TWI220537B - Method for forming high voltage CMOS by retrograde ion implantation - Google Patents
Method for forming high voltage CMOS by retrograde ion implantation Download PDFInfo
- Publication number
- TWI220537B TWI220537B TW92125149A TW92125149A TWI220537B TW I220537 B TWI220537 B TW I220537B TW 92125149 A TW92125149 A TW 92125149A TW 92125149 A TW92125149 A TW 92125149A TW I220537 B TWI220537 B TW I220537B
- Authority
- TW
- Taiwan
- Prior art keywords
- type
- doped
- region
- scope
- item
- Prior art date
Links
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
1220537 五、發明說明(l) 【發明所屬之技術領域】 本發明係有關一種咼墨元件(High Voltage Device )之製造方法’特別疋關於—種利用逆向(r e t r 〇 g r a d e ) 離子植入方式形成高壓互補式金氧半導體(CM0S )之方法 【先前技術】1220537 V. Description of the invention (l) [Technical field to which the invention belongs] The present invention relates to a method for manufacturing a high voltage device (High Voltage Device) 'particularly' about a method of forming a high voltage by using a reverse (retr 〇grade) ion implantation method Method for complementary metal oxide semiconductor (CM0S) [prior art]
按,高壓元件係應用於電子產品中需要以高電壓進行 細作的部份,通常在積體電路的架構中,有些產品在其輸 入/輸出(I /0 )區域中之控制元件會比在核心元件區域中 ^控制元件所需電壓更大,此輸入/輸出區域必須具有較 月匕耐更南電壓之兀件’以避免在高壓之正常操作下,發生 電流崩潰(breakdown)的現象,所以其結構與一般元件 並不相同。 —1知之南壓互補式金氧半導體元件(CM〇s)之構造 如第-圖所示,在一p型半導體基底1〇中先形成一N型井 ΝΜοΓγ·1 I12,然後再形成N型漂移(N_drift )區域14於 接==P型漂移(P_drift)區域16於咖區域 接、,於该基底10上形成場氧化層18、According to this, high-voltage components are applied to the parts of electronic products that need to be worked with high voltage. Generally, in the structure of integrated circuits, some products have more control components in the input / output (I / 0) area than in the core. In the element area, the required voltage of the control element is greater. This input / output area must have a component that can withstand more southerly voltage than the moon 'to avoid the phenomenon of current breakdown under normal high voltage operation. The structure is different from general components. —1 The structure of the South-China complementary metal-oxide-semiconductor element (CM0s) is as shown in Fig. 1. An N-well NMοΓγ · 1 I12 is first formed in a p-type semiconductor substrate 10, and then an N-type is formed. The drift (N_drift) region 14 is connected to the P-drift region 16 and the coffee region is connected to form a field oxide layer 18 on the substrate 10,
oxide ) 20及多晶矽閘極2?,畀尨$τ虱化層〔gate 植入法在NM0S區域中形成N+型離於5亥基底10内以離3 區域一型離 source )及汲極(drain )。 乍為源極( 上述習知的製程方式,其所 通道表面處靠近圖中城^之^型漂移區域14¾ A點的£域,其電力線分佈(oxide) 20 and polysilicon gate 2 ?, 畀 尨 τlice formation layer [gate implantation method to form an N + type in the NM0S region within the substrate 10, and a type 3 source from the 3 region, and a drain (drain) ). At first glance, the source (the above-mentioned conventional process method, the surface of the channel is near the ^ -type drift region of the city ^ 14 ^ A point in the figure, the power line distribution (
第5頁 1220537 五、發明說明(2)Page 5 1220537 V. Description of the invention (2)
Electric Field)密度較高’電位較為擁掩(p〇tentia Crowding ),使得N型漂移區域14所形成之空乏區( Depletion Region )不足以抵抗高電壓的電力線分佈,進 而容易產生提前崩潰(Breakdown )。而為了提高崩潰電 壓,傳統的方法是降低N型漂移區域1 4的摻雜濃度,$而 增加空乏區的寬度,以達到提高崩潰電壓之目的。但是, N型^票移區域14的濃度降低,將提高通道(Channei )—於 J 阻,其導通電阻(0n-resistance)將提高,使 對$ 兀件之電流驅動(ϋϋΓΓ6ηΐ DriVlng)能力亦相 _ 用逆::子i發明ί在針對前面所述之困擾,提出-種利 以式形成高壓互補式金氧半導體之方法, 放解決習知之該等缺失。 【發明内容】 方式日! 5主要目的,係在提供-種利用逆向離子植入 互補丄合互補式金氧半導體之方法,其所形成之高壓 壓更1半導體係具有更好的電性特性,且其耐崩潰電 尺问’電流驅動能力亦更大。 方式二=2 5另=目的,係在提供一種利用逆向離子植入 互補卞八=壓互補式金氧半導體之方法,其製作出的高壓 小,^ =二半導體之設計規格(design rule)可大大縮 1體兀件面積可有效縮小許多。 1 at月之再一目的,係在提供一種可改善閉鎖效應( P effect)產生之高壓互補式金氧半導體的製造Electric Field) high density 'potential Crowding' makes the empty region (Depletion Region) formed by the N-type drift region 14 insufficient to resist the high-voltage power line distribution, which is prone to early breakdown (Breakdown) . In order to increase the breakdown voltage, the traditional method is to reduce the doping concentration of the N-type drift region 14 and increase the width of the empty region to increase the breakdown voltage. However, a decrease in the concentration of the N-type shift region 14 will increase the channel resistance (Channei), and its on-resistance (0n-resistance) will be increased, so that the current drive (ϋϋΓΓ6ηΐ DriVlng) capability of the element is similar _ Inverse :: Invented in view of the above-mentioned problems, we proposed a method to form a high-voltage complementary metal-oxide semiconductor by using the method to solve the conventional shortcomings. [Summary of the invention] Way day! 5 The main purpose is to provide a method of using complementary ion implantation to complement the complementary metal-oxide semiconductor, the high voltage formed by the semiconductor system has better electrical characteristics, And its crash-resistant electric ruler's current drive capability is also greater. Method two = 2 5 and another = purpose, is to provide a method using reverse ion implantation complementary 卞 = pressure complementary metal-oxide semiconductor, the high voltage produced is small, ^ = two semiconductor design specifications (design rule) can be Largely reducing the size of a body can effectively reduce a lot. Another purpose of 1 month is to provide a high-voltage complementary metal-oxide semiconductor manufacturing method capable of improving the latch-up effect (P effect).
五、發明說明(3) 方法。 導體基底上形成 離子植入方式, 摻雜之N型漂移 使摻雜離子驅 著在半導體基底 並於多晶矽閘極 驟,以分別在N 雜區域及重P型 洋加說明,當更 及其所達成之功 為達到上述之目的’本發明係在 有隔離結構及一犧牲氧化層;並利用逆 =高電壓離子植入形&重換雜彳區以 -域與P型漂移區i或;再經過熱製程處理, 入至基底中,而後移除該犧牲氧化層; 上形成一閘極氧化層與多晶矽閘極結構; 〜構二側之半導體基底中進行離子植入+ 里如移區域與P型漂移區域内形成重N型摻 換雜區域,其係作為源/汲極之用。 々 ^ 底下藉由具體實施例配合所附的圖式 容易瞭解本發明之目的、技術内容、特^ 效。 "、、 【實施方式】 本發明係以逆向(Retr〇grade )離子植入方式,於形 族有隔離結構之半導體基底内利用高電壓離子植入形成重 :,井區以及淡摻雜之N型漂移區域(N-dr i f t )與P型漂 移區域(P-drift),其係可分別作為高壓互補式金氧^ 導體(CMOS)之NMOS區域及PMOS區域,且所形成之高壓互 補式金氧半導體係具有更好的電性特性,故可有效解決存 在於習知技術中之該等缺失。 ^胃第一(a)圖至第二(d)圖為本發明之較佳實施例於製作 向壓互補式金氧半導體之各步驟構造剖視圖,如圖所示, 本發明所揭露之方法係包括有下列步驟··首先,如第二(aV. Description of the invention (3) Method. An ion implantation method is formed on the conductor substrate, and the doped N-type drift causes the doped ions to drive on the semiconductor substrate and the polycrystalline silicon gates. It will be explained in the N-doped region and the heavy P-type ocean, respectively. Achieved the work to achieve the above purpose 'The present invention has an isolation structure and a sacrificial oxide layer; and the use of inverse = high voltage ion implantation & replacement of the hybrid region with -domain and P-type drift region i or; After thermal processing, it is inserted into the substrate, and then the sacrificial oxide layer is removed; a gate oxide layer and a polycrystalline silicon gate structure are formed thereon; ~ ion implantation in the semiconductor substrate on both sides of the structure + A heavy N-type doped region is formed in the P-type drift region, which is used as a source / drain. ^ ^ It is easy to understand the purpose, technical content, and special effects of the present invention by using specific embodiments and accompanying drawings. ", [Embodiment] The present invention uses a high-voltage ion implantation in a semiconductor substrate with an isolation structure to form a heavy-duty: well region and lightly doped N-dr ift and P-drift can be used as NMOS region and PMOS region of high-voltage complementary metal-oxide semiconductor (CMOS), respectively. Metal-oxide semiconductors have better electrical characteristics, so they can effectively solve these defects existing in the conventional technology. ^ The first (a) to the second (d) views of the stomach are cross-sectional views of the steps of the preferred embodiment of the present invention in the fabrication of a directional complementary metal-oxide semiconductor. As shown in the figure, the method disclosed in the present invention is Includes the following steps ... First, as the second (a
第7頁 1220537 五、發明說明(4) )圖所,提供一 P型半導體基底3 〇,利用化學氣相沈積技術 在半導體基底30表面依序形成一薄氧化層(Thin oxide) 、一氧化層及一圖案化氮化矽層(圖中未示),並以此圖 案化氮化矽層為罩幕,蝕刻該氧化層而形成如第二(a)圖 所示之場氧化(F i e 1 d 0 X i d e )隔離結構3 2 ;隨後钱刻去 除该氮化石夕層及該薄氧化層,然後再重新成長一層如圖所 示之犧牲氧化層(Sacrificial Oxide) 34。 接著,請參閱第二(b)圖所示,利用逆向離子植入( retrograde ion implantation)方式,以400 〜800 千電 子伏特(KeV )左右之能量的高壓電,將磷等n型摻雜離子 以5*1 〇12〜1*1 〇丨4/平方公分(cm2)之濃度植入該半導體基 底30中而形成重掺雜之n型摻雜井區% ;並以2〇〇〜6〇〇 KeV左右之能量’將填或砷等之n型摻雜離子以5*丨〇12〜i木 lj /cm2之濃度植入半導體基底3〇中而形成一淡摻雜之n型 你移區域38 ;再以1〇〇〜3〇〇 KeV左右之能量,將硼等1)型 摻雜離子以丨*1013〜丨*1〇14/⑶2之濃度植入該半導體基底30 之N型^參雜井區36中而形成淡摻雜之p型漂移區域4〇。 ,後:再經過熱製程處理,使摻雜離子驅入(心丨^一 ΊΪί導體基底3G中,以藉此驅人步㈣調整濃度分佈 子揎擊過的區域進行晶格結構之修補。而後並钱 刻去除該犧牲氧化層34。 ^ 閘極圖所示’在該半導體基底3G表面先成長一 n 巍^,於其上沈積形成一多晶矽層,並利用光阻 微…刻製程而分別於N型漂移區域38與該p型漂移區域Page 7 1220537 V. Description of the Invention (4)) The figure provides a P-type semiconductor substrate 30. A thin oxide layer and an oxide layer are sequentially formed on the surface of the semiconductor substrate 30 by chemical vapor deposition technology. And a patterned silicon nitride layer (not shown), and using the patterned silicon nitride layer as a mask, the oxide layer is etched to form a field oxide as shown in the second (a) (F ie 1 d 0 X ide) isolation structure 3 2; subsequently, the nitride layer and the thin oxide layer are removed by engraving, and then a sacrificial oxide layer 34 is grown as shown in the figure. Next, referring to the second figure (b), the retrograde ion implantation method is used to dope the n-type phosphorous with a high voltage of about 400 to 800 kiloelectron volts (KeV). Ions are implanted into the semiconductor substrate 30 at a concentration of 5 * 1 〇12 ~ 1 * 1 〇 4 / cm 2 (cm 2) to form a heavily doped n-type doped well area%; and at 2000 ~ 6 The energy of about 〇〇KeV 'implants n-type doped ions such as arsenic or arsenic into the semiconductor substrate 30 at a concentration of 5 * 丨 〇12 ~ i 木 lj / cm2 to form a lightly doped n-type ions. Region 38; and then implanting 1) type dopant ions such as boron with an energy of about 100 to 300 KeV at a concentration of 丨 * 1013 ~ 丨 * 1014 / CD2 into the N-type of the semiconductor substrate 30 ^ The doped well region 36 forms a lightly doped p-type drift region 40. After: After thermal processing, doped ions are driven into the conductor substrate 3G, in order to drive people to adjust the concentration distribution region to strike the lattice structure to repair the lattice structure. Then The sacrifice oxide layer 34 is removed by etching. ^ As shown in the gate diagram, a n-layer is first grown on the surface of the semiconductor substrate 3G, and a polycrystalline silicon layer is deposited thereon. N-type drift region 38 and the p-type drift region
1220537 五、發明說明(5) 40上方形成多晶矽閘極結構44 於該多晶石夕閘極結構44二側之半導體基底3 〇中進行離 子植入步驟,而分別在半導體基底30及該N型漂移區域38 與P型漂移區域40内形成如第二(d)圖所示之重N型摻雜區 域46及重P型摻雜區域48,其中,該重N型摻雜區域κ係作 為N型漂移區域38之源/汲極,以形成關〇s結構,·而該重p 型摻雜區域48係作為P型漂移區域40之源/汲極,以形成 P Μ 0 S結構。 斤本發明所形成之高壓互補式金氧半導體(CM〇s )結構 如第二(d)圖所示,其位於場氧化隔離結構32下方之通道 (Channel )為N型漂移區域38或P型漂移區域之高濃产 點,而接近圖中A點之位置為濃度最低。由於場氧化隔$ 結構32下方通道之濃度遠大於一般習知的方法,且位於a 點位置的濃度反而可比習知技術的方法為更低。因此,依 本發明所形成的高壓CMOS的崩潰(breakdown)電壓可為 較高’且電流驅動(current driving)能力也大為改善 此外’利用本發明所製作出的高壓互補式金氧半導體 之設計規格(design rule )可大大縮小;例如,用以隔 絕NM0S與PM0S之場氧化隔離結構,如第二(d)圖中之χ2大 約為5 // m,其係遠小於習知技術於第一圖中之χι需約i 5 #爪 ’因此’本發明可有效使整體元件面積縮小許多。再者, 利用本發明之方法亦可改善閉鎖效應(latch —up effect )產生之問題者。1220537 V. Description of the invention (5) Polycrystalline silicon gate structure 44 is formed above 40. An ion implantation step is performed in the semiconductor substrate 3 on both sides of the polycrystalline silicon gate structure 44, and the semiconductor substrate 30 and the N-type are respectively formed. A heavy N-type doped region 46 and a heavy P-type doped region 48 are formed in the drift region 38 and the P-type drift region 40 as shown in FIG. 2 (d). The heavy N-type doped region κ is used as N The source / drain of the type-drift region 38 is formed to form an OFF structure, and the heavily p-type doped region 48 is used as the source / drain of the p-type drift region 40 to form a P MOS structure. The structure of the high-voltage complementary metal-oxide semiconductor (CM0s) formed by the present invention is shown in FIG. 2 (d). The channel located below the field oxidation isolation structure 32 is an N-type drift region 38 or a P-type. The high-concentration production point in the drift region, and the position near the point A in the figure is the lowest concentration. Because the concentration of the channel under the field oxidation barrier structure 32 is much larger than the conventional method, and the concentration at the point a can be lower than that of the conventional method. Therefore, the breakdown voltage of the high-voltage CMOS formed according to the present invention can be higher, and the current driving capability is greatly improved. In addition, the design of the high-voltage complementary metal-oxide semiconductor fabricated by the present invention is also used. The design rule can be greatly reduced; for example, the field oxidation isolation structure used to isolate NM0S and PM0S, such as χ2 in the second (d) figure is about 5 // m, which is much smaller than the conventional technology in the first Χι in the figure needs about 5 claws. Therefore, the present invention can effectively reduce the overall component area significantly. Furthermore, the method of the present invention can also improve the problems caused by the latch-up effect.
1220537 五、發明說明(6) 以上所述之實施例僅係為說明本發明之技術思想及特 點,其目的在使熟習此項技藝之人士能夠瞭解本發明之内 容並據以實施,當不能以之限定本發明之專利範圍,即大 凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵 蓋在本發明之專利範圍内。 【圖 號簡單說明】 10 P型半導體基底 12 N型井 14 N型漂移區域 16 P型漂移區域 18 場氧化層 20 閘極氧化層 22 多晶石夕閘極 24 N+型離子摻雜區域 26 P+型離子摻雜區域 30 P型半導體基底 32 場氧化隔離結構 34 犧牲氧化層 36 N型摻雜井區 38 N型漂移區域 40 P型漂移區域 42 閘極氧化層 44 多晶矽閘極結構 46 重N型摻雜區域 48 重P型摻雜區域1220537 V. Description of the invention (6) The above-mentioned embodiments are only for explaining the technical ideas and characteristics of the present invention. The purpose is to enable those skilled in the art to understand the contents of the present invention and implement them accordingly. The limitation of the patent scope of the present invention, that is, all equal changes or modifications made according to the spirit disclosed by the present invention, should still be covered by the patent scope of the present invention. [Simplified description of drawing number] 10 P-type semiconductor substrate 12 N-type well 14 N-type drift region 16 P-type drift region 18 Field oxide layer 20 Gate oxide layer 22 Polycrystalline gate 24 N + type ion doped region 26 P + Type ion-doped region 30 P-type semiconductor substrate 32 field oxidation isolation structure 34 sacrificial oxide layer 36 N-type doped well region 38 N-type drift region 40 P-type drift region 42 gate oxide layer 44 polycrystalline silicon gate structure 46 heavy N-type Doped region: 48 heavy P-type doped regions
12205371220537
第11頁Page 11
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92125149A TWI220537B (en) | 2003-09-12 | 2003-09-12 | Method for forming high voltage CMOS by retrograde ion implantation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92125149A TWI220537B (en) | 2003-09-12 | 2003-09-12 | Method for forming high voltage CMOS by retrograde ion implantation |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI220537B true TWI220537B (en) | 2004-08-21 |
TW200511397A TW200511397A (en) | 2005-03-16 |
Family
ID=34076577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92125149A TWI220537B (en) | 2003-09-12 | 2003-09-12 | Method for forming high voltage CMOS by retrograde ion implantation |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI220537B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI392086B (en) * | 2004-09-16 | 2013-04-01 | Fairchild Semiconductor | Enhanced resurf hvpmos device with stacked hetero-doping rim and gradual drift region |
-
2003
- 2003-09-12 TW TW92125149A patent/TWI220537B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI392086B (en) * | 2004-09-16 | 2013-04-01 | Fairchild Semiconductor | Enhanced resurf hvpmos device with stacked hetero-doping rim and gradual drift region |
Also Published As
Publication number | Publication date |
---|---|
TW200511397A (en) | 2005-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7846783B2 (en) | Use of poly resistor implant to dope poly gates | |
US7176530B1 (en) | Configuration and fabrication of semiconductor structure having n-channel channel-junction field-effect transistor | |
US7719064B2 (en) | High voltage CMOS devices | |
US6630710B1 (en) | Elevated channel MOSFET | |
CN104662666B (en) | Deep depletion-type mos transistor and its method with screen layer | |
US20080001183A1 (en) | Silicon-on-insulator (SOI) junction field effect transistor and method of manufacture | |
US8592923B2 (en) | Coupling well structure for improving HVMOS performance | |
JP2006344759A (en) | Trench type mosfet and its fabrication process | |
US20060273391A1 (en) | CMOS devices for low power integrated circuits | |
US8502326B2 (en) | Gate dielectric formation for high-voltage MOS devices | |
US20040222475A1 (en) | JFET structure for integrated circuit and fabrication method | |
TWI229941B (en) | High voltage metal-oxide semiconductor device | |
CN106206579A (en) | A kind of semiconductor device and manufacture method thereof | |
JPH04239760A (en) | Manufacture of semiconductor device | |
US9865507B2 (en) | Low-cost CMOS structure with dual gate dielectrics and method of forming the CMOS structure | |
TWI220537B (en) | Method for forming high voltage CMOS by retrograde ion implantation | |
CN101740387B (en) | Process for manufacturing surface channel PMOS device with polycide | |
WO2007002858A2 (en) | High voltage depletion fet employing a channel stopping implant | |
US7479668B2 (en) | Source/drain extension implant process for use with short time anneals | |
CN112466951B (en) | MOS device and method for preventing parasitic transistor of MOS device from being started | |
CN112466949B (en) | BTS type MOSFET structure and preparation method thereof | |
TWI220297B (en) | Manufacturing method of high-voltage device capable of improving device characteristic | |
CN118098940A (en) | Self-aligned trench type power device with controllable channel length and manufacturing method thereof | |
Choi et al. | Reverse-order source/drain with double offset spacer design optimization for sub-50-nm low-power MOSFETs | |
JPS5887855A (en) | Method of producing mos element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |