TWI221826B - Mold core preparation method by using chemical self-assembly process - Google Patents

Mold core preparation method by using chemical self-assembly process Download PDF

Info

Publication number
TWI221826B
TWI221826B TW92136949A TW92136949A TWI221826B TW I221826 B TWI221826 B TW I221826B TW 92136949 A TW92136949 A TW 92136949A TW 92136949 A TW92136949 A TW 92136949A TW I221826 B TWI221826 B TW I221826B
Authority
TW
Taiwan
Prior art keywords
substrate
self
mold
chemical
layer
Prior art date
Application number
TW92136949A
Other languages
Chinese (zh)
Other versions
TW200521072A (en
Inventor
Kun-Chih Pan
Jauh-Jung Yang
Chuan-Kang Mu
Ming-Yueh Liu
Heng-Chun Huang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW92136949A priority Critical patent/TWI221826B/en
Application granted granted Critical
Publication of TWI221826B publication Critical patent/TWI221826B/en
Publication of TW200521072A publication Critical patent/TW200521072A/en

Links

Abstract

This invention relates to a chemical self assembly process to prepare the core of a mold. This process involves the formation of the self-assembled monolayer (SAM) as a basis of the mold core preparation by capitalizing on the chemical self assembly phenomenon. The major steps of the process include: prepare a substrate; form a chemical self assembly monolayer on the substrate; add a granule-containing solution to form a specifically-arrayed granular layer on the chemically-formed SAM; form an electroforming seed layer to wrap the above plural granular entities, the chemically-formed SAM, and the substrate; proceed with electroforming to form along the top of the electroforming seed layer a main body layer of metallic mold core; and finally by removing the plural granular entities, the chemically-formed SAM, and the substrate, the metallic core with specifically-arrayed lumpy pattern will be formed by the main body layer of metallic core layer.

Description

1221826 玖、發明說明: 【發明所屬之技術領域】 自,作娜制是㈣一種利 用化學自組裝製程以製倾仁之方法。更詳而言之,本發 奈米技術之中 法係可用來製作微/奈米等級之模仁以應用於各式 【先前技術】 「自組裝」(Self A_bi欣存姐辟及生化系統中 隨處可見的-種現象’其主要是指多種不同域的分子, 受到分子_共價鍵作用力㈣響,依熱力學最安定之狀 態,合’而自然發生自組裝排列的現象。其特色為以非常 簡單而直接形成奈米大小的分子,且幾乎不料加太多的 能量’進行製造組裝的程序;也可能因此帶來低廉的製造 成本及簡便的操作、設備。 自組裝技術多應用在分子大小之奈米級尺寸下,將分子 與分子在適當條件控制下,(1)透過共價鍵將小分子結合, 而^/成元整的巨分子,(2)再透過氫鍵、凡得瓦爾力及其他 非共價鍵(靜電力、親疏水作用力等)的協同作用,形成複雜 穩定的結構;(3)由一個或多個大分子作為結構基石,經多 次重複的自組裝過程,排列成奈米結構。目前「自組裝」 在奈米科技應用上仍以「自組裝單分子膜層」 (Self-Assembled Monolayer,SAM)較為成熟且成果效彰 顯,如··防水、防銹、防腐蝕、满滑、接著(Adhesi〇n)及介 5 面(Interface)等已有革命性的成效。自組裝單分子膜層之 成機構如圖-所示,將基材Π浸泡在調@&好的溶液中,於 基材11取出後,溶液中的雙官能基分子12會透過物理吸 附及化學卿的作用力,在基材u表面覆蓋上—層 自組裝單分子朗η。接著再將整健材浸人含有複數 粒子14之溶液中,則自組裝單分子膜層13之另一端 基遂可吸附該複數個粒子14以形成最密之單層堆積。月b ,本發明遂利用此-自組裝單分子膜層之特性來製 米等級的模仁構造,其遂可提供-低成本及快速之方法 製造微米技術所需之各式模仁結構。 【發明内容】 本發明之主要目的係提供一種利用化學自組装製 模仁製作方法,藉由精密控制單分子層位置與密戶 以達完成奈米等級之模仁結構的功效。 、又式 本發明之又-目義提供—種· 其可用於奈米透辦構之^ = 軸細 模本㈣-細b學自峨程之 ⑻,#罐嫩㈣梅基分子形 ⑼於該基板上方形成一化學自組裝單分子層; ((0^化2組裝單分子層上方形麟定彻之複數個顆 、該複數個顆粒體與該化學自組裝單分子層之 間係形成化學鍵結; _成1_子層將該複數個顆粒想、該化學自组裝單 分子層以及該基板包覆於内; ^行電碡製程,其係沿著該電鑄種子層上方形成一 模仁主體層;以及 ω去除該基板、該化學自組裝單分子層以及該複數個顆粒 體,則該金屬模仁主體層遂可形成表面具有特定凹凸排 列圖案之一金屬模仁。 為達上述之目的,本發明一種利用化學自組裝製程之模 仁製作方法的另一實施方式,其係包括: (a)提供一基板; (b)於該基板上方形成特定形狀之一隆起結構,該隆起結構 之表面係經過處理而可與雙官能基分子形成化學鍵結; ⑹於該隆起結構上方形成一化學自組裝單分子層; ⑷於該化學自組裝單分子層上方形成特定排列之複數個顆 粒體,其中該複數個顆粒體與該化學自組裝單分子層之 間係形成化學鍵結; (e) 形成一電鑄種子層將該複數個顆粒體、該化學自組裝單 分子層、該隆起結構以及該基板包覆於内; (f) 進行電鎊製程,其係沿著該電鑄種子層上方形成一金屬 模仁主體層;以及 (g) 去除該基板、該隆起結構、該化學自組裝單分子層以及 該複數個顆粒體,則該金屬模仁主體層遂可形成表面具 有特定凹凸排列圖案之一金屬模仁。 【實施方式】 以下將舉出較佳實施例以詳細說明本發明之詳細手 段、動作方式、達成功效以及本發明的其他技術特徵。 請參考圖二A至圖二F,其係為本發明一種利用化學自 組裝製程之模仁製作方法的第一較佳實施例。首先係提供 一基板21 ’該基板21可為矽基板或玻璃基板等任何形式, 其表面可以為凹面、凸面或是任何具有圖案之表面,較佳 者,基板21之表面可經過處理而與雙官能基分子形成化學 鍵結,例如形成一薄膜層22,該薄膜層22之材料可為金屬 層或是一二氧化矽層。接著於基板21(薄膜層22)上方形成一、 化學自組裝單分子層23,其形成方式係將基板21浸沒於含 有複數個雙官能基分子之甲醇或己烧溶液之中,則雙官能 基分子之其中一端官能基便可與基板21之表面形成化學鍵 結,其遂可自然地形成一化學自組裝單分子層23。 接著再將整個基板21浸沒於含有複數個特定顆粒之溶 液之中,則化學自組裝單分子層23上方便可自然地形成特 疋排列之複數個顆粒體24,其主要原理係利用化學自組裝 單分子層23之另一端官能基來吸附這些顆粒體24而形成化 學鍵結。如此一來顆粒體24遂可依最密堆積之方式自組裝 於基板21上,其中該顆粒可為金粒或是二氧化矽顆粒體等 所有大小均勻一致之顆粒類型,且其形狀可為球體亦可為 1221826 方體等任何型態。之後再利用無電電鍍、有電電錄或是賤 鍍等方式形成一電鑄種子層25於其最外層,則可將複數個 顆粒體24、化學自組裝單分子層23以及基板21包覆於内。 接著進行電鑄製程以沿著電鑄種子層25表面形成一金屬模 仁主體層26。最後依序去除基板21、化學自組裝單分子層 23以及複數個顆粒體24,則該金屬模仁主體層26便可形成 表面具有特定凹凸排列圖案之一金屬模仁。 圖二A至圖二G係本發明一種利用化學自組裝製程之 模仁製作方法的第二較佳實施例。與第一較佳實施例相同 的是,首先係提供一基板31,較佳者,基板31之表面可經 過處理形成一薄膜層32而使得基板表面可與雙官能基分子 形成化學鍵結。接著於基板31(薄膜層32)上方形成一化學自 組裝單分子層33 ,其形成方式與第一較佳實施例不同的是、 係利用微接觸轉印(micro contact printing)之方式達成。 如圖所示,首先係提供一表面具有特定凹凸排列圖案 之一母模41,較佳者,該母模41之材料係可為聚二甲基矽 氧烷(PDMS)。接著使母模41具有凹凸圖案之表面沾黏複數 個雙官能基分子33,再將母模41沾有該雙官能基分子之表 面接觸基板31之表面,則雙官能基分子之其中一端官能基 係可與基板31表面形成化學鍵結,進而於基板31上形成相 對應於母模41表面之特定圖案所排列之一化學自組裝單分 子層33。其中母模41表面沾黏雙官能基分子係屬物理現 象’其吸附能力較差,而雙官能基分子與基板表面之結合 乃屬化學鍵結’因此可順利地把雙官能基分子轉移至基板 9 31上。此外,在本較佳實施例中,母模41係為一平板結構, 較佳者,其亦可為-圓柱雜狀結構,以軸轉印之方式 將具有特賴財仅雙官奸卿至級31上以形 成化學自組裝單分子層33。 、接著如第一較佳實施例之後續步驟,將整個基板31浸 沒於含有複數個金粒或是二氧化矽顆粒體之溶液之中,則 化學自組裝單分子層33上方便可自然地形成特定排列之複 數個顆粒體34。於本實施例中,由於化學自組裝單分子層 33係為特定排列之圖案而非一全面平坦之一薄膜層,因此 該複數個顆粒體34遂可依照化學自組裝單分子層33之圖案 而繼續堆疊而成相應之圖案,如此便可控制所欲製造之模 仁圖案的間隙與大小。再利用無電電鍍、有電電鍍或是濺 錢等方式形成一電鑷種子層35於其最外層,再進行電鑄製》 程,便可沿著電鑄種子層35表面形成一金屬模仁主體層 36。最後依序去除基板31、化學自組裝單分子層33以及複 數個顆粒體34,則該金屬模仁主體層36便可形成表面具有 特定凹凸排列圖案之一金屬模仁。 此外,於本較佳實施例中形成化學自組裝單分子層33 後更可包括有一步驟,如圖四A至圖四B所示,其係利用呈 現特定排列圖案之化學自組裝單分子層33作為蝕刻遮罩以 進行蝕刻程序,可於基板31表面無該化學自組裝單分子層 33所覆蓋之區域向下形成適當深度之複數個凹槽311。接著 依序進行顆粒體34的鍵結,電鑄種子層35之覆蓋以及金屬 模仁主艘層36之電鎮成形,如此一來便可提供又一金屬模 1221826 仁圖案之實施態樣。 - 請參考附件-’其係為細複眼之結構圖。如圖所示, 此-結構可視為於-半雜之_表面再佈滿複數個陣列 狀排列之微小透境。根據研究發現,以此方式所形成之透 境結構表面係具有良好的抗反射效果,其係可應用在通訊 方面以減少不必要之訊號散射和消耗。本發明之方法尤可 輕易的製造相同之3D陣列透境結構,使得本發明之技術更 具有產業之可利用性。1221826 发明 Description of the invention: [Technical field to which the invention belongs] Self-made system is a method of making dumplings by using chemical self-assembly process. More specifically, the French system of this Nano technology can be used to make micro / nano-level mold kernels for various types of [prior art] "self-assembly" (Self A_bi Xincun sister and biochemical system) The "phenomenon that can be seen everywhere" mainly refers to a variety of molecules in different domains, which are resounded by the molecular-covalent bond force, and according to the most stable state of thermodynamics, the phenomenon of self-assembly and arrangement occurs naturally. Its characteristics are as follows: It is very simple and directly forms nano-sized molecules, and it is hardly expected to add too much energy to the process of manufacturing and assembly; it may also bring low manufacturing costs and simple operations and equipment. Self-assembly technology is mostly used in molecular size Under the nanometer size, the molecules and molecules are controlled under appropriate conditions, (1) small molecules are bonded through covalent bonds, and ^ / singular integer macromolecules, (2) then hydrogen bonds, Van der Waals forces And other non-covalent bonds (electrostatic forces, hydrophilic and hydrophobic interaction forces, etc.) to form a complex and stable structure; (3) one or more macromolecules as the structural cornerstone, repeated repeated self-assembly processes Arranged into a nano structure. At present, "self-assembly" is still more mature and the results are more prominent in the application of nano-technology, such as "Self-Assembled Monolayer (SAM)," such as waterproof, rust-proof, Anti-corrosion, full slip, adhesion, and interface have revolutionary effects. The mechanism of the self-assembled monomolecular film layer is shown in Figure-. & In a good solution, after the substrate 11 is taken out, the bifunctional molecule 12 in the solution will cover the surface of the substrate u with a layer of self-assembled single-molecule Lang η through physical adsorption and the action of the chemistry. The whole material is immersed in a solution containing a plurality of particles 14, and the other end group of the self-assembled monomolecular film layer 13 can then adsorb the plurality of particles 14 to form the densest single-layer stack. Month b, the present invention Utilizing the characteristics of the self-assembled monomolecular film layer to make a mold-level mold core structure, it can provide a low-cost and fast method for manufacturing various mold core structures required by micron technology. [Summary of the Invention] The present invention The main purpose is to provide a chemical self-assembly system Kernel production method, by precisely controlling the position of the monomolecular layer and the dense house to achieve the effect of the mold kernel structure of the nanometer grade. ^ = Axial stencils-㈣b Learn from Echeng Zhi, # cannen ㈣Meji molecular form 上方 on the substrate to form a chemical self-assembled monomolecular layer; ((0 ^ 化 2assemble monolayer The plurality of square-shaped lindrites form a chemical bond between the plurality of particles and the chemical self-assembling monolayer; the _forming 1_ sublayer considers the plurality of particles and the chemical self-assembling single molecule. Layer and the substrate are coated inside; ^ performing an electric process, which forms a mold core body layer along the electroformed seed layer; and ω removes the substrate, the chemical self-assembled monomolecular layer, and the plurality of particles Body, the metal mold core layer can then form a metal mold core with a specific uneven pattern on the surface. In order to achieve the above-mentioned object, another embodiment of a method for manufacturing a mold kernel using a chemical self-assembly process according to the present invention includes: (a) providing a substrate; (b) forming a raised structure with a specific shape above the substrate The surface of the raised structure can be treated to form a chemical bond with a bifunctional molecule; ⑹ A chemical self-assembled monomolecular layer is formed above the raised structure; 特定 A specific array of plural numbers is formed above the chemical self-assembled monomolecular layer Particles, wherein the plurality of particles and the chemically self-assembled monomolecular layer form a chemical bond; (e) forming an electroformed seed layer, the plurality of particles, the chemically self-assembled monolayer, the The raised structure and the substrate are covered inside; (f) an electric pound process is performed, which forms a metal mold core layer along the electroformed seed layer; and (g) removes the substrate, the raised structure, the chemical The self-assembled monomolecular layer and the plurality of particles can form the metal mold core layer with a specific concave-convex pattern on the surface. [Embodiment] Hereinafter, preferred embodiments will be listed to explain in detail the detailed methods, operation modes, achieving effects, and other technical features of the present invention. Please refer to FIG. 2A to FIG. 2F, which are a first preferred embodiment of a method for manufacturing a mold kernel using a chemical self-assembly process according to the present invention. First, a substrate 21 is provided. The substrate 21 can be any form such as a silicon substrate or a glass substrate, and its surface can be concave, convex, or any surface with a pattern. Preferably, the surface of the substrate 21 can be treated and doubled. The functional molecules form a chemical bond, for example, a thin film layer 22 is formed. The material of the thin film layer 22 may be a metal layer or a silicon dioxide layer. Next, a chemically self-assembled monomolecular layer 23 is formed on the substrate 21 (thin film layer 22). The formation method is that the substrate 21 is immersed in a methanol or sintered solution containing a plurality of bifunctional molecules. A functional group at one end of the molecule can form a chemical bond with the surface of the substrate 21, which can naturally form a chemical self-assembled monomolecular layer 23. Then, the entire substrate 21 is immersed in a solution containing a plurality of specific particles, and the chemically self-assembled monomolecular layer 23 can naturally form a plurality of particles 24 in a special arrangement. The main principle is to use chemical self-assembly The functional group at the other end of the monolayer 23 adsorbs these particles 24 to form a chemical bond. In this way, the particles 24 can be self-assembled on the substrate 21 in the most densely packed manner. The particles can be gold particles or silicon dioxide particles and all particles of uniform size, and the shape can be a sphere. Can also be any type such as 1221826 cube. Then, an electroformed seed layer 25 is formed on the outermost layer by means of electroless plating, electric recording or low-level plating, etc., and a plurality of particles 24, a chemically self-assembled monomolecular layer 23, and a substrate 21 may be coated therein. . An electroforming process is then performed to form a metal mold core layer 26 along the surface of the electroforming seed layer 25. Finally, the substrate 21, the chemically self-assembled monomolecular layer 23, and the plurality of particles 24 are sequentially removed, and the metal mold core layer 26 can form a metal mold core having a specific uneven pattern on the surface. Figures 2A to 2G show a second preferred embodiment of a method for manufacturing a mold kernel using a chemical self-assembly process according to the present invention. As with the first preferred embodiment, a substrate 31 is provided first. Preferably, the surface of the substrate 31 can be processed to form a thin film layer 32 so that the surface of the substrate can form a chemical bond with the bifunctional molecule. Then, a chemical self-assembled monomolecular layer 33 is formed on the substrate 31 (thin film layer 32). The formation method is different from that of the first preferred embodiment by using micro contact printing. As shown in the figure, a master mold 41 having a specific uneven pattern on the surface is first provided. Preferably, the material of the master mold 41 may be polydimethylsiloxane (PDMS). Next, the surface of the master mold 41 having a concave-convex pattern is adhered to a plurality of bifunctional molecules 33, and then the surface of the master mold 41 with the difunctional molecules is in contact with the surface of the substrate 31, and one end of the bifunctional molecules is a functional group It is capable of forming a chemical bond with the surface of the substrate 31, and then forming a chemical self-assembled monomolecular layer 33 on the substrate 31 arranged corresponding to a specific pattern on the surface of the master mold 41. The adhesion of the bifunctional molecule on the surface of the master mold 41 is a physical phenomenon 'its adsorption capacity is poor, and the combination of the bifunctional molecule and the substrate surface is a chemical bond', so the bifunctional molecule can be smoothly transferred to the substrate 9 31 on. In addition, in the present preferred embodiment, the female mold 41 is a flat plate structure. Preferably, it can also be a cylindrical hybrid structure. The shaft transfer method will have only two official positions. Stage 31 to form a chemically self-assembled monolayer 33. Then, as in the subsequent steps of the first preferred embodiment, the entire substrate 31 is immersed in a solution containing a plurality of gold particles or silicon dioxide particles, and the chemical self-assembled monomolecular layer 33 can be formed naturally. A plurality of particles 34 in a specific arrangement. In this embodiment, since the chemical self-assembled monomolecular layer 33 is a pattern of a specific arrangement rather than a fully flat thin film layer, the plurality of particles 34 can then follow the pattern of the chemical self-assembled monomolecular layer 33. Continue stacking to form corresponding patterns, so you can control the gap and size of the mold core pattern you want to make. Then use electroless plating, electroplating or money splashing to form an electric tweezers seed layer 35 on its outermost layer, and then perform the electroforming process to form a metal mold body along the surface of the electrocasting seed layer 35 Layer 36. Finally, the substrate 31, the chemically self-assembled monomolecular layer 33, and the plurality of particles 34 are sequentially removed, and the metal mold core layer 36 can form a metal mold core having a specific uneven pattern on the surface. In addition, after forming the chemical self-assembled monomolecular layer 33 in the preferred embodiment, a step may be included, as shown in FIGS. 4A to 4B, which uses the chemical self-assembled monomolecular layer 33 exhibiting a specific arrangement pattern. As an etching mask to perform the etching process, a plurality of grooves 311 of an appropriate depth can be formed downward on the surface of the substrate 31 without the area covered by the chemical self-assembled monomolecular layer 33. Then, the bonding of the granules 34, the covering of the electroformed seed layer 35, and the electric ball forming of the main mold layer 36 of the metal mold are sequentially performed, so that another embodiment of the metal mold 1221826 core pattern can be provided. -Please refer to the appendix-’This is a detailed compound eye structure. As shown in the figure, this structure can be regarded as a semi-transparent surface with a number of tiny penetrating arrays arranged in an array. According to the research, the permeable structure surface formed in this way has a good anti-reflection effect, and it can be used in communication to reduce unnecessary signal scattering and consumption. The method of the present invention can particularly easily manufacture the same 3D array permeable structure, making the technology of the present invention more industrially applicable.

)主 A 凊參考圖五A至圖五F,其係為本發明一種利用化學自 組裝製程之模仁製作方法的第三較佳實施例。首先,係提 供基板51,再於該基板上方形成特定形狀之一隆起結構 52,其形成方式可將一可塑形材料塗佈於基板51後,再以 加熱、紫外光照射或壓印等方式加以塑形固定。該隆起結 構52之表面可經過處理形成一薄膜層而使得基板表面可與 雙官能基分子形成化學鍵結。接著,於該隆起結構53上方 形成一化學自組裝單分子層53 ,其形成方式可如第一較佳 實施例所揭露之方法,將整個基板51浸沒於含有複數個雙 鲁 官能基分子之甲醇或己烷溶液之中,則雙官能基分子之其 中一端官能基便可與隆起結構52之表面形成化學鍵結,其 遂可自然地形成一化學自組裝單分子層53 ;當然亦可如第 二較佳實施例中之方式,利用微接觸轉印(micro⑺故泌 printing)之方式將雙官能基分子轉印至隆起結構52之表面 以形成化學自組裝單分子層53。 接著再將整個基板51浸沒於含有複數個金粒或是二氧 11 1221826 化石夕顆粒體之溶液中,則化學自組裝單分子層53上方便可 自然地形成特定排列之複數個顆粒體54。再利用無電電 锻、有電電鍵或疋濺鍵等方式形成一電鑄種子層55於最外 層,以及接著進行電鑄製程,其遂可沿著電鑄種子層35表 面形成一金屬模仁主體層56。最後依序去除基板51、隆起 結構52、化學自組裝單分子層53以及複數個顆粒體54,則 該金屬模仁主體層56遂可形成用來製作3D陣列透鏡結構所 需之模仁。最後再以此模仁配合射出成型或壓印技術等方 式便可製造類似蒼蠅複眼之微透鏡結構。當然配合第一及 第二較佳實施例所揭露之方法,本發明亦可應用於各種不 同型態之微透鏡結構的製作。 以本發明-種化學自組裝製程之模仁製作方法所 製造的3D陣列透鏡結構係可於任意曲面上自、组裝形成奈米· 等級之各式立艘結構。其除了可絲製造奈料級之透鏡 以及輕易定義微透鏡之位置外,還可錢不同之需求而有 適當調整之鋪。此外其更能提供-快速無濟之方法來 製作精密的微透鏡結構。再者,本發明之方法更可應用於 各式的奈米技術中,以提供最簡便之方法來製作所需要之 模仁結播。 、為之以上所述者,僅$本發明之較佳實施例而已,當 之限定本發明所實施之翻。大凡依本發明申請專 、所作之均等變化與修飾,皆應仍屬於本發明專利涵 之&圍内,謹請貴審查委員明鑑,並祈惠准,是所至禱。 12 1221826 【圖示簡單說明】 圖一係為自組裝早分子膜層之形成機構的事意圖。 圖二A至圖二F係為本發明一種利用化學自組裝製程之 模仁製作方法的第一較佳實施例 圖三A至圖三G係本發明一種利用化學自組裝製程之模 仁製作方法的第二較佳實施例。 、 圖四A至圖四B係本發明之第二較佳實施例中之又一較 佳實施方式。 圖五A至圖五F係為本發明一種利用化學自組裝製程之 模仁製作方法的第三較佳實施例。 圖號說明: 11- 基材 12- 雙官能基分子 13- 自組裝單分子膜層 14- 粒子 21- 基板 22- 薄膜層 23_化學自組裝單分子層 24- 顆粒體 25- 電鑄種子層 26- 金屬模仁主體層 31_基板 311·凹槽 13 1221826 32- 薄膜層 33- 化學自組裝單分子層 34- 顆粒體 35- 電鑄種子層 36- 金屬模仁主體層 41-母模 51- 基板 52- 隆起結構 53- 化學自組裝單分子層 54- 顆粒體 55- 電鑄種子層 56- 金屬模仁主體層) Master A 凊 Referring to FIG. 5A to FIG. 5F, it is a third preferred embodiment of a method for manufacturing a mold kernel using a chemical self-assembly process according to the present invention. First, a substrate 51 is provided, and a raised structure 52 having a specific shape is formed on the substrate. The formation method can be coated with a moldable material on the substrate 51 and then applied by heating, ultraviolet light irradiation, or embossing. Shaped and fixed. The surface of the raised structure 52 can be processed to form a thin film layer so that the surface of the substrate can form a chemical bond with the bifunctional molecule. Next, a chemically self-assembled monomolecular layer 53 is formed over the raised structure 53. The formation method can be the same as the method disclosed in the first preferred embodiment. The entire substrate 51 is immersed in methanol containing a plurality of double-functional molecules. Or hexane solution, one end of the bifunctional molecule can form a chemical bond with the surface of the raised structure 52, which can naturally form a chemical self-assembled monolayer 53; In the preferred embodiment, the difunctional molecule is transferred to the surface of the raised structure 52 by micro contact printing to form a chemical self-assembled monomolecular layer 53. Then, the entire substrate 51 is immersed in a solution containing a plurality of gold particles or dioxin 11 1221826 fossil evening particles, and a plurality of particles 54 in a specific arrangement can be naturally formed above the chemically self-assembled monomolecular layer 53. Then, an electroformed seed layer 55 is formed on the outermost layer by means of electroless forging, electric keys or splash keys, and then an electroforming process is performed, which can form a metal mold body along the surface of the electroformed seed layer 35. Layer 56. Finally, the substrate 51, the raised structure 52, the chemically self-assembled monomolecular layer 53, and the plurality of particles 54 are sequentially removed, and then the metal mold core layer 56 can form the mold cores required to make the 3D array lens structure. Finally, this mold core can be used in combination with injection molding or embossing techniques to produce micro-lens structures similar to fly eyes. Of course, with the methods disclosed in the first and second preferred embodiments, the present invention can also be applied to the fabrication of various types of microlens structures. The 3D array lens structure manufactured by the method for manufacturing a mold kernel of the chemical self-assembly process of the present invention is capable of self-assembling and assembling nano-grade various stand-up structures on any curved surface. In addition to making nano-grade lenses and easily defining the position of microlenses, it can also be adjusted appropriately for different needs. In addition, it can provide a quick and helpless method to make precise micro-lens structures. Furthermore, the method of the present invention can be applied to various types of nanotechnology to provide the simplest method to make the required kernel seeding. For the above, it is only the preferred embodiment of the present invention, which should limit the implementation of the present invention. Everyone who applied for and made equal changes and modifications in accordance with the present invention should still fall within the scope of the present invention's patents. I would like to ask your reviewing committee to make a clear reference and pray for your approval. 12 1221826 [Brief description of the diagram] Figure 1 is the schematic diagram of the formation mechanism of the self-assembled early molecular film layer. Figures 2A to 2F are the first preferred embodiments of a method for manufacturing a mold kernel using a chemical self-assembly process of the present invention. Figures 3A to 3G are a method for manufacturing a mold kernel using a chemical self-assembly process of the present invention. The second preferred embodiment. Fig. 4A to Fig. 4B are still another preferred embodiment of the second preferred embodiment of the present invention. 5A to 5F are a third preferred embodiment of a method for manufacturing a mold kernel using a chemical self-assembly process according to the present invention. Description of drawing number: 11- substrate 12- bifunctional molecule 13- self-assembled monomolecular film layer 14- particles 21- substrate 22- thin film layer 23_ chemical self-assembled monomolecular layer 24- particle body 25- electroformed seed layer 26- Metal mold core layer 31_ Substrate 311 · Groove 13 1221826 32- Thin film layer 33- Chemical self-assembly monomolecular layer 34- Granular body 35- Electroformed seed layer 36- Metal mold core layer 41- Female mold 51 -Substrate 52- Raised structure 53- Chemical self-assembled monolayer 54- Particles 55- Electroformed seed layer 56- Metal mold core layer

Claims (1)

1221826 拾、申請專利範圍: 1· 一種利用化學自組裝(self-assembly)製程之模仁贺你 法,其步驟係包括: 、方 (a) 提供一基板,其表面係經過處理而可與雙官能基分子 形成化學鍵結; (b) 於該基板上方形成一化學自組裝單分子層; (C)於該化學自組裝單分子層上方形成特定排列之複數個 顆粒體,其中該複數個顆粒體與該化學自組装輩八 層之間係形成化學鍵結; · (d) 於該自組裝單分子層與該複數個顆粒體上方,以電鑄 方式形成一金屬模仁主體層;以及 (e) 去除該基板、該化學自組裝單分子層以及該複數個顆 粒體’則該金屬模仁主體層遂可形成表面具有特定凹、 凸排列圖案之一金屬模仁。 2·如申請專利範圍第1項所述之利用化學自組裝製程之模 仁製作方法,其巾步驟⑻之基板表面可為平面、凹面、 凸面、特定凹凸排列圖形其中之一。 ⑩ 3·如申請專利範圍第i項所述之利用化學自組裝製程之模 仁製作方法,其中步驟⑻中之該基板係包括: 一基材;以及 一隆起結構,形成於該基材上方。 4· 請專利範圍第3項所述之利用化學自組裝製程之模 :作方法,其中該隆起結構之形成方式係將一可塑形 材料塗佈於該基材後,再以加熱、紫外光照射、齡等 其中之一方式加以塑形固定。 5.如:請專利範圍第i項所述之利用化學自組裝製程之模 t裝作方法’其中步驟⑻中該基板表面之處理方式係於 基板表面形成—薄膜層,其中該薄膜層可為金屬和二氧 化石夕其中之一。 6·如申研專利範圍第1項所述之利用化學自 仁製作方法,其中步驟⑼中該化學自組裝單分子層之形 f方式係將該基板浸沒於含有複數個雙官能基分子之一 冷液之中,職雙官能基分子之其巾—端官能基係可與 該基板表面形成化學鍵結以自然地形成化學自組裝單分 子層。 7·如申請專利範圍第6項所述之利用化學自組裝製程之模 仁製作方法,其中該溶液係為甲醇和己烷其中之一。 8·如申凊專利範圍第1項所述之利用化學自組裝製程之模 仁製作方法,其中步驟(b)中該化學自組裝單分子層之形 成方式係包括: ⑴將表面具有特定凹凸排案之—母模_複數個雙 呂能基分子;以及 ⑻將該母模沾有該雙官能基分子之表面接觸該基板表 面,則該雙官能基分子之其中一端官能基係可與該基 板表面形成化學鍵結,進而於該基板上形成與該母模 表面之特疋圖案呈現相對應排列之化學自組裝單分子 層。 9·如申凊專利範圍第8項所述之利用化學自組裝製程之模 f製作方法’其中步驟(b)之後更包括有-步驟(bl): 10·如=请專利範圍第8項所述之利用化學自組裝製程之模 法’其巾該賴之材料係為聚二f基石夕氧烧 11·如=請專利範圍第i項所述之利用化學自組裝製程之模 仁製作方法,其中步驟⑹中該複數個顆粒體形成於該化 學自組裝單分子層上方之方式係為將該基板浸沒於含 有該複數個顆粒體之溶液中,則該化學自組裝單分子層 表面之自由官能基遂可與該顆粒體形成化學鍵結,進而、 形成單層最密堆積。 12·如申請專利範圍第u項所述之利用化學自組裝製程之 模仁製作方法,其中該複數個顆粒體可為金粒和二氧化 梦其中之一。 13·如申凊專利範圍第1項所述之利用化學自組裝製程之模 仁製作方法’其中步驟(d)中該金屬模仁主體層的形成方 式係包括: (i)形成一電鑄種子層將該複數個顆粒體、該化學自組 裝單分子層以及該基板包覆於内;以及 (¾沿著該電鑄種子層,利用電鑄之方式形成該金屬模仁 主趙層。 1221826 14·如申請專利範圍第13項所述之利用化學自組裝製程之 模仁製作方法,其中步驟⑴中該電鑄種子層之形成係可 以無電電鍍、有電電鍍、濺鍍其中之一方式進行。1221826 The scope of patent application: 1. A mold self-assembly method using a chemical self-assembly process, the steps of which include: (1) Provide a substrate, the surface of which can be treated with double Functional group molecules form chemical bonds; (b) a chemical self-assembled monomolecular layer is formed over the substrate; (C) a plurality of particle bodies in a specific arrangement are formed over the chemical self-assembled monomolecular layer, wherein the plurality of particle bodies A chemical bond is formed with the eight layers of the chemical self-assembly assembly; (d) forming a metal mold core layer by electroforming on the self-assembly monomolecular layer and the plurality of particle bodies; and (e ) Remove the substrate, the chemically self-assembled monomolecular layer, and the plurality of particles. Then, the metal mold core layer can form a metal mold core with a specific concave and convex pattern on the surface. 2. According to the method for manufacturing a mold using a chemical self-assembly process as described in item 1 of the scope of the patent application, the substrate surface of the towel step can be one of a flat surface, a concave surface, a convex surface, and a specific uneven pattern. ⑩ 3. The method for manufacturing a mold using a chemical self-assembly process as described in item i of the patent application scope, wherein the substrate in step ⑻ includes: a substrate; and a raised structure formed on the substrate. 4. Please use the chemical self-assembly mold described in item 3 of the patent scope: method, where the bulge structure is formed by applying a moldable material to the substrate, and then heating it with ultraviolet light And age. 5. For example, please use the chemical self-assembly process as described in the item i of the patent, "the fabrication method of the mold", wherein the treatment method of the substrate surface in step 系 is to form a thin film layer on the substrate surface, where the thin film layer can be One of metal and stone dioxide. 6. The method of making use of chemical self-introduction as described in item 1 of the scope of Shenyan's patent, wherein the method of the chemical self-assembly monomolecular layer in step (f) is to immerse the substrate in one of a plurality of bifunctional molecules. In the cold liquid, the towel-terminal functional group of the bifunctional molecule can form a chemical bond with the surface of the substrate to form a chemical self-assembled monomolecular layer naturally. 7. The method for making a mold using a chemical self-assembly process as described in item 6 of the scope of the patent application, wherein the solution is one of methanol and hexane. 8. The method for making a mold kernel using a chemical self-assembly process as described in item 1 of the patent application, wherein the method of forming the chemical self-assembly monomolecular layer in step (b) includes: Case-master mold_ a plurality of dilunenyl molecules; and ⑻ The surface on which the difunctional molecule is attached to the master mold contacts the surface of the substrate, and one end of the bifunctional molecule may form a functional group with the surface of the substrate The chemical bonding further forms a chemical self-assembled monomolecular layer on the substrate corresponding to the special pattern on the surface of the master mold. 9 · Method for making mold f using chemical self-assembly process as described in item 8 of the scope of patent application ', wherein step (b) includes -step (bl): 10 The mold method using the chemical self-assembly process is described in the following. The material of the towel is polydifluoride stone sintered oxidized 11 · If = please refer to the method of making the mold kernel using the chemical self-assembly process described in item i of the patent scope, The method of forming the plurality of particles on the chemical self-assembled monolayer in step 系 is to immerse the substrate in a solution containing the plurality of particles, and the free functions on the surface of the chemical self-assembled monolayer The substrate can form a chemical bond with the particle body, thereby forming a single-layer densest packing. 12. The method for manufacturing a mold kernel using a chemical self-assembly process as described in item u of the scope of the patent application, wherein the plurality of particles may be one of gold particles and dreams. 13. The method for making a mold kernel using a chemical self-assembly process as described in item 1 of the patent scope of the application, wherein the method of forming the main layer of the metal mold kernel in step (d) includes: (i) forming an electroformed seed Layer encapsulating the plurality of particles, the chemical self-assembled monomolecular layer, and the substrate; and (¾) forming the main mold layer of the metal mold along the electroformed seed layer by electroforming. 1221826 14 · The method for making a mold kernel using a chemical self-assembly process as described in item 13 of the scope of the patent application, wherein the formation of the electroformed seed layer in step (2) can be performed by one of electroless plating, electroplating, and sputtering.
TW92136949A 2003-12-26 2003-12-26 Mold core preparation method by using chemical self-assembly process TWI221826B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92136949A TWI221826B (en) 2003-12-26 2003-12-26 Mold core preparation method by using chemical self-assembly process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92136949A TWI221826B (en) 2003-12-26 2003-12-26 Mold core preparation method by using chemical self-assembly process

Publications (2)

Publication Number Publication Date
TWI221826B true TWI221826B (en) 2004-10-11
TW200521072A TW200521072A (en) 2005-07-01

Family

ID=34433039

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92136949A TWI221826B (en) 2003-12-26 2003-12-26 Mold core preparation method by using chemical self-assembly process

Country Status (1)

Country Link
TW (1) TWI221826B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399298B (en) * 2009-07-24 2013-06-21 Univ Nat Cheng Kung Method for manufacturing roller including micro/nano structure
US9132574B2 (en) 2012-05-09 2015-09-15 Southern Taiwan Unviersity of Science and Technology Method for producing substrate with a microstructure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017183B2 (en) * 2007-09-26 2011-09-13 Eastman Kodak Company Organosiloxane materials for selective area deposition of inorganic materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399298B (en) * 2009-07-24 2013-06-21 Univ Nat Cheng Kung Method for manufacturing roller including micro/nano structure
US9132574B2 (en) 2012-05-09 2015-09-15 Southern Taiwan Unviersity of Science and Technology Method for producing substrate with a microstructure

Also Published As

Publication number Publication date
TW200521072A (en) 2005-07-01

Similar Documents

Publication Publication Date Title
Zou et al. Advances in nanostructures for high‐performance triboelectric nanogenerators
TWI388434B (en) A method for printing arranged fine particles
Ai et al. Advanced colloidal lithography beyond surface patterning
CN106030406B (en) Method for uniform imprint pattern transfer of sub-20 nm features
CN108241185B (en) Micro-nano structure optical element and preparation method and application thereof
US20050191419A1 (en) Fabrication of nanostructures
KR101632504B1 (en) method for the fabrication of nanostructures based on adhesion control using solvent vapor and nanotransfer printing using the same
Li et al. A review on fabrication and application of tunable hybrid micro–nano array surfaces
TWI221826B (en) Mold core preparation method by using chemical self-assembly process
TWI523809B (en) Substrate with microstructure and method for producing the same
CN108528078B (en) Nanostructure transfer printing method and method for preparing multilayer nanostructure by using stacking method
CN103204458B (en) Ultraviolet polymerization electret based self-assembly method
KR101583517B1 (en) 1 method of arranging one-dimensional nanostructures and method of manufacturing a semiconductor device using the same
KR20040100239A (en) Method for Fabricating a Patterned Array Having Nanometer or Less Size
TWI264823B (en) Thin film transistor manufacture method and structure therefor
KR100876386B1 (en) Resist pattern forming method without residual layer using soft molding and method of forming patterned metal layer using the method
KR101080612B1 (en) Method for fabricating etch pits of electrochemical etching
JP2004303870A (en) Method for forming fine pattern
JP7026120B2 (en) Damaching template for nanoelement printing made without chemical mechanical flattening
Zhang et al. Recent progress of patterned electrodes in wearable electronics: Fabrication and application
George et al. Origami MEMS
JP2005123310A5 (en)
Chen et al. Fabrication of large-area nickel nanobump arrays
CN216052599U (en) Non-contact nano-imprint stamp
CN116027608B (en) All-optical nonlinear modulation super-surface diffraction optical computing device and preparation method thereof