TWI220535B - A novel process for preparation of the metal silicide - Google Patents

A novel process for preparation of the metal silicide Download PDF

Info

Publication number
TWI220535B
TWI220535B TW90108218A TW90108218A TWI220535B TW I220535 B TWI220535 B TW I220535B TW 90108218 A TW90108218 A TW 90108218A TW 90108218 A TW90108218 A TW 90108218A TW I220535 B TWI220535 B TW I220535B
Authority
TW
Taiwan
Prior art keywords
layer
gate
scope
titanium
dielectric layer
Prior art date
Application number
TW90108218A
Other languages
Chinese (zh)
Inventor
Ji-Jin Luo
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW90108218A priority Critical patent/TWI220535B/en
Application granted granted Critical
Publication of TWI220535B publication Critical patent/TWI220535B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

This invention relates to a method of preparation of ultra shallow junction by forming thinner metal silicide on the source and drain surfaces during the 1st stage of silicide formation, after the formation of BN compound on the surface of the gate. The BN compound is removed to expose the gate surface by means of the high etching selectivity between the photoresist and the BN compound, while preparing the thicker metal silicide on the gate surface to reduce the electric resistance during the 2nd stage of silicide formation. In conclusion, this invention involves (1) the formation, on the substrate, of the MOSFET which includes the formation of BN compound on the gate surface, (2) the preparation of the 1st metal silicide on the surfaces of source and drain of the MOS transistor during the 1st stage of silicide forming process, (3) the formation of the dielectric layer on the surface of the substrate, gate and BN compound, and then the formation of photoresist on the top of dielectric layer, (4) the strip-off of photoresist and the removal of the dielectric layer to expose the gate, and (5) the strip-off of photoresist and preparation of the 2nd metal silicide on the gate of MOS transistor utilizing the 2nd stage silicide-forming process.

Description

^20535^ 20535

五、發明說明(1) 發明領域: 別:Λ明與半導體元件之石夕化金屬製程有關,特別是八 兩階段形成閘極以及汲極/源極矽化金屬之方法π刀 &日月背景: 在超大型積體電路趨勢 、、百小、積集度不斷地提昇。 #半導體積體電路之最大整 、外/j、化趨勢,在積體電路的 夕’由於電腦以及通訊技術 1不同種類與應用之記憶體 &界面或其他通訊之界面均 ,體電路之趨勢仍然會朝向 %L·· -jr- * 白萬元件形成於特定之區 I這些元件聯繫以執行特殊 ^電路或提高晶圓之裝構密 ^ D隨著元件尺度越來越小 才妾結構(例如内連線),變得 ^也隨者構裝密度的增加而 3半導體元件的尺寸不斷地 A由縮小電子元件的尺寸可提 ii力“隨著電子元件尺寸的 ★過程上出現許多挑戰。此 之,勃發展,伴隨需要的是更 數量。例如,由語音操作之電 ^要許多之記憶元件。是故, 同積集度發展。積體電路包含 域内,利用電性傳導之内連線 之功能。為了達到高性能之積 度’半導體之尺寸則越做越 ’連接半導體元件間的電性連 越來越精密。且對準、微影製 越來越重要。V. Description of the invention (1) Field of invention: Do not: Λ Ming is related to the process of metallization of semiconductor elements, especially the method of forming gate and drain / source silicidation metal in two or two stages π knife & sun and moon background : In the trend of ultra-large integrated circuits, the number of integrated circuits is constantly increasing. #Semiconductor integrated circuit's maximum integration, external / j, and transformation trends, on the evening of integrated circuit ', due to the computer and communication technology1 different types and applications of memory & interface or other communication interface, the trend of the body It will still be oriented towards% L · · -jr- * Baiwan components are formed in specific areas. These components are connected to perform special circuits or to improve the density of wafers. ^ Structures become smaller as the component size becomes smaller and smaller ( For example, interconnects), the size of semiconductor components continues to increase along with the increase in the density of the structure. A reduction in the size of electronic components can increase the force. "As electronic component sizes increase, many challenges arise." Therefore, the booming development requires a larger number. For example, the electrical power operated by voice requires a lot of memory elements. Therefore, the co-integration degree develops. The integrated circuit includes the domain, and uses electrical conduction to interconnect. In order to achieve a high-performance integration, the size of the semiconductor is getting more and more. The electrical connection between the semiconductor elements is becoming more and more precise. Alignment and lithography are becoming more and more important.

金氧半場效電晶體(M0SFET)在積體電路中為一種被廣 ’之使用的元件之一。如眾人所熟知M0SFET包含有閘極、汲Metal Oxide Half Field Effect Transistor (MOSFET) is one of the most widely used components in integrated circuits. As everyone knows, MOSFET includes gate, sink

第5頁 1220535 五、發明說明(2) ~"一~一'- 極與源極。同理,為達到高性能之金氧半場效電晶體,i 尺寸也被持續地縮小以符合目前趨勢的要求,例如目前要 求元件必須具備較高之操作速度,以及較低之操作功率。 再者,元件之性能易受“時間延遲以及汲極與源極接觸 阻之影響,因此在深次微米之製程當中,自對準矽化金 製程變成為一種常用來降低接觸電阻,以增快元件之择 速度之方法。 & 習知之技術中提出可以利用金屬與矽反應產生矽化金 屬用以提昇兀件之操作速度。此外,自對準之矽化鈦(U si licide)也經常被用來做為降低閘極、汲極與源極之電 阻值以提昇元件之操作速度。傳統之矽化金屬製程簡述如 下,通常,先行沈積一金屬層於基板表面以及閘極表面。 然後,對基板施以一熱處理製程,使金屬層與矽起反應 生矽化金屬。然後再將未反應之金屬層去除,上述之g程 便是一般的自對準矽化金屬製程。 詳言之,在標準的矽化鈦製程中通常需要兩步驟之熱 處理過程,上述之矽化鈦製程中通常導致短路或橋接…、 (bridge)現象。一般上述之M0S電晶體具有間隙壁環繞於 閘極之四周,利用熱退火將上述之鈦金屬與閘極、汲極與 源極產生化學反應,此步驛一般為低溫熱退火 (annealing)。隨後利用濕蝕刻將未參與反應之鈦金屬層 與氮化鈦金屬層選擇性地去除,再執行一高溫熱退火用^以Page 5 1220535 V. Description of the invention (2) ~ " 一 ~ 一 '-pole and source. Similarly, in order to achieve high-performance metal-oxide-semiconductor half-effect transistors, the size of i has also been continuously reduced to meet the requirements of current trends, such as the current requirement that components must have higher operating speeds and lower operating power. In addition, the performance of the device is easily affected by "time delay and contact resistance between the drain and source. Therefore, in the sub-micron process, the self-aligned gold silicide process has become a common method to reduce contact resistance to speed up the device. The speed is selected. &Amp; The conventional technology proposes that the reaction between metal and silicon can be used to generate silicified metal to increase the operation speed of the component. In addition, self-aligned titanium silicide (U si licide) is also often used to do In order to reduce the resistance values of the gate, drain and source to increase the operating speed of the device. The traditional silicidation metal manufacturing process is briefly described as follows. Generally, a metal layer is first deposited on the substrate surface and the gate surface. Then, the substrate is applied with A heat treatment process causes the metal layer to react with silicon to generate silicided metal. Then the unreacted metal layer is removed, and the above-mentioned g process is a general self-aligned silicided metal process. Specifically, in a standard titanium silicide process A two-step heat treatment process is usually required in the above-mentioned titanium silicide process, which often results in a short circuit or a bridge. Generally, the above-mentioned MOS transistor has The gap wall surrounds the gate. The thermal annealing is used to chemically react the titanium metal with the gate, the drain and the source. This step is generally low temperature thermal annealing. Wet etching will not be used later. The reaction titanium metal layer and titanium nitride metal layer are selectively removed, and then a high temperature thermal annealing is performed.

1220535 五、發明說明(3) 降低石夕化鈦之電阻值,此,溫熱退火之溫度介 °c之間。然而在上述之形成矽化金屬之熱退火、。 J yuu 原子為一種潛在的擴散源,因此,基於上述之過&中,矽 子將可能擴散到間隙壁之表面而與其上之欽金^因’矽原 應,在間隙壁表面形成矽化金屬,此;5夕化金屬;產生反 |與汲極/源極間之短路。 將造成間極 I 再者’傳統技術同步形成閘極上石夕化金屬^ 極上矽化金屬。但是,在深次微米技術中,必極/源 shanow junction)以及非常低阻=合極幾 右疋為達到汲極源極之極淺接面要求, / 1且之要求。 屬之厚度,但是此將導致閘極電 、必肩減少矽化 極電阻(也就是增加石夕化金屬厚V);:加。反之,降低二 面之要求。其中想法之一即是;f用t致無法得 |閑極以及汲極/源極上。鈇 +不同厚度之矽化金μ接 終點❹將較目難且無法:’ t化學機械^ 才化予機械研磨均句性。"r磨 |發明目的及概述: 本發明之主要目 的為提 /、一種兩階段矽化金屬 本發明之再一目的 秩。 |施矽化金屬製程用以得、、、厂用含硼氮化矽以及— 與源極’以解決傳統砂化電阻以及極淺 層實 金屬製程之橋接、短路:,及極 〈問題, $ 7頁 _ 1220535 五、發明說明(4) 此外一併解決傳統技術無法同時滿足極淺接面(ul tra shallow j unc t i on )以及低電阻之要求。 本發明包含形成閘極結構於半導體基板之上,上述閘 極結構包含一硼氮化物(BN)位於閘極上表面。之後形成輕 微換雜沒極於半導體基板之中,以及形成間隙壁於閘極^ 構之側壁上。然後,執行一離子佈植以形成汲極與源極於 半導體基板之中。第一金屬層形成於間隙壁、閘極結構以 及半導體基板之上,之後執行第一熱退火用以將第一金屬 層與汲極、源極產生反應以形成第一矽化金屬,接續去除 未參與反應之第一金屬層。形成介電層於基板、閘極以及 硼氮化物(BN)之上,下一步驟為形成光阻覆蓋於介電層之 上’去除光阻層至删氮化物(BN)為止。接續去除介電層以 及去除光阻。第二金屬層形成於介電層、閘極上表面,後 續執行第二熱退火用以將第二金屬層與閘極產生反應以形 成第二矽化鈦金屬,同理去除未參與反應之第二金屬層。 最後執行苐二熱退火用以降低第一及第二石夕化金屬之電 阻。 、’1220535 V. Description of the invention (3) Decrease the resistance value of Shixi Titanium. This means that the temperature of warm annealing is between ° C. However, in the above-mentioned thermal annealing for forming silicided metals. The J yuu atom is a potential source of diffusion. Therefore, based on the above-mentioned &, silicon will likely diffuse to the surface of the barrier wall and the metal on it will form a silicidated metal on the surface of the barrier wall due to the siliceous reaction. , This; May metallize; produce a short circuit between the reverse | and the drain / source. It will cause the inter-electrode I or the traditional technology to synchronize the formation of silicon metal on the gate and silicide metal on the electrode. However, in deep sub-micron technology, there must be a junction / source shanow junction) and a very low resistance = a few poles. In order to meet the requirements of the shallow junction of the drain source, / 1 is required. Thickness, but this will cause the gate voltage and reduce the resistance of the silicide electrode (that is, increase the thickness of the metallized metal V); Conversely, reduce both requirements. One of the ideas is; f cannot be obtained with t and the drain and source / source.鈇 + The end point 接 of different thickness of gold silicide μ will be more difficult and impossible: ’t chemical mechanical ^ only chemical mechanical grinding uniformity. " r mill | Objective and summary of the invention: The main purpose of the present invention is to provide a two-stage silicided metal. Another object of the present invention is to rank. | Siliconized metal manufacturing process is used to obtain boron-containing silicon nitride, and, and the source 'to solve the bridging and short circuit of traditional sanding resistors and very shallow solid metal processes: and the problem, $ 7 _ 1220535 V. Description of the invention (4) In addition, the traditional technology cannot simultaneously meet the requirements of ultra shallow junctions (ultra shallow j unc ti on) and low resistance. The invention includes forming a gate structure on a semiconductor substrate. The gate structure includes a boron nitride (BN) on an upper surface of the gate. After that, a light micro-doped electrode is formed in the semiconductor substrate, and a gap wall is formed on the sidewall of the gate structure. Then, an ion implantation is performed to form a drain and a source in the semiconductor substrate. The first metal layer is formed on the spacer wall, the gate structure, and the semiconductor substrate, and then a first thermal annealing is performed to react the first metal layer with the drain and source to form a first silicided metal, which is subsequently removed without participation. The first metal layer of the reaction. A dielectric layer is formed on the substrate, the gate, and the boron nitride (BN). The next step is to form a photoresist layer over the dielectric layer 'to remove the photoresist layer until the nitride (BN) is deleted. Successively remove the dielectric layer and remove the photoresist. The second metal layer is formed on the dielectric layer and the upper surface of the gate electrode, and then a second thermal annealing is performed to react the second metal layer with the gate electrode to form a second titanium silicide metal, and the second metal that does not participate in the reaction is similarly removed. Floor. Finally, a second thermal annealing is performed to reduce the resistance of the first and second petrified metals. , ’

發明詳細說明: 如圖一所示,以一晶面為<100>之單晶半導體為基板, 如P型或N型之矽基板2。接著,製作做為元件間隔離之絕 緣區域4’通常可以使用淺溝渠絕緣技術(shaU〇w忖⑸以 isolation; STI)或是場氧化絕緣技術製作上述之絕緣區Detailed description of the invention: As shown in FIG. 1, a single crystal semiconductor having a crystal plane of < 100 > is used as a substrate, such as a P-type or N-type silicon substrate 2. Next, the insulating region 4 ′ which is used as the isolation between the components can be generally fabricated by using shallow trench insulation technology (shaUow) (isolation; STI) or field oxidation insulation technology.

第8頁 1220535 五、發明說明(5) 域4。舉例而η 製作淺溝渠於 進入淺溝渠中 氧化層予以平 接者,在』 化層6可以在< 形成,一般厚 沈積法也可以 氣相法沈積複 至4 0 0 〇埃之間 之上,接著, 光阻圖案為蝕 (M)l〇、複晶 案。再去除光 接著,利戶 子佈植技術植 輕微換雜沒極 中之熱載子。 參閱圖一, 面,氧化矽層 學氣相沈積法 Γ,淺溝渠絕緣技術為利用微影及蝕刻方式 基板2之中,以化學氣相沈積之氧化層回填 ,接著再利用回蝕刻或是化學機械研磨法將 坦化。 k板2之上形成一閘極氧化層6,通常閘極氧 卜氧環境之中,於溫度7 5 0至1 1 0 0°C之間氧化 度約為1 5至1 0 0埃之間,或是利用化學氣相 完成閘極氧化層6之製作。隨後,利用化學 晶矽層8覆蓋閘極氧化層6之上,厚度為丨〇 〇 〇 。一硼氮化物(BN) 1 0隨後形成於複晶矽層8 定義一光阻圖案於硼氮化物(BN) 10之上,以 刻罩幕利用蝕刻技術蝕刻上述之硼氮化物 矽層8以及閘極氧化層6以定義閘極結構之圖 阻。 I閘極結構作為一離子佈植之罩幕,利用離 入離子於基板2之中,於靠近閘極之側形成 (lightly doped drain)12,以降低於通道 一氧化矽層形成於閘極結構與基板2之表 可以利用化學氣相沈積法形成,例如低壓化 ,製程溫度約為攝氏4 0 0至7 0 0度之間。接著Page 8 1220535 V. Description of Invention (5) Domain 4. For example, if η is used to make a shallow trench and the oxide layer in the shallow trench is flattened, the formation layer 6 can be formed at < the general thick deposition method can also be deposited by vapor deposition to more than 400 angstroms. Next, the photoresist pattern is an etch (M) 10 and a multiple crystal case. Then remove the light. Next, the Li household planting technique planted the hot carriers in the hybrid electrode slightly. Referring to FIG. 1, the surface, silicon oxide stratification vapor deposition method Γ, shallow trench insulation technology uses lithography and etching method in substrate 2 to backfill with chemical vapor deposition oxide layer, and then use back etching or chemical Mechanical grinding will be frank. A gate oxide layer 6 is formed on the k plate 2. Generally, in a gate oxygen environment, the oxidation degree is about 15 to 100 angstroms at a temperature of 7 50 to 1 1 0 0 ° C. , Or the fabrication of the gate oxide layer 6 using a chemical vapor phase. Subsequently, the gate oxide layer 6 is covered with a chemical crystalline silicon layer 8 to a thickness of 1000 Å. A boron nitride (BN) 1 0 is then formed on the polycrystalline silicon layer 8 A photoresist pattern is defined on the boron nitride (BN) 10, and the above-mentioned boron nitride silicon layer 8 is etched with an etching technique using a mask and The gate oxide layer 6 defines the pattern resistance of the gate structure. The I gate structure is used as a mask for ion implantation. Ion ions are used in the substrate 2 to form a lightly doped drain 12 on the side close to the gate to reduce the silicon oxide layer formed in the channel. The surface of the substrate 2 can be formed by a chemical vapor deposition method, such as low pressure, and the process temperature is about 400 to 700 degrees Celsius. then

1220535 五、發明說明(7) 間具有極高蝕刻選擇性之特徵,可得到良好之蝕刻效果。 之後去除光阻2 2。 如圖四所示,接著導電層如鈦或鈦/氮化鈦(T i / T i N )全 面性沈積於閘極結構與襯氧化層(1 i n e r ο X i d e ) 2 0上。此 導電層之厚度相較於形成汲極/源極之導電層1 8為厚,如 此在閘極8上方所形成之矽化金屬較厚可降低電阻值。然 後以高溫低退火(annea 1 i ng )將鈦(或鈦/氮化鈦)與閘極8 反應,於閘極上形成石夕化金屬2 6。而沒極與於源極1 6因被 襯氧化層(liner oxide)2 0覆蓋,故不會與金屬反應,因 此其接面將不受到影響。上述低溫熱退火之溫度約為3 5 0 至4 5 0°C之間。而上述未參與反應之導電層則利用溼蝕刻 法選擇性地去除,之後再執行高溫熱處理,溫度介於8 0 0 至9 0 (TC間進行一高溫熱退火製程,用以降低矽化鈦之電 阻值。最後,矽化金屬分別以兩個階段形成於閘極8與汲 極/源極1 6之上。 本發明採用硼氮化物(BN ) 1 0形成於閘極8之上,可於第 一次矽化製程時形成較薄之矽化金屬於汲極與源極之上, 如此可製作極淺之接面。而硼氮化物(BN ) 1 0可防止矽化金 屬形成於閘極8之上。利用光阻與硼氮化物(BN ) 1 0之高蝕 刻選擇比,去除硼氮化物(BN ) 1 0用以暴露閘極表面。利用 第二階段矽化程序製作較厚之矽化金屬於閘極之上用以降 低電阻。1220535 V. Description of the invention (7) It has the characteristics of extremely high etching selectivity and can obtain good etching effect. After removing the photoresist 2 2. As shown in FIG. 4, a conductive layer such as titanium or titanium / titanium nitride (T i / T i N) is then deposited on the gate structure and the lining oxide layer (1 i n e r X i d e) 2 0. The thickness of this conductive layer is thicker than that of the conductive layer 18 forming the drain / source electrode. Thus, the thicker silicide metal formed above the gate electrode 8 can reduce the resistance value. Then, titanium (or titanium / titanium nitride) is reacted with the gate electrode 8 by high temperature and low annealing (annea 1 ng) to form petrified metal 26 on the gate electrode. However, since the pole and source 16 are covered by liner oxide 20, they will not react with the metal, so their interface will not be affected. The temperature of the above low temperature thermal annealing is between about 350 ° and 450 ° C. The non-reactive conductive layer is selectively removed by wet etching, and then a high-temperature heat treatment is performed, and a high-temperature thermal annealing process is performed at a temperature between 800 and 90 (TC) to reduce the titanium silicide. The resistance value. Finally, the silicide metal is formed on the gate 8 and the drain / source 16 in two stages. The present invention uses a boron nitride (BN) 10 to form on the gate 8, which can be A thin silicided metal is formed on the drain and source during a single silicidation process, so that a very shallow junction can be made. The boron nitride (BN) 10 can prevent the silicided metal from forming on the gate 8. Utilize the high etching selectivity of photoresist and boron nitride (BN) 1 0 to remove boron nitride (BN) 1 0 to expose the gate surface. Use the second stage silicidation process to make thicker silicide metal on the gate. Is used to reduce resistance.

12205351220535

第12頁 1220535 圖式簡單說明 圖式簡單說明: 圖一為本發明之形成閘極結構之截面圖。 圖二為本發明形成矽化金屬於汲極/源極後,塗佈光阻於 基板上之截面圖。 圖三為本發明研磨光阻至硼氮化物表面之截面圖。 圖四為本發明於閘極上形成第二矽化金屬之截面圖。 4〜絕緣區域 8〜複晶矽層 1 2〜汲極/源極 1 6〜汲極/源極 2 0〜石夕化金屬 2 6〜石夕化金屬 圖式之圖號說明 2〜$夕基板 6〜閘極氧化層 1 0〜硼氮化物 14〜間隙壁 18〜導電層 2 2〜光阻Page 12 1220535 Brief description of the drawings Brief description of the drawings: Figure 1 is a sectional view of the gate structure of the present invention. Figure 2 is a cross-sectional view of a photoresist coated on a substrate after forming a silicided metal on a drain / source. FIG. 3 is a cross-sectional view of the polishing photoresist to the surface of a boron nitride according to the present invention. FIG. 4 is a cross-sectional view of forming a second silicide metal on a gate electrode according to the present invention. 4 ~ Insulation area 8 ~ Multicrystalline silicon layer 1 2 ~ Drain / source 1 6 ~ Drain / source 2 0 ~ Shixihua metal 2 6 ~ Shixihua metal pattern drawing number description 2 ~ $ 夕Substrate 6 ~ gate oxide layer 1 0 ~ boron nitride 14 ~ spacer 18 ~ conductive layer 2 2 ~ photoresist

第13頁Page 13

Claims (1)

1220535 六、申請專利範圍 去除未參與反應之該第二導電層;及 執行第三熱退火用以降低該第一及第二矽化金屬之電阻。 2、 如申請專利範圍第1項之製程,其中上述之第一介電層 包含硼氮化物(B N )。 3、 如申請專利範圍第1項之製程,其中上述之第二介電層 包含氧化層。 4、 如申請專利範圍第1項之製程,其中上述之第一導電層 包含鈦。 5、 如申請專利範圍第1項之製程,其中上述之第二導電層 包含鈦。 6、 如申請專利範圍第1項之製程,其中上述之第一導電層 包含鈦/氮化鈦。 7、 如申請專利範圍第1項之製程,其中上述之第二導電層 包含鈦/氮化鈦。 8、 如申請專利範圍第1項之製程,其中上述之第一熱退火 之溫度約為3 5 0至4 5 0 °C。 I 第15頁 1220535 六、申請專利範圍 9、如申請專利範圍第1項之製程,其中上述之第二熱退火 之溫度約為3 5 0至4 5 0 °C。 1 0、如申請專利範圍第1項之製程,其中上述之第二熱退 火之溫度約為8 0 0至9 0 0 °C 。 1 1、如申請專利範圍第1項之製程,其中上述之光阻係利 用化學機械研磨製程加以去除。 種矽化 極介電 晶矽層 氮化物 硼氮化 結構, 微摻雜 隙壁於 12、一 形成閘 形成複 形成· I虫刻該 成閘極 形成輕 金屬製程,至少包含: 層於一半導體基板之上; 於該閘極介電層之上; (B N )於上述複晶矽層之上; 物(B N )、該複晶矽層以及該閘極介電層以形 汲極於該半導體基板之中; 形成間隙壁於該閘極結構之側壁上; 形成第 體基板 執行第 極產生 去除未 形成介 執行一離子佈植以形成汲極與源極於該半導體基板之中; 一含鈦金屬層於諒間隙壁、該閘極結構以及該半導 之上; 一熱退 反應以 參與反 電層於 火用以將該第一含鈦金屬層與該汲極、該源 形成第一矽化鈦金屬; 應之該第一含鈦金屬層; 該基板、該閘極以及該硼氮化物(BN)之上;1220535 6. Scope of patent application Remove the second conductive layer not participating in the reaction; and perform a third thermal annealing to reduce the resistance of the first and second silicided metals. 2. The process of claim 1 in which the first dielectric layer includes boron nitride (B N). 3. For the process of claim 1 in the scope of patent application, wherein the second dielectric layer includes an oxide layer. 4. The process of item 1 in the scope of patent application, wherein the first conductive layer mentioned above comprises titanium. 5. The process of item 1 in the scope of patent application, wherein the above-mentioned second conductive layer comprises titanium. 6. The process of item 1 in the scope of patent application, wherein the first conductive layer includes titanium / titanium nitride. 7. The process of item 1 in the scope of patent application, wherein the above-mentioned second conductive layer comprises titanium / titanium nitride. 8. If the process of item 1 of the scope of patent application is applied, the temperature of the first thermal annealing mentioned above is about 350 to 450 ° C. I Page 15 1220535 6. Application scope of patent 9. For the process of item 1 of the scope of application for patent, the temperature of the above-mentioned second thermal annealing is about 350 to 450 ° C. 10. The process of item 1 in the scope of patent application, wherein the second heat annealing temperature is about 800 to 900 ° C. 11 1. The process of item 1 in the scope of patent application, wherein the photoresist is removed by a chemical mechanical polishing process. A kind of silicided dielectric crystalline silicon layer nitride boron-nitride structure, micro-doped barrier wall at 12, a gate formation complex formation I insect engraving the gate formation light metal process, including at least: a semiconductor substrate Over; on the gate dielectric layer; (BN) on the above-mentioned polycrystalline silicon layer; (BN), the polycrystalline silicon layer and the gate dielectric layer are drawn in the shape of the semiconductor substrate Forming a spacer on a side wall of the gate structure; forming a body substrate, performing a first electrode generation, removing an unformed substrate, and performing an ion implantation to form a drain and a source in the semiconductor substrate; a titanium-containing metal layer Above the gap wall, the gate structure, and the semiconductor; a thermal decompression reaction to participate in the anti-electric layer to fire the first titanium-containing metal layer with the drain and the source to form the first titanium silicide ; Corresponding to the first titanium-containing metal layer; the substrate, the gate electrode, and the boron nitride (BN); 第16頁 1220535 六、申請專利範圍 形成光阻覆蓋該介電層之上; 去除該光阻層至該硼氮化物(B N )為止; 去除該介電層,用以暴露閘極; 去除該光阻; 形成第二含鈦之金屬層於該介電層、該閘極之上; 執行第二熱退火用以將該第二含鈦金屬層與該閘極產生反 應以形成第二矽化鈦金屬; 去除未參與反應之該第二含鈦金屬層;及 執行第三熱退火用以降低該第一及第二矽化鈦之電阻。 1 3、如申請專利範圍第1 2項之製程,其中上述之介電層包 含氧化層。 1 4、如申請專利範圍第1 2項之製程,其中上述之第一含鈦 金屬層更包含氮化鈦。 1 5、如申請專利範圍第1 2項之製程,其中上述之第二含鈦 金屬層更包含氮化鈦。 1 6、如申請專利範圍第1 2項之製程,其中上述之第一熱退 火之溫度約為3 5 0至4 5 0 °C 。 1 7、如申請專利範圍第1 2項之製程,其中上述之第二熱退 火之溫度約為3 5 0至4 5 0 °C 。Page 16 1220535 6. Apply for a patent to form a photoresist covering the dielectric layer; remove the photoresist layer to the boron nitride (BN); remove the dielectric layer to expose the gate; remove the light Forming a second titanium-containing metal layer on the dielectric layer and the gate; performing a second thermal annealing to react the second titanium-containing metal layer with the gate to form a second titanium silicide ; Removing the second titanium-containing metal layer not participating in the reaction; and performing a third thermal annealing to reduce the resistance of the first and second titanium silicides. 13 3. The process of item 12 in the scope of patent application, wherein the above-mentioned dielectric layer includes an oxide layer. 14. The process according to item 12 of the scope of patent application, wherein the first titanium-containing metal layer further includes titanium nitride. 15. The process according to item 12 of the scope of patent application, wherein the second titanium-containing metal layer further includes titanium nitride. 16. According to the process of item 12 in the scope of patent application, wherein the first heat annealing temperature is about 350 to 450 ° C. 17. If the process of item 12 in the scope of patent application is applied, wherein the second heat annealing temperature is about 350 to 450 ° C. 第17頁 1220535 六、申請專利範圍 1 8、如申請專利範圍第1 2項之製程,其中上述之第二熱退 火之溫度約為8 0 0至9 0 Ot 。 1 9、如申請專利範圍第1 2項之製程,其中上述之光阻係利 用化學機械研磨製程加以去除。 2 0、一種兩階段矽化金屬製程,至少包含: 形成金氧半電晶體於基板之上,該金氧半電晶體包含第一 介電層形成於閘極之上; 執行第一階段矽化製程,用以製作第一矽化金屬於該金氧 半電晶體之汲極與源極之上; 形成第二介電層於該基板、該閘極以及該第一介電層之 上; 形成光阻覆蓋該第二介電層之上; 去除該光阻至該第一介電層為止; 去除該第一介電層,用以暴露閘極; 去除該光阻;及 執行第二階段矽化製程,用以製作第二矽化金屬於該金氧 半電晶體之閘極上。 2 1、如申請專利範圍第2 0項之製程,其中在完成該第二階 段矽化製程後,更包含執行熱退火用以降低該第一及第二 矽化金屬之電阻。Page 17 1220535 6. Scope of patent application 18. For the process of item 12 of patent application scope, the above-mentioned second thermal annealing temperature is about 800 to 90 Ot. 19. The process of item 12 in the scope of patent application, wherein the photoresist is removed by a chemical mechanical polishing process. 20. A two-stage silicidation metal process, comprising at least: forming a gold-oxide semi-transistor on a substrate, the gold-oxygen semi-transistor comprising a first dielectric layer formed on a gate; performing a first-stage silicidation process, Used for making a first silicide metal on the drain and source of the metal-oxide semiconductor; forming a second dielectric layer on the substrate, the gate electrode and the first dielectric layer; forming a photoresist cover Over the second dielectric layer; removing the photoresist to the first dielectric layer; removing the first dielectric layer to expose the gate electrode; removing the photoresist; and performing a second-stage silicidation process using A second silicide metal is fabricated on the gate of the metal-oxide semiconductor transistor. 2 1. The process of item 20 in the scope of patent application, wherein after completing the second stage silicidation process, it further includes performing thermal annealing to reduce the resistance of the first and second silicided metals. 第18頁 1220535 六、申請專利範圍 2 2、如申請專利範圍第2 0項之製程,其中上述之第一介電 層包含硼氮化物(B N )。 2 3、如申請專利範圍第2 0項之製程,其中上述之第二介電 層包含氧化層。 2 4、如申請專利範圍第2 0項之製程,其中上述熱退火之溫 度約為8 0 0至90 (TC。 2 5、如申請專利範圍第2 0項之製程,其中上述之光阻係利 用化學機械研磨製程加以去除。Page 18 1220535 6. Scope of Patent Application 2 2. For the process of claim 20 in the scope of patent application, wherein the above-mentioned first dielectric layer includes boron nitride (B N). 2 3. The process of claim 20 in the scope of patent application, wherein the second dielectric layer includes an oxide layer. 2 4. If the process of applying for the scope of patent application No. 20, wherein the temperature of the above thermal annealing is about 800 to 90 (TC. 2 5. If the process of applying for the scope of patent application No. 20, where the above photoresist is It is removed using a chemical mechanical polishing process. 第19頁 丄220535Page 19 丄 220535 正/補无Positive / none 下一步驟為執行間隙壁 驟利用非等向性蝕刻^ 組成之間隙壁1 4於閘極 (sidewall spacer)之製作,此步 術钱刻氧化矽層,以形成由氧化/石夕 結構之侧壁上。 如圖一所不,接著利用閘極結構與間隙壁1 4做為離子 佈植之罩幕,進行離子㈣以 ^為離子 ::::4rr;=r術為熟知知技術,在此= v包層18在元成汲極與源極之製作後,全面性、、六 積:閘極結構、間隙壁14與基板2之上。以一較佳實施二 而吕,導電層18包含但不限定為鈦或鈦/氮化鈦(Ti/TiN) 所組成,然後以低溫熱退火(anneaUng)將鈦(或鈦/氮化 鈦)與矽材質反應。而閘極8被間隙壁丨4以及硼氮化物() 10所包覆故不會與金屬反應,只有汲極/源極丨2產生反應 形成矽化金屬20如矽化鈦。上述之低溫熱退火之溫度約“為 3 5 0至4 5 (TC之間。而上述未參與反應之導電層則利用溼蝕 刻法選擇性地去除,如圖二所示。 參閱圖一’一薄介電層如襯氧化層(1 i n e r 〇 χ丨^ e ) 2 0均 勻地沈積於上述閘極結構以及基板2表面。隨後全面性塗 佈光阻2 2於襯氧化層(1 i n e r 〇χ i d e ) 2 0上。接著,以化學 機械研磨法研磨上述光阻22至硼氮化物(BN)1味面為止, 此硼氮化物(BN) 1 0可做為研磨之終點偵測,其結果如圖三 所不。以光阻2 2為阻障,以濕蝕刻製程去除硼氮化物(B N ) 1 〇將閘極8之上表面裸露。利用硼氮化物(BN ) 1 0與光阻2 2The next step is to perform the fabrication of the spacers using anisotropic etching ^. The spacers 14 are fabricated on the side wall spacers. In this step, a silicon oxide layer is etched to form the side of the oxide / stone structure. On the wall. As shown in the first figure, the gate structure and the partition wall 14 are used as a mask for ion implantation, and ions are used as ions. :::: 4rr; = r is a well-known technology, here = v After the cladding layer 18 is fabricated in the source and drain electrodes, the cladding layer 18 is comprehensive, and has six products: the gate structure, the spacer 14 and the substrate 2. In a preferred embodiment, the conductive layer 18 includes, but is not limited to, titanium or titanium / titanium nitride (Ti / TiN), and then titanium (or titanium / titanium nitride) is subjected to low temperature thermal annealing (anneaUng). ) Reacts with silicon. The gate electrode 8 is covered by the partition wall 4 and the boron nitride (10), so it does not react with the metal, and only the drain / source 2 reacts to form a silicide metal 20 such as titanium silicide. The temperature of the above-mentioned low-temperature thermal annealing is about "between 3 50 and 4 5 (TC.), And the above-mentioned non-reactive conductive layer is selectively removed by a wet etching method, as shown in Fig. 2. See Fig. 1 ' A thin dielectric layer, such as a liner oxide layer (1 iner 〇χ 丨 ^ e) 20, is uniformly deposited on the gate structure and the surface of the substrate 2. Then, a photoresist 22 is coated on the liner oxide layer (1 iner 〇). χ ide) 2 0. Then, the above-mentioned photoresist 22 is polished to a boron nitride (BN) 1 taste surface by a chemical mechanical polishing method, and this boron nitride (BN) 1 0 can be used as the end point detection of the grinding. The results are shown in Figure 3. Using photoresist 2 2 as a barrier and removing the boron nitride (BN) 1 0 by a wet etching process, the upper surface of the gate electrode 8 is exposed. Using boron nitride (BN) 1 0 and the photoresist twenty two 第10頁 1220535 9 3年6月午日修正/更正/補无 六、申請專利範圍 申請專利範圍: 1、一種矽化金屬製程,至少包含: 形成閘極介電層於一半導體基板之上; 形成複晶矽層於該閘極介電層之上; 形成第一介電層於上述複晶石夕層之上; 利用微影及蝕刻製程蝕刻該第一介電層、該複晶矽層以及 該閘極介電層以形成閘極結構; 形成輕微換雜沒極於該半導體基板之中; 基, 形成間隙壁於該閘極結構之側壁上; 執行一離子佈植以形成汲極與源極於該半導體基板之中 形成第一導電層於該間隙壁、該閘極結構以及該半導體 板之上; 執行第一熱退火用以將該第一導電層與該汲極、該源極產 生反應以形成第一矽化金屬; 去除未參與反應之該第一導電層; 形成第二介電層於該基板、該閘極以及該第一介電層之 上; 形成光阻覆蓋該第二介電層之上; 去除該光阻至該第一介電層為止; 去除該第一介電層; 去除該光阻,用以暴露閘極; 形成第二導電層於該第二介電層、該閘極之上; 執行第二熱退火用以將該第二導電層與該閘極產生反應以 形成第二矽化金屬;Page 10 1220535 9 Amendment / Correction / Completion on the afternoon of June 3rd, 2013. Patent Application Scope of Application Patent Scope: 1. A silicidation metal manufacturing process, including at least: forming a gate dielectric layer on a semiconductor substrate; forming A polycrystalline silicon layer on the gate dielectric layer; forming a first dielectric layer on the polycrystalline stone layer; using a lithography and etching process to etch the first dielectric layer, the polycrystalline silicon layer, and The gate dielectric layer is used to form a gate structure; a lightly doped electrode is formed in the semiconductor substrate; a base is formed on a sidewall of the gate structure; an ion implantation is performed to form a drain and a source A first conductive layer is formed in the semiconductor substrate on the spacer wall, the gate structure and the semiconductor plate; a first thermal annealing is performed to generate the first conductive layer and the drain and source electrodes; Reacting to form a first silicide metal; removing the first conductive layer not participating in the reaction; forming a second dielectric layer on the substrate, the gate electrode and the first dielectric layer; forming a photoresist to cover the second dielectric Above the electrical layer Removing the photoresist to the first dielectric layer; removing the first dielectric layer; removing the photoresist to expose a gate electrode; forming a second conductive layer on the second dielectric layer and the gate electrode; Performing a second thermal annealing to react the second conductive layer with the gate to form a second silicide metal;
TW90108218A 2001-04-04 2001-04-04 A novel process for preparation of the metal silicide TWI220535B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90108218A TWI220535B (en) 2001-04-04 2001-04-04 A novel process for preparation of the metal silicide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90108218A TWI220535B (en) 2001-04-04 2001-04-04 A novel process for preparation of the metal silicide

Publications (1)

Publication Number Publication Date
TWI220535B true TWI220535B (en) 2004-08-21

Family

ID=34075366

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90108218A TWI220535B (en) 2001-04-04 2001-04-04 A novel process for preparation of the metal silicide

Country Status (1)

Country Link
TW (1) TWI220535B (en)

Similar Documents

Publication Publication Date Title
TWI231570B (en) Dual fully-silicided gate MOSFETs
TW200522348A (en) Advanced strained-channel technique to improve CMOS performance
JP2001298186A (en) Semiconductor device and manufacturing method thereof
JP2003243410A (en) Method of manufacturing semiconductor device and semiconductor device
TW200419633A (en) Manufacturing method of semiconductor device
US7416949B1 (en) Fabrication of transistors with a fully silicided gate electrode and channel strain
JPWO2007060797A1 (en) Semiconductor device and manufacturing method thereof
JPH08236761A (en) Manufacture of semiconductor device
JPH06112158A (en) Manufacture of semiconductor device
KR100429007B1 (en) Method of manufacturing MOS Transistor
JP2008527743A (en) Self-formed metal silicidation gate for CMOS devices
JP2008288364A (en) Semiconductor device, and manufacturing method of semiconductor device
JP2010087391A (en) Semiconductor device and method for manufacturing the same
TWI220535B (en) A novel process for preparation of the metal silicide
US6342440B1 (en) Method for forming low-leakage impurity regions by sequence of high-and low-temperature treatments
JP2000091560A (en) Semiconductor device and manufacture thereof
JPH10209291A (en) Manufacture of mos type semiconductor device
JP2006352127A (en) Method of forming self-aligned silicide film by using multiple heat treatment processes
KR20110021782A (en) Contact forming method, semiconductor device manufacturing method and semiconductor device
TW495852B (en) Forming method of MOSFET with recessed self-aligned metal silicide contact and extended source/drain junction
TW486783B (en) Method for producing MOS transistor with dual-salicide
TW531795B (en) Self-aligned metal silicide process using cobalt silicide
JPS61150216A (en) Manufacture of semiconductor device
TW466767B (en) Method for manufacturing ultra-shallow junction metal oxide semiconductor transistor
KR20030013882A (en) Method for manufacturing a silicide layer of semiconductor device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees