled PMOS transistors PT1, PT2 and NMOS transistors NT1, NT2. When the first output signal Τ1 is at a At a high level, the NMOS transistor NT1 is turned on, and the PMOS transistor PT2 can be turned on, so the level of the signal input to the gate of the PMOS transistor PT3, which is one of the first buffers 351, becomes high. When the first output signal OT1 is at a low level, the NMOS transistor NT2 is turned on, so the level of the signal input to the gate of the NMOS transistor NT3, which is one of the first buffers 351, becomes low. The second data latch 312 also includes a second data latch device 332, a second level conversion unit 342, and a second buffer 352. Because the structures of the second data latching device 332, the second level conversion unit 342, and the second buffer 352 are the same as those of the first data latching device 331, the first level conversion unit 341, and the first buffer 3 5 The structure of 1 is the same, so it will not be repeated here. Here, the second data latching device 332 receives an odd-numbered buffer control signal "PTRS Ding-0, an odd-numbered clock CLK-0, and an odd-numbered data D-0. The odd-numbered buffer control signal PTRST-0 controls the odd-numbered data. D_〇 output. In other words, only when the odd buffer control signal PTRST_0 is actuated to a high level, it responds to the odd clock CLK — 0 and outputs valid odd data D — 0. The third data latch 313 includes the first The three data latching device 333, the third level conversion unit 343, and the third buffer 3 53. Because the structures of the third level conversion unit 343 and the third buffer 353 are the same as the first level conversion unit 341 87976- 14-1222083 and the first buffer miscellaneous 3 51, so they will not be repeated here. The difference between the structure of the third data latch device 333 and the first data latch device 331 is that the second material latch 333 includes a NANE ^ pole NAND2, instead of inverter IV2 and NOR gate no2, which are set to 33 1 instead of the first material latch. The fourth data latch 3i4 includes a fourth data latch device 334 and a fourth level. Conversion unit 344 and fourth buffer 354. Because the fourth data The structures of the 34th, fourth level conversion unit 344, and the fourth buffer are the same as those of the third data latching device 333, the third level conversion unit 343, and the third buffer 353. The operation is repeated. The operation of the data output circuit of FIG. 5 will now be described. First, it is assumed that even buffer control signals PTRST_E and odd buffer control signals PTRST-0 are both activated to a high level. Even-numbered clock CLK_E is at the rising edge or high on-time Even-numbered data D-E is at a high level, the first data latching device 331 outputs a low-level bluff, and the second lean latching device 3 3 3 outputs a low-level Therefore, the PMOS transistors of the first and third buffers 351 and 353 are turned on, and the voltage levels of the first and second nodes N1 and N2 become high. The first to fourth drivers 321 to 324 is formed by an inverter type. Therefore, the outputs of the first and third buffers 351 and 353 are inverted to become the first pull-up control signal PB 1 and the first pull-down control signal NB 丨. Therefore, Pull-up control signal PB 1 according to a low level And the pull-up transistor PM1 is turned on so as to output the data DQ of one level to the outside. If the even-numbered clock CLK-E is at the rising edge or the high-level even-numbered data DE is at a low level, then the first data latching device 33 1 outputs a high level signal 87976 -15-1222083, and the third data latching device 33 3 outputs a high level signal. Therefore, the NMOS transistors of the first and third buffers 351 and 353 are turned on, and the first And the voltage levels of the second nodes N1 and N2 become lower. As a result, the pull-down transistor NM1 is turned on according to a high-level first pull-down control signal NB1 so as to output a low-level data DQ to the outside. When the even clock CLK_E is at a rising edge or high level, the odd clock CLK_O is at a falling edge or low level. When the odd clock CLK-0 is at a falling edge or low level, a high level signal and a low level signal are input to the PMOS transistor and the NMOS transistor in the second buffer 352, respectively. The same signal is input to the fourth buffer 354. Therefore, when the even clock CLK_E is at a rising edge or high level, the second and fourth buffers 352 and 354 are in a closed state. When the odd-numbered clock CLK_0 is at a rising edge or high level, the states of the first and second nodes N1 and N2 are determined according to the odd-numbered data D-0, thereby determining the output data. When the odd-numbered data D_〇 is at a high level, it will output a high-level output data DQ to the outside, and when the odd-numbered data 0_0 is at _ a low level, it will output a low-level output data DQ to the outside. When the odd-numbered clock CLK_0 is at a rising edge or high level, the even-numbered clock CLK_E is at a falling edge or low level, so the first and third buffers 3 5 1 and 3 5 3 are in a closed state. When the even buffer control signal PTRST_E & the odd buffer control signal PTRST_0 is disabled to a low level, the data output circuit operates as follows. When the even buffer control signal is at a low level, the NOR gate NOR2 of the first data latching device 331 outputs a low level signal. 87976 -16-
因此,NAND閘極NAND1輸出一高位準的信號,以關閉第 一緩衝器351的PMOS電晶體PT3。輸入至第一缓衝器351之 NMOS電晶體NT3的信號之位準係根據偶數時脈CLK—E決 定。當奇數緩衝器控制信號?丁118丁_〇處於一低位準時,第 二缓衝器352的PMOS電晶體被關閉,且輸入至該第二緩衝 為3 5 2之N Μ 0 S電晶體的信號之位準係根據奇數時脈 · CLK—0決定,就如第一資料鎖存裝置331的情形一般。 · 因此,會根據偶數時脈CLK_E與奇數時脈CLK—〇的切換 · 來開啟第一缓衝器351之NMOS電晶體NT3或第二緩衝器 352之NMOS電晶體,促使第一節點N1的位準變低。因此, 第一上拉電晶體PM1被關閉。 當偶數緩衝器控制信號PTRST—E處於一低位準時,第三 資料鎖存裝置332的NAND閘極NAND2輸出一高位準的信 號。因此,NOR閘極NOR 1輸出一低位準的信號,且第三缓 衝器353的NMOS電晶體被關閉。輸入至第三缓衝器353之 PMOS電晶體的信號之位準係根據偶數時脈CLK_E決定。當 春 奇數緩衝器控制信號PTRST—〇處於一低位準時,第四緩衝 _ 器354的NMOS電晶體被關閉,且第四緩衝器354的NMOS電 晶體被關閉,就如第三資料鎖存裝置333的情形一般。此外 ,第四緩衝器354的PMOS電晶體之位準係根據奇數時脈 CLK_〇決定。 因此,會根據偶數時脈CLK—E或奇數時脈CLK—0的切換 來開啟第三緩衝器353之PMOS電晶體或第四缓衝器354之 PMOS電晶體,促使第二節點N2的位準變高。此外,第一下 87976 -17- 1222083 拉電晶體NM1被關閉。 因此,當偶數緩衝器控制信號簡T—E及奇數缓衝器控 制信號PTRST—Ο被停用至—低位準時,第—上拉電晶體 PM1及第一下拉電晶體NM1被關閉,促使第—資料輸出驅 動器4 10輸出高阻抗的資料。 如上所述’根據本發明之資料輸出緩衝器在雙資料率模 式下使用—資料輸人戰接針鎖存並輸出奇數資料D 〇與 偶數資料0_£。 —、Therefore, the NAND gate NAND1 outputs a high-level signal to turn off the PMOS transistor PT3 of the first buffer 351. The level of the signal input to the NMOS transistor NT3 of the first buffer 351 is determined based on the even clock CLK-E. When odd buffer control signal? Ding 118 Ding_〇 At a low level, the PMOS transistor of the second buffer 352 is turned off, and the level of the signal input to the N M 0 S transistor of the second buffer 3 52 is based on the odd time Pulse CLK-0 is determined as in the case of the first data latch device 331. · Therefore, the NMOS transistor NT3 of the first buffer 351 or the NMOS transistor of the second buffer 352 is turned on according to the switching of the even clock CLK_E and the odd clock CLK-0, and the bit of the first node N1 is promoted. The quasi becomes low. Therefore, the first pull-up transistor PM1 is turned off. When the even-numbered buffer control signal PTRST_E is at a low level, the NAND gate NAND2 of the third data latch device 332 outputs a high-level signal. Therefore, the NOR gate NOR 1 outputs a low-level signal, and the NMOS transistor of the third buffer 353 is turned off. The level of the signal input to the PMOS transistor of the third buffer 353 is determined according to the even clock CLK_E. When the spring odd buffer control signal PTRST — 0 is at a low level, the NMOS transistor of the fourth buffer 354 is turned off, and the NMOS transistor of the fourth buffer 354 is turned off, just like the third data latching device 333 The situation is average. In addition, the level of the PMOS transistor of the fourth buffer 354 is determined based on the odd clock CLK_0. Therefore, the PMOS transistor of the third buffer 353 or the PMOS transistor of the fourth buffer 354 is turned on according to the switching of the even clock CLK_E or the odd clock CLK-0, so as to promote the level of the second node N2. Becomes high. In addition, the first 87976 -17-1222083 pull transistor NM1 was turned off. Therefore, when the even buffer control signal T_E and the odd buffer control signal PTRST_0 are disabled to the low level, the first pull-up transistor PM1 and the first pull-down transistor NM1 are turned off, causing the first —Data output driver 4 10 outputs high impedance data. As described above, the data output buffer according to the present invention is used in a dual data rate mode—the data input pin latches and outputs odd data D 0 and even data 0 — £. —,
圖6為根據本發明一項具體實施例之用於單資料率模 的-貝料輸出電路之電路圖。換言之,圖6之電路的形成 式為:將圖4之合併單資料率/雙資料率資料輸出電路設 成用於單資料率模式的資料輸出電路。圖6之資料輸出電路 的結構與圖5之資料輸出電路的結構相同。因此,此處不再 重複說明圖6之資料輸出電路的結構。圖6之資料輸出電路 與圖5之資料輸出電路的差異如下。FIG. 6 is a circuit diagram of a shell material output circuit for a single data rate mode according to a specific embodiment of the present invention. In other words, the circuit of FIG. 6 is formed as follows: the combined single data rate / dual data rate data output circuit of FIG. 4 is set as a data output circuit for a single data rate mode. The structure of the data output circuit of FIG. 6 is the same as the structure of the data output circuit of FIG. Therefore, the structure of the data output circuit of FIG. 6 will not be repeatedly described here. The difference between the data output circuit of FIG. 6 and the data output circuit of FIG. 5 is as follows.
因為圖6之資料輸出電路專用於單資料率模式,故第一資 料輸出驅動器410係透過第一及第三驅動器321及323連接 至資料輸出緩衝器300的第一及第三資料鎖存器311及313, 且第二資料輸出驅動器420係透過第二及第四驅動器322及 324連接至資料輸出緩衝器3〇〇的第二及第四資料鎖存器 312及314 。 現在將說明圖6之資料輸出電路的運作。 首先,假足弟一及弟二緩衝器控制信號PTRST 1及 PTRST〜2皆被致動至一高位準。此處,第—及第二缓衝器 87976 -18- 1222083 控制信號PTRST_1及PTRST_2分別控制第一及第二資料D1 及D2的輸出。換言之,當第一及第二緩衝器信號PTRST_1 及PTRST—2皆被致動在一預定位準(即本發明之高位準)時, 會回應一資料輸出時脈CLKDQ而輸出有效第一及第二資料 D1 及 D2。 當資料輸出時脈CLKDQ處於上升邊緣或高位準時,第一 及第三資料鎖存裝置3 11及333接收第一資料D 1及輸出信號 ,以分別控制第一及第三緩衝器351及353之PMOS電晶體及 NMOS電晶體。此夕卜,第二及第四鎖存裝置332及334接收第 二資料D2及輸出信號,以分別控制第二及第四緩衝器352 及354的PMOS電晶體及NMOS電晶體。 當第一資料D1處於一高位準時,第一資料鎖存裝置331 輸出一低位準的信號,第三資料鎖存裝置333輸出一低位準 的信號。因此,第一及第三缓衝器351及353之PMOS電晶體 被開啟,且第一及第三節點N1及N3之電壓位準變高。因此 ,會藉由一低位準的第一上拉控制信號PB 1來開啟第一上拉 電晶體PM1_。結果,將一高位準的第一輸出資料DQ1向外部 輸出。 當第一資料D1處於一低位準時,第一資料鎖存裝置331 輸出一高位準的信號,第三資料鎖存裝置333輸出一高位準 的信號。因此,第一及第三緩衝器351及353的NMOS電晶體 被開啟,第一及第三節點N1及N3的電壓位準變低。據此, 會藉由一高位準的第一下拉控制信號NB 1來開啟第一下拉 電晶體NM1。結果,將一低位準的第一輸出資料DQ 1向外 -19 - 87976 1222083 部輸出。 當第二資料D2處於一高位準時,第二資料鎖存裝置332 輸出一低位準的信號,第四資料鎖存裝置334輸出一低位準 的信號。因此,第二及第四缓衝器352及354之PMOS電晶體 被開啟,且第二及第四節點N2及N4之電壓位準變高。因此 ,會藉由一低位準的第二上拉控制信號PB2來開啟第二上拉 電晶體PM2。結果,將一高位準的第二輸出資料DQ2向外部 輸出。 當第二資料D2處於一低位準時,第二資料鎖存裝置332 輸出一高位準的信號,第四資料鎖存裝置334輸出一高位準 的信號。因此,第二及第四緩衝器352及354之NMOS電晶體 被開啟,且第二及第四節點N2及N4之電壓位準變低。據此 ,會藉由一高位準的第二下拉控制信號NB2來開啟第二下 拉電晶體NM2。結果,將一低位準的第二輸出資料DQ2向 外部輸出。 當第一及第二緩衝器控制信號PTRST_1及PTRST_2被停 用至一低位準時,圖6之資料輸出電路的運作類似於圖5之 資料輸出電路的運作,在該情形下,偶數缓衝器控制信號 PTRST_E&奇數緩衝器控制信號PTRST_0被停用至一低位 準。 因此,當第一及第二緩衝器控制信號PTRST_1及 PTRST_2被停用至一低位準時,第一及第二上拉電晶體PM1 及PM2與第一及第二下拉電晶體NM1及NM2被關閉,促使 第一及第二資料輸出驅動器4 1 0及420輸出高阻抗的資料。 87976 -20 - 如上所述,根據本發明乏咨 足貝科輸出缓衝器在單資料率模 式下使用兩個資料輸幻輸出來鎖存並輸出二位元資料。 如圖5及6所示,用於雔咨姐 ,4 ^ ^ ., 、又率楱式及單資料率模式的資 科輸出電路的結構是相同的。 之資料輸㈣路中n胁;^在料雙資料率模式 輸出^ 出驅動器42味連接至資料 用於Γ二卜,藉由將第二資料輸出驅動器420連接至 ::早=模式之資料輸出電路中的資料輸峨^ ::,處中用於鎖存及輸出偶數資 鎖存及輸出第一資料D1的雨钕 ~ I刀係用作 出奇數資料D 〇的部分係用电作、且孩電路中用於鎖存及輸 路。 刀’、乍鎖存及輸出第二資料D2的電 因為根據本發明之資料輸 資料輸出缕^ 针知出电;各不需要專用的單資料率 讀态,故可改善資料輸出缓衝器之效率。 ^本發明與圖2及3之傳統資料輸出電路 使本發明之效果更為清楚。 f 了 外1圖2及圖5,除圖5中包括第二資料輸出驅動哭42〇之 外,傳統合併單資 動“版 本發明之用沐雔、”,〜科羊貝科為出電路相同於根據 Μ月(用於雙貧料率的資料輸出電路。 圖2及圖5的資料輸出電路 同的。 咬卄彺又貝枓率杈式下是相 另 方面’在單資料率握彳 、 不會使用相η、Λ^ ,,在圖2(資料輸出電路中 曰使用相關於奇數資料1) 地說,m丄丨 -出的私路邯份。更明確 /在早貝料率模式下,用於接收奇數資料D n * 緩衝器控制作_ |卢ς 、 —、可數 a#指ST—0及奇數時脈CLK—〇的端子被接地 87976 -21 1222083 且固定於-低位準。此外,資料輸出時^lkdq(代替偶數 時脈CLK)、帛-資料D1(代替偶數資料D—£)以及緩衝器控 制信號PTRST(代替偶數緩衝器控制信號pTRsT e)被輸入, 而促使圖2之資料輸出電路在單資料率模式下運作。 因此’僅運作第—及第三資料鎖存裝置⑶及⑶、第一 及第三位準轉換單元141及⑷以及第-及第三緩衝器151 及153,然而,未運作第二及第四資料鎖存裝置η]及η*、Because the data output circuit of FIG. 6 is dedicated to the single data rate mode, the first data output driver 410 is connected to the first and third data latches 311 of the data output buffer 300 through the first and third drivers 321 and 323. And 313, and the second data output driver 420 is the second and fourth data latches 312 and 314 connected to the data output buffer 300 through the second and fourth drivers 322 and 324. The operation of the data output circuit of Fig. 6 will now be explained. First, the pseudo-football brothers 1 and 2 buffer control signals PTRST 1 and PTRST ~ 2 are all activated to a high level. Here, the first and second buffers 87976 -18-1222083 control signals PTRST_1 and PTRST_2 control the output of the first and second data D1 and D2, respectively. In other words, when the first and second buffer signals PTRST_1 and PTRST-2 are both actuated at a predetermined level (ie, the high level of the present invention), they will respond to a data output clock CLKDQ and output valid first and second Two data D1 and D2. When the data output clock CLKDQ is at the rising edge or high level, the first and third data latching devices 3 11 and 333 receive the first data D 1 and the output signal to control the first and third buffers 351 and 353, respectively. PMOS transistor and NMOS transistor. In addition, the second and fourth latch devices 332 and 334 receive the second data D2 and the output signal to control the PMOS transistor and the NMOS transistor of the second and fourth buffers 352 and 354, respectively. When the first data D1 is at a high level, the first data latching device 331 outputs a low level signal, and the third data latching device 333 outputs a low level signal. Therefore, the PMOS transistors of the first and third buffers 351 and 353 are turned on, and the voltage levels of the first and third nodes N1 and N3 become high. Therefore, the first pull-up transistor PM1_ is turned on by a low-level first pull-up control signal PB1. As a result, a high-level first output data DQ1 is output to the outside. When the first data D1 is at a low level, the first data latching device 331 outputs a high-level signal, and the third data latching device 333 outputs a high-level signal. Therefore, the NMOS transistors of the first and third buffers 351 and 353 are turned on, and the voltage levels of the first and third nodes N1 and N3 become low. Accordingly, the first pull-down transistor NM1 is turned on by a high-level first pull-down control signal NB1. As a result, a low-level first output data DQ 1 is output to -19-87976 1222083. When the second data D2 is at a high level, the second data latching device 332 outputs a low level signal, and the fourth data latching device 334 outputs a low level signal. Therefore, the PMOS transistors of the second and fourth buffers 352 and 354 are turned on, and the voltage levels of the second and fourth nodes N2 and N4 become high. Therefore, the second pull-up transistor PM2 is turned on by a low-level second pull-up control signal PB2. As a result, a high-level second output data DQ2 is output to the outside. When the second data D2 is at a low level, the second data latching device 332 outputs a high-level signal, and the fourth data latching device 334 outputs a high-level signal. Therefore, the NMOS transistors of the second and fourth buffers 352 and 354 are turned on, and the voltage levels of the second and fourth nodes N2 and N4 become low. Accordingly, the second pull-down transistor NM2 is turned on by a high-level second pull-down control signal NB2. As a result, a low-level second output data DQ2 is output to the outside. When the first and second buffer control signals PTRST_1 and PTRST_2 are disabled to a low level, the operation of the data output circuit of FIG. 6 is similar to that of the data output circuit of FIG. 5. In this case, the even buffer control The signal PTRST_E & odd buffer control signal PTRST_0 is disabled to a low level. Therefore, when the first and second buffer control signals PTRST_1 and PTRST_2 are disabled to a low level, the first and second pull-up transistors PM1 and PM2 and the first and second pull-down transistors NM1 and NM2 are turned off. The first and second data output drivers 4 1 0 and 420 are caused to output high-impedance data. 87976 -20-As described above, the stubby Baco output buffer according to the present invention uses two data input magic outputs to latch and output two-bit data in the single data rate mode. As shown in Figures 5 and 6, the structure of the asset output circuit used for 雔 雔, 4 ^ ^.,, 楱 rate and single data rate mode is the same. N data in the data input path; ^ output in dual data rate mode ^ The output driver 42 is connected to the data for Γ, and the second data output driver 420 is connected to the data output of :: early = mode The data in the circuit is input E ^ :, where the Nd ~ I knife used to latch and output the first data D1 and output the first data D1 is used to make the odd data D 〇 part is used for electricity, and the child Used in the circuit for latching and input. The knife, the latch and the output of the second data D2, because the data output data output according to the present invention ^ pin knows the power; each does not need a dedicated single data rate read state, so the data output buffer can be improved. effectiveness. ^ The present invention and the conventional data output circuit of Figs. 2 and 3 make the effect of the present invention clearer. f Figure 1 and Figure 2 and Figure 5. In addition to Figure 2 including the second data output driver Cry 42, the traditional merger of single-funded operations "the use of the version of the invention," ~ Keyangbeike for the same circuit The data output circuit according to M (for the double lean rate) is the same as the data output circuits in Figures 2 and 5. The bit rate is different from the rate mode, in the single data rate grip, no Phases η and Λ ^ will be used. In Fig. 2 (the data output circuit is related to the odd-numbered data 1), say, m 丄 丨-out of the private road. More specifically / in the early shell material rate mode, use For receiving odd-numbered data D n * Buffer control operation _ | Lu Lu, —, countable a # refers to ST-0 and odd-numbered clock CLK-0. The terminals are grounded 87976 -21 1222083 and fixed at -low level. In addition, the data ^ Lkdq (replaces even-numbered clock CLK), 帛 -data D1 (replaces even-numbered data D- £), and buffer control signal PTRST (replaces even-numbered buffer control signal pTRsT e) are input at the output, which causes the data output of FIG. 2 The circuit operates in single data rate mode. Therefore, 'only the first and third data latching devices ⑶ and (3) The first and third level conversion units 141 and ⑷ and the first and third buffers 151 and 153, however, the second and fourth data latching devices η] and η *,
第二及第四位準轉換單元142及144及第二及第四缓衝器 152及 154 〇 因此’圖2之傳統資料輸出電路需要專用單資料率資料輸 出電路,如圖3所示。 二:而根據本發明之具體實施例的資料輸出電路可如圖$ 所示設定用於雙資料漆< 播斗、 … 、 ,、科羊杈式,且如圖6所示設定用於單資料 率扠式挺s <,根據本發明之具體實施例之資料輸出電 各可用A雙@料率模式及單資料率模式。 傳統:料輸出電路兼需圖2及3之資料輸出電路。此處,· 圖2(貝料‘出電路可用於雙資料率模式及單資料率模式;· 然而,圖3 >咨κ 土人 <頁科和出電路僅用於單資料率模式。因此,所 需的資料缓衝哭齡θ ^ , ' 郎數目增加,半導體記憶體裝置的尺寸增加。 相比之下,太又义Dn 、 _ &月之具體實施例降低了所需的資料緩衝 W二目处而降低了半導體記憶體裝置的尺寸。 、、、根據本發明其他具體實施例之半導體記憶體裝 置的資料輸出兩放、、 、… %各 < 万塊圖。根據本發明另一項具體實施 例之半導體記情骨番壯班 — UL的貧料輸出電路包括一資料輸出緩 87976 -22 - 1222083 衝為5 0 0 第一貝料輸出驅動器610及一第二資料輸出驅 動器(未顯示)。 除了進一步包括開關SW5至SW8,圖7之資料輸出緩衝器 500的結構類似於圖3之資料輸出緩衝器3〇〇的結構。驅動器 321至324驅動從貧料鎖存器311至314接收的資料,以輸出 上拉控制信號ΡΒ1 —1及ΡΒ2—丨與下拉控制信號nbi j及 , ΝΒ2一1。當開關SW5至SW8處於開啟狀態時,產生與上拉控 制信號ΡΒ1 —1及ΡΒ2—1、下拉控制信號ΝΒ1 —1&ΝΒ2 —丨相同 · 的上拉控制化號ΡΒ1—2及ΡΒ2—2與下拉控制信號ΝΒ1—2及 ΝΒ2 2。 圖8之第一資料輸出驅動器61〇包括兩個上拉電晶體 PMl一l及PMl—2與兩個下拉電晶體NM1 — 1及NM1—2。分別回 應上拉控制信號ΡΒ1 —1及ρΒ1—2而開啟上拉電晶體pMl —丨及The second and fourth level conversion units 142 and 144 and the second and fourth buffers 152 and 154. Therefore, the traditional data output circuit of FIG. 2 requires a dedicated single data rate data output circuit, as shown in FIG. 2: The data output circuit according to a specific embodiment of the present invention can be set as shown in Figure $ for dual data paint < seeding bucket, ...,, and branch sheep type, and set as shown in Figure 6 for single The data rate fork type s < according to the specific embodiment of the present invention, the data output circuit can be used in A double @ material rate mode and single data rate mode. Traditional: The material output circuit also needs the data output circuit of Figures 2 and 3. Here, Fig. 2 (the material output circuit can be used in the dual data rate mode and the single data rate mode; however, Fig. 3 > κκ 土人 &&; page and output circuit are only used in the single data rate mode. Therefore, the required data buffer age θ ^, ′ increases, and the size of the semiconductor memory device increases. In contrast, the specific embodiment of Dn, _ & month reduces the required data. The buffer W reduces the size of the semiconductor memory device. According to the invention, the data output of the semiconductor memory device according to other specific embodiments of the present invention is two-amplified, each of the < million blocks. According to the present invention Another embodiment of the semiconductor memory memory class-UL's lean output circuit includes a data output buffer 87976 -22-1222083 punched to 5 0 0 first shell output driver 610 and a second data output driver (Not shown). The structure of the data output buffer 500 of FIG. 7 is similar to the structure of the data output buffer 300 of FIG. 3 except that switches SW5 to SW8 are further included. The drivers 321 to 324 drive the slave latch 311. To 314 received To output pull-up control signals PB1 — 1 and PB2 — 丨 and pull-down control signals nbi j and, NB2 — 1. When the switches SW5 to SW8 are on, generate and pull-up control signals PB1 -1 and PB2 -1, Pull-down control signals NB1 — 1 & NB2 — The same pull-up control numbers PB1-2 and PB2-2 and pull-down control signals NB1-2 and NB2 2. The first data output driver 61 of FIG. 8 includes two pull-up control signals. The pull-up transistors PMl-1 and PMl-2 and the two pull-down transistors NM1-1 and NM1-2. The pull-up transistors pMl — 丨 are turned on in response to the pull-up control signals PB1 -1 and ρΒ1-2, respectively.
ΡΜ1一2,以輸出一高位準的輸出資料DQ。分別回應下拉控 制信號NB1 — 1及NB1—2而開啟下拉電晶體NM1 —1&NM1 2 ,以輸出一低位準的輸出資料DQ。 在圖8所示之本發明另一項具體實施例中,一資料輸出驅 動器610包括兩個上拉電晶體PM1 —1&pM1—2與兩個下拉電 晶體NM1 —1及NM1 一2。然而,可改變上拉電晶體與下拉電 晶體的數目。 根據本發明之具體實施例,可降低所需的資料緩衝器數 目,方式為:將合併單資料率/雙資料率半導體記憶體裝置 中的資料輸出緩衝器合併。因此,可縮小半導體記憶體裝 置的尺寸。此外,藉由減少資料缓衝器的數目,可減少驅 87976 -23 - 1222083 動資料輸出驅動器之信號間的扭斜。 現在將以非限制方式說明本發明的具體實施例。 根據本發明的一方面,在一合併單資料率/雙資料率半導 體記憶體裝置中提供一資料輸出電路,該資料輸出電路包 括··第一及第三資料鎖存器,在一雙資料率模式下,該等 第一及第三資料鎖存器回應一偶數時脈而鎖存偶數資料, · 並分別產生一第一上拉控制信號及一第一下拉控制信號, · 在一單資料率模式下,該等第一及第三資料鎖存器回應一 φ 資料輸出時脈鎖存第一資料,並分別產生該第一上拉信號 及該第一下拉信號;第二及第四資料鎖存器,在一雙資料 率模式下,該等第二及第四資料鎖存器回應一奇數時脈而 鎖存奇數資料,並分別產生該第一上拉控制信號及該第一 下拉控制信號,在一單資料率模式下,該等第二及第四資 料鎖存器回應該資料輸出時脈而鎖存第二資料,並分別產 生一第二上拉控制信號及一第二下拉控制信號;一第一資 料輸出驅動器,其回應該第一上拉控制信號及該第一下拉 鲁 控制信號而_將第一輸出觸點區驅動至一預定電壓位準;以 、 及一第二資料輸出驅動器,其回應該第二上拉控制信號及 該第二下拉控制信號而將一第二輸出觸點區驅動至一預定 電壓位準。 根據本發明之一項具體實施例,該第二資料輸出驅動器 可在單資料率模式下電連接至該等第二及第四資料鎖存器 ,且可在雙資料率模式下與該等第二及第四資料鎖存器分 離。 87976 -24- 根據本發明之另一方面之合併單資料率/雙資料率半導 體記憶體裝置中之另一資料輸出電路包括:一資料輸出緩 衝器,用於鎖存及輸出從一記憶體單元輸出的資料;以及 多個資料輸出驅動器,其回應該資料輸出缓衝器的一輸出 信號而產生輸出資料,其中該資料輸出缓衝器包括:一偶 數資料輸出缓衝器單元,在一雙資料率模式下,該偶數資 料輸出缓衝器單元回應一偶數時脈而鎖存並輸出偶數資料 ,該資料將被輸出至一第一資料接針,在一單資料率模式 下,該偶數資料輸出緩衝器單元回應一資料輸出時脈而鎖 存並輸出第一資料,該資料將被輸出至該第一資料接針; 以及一奇數資料輸出缓衝器單元,在一雙資料率模式下, 該奇數資料輸出緩衝器單元回應一奇數時脈而鎖存並輸出 奇數資料,該資料將被輸出至該第一資料接針,並回應該 資料輸出時脈而鎖存並輸出第二資料,該資料將被輸出至 一第二資料接針。 本發明之一項具體實施例可進一步包括:一第一資料輸 出驅動器、在雙資料率模式下,會將該第一資料輸出驅動 器電連接至該偶數資料輸出緩衝器單元及該奇數資料輸出 緩衝器單元,並且在單資料率模式下,將該第一資料輸出 驅動器連接至該偶數資料輸出緩衝器單元,且與該奇數資 料輸出單元分離;以及一第二資料輸出驅動器,其在單資 料率模式下電連接至奇數資料輸出緩衝器單元。 根據本發明之另一方面之合併單資料率/雙資料率半導 體記憶體裝置中之資料輸出電路包括:一資料輸出缓衝器 87976 -25 - ’其鎖存並輸出從_ 第-資料於Φ B fe’單元輸出的資爿,·以及第一及 Μ 其回應該資科輸出緩衝器的一輸出 k唬而驅動第一及第- 钿出 一知出觸點區至一預定電壓位準,Jt 中孩貧料輸出緩衝哭句虹 ^ …, 千具 … 叩括—弟一貧料輸出緩衝哭單亓3 ::!:輸出;衝器單元,”在,料會 ::寺弟及弟-貧料輪出缓衝器單元電連接至第一資料 =驅動器並鎖存將輪出至該第一輸出觸點區的偶峨: 及可數貧料,以回岸—昧^ 心時脈信唬的上升邊緣及下降邊缘, 且在一單資料率模式下,备 牛乂、、象 0壯β罘貝科輸出缓衝器單元 笔連接至該第一資料輸出 、竹掏出驅動斋,並鎖存將輸出至該第— 輸出觸點區的資料,以回岸時 u愿点呀脈^唬的上升邊緣或下 邊緣,以及將該第二資料輸出緩衝器單元電連接至該第二 資料輸出驅動器並鎖存將輸出至第二輸出觸點區的資料了 以回應该時脈仏號的上升邊緣或下降邊緣。 以上資料輸出電路可進一步包括:—第—時脈緩衝器, 器回應該時脈的上升 時脈;以及m緩衝器’在雙資 料率模式下’該第二時脈緩衝器回應該時脈的下降邊緣而 產生該奇數時脈,其中在單資料率模式下’該第—時脈緩 衝器係用以產生該資料輸出時脈。 雖然本發明已經參考其較佳具體實施例作特別顯示與說 明’不過熟習本技術之人士應知道各種變更的形式及細節 ,而不會脫離如隨附申請專利範圍所界定的本發明精神2 範噚。 87976 -26 - 1222083 【圖式簡單說明】 藉由詳細說明本發明之示範性具體實施例且參考附圖, 可更加明白本發明之具體實施例之以上方面及優點。 圖1為一傳統合併單資料率/雙資料率(SDr/ddr)半導體 記憶體裝置中的資料輸出電路之方塊圖。 圖2為傳統合併單資料率/雙資料率半導體記憶體裝置 中的口、併單貝料率/雙貧料率資料輸出電路之電路圖。 圖3為-傳統合併單資料率/雙資料率半導體記憶體裝置 中的專用單資料康咨冰止^ 、十羊貝枓輸出電路之電路圖。 圖4為根據本發明— — 、、' … /、具姐貫施例之合併單資料率/雙資 料率半導體記憶共士 、 &1置中之資料輸出電路的方塊圖。 圖5為根據本發 + 半道卿1-触 ”植貫施例之合併單資料率/雙資料率 千寸胆^己憶體裝晉击、 > ^ ^ 用於雙資料率模式的資料輸出電路 圖6為根據本夢 料輸出電路之^…、fa實施例之用於單資料率模式的資 办、电路圖。 出笔路的方塊圖 說明】 圖7及8為_根據 裝置中之資料輪 【圖式代表符號 100 111 121 112、 113 、 114 122 131 、 133 資料輸出緩衝器 資料鎖存器 驅動器 第一及第三資料鎖存裝置 87976 -27- 1222083 141 、 143 15卜 153 132 、 134 142 、 144 152 、 154 200 300 311 、 312 、 313 、 314 321 、 322 、 323 、 324 331 、 332 、 333 、 334 341 、 342 、 343 、 344 351 、 352 、 353 、 354 410 、 420 500 610PM1-2 to output a high-level output data DQ. In response to the pull-down control signals NB1-1 and NB1-2, the pull-down transistors NM1-1 & NM1 2 are turned on to output a low-level output data DQ. In another embodiment of the present invention shown in FIG. 8, a data output driver 610 includes two pull-up transistors PM1-_1 & pM1-2 and two pull-down transistors NM1-1-1 and NM1-2. However, the number of pull-up transistors and pull-down transistors can be changed. According to a specific embodiment of the present invention, the number of data buffers required can be reduced by merging the data output buffers in the combined single data rate / dual data rate semiconductor memory device. Therefore, the size of the semiconductor memory device can be reduced. In addition, by reducing the number of data buffers, skew between signals driving 87976 -23-1222083 moving data output drives can be reduced. Specific embodiments of the invention will now be described in a non-limiting manner. According to an aspect of the present invention, a data output circuit is provided in a combined single data rate / dual data rate semiconductor memory device. The data output circuit includes a first and a third data latches at a double data rate. In the mode, the first and third data latches latch even data in response to an even clock, and generate a first pull-up control signal and a first pull-down control signal, respectively, in a single data In the rate mode, the first and third data latches latch the first data in response to a φ data output clock, and generate the first pull-up signal and the first pull-down signal respectively; the second and fourth Data latches. In a dual data rate mode, the second and fourth data latches respond to an odd clock to latch odd data, and generate the first pull-up control signal and the first down respectively. Pull control signal, in a single data rate mode, the second and fourth data latches latch the second data in response to the data output clock, and generate a second pull-up control signal and a second Pull-down control signal; a first data Output driver, which drives the first output contact area to a predetermined voltage level in response to the first pull-up control signal and the first pull-down control signal; and a second data output driver, which returns A second pull-up control signal and the second pull-down control signal are used to drive a second output contact area to a predetermined voltage level. According to a specific embodiment of the present invention, the second data output driver can be electrically connected to the second and fourth data latches in a single data rate mode, and can be connected with the first and second data rates in a dual data rate mode. The second and fourth data latches are separated. 87976 -24- Another data output circuit in a combined single data rate / dual data rate semiconductor memory device according to another aspect of the present invention includes: a data output buffer for latching and outputting data from a memory cell Output data; and a plurality of data output drivers that generate output data in response to an output signal of the data output buffer, wherein the data output buffer includes an even data output buffer unit and a pair of data In the rate mode, the even data output buffer unit latches and outputs even data in response to an even clock. The data will be output to a first data pin. In a single data rate mode, the even data is output. The buffer unit responds to a data output clock to latch and output the first data, and the data will be output to the first data pin; and an odd data output buffer unit, in a double data rate mode, the The odd data output buffer unit latches and outputs the odd data in response to an odd clock. The data will be output to the first data pin and respond to the data. The output clock is used to latch and output the second data. This data will be output to a second data pin. A specific embodiment of the present invention may further include: a first data output driver, in a dual data rate mode, the first data output driver is electrically connected to the even data output buffer unit and the odd data output buffer A single data rate driver, and in a single data rate mode, the first data output driver is connected to the even data output buffer unit and separated from the odd data output unit; and a second data output driver at a single data rate It is electrically connected to the odd data output buffer unit in mode. According to another aspect of the present invention, a data output circuit in a combined single data rate / dual data rate semiconductor memory device includes: a data output buffer 87976-25-'which latches and outputs the data from _ 第-数据 在 Φ B fe 'unit outputs the information, and the first and the M respond to an output k of the asset output buffer to drive the first and the first-to know the contact area to a predetermined voltage level, Jt in the middle of the poor output buffer crying ^…, Qianju ... 叩 ——brother-a poor output buffer crying list 亓 3 ::!: Output; punch unit, "in, expected :: Temple brother and brother -The lean material output buffer unit is electrically connected to the first data = driver and latches the Omega which will be rotated out to the first output contact area: and countable lean material to return to shore-^ ^ heart clock The rising edge and falling edge of the signal are blunt, and in a single data rate mode, a sirloin, like 0 strong β 罘 Beco output buffer unit pen is connected to the first data output, bamboo pull out to drive fast, And latch the data that will be output to the first-output contact area, so that when you return to shore, you may click on the rising edge or the bottom edge And electrically connect the second data output buffer unit to the second data output driver and latch the data to be output to the second output contact area in response to the rising edge or falling edge of the clock mark. The data output circuit may further include: a first clock buffer, which responds to the rising clock of the clock; and the m buffer 'in the dual data rate mode', the second clock buffer responds to the falling of the clock The odd clock is generated at the edge, in the single data rate mode, 'the first clock buffer is used to generate the data output clock. Although the present invention has been specifically shown and explained with reference to its preferred embodiment' However, those skilled in the art should know the form and details of various changes without departing from the spirit of the present invention 2 as defined by the scope of the attached patent application. 87976 -26-1222083 [Simplified illustration of the drawing] By detailed explanation Exemplary embodiments of the present invention and the above aspects and advantages of the specific embodiments of the present invention can be more clearly understood with reference to the accompanying drawings. FIG. 1 shows a conventional combined single data rate / Data rate (SDr / ddr) block diagram of data output circuit in semiconductor memory device. Figure 2 is the traditional combined single data rate / dual data rate semiconductor memory device port, and single data rate / double lean data output The circuit diagram of the circuit. Fig. 3 is a circuit diagram of the output circuit of the dedicated single-data-computing and single-data output device in the conventional combined single-data-rate / dual-data-rate semiconductor memory device. Figure 4 is a circuit diagram according to the present invention. , '… /, A block diagram of the combined single data rate / dual data rate semiconductor memory, with & 1 centered data output circuit with the sister example. Figure 5 is based on the present invention + half Daoqing 1-touch "Combined single data rate / dual data rate thousand inch bile of the planting example ^ Jiyi body suit, > ^ ^ Data output circuit for dual data rate mode Figure 6 shows the output circuit according to this dream material ... , Fa embodiment of the single data rate mode of funding, circuit diagram. Block diagram description of pen-out path] Figures 7 and 8 are based on the data wheel in the device. [Schematic symbols 100 111 121 112, 113, 114 122 131, 133 Data output buffer data latch driver No. 1 and No. Three data latch devices 87976 -27- 1222083 141, 143 15 and 153 132, 134 142, 144 152, 154 200 300 311, 312, 313, 314 321, 322, 323, 324 331, 332, 333, 334 341, 342, 343, 344 351, 352, 353, 354 410, 420 500 610
CLK_E CLK_〇CLK_E CLK_〇
CLKDQCLKDQ
D_E D_〇 D1 D2 87976 - 28 -第一及第三位準轉換單元 第一及第三缓衝器 第二及第四資料鎖存裝置 第二及第四位準轉換單元 第二及第四缓衝器 資料輸出驅動器 資料輸出緩衝器 第一至第四資料鎖存器 第一及第四驅動器 資料鎖存裝置 位準轉換單元 缓衝器 第一及第二資料輸出驅動器 資料輸出缓衝器 第一資料輸出驅動器 偶數時脈 奇數時脈 資料輸出時脈 偶數資料 奇數資料 資料 第二資料 1222083 DQ、DQl、DQ2 INV、IV1、IV2 N1 、 N2、N3、N4 NANDI、NAND2 NB、NB1 1、NB2_1、NB1 、NB2_2 NB1、NB2 NM 卜 NM2、NM1J、NM1 N〇R1、N〇R2 NT1、NT2、NT3 〇T1 OT2 PB、PBl l、PB2_1、PB1 、PB2_2 PB1、PB2D_E D_〇D1 D2 87976-28-First and third level conversion units First and third buffers Second and fourth data latching devices Second and fourth level conversion units Second and fourth Buffer data output driver data output buffer first to fourth data latch first and fourth driver data latch device level conversion unit buffer first and second data output driver data output buffer A data output driver even clock odd clock data output clock even data odd data data second data 1222083 DQ, DQl, DQ2 INV, IV1, IV2 N1, N2, N3, N4 NANDI, NAND2 NB, NB1 1, NB2_1, NB1, NB2_2 NB1, NB2 NM NM2, NM1J, NM1 NoR1, NoR2 NT1, NT2, NT3 〇T1 OT2 PB, PB11, PB2_1, PB1, PB2_2 PB1, PB2
PM1、PM2、PM1_1、PM1 PT1、PT2、PT3 PTRST1 、 PTRST_2 PTRSTE SW1 - SW2> SW3 > SW4> S' 輸出資料 反相器 節點 NAND閘極 2 下拉控制信號 第一及第二下拉控制信號 2下拉電晶體 N〇R閘極 NMOS電晶體 第一輸出信號 第二輸出信號 2 上拉控制信號 第一及第二上拉控制信號 2上拉電晶體 PMOS電晶體 第一及第二缓衝器控制信號 偶數緩衝器控制信號 、SW6、SW7、SW8 開關 -29 - 87976PM1, PM2, PM1_1, PM1 PT1, PT2, PT3 PTRST1, PTRST_2 PTRSTE SW1-SW2 > SW3 > SW4 > S 'output data inverter node NAND gate 2 pull-down control signal first and second pull-down control signal 2 pull-down Transistor NOR gate NMOS transistor first output signal second output signal 2 pull-up control signal first and second pull-up control signal 2 pull-up transistor PMOS transistor first and second buffer control signal Even buffer control signal, SW6, SW7, SW8 switch-29-87976
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0057454A KR100486263B1 (en) | 2002-09-19 | 2002-09-19 | Data output circuit in SDR/DDR combined semiconductor memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200405354A TW200405354A (en) | 2004-04-01 |
TWI222083B true TWI222083B (en) | 2004-10-11 |
Family
ID=31987501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092125959A TWI222083B (en) | 2002-09-19 | 2003-09-19 | Data output circuit in combined SDR/DDR semiconductor memory device |
Country Status (4)
Country | Link |
---|---|
US (1) | US6870776B2 (en) |
JP (1) | JP2004111041A (en) |
KR (1) | KR100486263B1 (en) |
TW (1) | TWI222083B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7196550B1 (en) * | 2003-06-26 | 2007-03-27 | Cypress Semiconductor Corporation | Complementary CMOS driver circuit with de-skew control |
KR100741978B1 (en) * | 2005-09-16 | 2007-07-23 | 삼성에스디아이 주식회사 | Clock generator and organic electroluminescent display device for having the same |
US7440343B2 (en) * | 2005-09-29 | 2008-10-21 | Hynix Semiconductor Inc. | Output driving device |
KR100752650B1 (en) * | 2006-01-13 | 2007-08-29 | 삼성전자주식회사 | Tri-state output driver arranging method and semiconductor memory device using the same |
KR100776740B1 (en) * | 2006-05-08 | 2007-11-19 | 주식회사 하이닉스반도체 | Data Output Apparatus and Method of Semiconductor Memory |
KR100911197B1 (en) * | 2007-12-27 | 2009-08-06 | 주식회사 하이닉스반도체 | Data Output Circuit in Semiconductor Memory Apparatus |
KR100919809B1 (en) * | 2008-03-17 | 2009-10-01 | 주식회사 하이닉스반도체 | Write Driver |
US7888966B1 (en) * | 2010-03-25 | 2011-02-15 | Sandisk Corporation | Enhancement of input/output for non source-synchronous interfaces |
KR101147360B1 (en) | 2010-08-31 | 2012-05-23 | 매그나칩 반도체 유한회사 | Buffering circuit and semiconductor device of the same |
US9787995B2 (en) * | 2014-05-06 | 2017-10-10 | Novatek Microelectronics Corp. | Source driver, driving circuit and display apparatus |
TWI563481B (en) * | 2014-05-06 | 2016-12-21 | Novatek Microelectronics Corp | Source driver, driving circuit and display apparatus |
FR3066033B1 (en) * | 2017-05-05 | 2019-06-21 | Stmicroelectronics (Rousset) Sas | BUFFER STAGE DEVICE, PARTICULARLY ABLE TO BE CONNECTED TO A BUS OF THE SERIAL PERIPHERAL INTERFACE TYPE |
JP2019053656A (en) * | 2017-09-19 | 2019-04-04 | 東芝メモリ株式会社 | Semiconductor memory device |
US10580476B2 (en) | 2018-01-11 | 2020-03-03 | International Business Machines Corporation | Simulating a single data rate (SDR) mode on a dual data rate (DDR) memory controller for calibrating DDR memory coarse alignment |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950000496B1 (en) * | 1992-01-30 | 1995-01-24 | 삼성전자 주식회사 | Data output circuit of semiconductor memory device |
JP3945894B2 (en) * | 1997-04-21 | 2007-07-18 | 富士通株式会社 | Semiconductor device and signal input state detection circuit |
JP3788867B2 (en) * | 1997-10-28 | 2006-06-21 | 株式会社東芝 | Semiconductor memory device |
KR100252057B1 (en) * | 1997-12-30 | 2000-05-01 | 윤종용 | Semiconductor memory device usable in SDR and DDR |
KR100278653B1 (en) * | 1998-01-23 | 2001-02-01 | 윤종용 | Double data rate semiconductor memory device |
JP2000067577A (en) * | 1998-06-10 | 2000-03-03 | Mitsubishi Electric Corp | Synchronous semiconductor memory |
JP3604291B2 (en) * | 1998-10-08 | 2004-12-22 | 富士通株式会社 | Memory device with double-rate input / output circuit |
JP2000228085A (en) * | 1999-02-05 | 2000-08-15 | Nec Corp | Output circuit and synchronous dram using the same |
JP3416083B2 (en) * | 1999-08-31 | 2003-06-16 | 株式会社日立製作所 | Semiconductor device |
JP2001101860A (en) * | 1999-09-28 | 2001-04-13 | Mitsubishi Electric Corp | Semiconductor memory |
DE10034899C1 (en) * | 2000-07-18 | 2002-07-04 | Infineon Technologies Ag | System for testing fast synchronous semiconductor circuits |
US6549470B2 (en) * | 2000-08-31 | 2003-04-15 | United Memories, Inc. | Small signal, low power read data bus driver for integrated circuit devices incorporating memory arrays |
-
2002
- 2002-09-19 KR KR10-2002-0057454A patent/KR100486263B1/en active IP Right Grant
-
2003
- 2003-07-30 US US10/631,414 patent/US6870776B2/en not_active Expired - Lifetime
- 2003-09-19 TW TW092125959A patent/TWI222083B/en not_active IP Right Cessation
- 2003-09-19 JP JP2003327251A patent/JP2004111041A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TW200405354A (en) | 2004-04-01 |
JP2004111041A (en) | 2004-04-08 |
KR20040025477A (en) | 2004-03-24 |
US6870776B2 (en) | 2005-03-22 |
KR100486263B1 (en) | 2005-05-03 |
US20040057322A1 (en) | 2004-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI222083B (en) | Data output circuit in combined SDR/DDR semiconductor memory device | |
TW594757B (en) | Semiconductor device saving data in non-volatile manner during standby | |
TWI222073B (en) | Multiple bank simultaneous operation for a flash memory | |
US6172918B1 (en) | Semiconductor memory device allowing high-speed operation of internal data buses | |
TWI478172B (en) | Word-line driver using level shifter at local control circuit | |
JP3209485B2 (en) | Synchronous memory device with automatic precharge function | |
TWI221963B (en) | Data and data strobe circuits and operating protocol for double data rate memories | |
TWI253587B (en) | Serializer and method of serializing parallel data into serial data stream | |
JP2010040159A (en) | Semiconductor memory device | |
TWI287911B (en) | Latch-based serial port output buffer | |
TWI770313B (en) | Semiconductor devices | |
US6940321B2 (en) | Circuit for generating a data strobe signal used in a double data rate synchronous semiconductor device | |
JP2013073663A (en) | Semiconductor device | |
TW200523941A (en) | Circuit for generating data strobe signal in semiconductor device and method thereof | |
TW200418268A (en) | Synchronous mirror delay (SMD) circuit and method including a counter and reduced size bi-directional delay line | |
TW561493B (en) | Semiconductor memory device | |
CN108022609A (en) | Multiport memory and semiconductor devices | |
JP4383028B2 (en) | Semiconductor memory device and control method thereof | |
JP6878745B2 (en) | Marching memory and computer system | |
TWI313459B (en) | Write circuit of memory device and method for driving the same | |
TW448562B (en) | Static random access memory | |
TW449750B (en) | Semiconductor memory device and system | |
JP4342467B2 (en) | Semiconductor memory | |
JP3861031B2 (en) | Semiconductor integrated circuit | |
TWI804803B (en) | Clock converting circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |