TW595023B - A light emitting diode with a current blocking structure and method for making the same - Google Patents

A light emitting diode with a current blocking structure and method for making the same Download PDF

Info

Publication number
TW595023B
TW595023B TW92124379A TW92124379A TW595023B TW 595023 B TW595023 B TW 595023B TW 92124379 A TW92124379 A TW 92124379A TW 92124379 A TW92124379 A TW 92124379A TW 595023 B TW595023 B TW 595023B
Authority
TW
Taiwan
Prior art keywords
current blocking
light
emitting diode
layer
blocking structure
Prior art date
Application number
TW92124379A
Other languages
Chinese (zh)
Inventor
Tsun-Neng Yang
Shan-Ming Lan
Original Assignee
Atomic Energy Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atomic Energy Council filed Critical Atomic Energy Council
Priority to TW92124379A priority Critical patent/TW595023B/en
Application granted granted Critical
Publication of TW595023B publication Critical patent/TW595023B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

The present invention discloses a light emitting diode with a current blocking structure and method for making the same. The light emitting diode comprises a substrate, an epitaxy structure positioned on the substrate, an ohmic contact positioned on the epitaxy structure and a current blocking structure positioned in the epitaxy structure. The epitaxy structure comprises a bottom cladding layer, an upper cladding layer, a light emitting layer positioned between the bottom and the upper cladding layer, a window layer positioned on the upper cladding layer and a contact layer positioned between the window layer and the ohmic contact. The current blocking structure can extend from the bottom surface of the ohmic contact to the light emitting layer. According to the present invention, an implanting process is performed to implant proton into the epitaxy structure to form the current blocking structure.

Description

595023 玖、發明說明: 一、 發明所屬之技術領域 本發明係關於一種發光二極體及其製備方法,特別係關 於一種具有電流堵塞結構之發光二極體及利用佈植技術之 製備方法。 二、 先前技術 在過去40年期間,世界各國在開發新型發光二極體材料 系統與提升其内部量子效率 (Internal Quantum Efficiency),可說不遺餘力。但是發光二極體的外部量子 效率(External Quantum Efficiency )與内部量子效率之間, 至今仍有極大的差距。採用雙異質結構(Double Heterojunction,DH )之發光二極體之内部量子效率可以高 達99%,然而外部量子效率卻低到只有幾個百分點,其主 要的原因有:(1)由於發光二極體在發光層上面的p型被覆 層、P型窗戶層與P型接觸層的電流分佈關係,導致所產 生的大邵份光子為P型歐姆接觸電極遮蔽而反射回去,並 為其基板所吸收,降低了光子輻射出二極體的機率;(2)光 子欲自高折射率(Refractive Index,η )的半導體材料中傳 至外圍低折射率之空氣(η=1)十分不容易,亦使得大多數的 光子因全反射回去又被基板所吸收。 目前商品化的高亮度發光二極體,包括有紅色、黃色、 綠色以及藍色,均使用磷化鋁鎵錮/坤化鎵基板與氮化鋁 鋼嫁/監脅石早晶基板等半導體材料,並且採用有機金屬 化學氣相沉積(Metal-Organic Chemical Vapor Deposition,595023 (1) Description of the invention: 1. Field of the invention The present invention relates to a light-emitting diode and a method for preparing the same, and particularly relates to a light-emitting diode having a current blocking structure and a method for preparing the same by using a planting technique. 2. Previous technology During the past 40 years, countries around the world have been developing new light-emitting diode material systems and improving their internal quantum efficiency (Internal Quantum Efficiency). However, there is still a huge gap between the external quantum efficiency (External Quantum Efficiency) and the internal quantum efficiency of light emitting diodes. The internal quantum efficiency of a light-emitting diode with a double heterostructure (Double Heterojunction, DH) can be as high as 99%, but the external quantum efficiency is as low as a few percentage points. The main reasons are: (1) due to the light-emitting diode The current distribution relationship between the p-type coating layer, the P-type window layer, and the P-type contact layer on the light-emitting layer causes the generated large photons to be shielded by the P-type ohmic contact electrode and reflected back, and absorbed by the substrate. Reduced the probability of photons radiating out of the diode; (2) It is very difficult for photons to pass from the semiconductor material with high refractive index (Refractive Index, η) to the air with low refractive index (η = 1), which also makes the Most photons are totally reflected back and absorbed by the substrate. Currently commercialized high-brightness light-emitting diodes, including red, yellow, green, and blue, all use semiconductor materials such as aluminum gallium phosphide / gallium substrate and aluminum nitride steel / monitoring stone early-crystal substrates. , And the use of organometallic chemical vapor deposition (Metal-Organic Chemical Vapor Deposition,

H:\HU\HYG\ 核能所 \87172\87172.DOC 595023 MOCVD )技術磊晶生產發光二極體的膜層結構。 圖1係一習知之發光二極體10之剖示圖。如圖1所示, 發光二極體10包含一砷化鎵基板12、一由n型磷化鋁鎵 銦(n_AlGaInP)構成之下被覆層14、一由未佈植之磷化 鋁鎵銦(undoped AlGalnP)構成之發光層16及一由p型 · 磷化鋁鎵銦(P-AlGaInP)構成之上被覆層18。此外,發 · 光二極體10亦包含一設置於上被覆層18表面之p型歐姆 接觸電極22與一設置於坤化鎵基板12下表面之n型歐姆 接觸電極20。該ρ型歐姆接觸電極22係一直徑約15〇微 籲 米之金屬膜,作為外部線路的銲墊。施加於發光二極體1Q 之電流係經由該ρ型歐姆接觸電極22自上而下,流經上被 覆層18再注入發光層16以產生光子。 由於構成上被覆層18之ρ型磷化鋁鎵錮具有較高之電 阻而且厚度太薄,因此電泥不易均勻地橫向展開,導致 大部份電流均集中在ρ型歐姆接觸電極22之正下方。然 而,在P型歐姆接觸電極22正下方之發光層16所產生的 光子要輕射出發光二極體10時,將會被上方的ρ型歐姆接籲 觸電極22遮蓋而反射回來,最後大部份的光子會被較小能 隙的砷化鎵基板12所吸收,因而限制了發光二極體1〇的 外部量子效率。 發光二極體10係直接以?型磷化鋁鎵銦構成之上被覆層_ 18作為電流展開層,經研究發現其面臨三個問題:(丨一型-磷化鋁鎵錮之載子電移率(Carrier Mobility)非常低,僅 、勺為10cm /V-sec左右;(2)p型磷化鋁鎵錮不易於進行佈H: \ HU \ HYG \ Nuclear Energy Institute \ 87172 \ 87172.DOC 595023 MOCVD) technology to produce the film structure of light-emitting diodes. FIG. 1 is a sectional view of a conventional light emitting diode 10. As shown in FIG. 1, the light emitting diode 10 includes a gallium arsenide substrate 12, a lower coating layer 14 composed of n-type aluminum gallium indium phosphide (n_AlGaInP), and an unimplanted aluminum gallium indium phosphide ( An undoped AlGalnP) light emitting layer 16 and an overcoat layer 18 made of p-type aluminum gallium indium phosphide (P-AlGaInP). In addition, the light emitting diode 10 also includes a p-type ohmic contact electrode 22 disposed on the surface of the upper cladding layer 18 and an n-type ohmic contact electrode 20 disposed on the lower surface of the gallium substrate 12. The p-type ohmic contact electrode 22 is a metal film with a diameter of about 150 micrometers, which is used as a pad for external circuits. The current applied to the light emitting diode 1Q is from top to bottom through the p-type ohmic contact electrode 22, flows through the upper coating layer 18, and is then injected into the light emitting layer 16 to generate photons. Because the p-type aluminum gallium phosphide which constitutes the upper coating layer 18 has a high resistance and is too thin, it is not easy to spread the electrode laterally uniformly, causing most of the current to be concentrated directly under the p-type ohmic contact electrode 22 . However, when the photons generated by the light-emitting layer 16 directly below the P-type ohmic contact electrode 22 are to be emitted from the light-emitting diode 10, they will be covered by the p-type ohmic contact electrode 22 above and reflected back. A portion of the photons will be absorbed by the gallium arsenide substrate 12 with a smaller energy gap, thereby limiting the external quantum efficiency of the light emitting diode 10. Is the light emitting diode 10 series directly? The overcoat layer _ 18 composed of indium aluminum gallium phosphide is used as a current spreading layer, and it is found that it faces three problems: (丨 Type-Carrier Mobility of aluminum gallium phosphide is very low, Only, the spoon is about 10cm / V-sec; (2) p-type aluminum gallium phosphide is not easy to fabricate

H:\HU\HYG\ 核能所 \87 丨 72\87172.DOC 595023 植’最高載子漠度僅約在I〇I8/Cm3左右’·(3)當口型磷化紹 銥銦义磊晶層厚度為2〜5微米時,將會使得磷化鋁鎵銦半 導體材料之品質劣化。 圖2係另一習知之發光二極體3〇之剖示圖。相較圖】 <發光二極體20,圖2之發光二極體3〇多了—層設置於 上被覆層18上之p型窗戶| 32。為了克服上述的問題, 研究人員在上被覆層18上再磊晶成長一層厚度大約2〜% 微米的P型窗戶層32。目前廣泛地使用於窗戶層之半導體 材料有磷化銦鋁(InAlP)、砷化鎵鋁(AmaAs)、氮化$ 與轉化鎵等等。該p型窗戶層32不僅具有較低的電阻係數 (Resistivity),且對發光二極體2〇所輻射出來的光子是 ^明的(即不吸收)。藉由採用該p型窗戶層32,研究人 員成功地開發了磷化鋁鎵銦高亮度紅光發光二極體。日本 東芝(Toshiba)公司於1991年首先採用p型砷化鋁鎵 (p-AlGaAs)製備窗戶層與電流展開層,使發光二極體的 外部量子效率增加了約4〇倍左右。之後,美國惠普 (HeWlett-PaCkard )公司公司採用厚度為2〜丨5微米之p型 神化鎵(p-GaP)製備窗戶層,有效地提昇了發光二極體的 外邵量子效率。 圖3係另一習知之發光二極體4〇之剖示圖。如圖3所 示,相較於發光二極體3〇,發光二極體4〇係使用一設置 於上被覆層18上之窗戶層42來橫向展開電流,其中該窗 戶層42係採用磷化鎵/神化鎵/磷化鎵(〜ρ/—ρ ) 三層^層結構。台灣的國聯光電公司即採用此一設計,H: \ HU \ HYG \ Nuclear Energy Institute \ 87 丨 72 \ 87172.DOC 595023 The highest carrier inertia is only about IO8 / Cm3. When the thickness is 2 to 5 microns, the quality of the aluminum gallium indium semiconductor material will be deteriorated. FIG. 2 is a sectional view of another conventional light emitting diode 30. FIG. Comparing the figure] < Light-emitting diode 20, there are more than 30 light-emitting diodes in FIG. 2-p-type windows provided on the upper coating layer 18 | 32. In order to overcome the above-mentioned problems, the researchers epitaxially grown on the upper coating layer 18 to form a P-type window layer 32 with a thickness of about 2 ~% microns. Currently widely used semiconductor materials for the window layer include indium aluminum phosphide (InAlP), gallium aluminum arsenide (AmaAs), nitride and converted gallium. The p-type window layer 32 not only has a low resistivity, but also is clear (ie, does not absorb) the photons emitted by the light emitting diode 20. By using this p-type window layer 32, researchers have successfully developed a high brightness red light emitting diode of aluminum gallium indium phosphide. Japan's Toshiba Company first used p-type aluminum gallium arsenide (p-AlGaAs) to prepare the window layer and the current development layer in 1991, which increased the external quantum efficiency of the light-emitting diode by about 40 times. After that, Hewlett-PaCkard Company of the United States used p-type gallium (p-GaP) with a thickness of 2 to 5 microns to prepare the window layer, which effectively improved the external quantum efficiency of the light-emitting diode. FIG. 3 is a sectional view of another conventional light emitting diode 40. FIG. As shown in FIG. 3, compared to the light-emitting diode 30, the light-emitting diode 40 uses a window layer 42 disposed on the upper coating layer 18 to laterally expand the current, wherein the window layer 42 is phosphorized. A three-layer structure of gallium / amorphous gallium / gallium phosphide (~ ρ / —ρ). Taiwan's Guolian Optoelectronics has adopted this design.

H:\HU\HYGVf^能所 \87172\87172.DOC 595023 成功開發出磷化鋁鎵錮紅光高亮度發光二極體。 圖4係另一習知之發光二極體5〇之剖示圖。發光二極體 5〇係利用一層透明電極52來橫向展開電流。透明電極52 係以銦錫氧化物(Indium Tin 〇xide,IT〇)成長在p型磷 化鋁鎵銦構成之上被覆層18上面,使發光二極體5〇的電 · 經由透明電極5 2橫向展開至上被覆層丨8。台灣的工業 . 技術研%院光電工業研究所首先利用此一設計成功開發出 磷化鋁鎵錮紅光高亮度發光二極體。然而,由於錮錫氧化 物與磷化鋁鎵銦之界面不易形成良好的歐姆接觸,因此中 籲 間需加一層由p型坤化鎵構成之漸變層54 (Transition Layer) ° 圖5係另一習知之發光二極體6〇之剖示圖。發光二極體 6〇係採用一電流堵塞(Current Blocking )結構來迫使電流 橫向展開,其包含一設置於上被覆層18上之p型窗戶層 62及一設置於上被覆層18與p型窗戶層62間之n型磊晶 層64。邊η型磊晶層64係位於該ρ型歐姆接觸電極之 正下方,且與上被覆層18形成-可阻止電流通過的ρη接籲 面這種電流堵▲結構有效地將發光二極體6〇的電流橫向 展開至Ρ型歐姆接觸電極22之周圍,而不集中在中央區 或可大巾田降低發光層16所產生的光子被ρ型歐姆接觸電 極22遮蔽的機率,進而提高發光二極體6〇之外部量子效 率。曰本東芝公司採用Ρ型砷化鋁鎵(p-AlGaAs )半導體 Λ 材料製備窗戶層,並加上η_型島狀之電流堵塞結構。 如果採用ρη接面之電流堵塞結構,在進行VD磊晶 h:\hu\hyg\ 核能所\871通7mD〇c -10- 生長時需要兩個步驟。首先必須在上被覆層1 8上磊晶生長 數十個奈米(nanometer )的η型蟲晶層64,然後將蟲晶片 由反應腔取出,利用微影與蝕刻技術,形成島狀的η型磊 晶層64。然後再將磊晶片送進MOCVD反應腔,再繼續磊 晶生長Ρ型窗戶層62。此外,發光二極體60之電流堵塞 結構係設置於上被覆層18之上方,自ρ型歐姆接觸電22 導入之電流仍可能流到η型磊晶層64下方之發光層16, 而在此處產生之光子仍將因ρ型歐姆接觸電極22之遮蔽而 無法發射至外部。 目前有許多技術可用以解決發光二極體之電流展開問 題。例如H. Sugawara等人利用選擇區域滲透法(Selected Area Diffusion)製作電流堵塞結構(參考US 5,153,889 )。 B. J. Lee等人在ITO或ZnO構成之透明電極中間,利用微 影與蝕刻技術形成一圓洞,其深度至由ρ型磷化鋁鎵銦構 成之上被覆層,然後再鍍上金屬膜形成蕭氏障壁(Schokky Barrier ),經加熱使金屬膜與ρ型磷化鋁鎵錮接面形成天然 氧化物,此蕭氏障壁與天然氧化物即形成電流堵塞結構(參 考 US 5,717,226 )° 此夕卜,US 5,949,093、US 6,420,732 B1、 EP 1,225,670 Al、US 2001/0050530 Al、US 2003/0039288 A1及US 6,522,676 B1等專利文獻亦揭示各種形式之電流 堵塞結構設計。 三、發明内容 本發明之主要目的係提供一種具有電流堵塞結構之發光 二極體及一種利用佈植技術製備具有電流堵塞結構之發光 H:\HU\HYGM^t^r「\87172\87172.DOC -11 - 為達成上述目的,本發明提供一種具有電流堵塞結構之 發光二極體,其包含一基板、一設置於該基板上之磊晶結 構、一設置於該磊晶結構上之歐姆接觸電極以及一設置於 該磊晶結構中之電流堵塞結構。該磊晶結構包含一下被覆 層、一上被覆層、一夾於該上被覆層與該下被覆層間之發 光層、一設置於該上被覆層上之窗戶層及一設置於該窗戶 層與該歐姆接觸電極間之接觸層。該電流堵塞結構可自該 歐姆接觸電極下表面延伸至該發光層。 本發明具有電流堵塞結構之發光二極體之製備方法首先 形成一磊晶結構於一基板上,其中該磊晶結構包含一下被 覆層、一上被覆層、一夾於該上被覆層與該下被覆層間之 發光層、一設置於該上被覆層上之窗戶層及一設置於該窗 戶層與該歐姆接觸電極間之接觸層。之後,形成一光阻層 於該磊晶結構上,其中該光阻層包含至少一開口。然後進 行至少一佈植製程,將具有一預定劑量和一預定能量之質 子束導入位於該開口下方之磊晶結構内,以形成一電流堵 塞結構於該磊晶結構中。接著去除該光阻層以及形成一歐 姆接觸電極於該磊晶結構上。該佈植製程可於該歐姆接觸 電極形成之前或之後進行。 相較於習知技藝,本發明係利用佈植技術在發光二極體 内部形成電流堵塞結構,具有下列之優點: 1.磊晶片僅需一次進出MOCVD反應腔即可完成所有的磊 晶成長。 H:\HU\HYG\ 核能所\87172\87172.DOC -12- 2·π::=光,極體僅需;薄的奸層,即可達到電流 、 可進而縮短暴晶生長的時間。 :植製程是一項非常穩定且可靠的技術,不僅可 -,W的艮率,也可相對地降低生產成 四、實施方式 圖6_至圖8係本發明第一實施例之發光二極 万法不意圖。譜1@ ^ ^ ^ 於-基二 首先形成一蟲晶結構80 -上被%爲上其中該磊晶結構8〇包含—下被覆層82、 之發光層I/、4二84與該下被覆層82間 、人 《置於孩上被覆層84上之窗戶層%以及 P又万;该苜戶層86上之接觸層88。一般而士,窗 C高,不利於電流之橫向展開,因此本發明藉: ;;=長:窗戶層86之過程中,另加入-含有。型接質 有=40咖之反應腔,以於該窗戶層%之表面形成 /、有較高載子濃度之接觸層88。 =後,可在該接觸層88域上—層厚度約i,嶋 =呂膜或金膜’再利用旋轉式塗上(Spi_)適當厚度 J、經軟、硬烤之後,並使用對位光罩,經過曝光顯 银刻與去光阻程序後’在蟲晶片之切割道上留下金屬 十子線記號,作為對位參考。 清參考圖7,形成一光阻層1〇〇於該暴晶結構8〇之接觸 7'88上’其中該光阻層_包含1口⑽。然後進行至 少:佈植製程,將具有一預定劑量和一預定能量之質子束 開102正下方之接觸層88、窗戶層%、上被覆H: \ HU \ HYGVf ^ Energy Institute \ 87172 \ 87172.DOC 595023 Successfully developed aluminum gallium phosphide red high-brightness light-emitting diode. FIG. 4 is a sectional view of another conventional light emitting diode 50. FIG. The light-emitting diode 50 uses a layer of transparent electrodes 52 to laterally expand the current. The transparent electrode 52 is formed by indium tin oxide (Indium Tin Oxide, IT) on the coating layer 18 composed of p-type aluminum gallium indium phosphide, and the electricity of the light-emitting diode 50 passes through the transparent electrode 5 2 Extend laterally to the upper coating 丨 8. Taiwan's Industry. The Institute of Photoelectric Industry of the Institute of Technology Research Institute first used this design to successfully develop an aluminum gallium phosphide red high-brightness light-emitting diode. However, because the interface between rhenium tin oxide and aluminum gallium indium phosphide is not easy to form a good ohmic contact, a layer of transition layer 54 (transition layer) made of p-type gallium gallium is needed between Zhongyu ° Figure 5 is another A cross-sectional view of a conventional light emitting diode 60. The light emitting diode 60 uses a current blocking structure to force the current to expand laterally. The light emitting diode 60 includes a p-type window layer 62 provided on the upper coating layer 18 and a p-type window layer 62 provided on the upper coating layer 18. An n-type epitaxial layer 64 between the layers 62. The edge η-type epitaxial layer 64 is located directly below the ρ-type ohmic contact electrode, and is formed with the upper coating layer 18-a ρη contact surface that can prevent the current from passing through. This structure of the current blocking ▲ structure effectively illuminates the light-emitting diode 6 The current of 〇 spreads laterally around the P-type ohmic contact electrode 22, instead of being concentrated in the central area or can reduce the probability of photons generated by the light-emitting layer 16 being blocked by the p-type ohmic contact electrode 22, thereby improving the light-emitting diode. External quantum efficiency of body 60. Toshiba said that the window layer was prepared by using P-type aluminum gallium arsenide (p-AlGaAs) semiconductor Λ material, and an η-type island-shaped current blocking structure was added. If the current blocking structure of the ρη junction is used, two steps are required to perform the VD epitaxial h: \ hu \ hyg \ nuclear power plant \ 871 pass 7mD〇c -10- growth. First, tens of nanometer η-type worm crystal layers 64 must be epitaxially grown on the upper coating layer 18, and then the worm chip is taken out of the reaction chamber, and lithography and etching techniques are used to form island-shaped η-type worm chips. Epitaxial layer 64. The epitaxial wafer is then sent into the MOCVD reaction chamber, and the epitaxial growth of the P-type window layer 62 is continued. In addition, the current blocking structure of the light emitting diode 60 is disposed above the upper cladding layer 18, and the current introduced from the p-type ohmic contact 22 may still flow to the light emitting layer 16 below the n-type epitaxial layer 64, and here The photons generated there will still be unable to be emitted to the outside due to the shielding of the p-type ohmic contact electrode 22. There are many technologies available to solve the problem of current development of light emitting diodes. For example, H. Sugawara et al. Used a selected area diffusion method to make a current blocking structure (see US 5,153,889). BJ Lee et al. Formed a circular hole in the middle of a transparent electrode made of ITO or ZnO using lithography and etching technology to a depth of overcoating layer consisting of p-type aluminum gallium indium phosphide, and then coated with a metal film to form Xiao's Barrier (Schokky Barrier), the metal film and p-type aluminum gallium phosphide gallium are heated to form a natural oxide by heating. This Xiao barrier and the natural oxide form a current blocking structure (refer to US 5,717,226). Patent documents such as 5,949,093, US 6,420,732 B1, EP 1,225,670 Al, US 2001/0050530 Al, US 2003/0039288 A1, and US 6,522,676 B1 also disclose various forms of current blocking structure design. III. SUMMARY OF THE INVENTION The main purpose of the present invention is to provide a light-emitting diode with a current blocking structure and a method for preparing a light-emitting diode with a current blocking structure by using the implantation technology H: \ HU \ HYGM ^ t ^ r`` \ 87172 \ 87172. DOC -11-To achieve the above object, the present invention provides a light-emitting diode with a current blocking structure, which includes a substrate, an epitaxial structure provided on the substrate, and an ohmic contact provided on the epitaxial structure. An electrode and a current blocking structure disposed in the epitaxial structure. The epitaxial structure includes a coating layer, an upper coating layer, a light-emitting layer sandwiched between the upper coating layer and the lower coating layer, and an upper layer. The window layer on the covering layer and a contact layer disposed between the window layer and the ohmic contact electrode. The current blocking structure can extend from the lower surface of the ohmic contact electrode to the light emitting layer. The light emitting device 2 having the current blocking structure of the present invention The method for preparing a polar body first forms an epitaxial structure on a substrate, wherein the epitaxial structure includes a lower coating layer, an upper coating layer, a sandwich between the upper coating layer and the lower layer. A light-emitting layer between the cladding layers, a window layer disposed on the upper cladding layer, and a contact layer disposed between the window layer and the ohmic contact electrode. Then, a photoresist layer is formed on the epitaxial structure, wherein the The photoresist layer includes at least one opening. Then, at least one implantation process is performed to introduce a proton beam having a predetermined dose and a predetermined energy into an epitaxial structure located below the opening to form a current blocking structure in the epitaxial structure. Then, the photoresist layer is removed and an ohmic contact electrode is formed on the epitaxial structure. The implantation process can be performed before or after the ohmic contact electrode is formed. Compared to the conventional technique, the present invention uses the implantation The technology forms a current blocking structure inside the light emitting diode, which has the following advantages: 1. The epitaxial wafer only needs to enter and exit the MOCVD reaction chamber once to complete all the epitaxial growth. H: \ HU \ HYG \ Nuclear Energy Institute \ 87172 \ 87172 .DOC -12- 2 · π :: = Light, only the polar body is needed; a thin layer can reach the current, which can further shorten the time for the crystal growth.: The planting process is a very stable and reliable technology. not only Yes, the rate of W can also be relatively reduced to four. Embodiments Figures 6_ through 8 are not intended for the light emitting diode method of the first embodiment of the present invention. Spectrum 1 @ ^ ^ ^ 于-基First, a worm-like structure 80 is formed. The upper layer is the upper layer. The epitaxial structure 80 includes the lower coating layer 82, the light-emitting layer I /, 4-2 84, and the lower coating layer 82. The window layer% and P on the upper cladding layer 84 and the contact layer 88 on the clover layer 86. Generally, the window C is high, which is not conducive to the lateral expansion of the current, so the present invention borrows: ;; = length: In the process of the window layer 86, a -container is additionally added. The connection cavity has a reaction cavity of 40 coffee, so that a contact layer 88 with a higher carrier concentration is formed on the surface of the window layer%. = After, can be on the contact layer 88 domain-the thickness of the layer is about i, 嶋 = Lu film or gold film 'and then use the spin coating (Spi_) to the appropriate thickness J, after soft and hard baking, and use the alignment light The mask, after exposure to silver engraving and photoresist removal procedures, left a metal ten-strand mark on the cutting path of the insect wafer as a reference for alignment. Referring to FIG. 7, a photoresist layer 100 is formed on the contact 7'88 of the exposed crystal structure 80 ', wherein the photoresist layer includes 1 pin. Then at least: the implantation process, a proton beam with a predetermined dose and a predetermined energy is opened directly under the contact layer 88, the window layer%, the upper cover

H:\HU\HYGV^能所\87172\87172.DOC -13 - 595023 層82及發光層83,以形成一電流堵塞結構92於該磊晶結 構80中。該預定劑量係介於1X1012至9X1016摻質/平方 公分,而該預定能量係介於100至1000仟電子伏特。除了 質子之外,氮離子及氧離子亦可用於形成該電流堵塞結 構。此外,該佈植製程亦可分別將具有複數種能量之質子 束導入該磊晶結構内。該佈植製程可先進行高能量質子束 之佈植,再進行低能量質子束之佈植,亦可先進行低能量 質子束之佈植,再進行高能量質子束之佈植。 請參考圖8,在去除該光阻層100後,形成一 p型歐姆 接觸電極9 0於該暴晶結構之接觸層8 8上及一 η型歐姆接 觸電極94於該基板72之另一表面以完成該發光二極體 70。開口 102 (即佈植區)之面積最好小於ρ型歐姆接觸 電極90的面積,以150微米直徑之圓形歐姆接觸電極為 例,其所對應佈植區的直徑則介於10微米〜140微米間。 本發明之發光二極體70的電流堵塞結構92係自該ρ型歐 姆接觸電極90之下表面延伸至該發光層83。此外,本發 明亦可藉由提昇質子束之能量,將質子佈植於開口 102正 下方之發光層83中,甚至於下被覆層82中。即,將該電 流堵塞結構92自該ρ型歐姆接觸電極90之下表面延伸至 該下被覆層82。 由於在ρ型歐姆接觸電極90正下方之發光層83產生的 光子大部分均無法輻射出發光二極體70,因此本發明藉由 將質子佈植於ρ型歐姆接觸電極90正下方之發光層83, 避免電流流向此處而產生無法輻射出發光二極體70之光 H:\HU\HYGM^能所\87172\87172.DOC -14- 子。相反地,電流將流向P型歐姆接觸電極9〇正下方以外 之發光層83,以產生可輻射出發光二極體7〇之光子,進 而提昇外部量子效率。 相較於習知技藝(如圖5所示之發光二極體6〇),本發 明係在該歐姆接觸電極90與該發光層83之間形成—連^ 延伸 < 電流阻塞結構92。當施加一順向電流於發光二極體 7〇時,自該p型歐姆接觸電極9〇導入之電流將先經由= 觸層88橫向展開,再向下流向發光層83。再者,由於p 歐姆接觸電極9G正下方的圓柱狀區域已形成半絕緣體❼ | 阻止順向電流之通過,迫使電流經由圓柱狀以外區域,注 入圓柱狀區域外側的發光層83。因此,產生的光子因幾何 關係被P型歐姆接觸電極9〇反射回來的機率則大幅減少, 而發光一極體70之外部量子效率得以大幅提昇。 圖9係本發明第二實施例之發光二極體70之製備方法示 意圖。如圖9所示,在基板72上表面形成磊晶結構8〇後| 在磊晶結構80上形成P型歐姆接觸電極90及在基板72 下表面形成η型歐姆接觸電極94。之後,形成一光阻層 _ 11〇,其中該光阻層110包含一開口 112。然後,進行一佈 植製程’將具有-财劑量和―就能量之f子束%導入 開口 112正下方之接觸層88、窗戶層%及上被覆層料, 以形成一電流堵塞結構92於該暴晶結構80中。最後將光, 阻層110去除,即完成發光二極體70的製作。 藏預定劑量係介於1X1012至9X1016摻質/平方公分, 而該預定能量係介於1〇〇至1〇〇〇仟電子伏特。由於必須先H: \ HU \ HYGV ^ Energy \ 87172 \ 87172.DOC -13-595023 layer 82 and light emitting layer 83 to form a current blocking structure 92 in the epitaxial structure 80. The predetermined dose is between 1X1012 and 9X1016 dopants / cm 2, and the predetermined energy is between 100 and 1000 仟 electron volts. In addition to protons, nitrogen and oxygen ions can also be used to form the current blocking structure. In addition, the implantation process can also introduce a proton beam with multiple energies into the epitaxial structure. This implantation process can be performed first with high-energy proton beams, then with low-energy proton beams, or with low-energy proton beams, followed by high-energy proton beams. Referring to FIG. 8, after the photoresist layer 100 is removed, a p-type ohmic contact electrode 90 is formed on the contact layer 88 of the crystal structure and an n-type ohmic contact electrode 94 is on the other surface of the substrate 72. To complete the light emitting diode 70. The area of the opening 102 (ie, the planting area) is preferably smaller than the area of the ρ-type ohmic contact electrode 90. Taking a circular ohmic contact electrode with a diameter of 150 μm as an example, the diameter of the corresponding planting area is between 10 μm and 140 Between micrometers. The current blocking structure 92 of the light emitting diode 70 of the present invention extends from the lower surface of the p-type ohmic contact electrode 90 to the light emitting layer 83. In addition, the present invention can also implant protons in the light-emitting layer 83 directly under the opening 102 or even in the lower coating layer 82 by increasing the energy of the proton beam. That is, the current blocking structure 92 extends from the lower surface of the p-type ohmic contact electrode 90 to the lower coating layer 82. Since most of the photons generated by the light-emitting layer 83 directly below the p-type ohmic contact electrode 90 cannot radiate the light-emitting diode 70, the present invention applies a proton to the light-emitting layer 83 directly under the p-type ohmic contact electrode 90 To prevent current from flowing here and generating light H: \ HU \ HYGM ^ 能 所 \ 87172 \ 87172.DOC -14- that cannot radiate light emitting diode 70. On the contrary, the current will flow to the light-emitting layer 83 other than directly below the P-type ohmic contact electrode 90 to generate photons that can radiate the light-emitting diode 70, thereby increasing external quantum efficiency. Compared with the conventional technique (e.g., the light emitting diode 60 shown in FIG. 5), the present invention forms a continuous extension < current blocking structure 92 between the ohmic contact electrode 90 and the light emitting layer 83. When a forward current is applied to the light-emitting diode 70, the current introduced from the p-type ohmic contact electrode 90 will first expand laterally through the contact layer 88, and then flow down to the light-emitting layer 83. In addition, since the cylindrical region immediately below the p ohmic contact electrode 9G has formed a semi-insulator ❼ | to prevent the forward current from being forced, the current is forced to pass through the region other than the cylindrical region and injected into the light-emitting layer 83 outside the cylindrical region. Therefore, the probability that the generated photons are reflected back by the P-type ohmic contact electrode 90 due to the geometric relationship is greatly reduced, and the external quantum efficiency of the light emitting monopole 70 is greatly improved. Fig. 9 is a schematic diagram of a method for preparing a light emitting diode 70 according to a second embodiment of the present invention. As shown in FIG. 9, after the epitaxial structure 80 is formed on the upper surface of the substrate 72 | a P-type ohmic contact electrode 90 is formed on the epitaxial structure 80 and an n-type ohmic contact electrode 94 is formed on the lower surface of the substrate 72. After that, a photoresist layer 110 is formed, wherein the photoresist layer 110 includes an opening 112. Then, a planting process is performed to introduce the contact layer 88, the window layer%, and the upper covering material directly under the opening 112 into the contact layer 88 with the financial amount and the f-beam% of energy. Burst structure 80. Finally, the light and the resist layer 110 are removed to complete the fabrication of the light emitting diode 70. The predetermined dose is between 1X1012 and 9X1016 dopants per square centimeter, and the predetermined energy is between 100 and 1000 仟 electron volts. Since you must first

HiVHUXHYGM1亥能所 \87172\87 丨 72.DOC -15- 595023 穿透P型歐姆接觸電極90,因此佈植質子的能量較第一實 施例W各向。在進行光罩對準時,可以P型歐姆接觸電極作 為對位參考,因此不須製作第一實施例中所述之對位記 號’即僅需二個光罩,分別用以定義佈植位置及歐姆接觸 電極90。 本發明亦可控制佈值質子束96之劑量與能量,而使發光 二極體70之電流堵塞結構92自該p型歐姆接觸電極9〇 的下方任一位置(即不接觸其下表面)產生。HiVHUXHYGM1 \ 87172 \ 87 丨 72.DOC -15-595023 penetrates the P-type ohmic contact electrode 90, so the energy of implanting protons is more directional than that of the first embodiment W. When aligning the photomask, a P-type ohmic contact electrode can be used as an alignment reference, so it is not necessary to make the alignment mark 'in the first embodiment, that is, only two photomasks are needed, which are used to define the placement position and Ohmic contact electrode 90. The invention can also control the dose and energy of the cloth-valued proton beam 96, so that the current blocking structure 92 of the light-emitting diode 70 is generated from any position below the p-type ohmic contact electrode 90 (that is, without contacting its lower surface). .

相較於習知技藝,本發明係利用佈植技術在發光二極體 内部形成電流堵塞結構,具有下列之優點: 習知技蟄係利用微影及蝕刻技術製作電流堵塞結構,因 此發光二極體需進行二次磊晶製程後才可完成所有的磊 曰曰膜層。相對地,由於本發明形成電流堵塞結構之佈植 製程可在所有磊晶層完成後再進行,因此磊晶片僅需一 次進出MOCVD反應腔即可完成所有的磊晶成長。Compared with the conventional technique, the present invention uses the implantation technology to form a current blocking structure inside the light emitting diode, and has the following advantages: The conventional technique uses the lithography and etching technology to make the current blocking structure, so the light emitting diode The body needs to undergo a second epitaxial process to complete all the epitaxial layers. In contrast, since the implantation process for forming a current blocking structure according to the present invention can be performed after all epitaxial layers are completed, the epitaxial wafer only needs to enter and exit the MOCVD reaction chamber once to complete all the epitaxial growth.

2.本發明之發光二極體僅需較薄的窗戶層,即可達到電; 展開的目的。由於施加之電流主要係由電流堵塞結構^ 接觸層橫向展開,因此降低窗戶層之厚度,以縮短^ 生長的時間。 3·佈植製程是-項非常穩定且可#的技術,不僅可提高發 光二極體製造的良率,也可相對地降低生產成本。 本發明之技術内容及技術特點巳揭示如上,然而孰染本 項技術之人士仍可能基以發明之教示及揭示㈣ 背離本發明精神之替換及修飾。因此,本發明2. The light-emitting diode of the present invention only needs a thin window layer to achieve electricity; the purpose of unfolding. Because the applied current is mainly caused by the current blocking structure ^ the contact layer is expanded laterally, so the thickness of the window layer is reduced to shorten the growth time. 3. The implantation process is a very stable and reliable technology, which can not only improve the yield of light emitting diode manufacturing, but also reduce the production cost relatively. The technical content and technical features of the present invention are disclosed as above, but those who contaminate the technology may still be based on the teaching and disclosure of the invention, substitutions and modifications that depart from the spirit of the present invention. Therefore, the present invention

RVHLAHYGVK能所 \87丨 72\87I72.DOC -16- 595023 應不限於實施例所揭示者,而應包括各種不背離本發明之 替換及修飾,並為以下之申請專利範園所涵蓋。 五、圖式簡要說明 圖1係一習知之紅光發光二極體之剖示圖; 圖2係另一習知之發光二極體之剖示圖; 圖3係另一習知之發光二極體之剖示圖;RVHLAHYGVK Energy Center \ 87 丨 72 \ 87I72.DOC -16- 595023 should not be limited to those disclosed in the examples, but should include various substitutions and modifications that do not depart from the present invention, and are covered by the following patent application parks. V. Brief Description of the Drawings Figure 1 is a sectional view of a conventional red light emitting diode; Figure 2 is a sectional view of another conventional light emitting diode; Figure 3 is another conventional light emitting diode A sectional view;

二極體之製備方Preparation of Diodes

圖4係另一習知之發光二極體之剖示圖 圖5係另一習知之發光二極體之剖示圖 圖6至圖8係本發明第一實施例之發光 法示意圖;以及 圖 六、元件符號說明 10 發光二極體 14 下被覆層 18 上被覆層 22 p型歐姆接觸電極 32 窗戶層 42 窗戶層 52 透明電極 60 發光二極體 64 η型磊晶層 7 0 發光二極體 80 磊晶結構 12 基板 16 發光層 2〇 η型歐姆接觸電極 3〇發光二極體 40 發光二極體 5 0 發光二極體 54 漸變層 62 窗戶層 72 基板 82 下被覆層4 is a cross-sectional view of another conventional light-emitting diode. FIG. 5 is a cross-sectional view of another conventional light-emitting diode. FIGS. 6 to 8 are schematic views of a light-emitting method according to the first embodiment of the present invention; Description of element symbols 10 Light emitting diode 14 Lower covering layer 18 Upper covering layer 22 p-type ohmic contact electrode 32 window layer 42 window layer 52 transparent electrode 60 light emitting diode 64 n-type epitaxial layer 7 0 light emitting diode 80 Epitaxial structure 12 Substrate 16 Light-emitting layer 20n-type ohmic contact electrode 30 Light-emitting diode 40 Light-emitting diode 5 0 Light-emitting diode 54 Gradient layer 62 Window layer 72 Substrate 82 Covering layer

H:VHLAHYG\核能所\87172\87172.DOC 17- 595023 83 發光層 84 上被覆層 86 窗戶層 88 接觸層 90 ρ型歐姆接觸電極 92 電流堵墓結構 94 η型歐姆接觸電極 96 質子束 100 光阻層 102 開口 110 光阻層 112 開口 HAHUXHYGM1亥能所\87172\87172.DOC - 18 -H: VHLAHYG \ Nuclear Energy Institute \ 87172 \ 87172.DOC 17- 595023 83 Luminous layer 84 Overcoat layer 86 Window layer 88 Contact layer 90 ρ-type ohmic contact electrode 92 Current blocking structure 94 η-type ohmic contact electrode 96 Proton beam 100 Light Resistive layer 102 opening 110 Photoresistive layer 112 opening HAHUXHYGM1 Hai Energy Institute \ 87172 \ 87172.DOC-18-

Claims (1)

595023 拾、申請專利範圍: 1. 一種具有電流堵塞結構之發光二極體,包含: 一基板; 一磊晶結構,設置於該基板上,該磊晶結構包含一下被 覆層、一上被覆層、一夾於該上被覆層與該下被覆層間之 發光層及一設置於該上被覆層上之窗戶層; 一歐姆接觸電極’設置於該暴晶結構上,以及 一電流堵塞結構,位於該磊晶結構内,且係自該歐姆接 觸電極之下方至少延伸至該發光層。 2. 如申請專利範圍第1項之具有電流堵塞結構之發光二極 體,其另包含一設置於該窗戶層與該歐姆接觸電極間之接 觸層,用以橫向展開電流。 3. 如申請專利範圍第1項之具有電流堵塞結構之發光二極 體,其中該電流堵塞結構更進一步延伸至該下被覆層。 4. 如申請專利範圍第1項之具有電流堵塞結構之發光二極 體,其中該電流堵塞結構之面積小於該歐姆接觸電極之面 積。 5. 如申請專利範圍第1項之具有電流堵塞結構之發光二極 體,其中該電流堵塞結構係自該歐姆接觸電極之下表面延 伸。 6. —種具有電流堵塞結構之發光二極體之製備方法,包含下 列步驟: 形成一磊晶結構於一基板上,其中該磊晶結構包含一下 被覆層、一上被覆層、一夾於該上被覆層與該下被覆層間 之發光層及一設置於該上被覆層上之窗戶層; 能所 \87172\87172.DOC 形成一光阻層於該磊晶結構上,且該光阻層包含至少一 開口; 進行至少一佈植製程,用以形成一電流堵塞結構於該磊 晶結構中; 去除該光阻層;以及 ^/成 k姆接觸電極於該系晶結構上。 7·如申請專利範圍第6項之具有電流堵塞結構之發光二極體 之製備方法,其中該佈植製程係將具有一預定劑量和一預 定能量之質子束導入該磊晶結構内。 8·如申請專利範圍第7項之具有電流堵塞結構之發光二極體 之製備方法,其中該預定劑量係介於1 X 1012至9 X 1 〇16摻質 /平方公分。 9·如申請專利範圍第7項之具有電流堵塞結構之發光二極體 之製備方法,其中該預定能量係介於100至1000什電子伏 特。 I 〇·如申請專利範圍第6項之具有電流堵塞結構之發光二極體 之製備方法,其中該佈植製程係分別將具有複數種能量之 赁子束導入該磊晶結構内。 II ·如申請專利範圍第6項之具有電流堵塞結構之發光二極體 之製備方法’其中該佈植製程使用之摻質係選自質子、氣 離子及氧離子構成之群組。 12·—種具有電流堵塞結構之發光二極體之製備方法,包含下 列步驟: 形成一磊晶結構於一基板上,其中該磊晶結構包含一下 被覆層、一上被覆層、一夾於該上被覆層與該下被覆層間 H:\HU\HYG\ 核能所\87172\87172.DOC 595023 之發光層及一設置於該上被覆層上之窗戶層; 形成一歐姆接觸電極於該磊晶結構上; 形成一光阻層於該磊晶結構上,且該光阻層包含至少一 開口;以及 進行至少一佈植製程,用以形成一電流堵塞結構於該磊 晶結構中。 13·如申請專利範圍第12項之具有電流堵塞結構之發光二極 體之製備方法,其中該佈植製程係將具有一預定劑量和一 預定能量之質子束導入該磊晶結構内。 14·如申請專利範圍第13項之具有電流堵塞結構之發光二極 體之製備方法,其中該預定劑量係介於1X1012至9χ1〇ΐ6 摻質/平方公分。 15·如申請專利範圍第13項之具有電流堵塞結構之發光二極 體之製備方法,其中該預定能量係介於100至1000仟電子 伏特。 16·如申請專利範圍第12項之具有電流堵塞結構之發光二極 體之製備方法,其中該佈植製程係分別將具有複數種能量 之貝子束導入該系晶結構内。 17β如申請專利範圍第12項之具有電流堵塞結構之發光二極 體之製備方法,其中該佈植製程使用之摻質係選自質子、 氮離子及氧離子構成之群組。 H:\HU\HYG\核能所 \87 丨 72\87 丨 72.DOC595023 Patent application scope: 1. A light emitting diode with a current blocking structure, comprising: a substrate; an epitaxial structure disposed on the substrate, the epitaxial structure including a coating layer, an upper coating layer, A light-emitting layer sandwiched between the upper coating layer and the lower coating layer, and a window layer disposed on the upper coating layer; an ohmic contact electrode is disposed on the crystal structure, and a current blocking structure is located in the lei Within the crystalline structure and extending from below the ohmic contact electrode to at least the light emitting layer. 2. For example, the light-emitting diode with a current blocking structure in the scope of patent application No. 1 further includes a contact layer disposed between the window layer and the ohmic contact electrode for laterally expanding the current. 3. For example, the light-emitting diode with a current blocking structure in the first patent application scope, wherein the current blocking structure further extends to the lower coating layer. 4. For the light-emitting diode with a current blocking structure as described in item 1 of the patent application scope, wherein the area of the current blocking structure is smaller than the area of the ohmic contact electrode. 5. For example, the light-emitting diode with a current blocking structure in the first patent application scope, wherein the current blocking structure extends from the lower surface of the ohmic contact electrode. 6. A method for preparing a light-emitting diode with a current blocking structure, including the following steps: forming an epitaxial structure on a substrate, wherein the epitaxial structure includes a lower coating layer, an upper coating layer, and a sandwich between the A light-emitting layer between the upper coating layer and the lower coating layer, and a window layer disposed on the upper coating layer; the energy store \ 87172 \ 87172.DOC forms a photoresist layer on the epitaxial structure, and the photoresist layer includes At least one opening; performing at least one implantation process to form a current blocking structure in the epitaxial structure; removing the photoresist layer; and forming a contact electrode on the crystal structure. 7. The method for preparing a light-emitting diode with a current blocking structure according to item 6 of the patent application, wherein the implantation process introduces a proton beam having a predetermined dose and a predetermined energy into the epitaxial structure. 8. The method for preparing a light-emitting diode with a current blocking structure according to item 7 of the patent application, wherein the predetermined dose is between 1 X 1012 and 9 X 1016 dopants / cm 2. 9. The method for preparing a light-emitting diode with a current blocking structure according to item 7 of the scope of the patent application, wherein the predetermined energy is between 100 and 1000 shi electron volts. I. The method for preparing a light-emitting diode with a current blocking structure according to item 6 of the application, wherein the implantation process introduces a plurality of energy beams into the epitaxial structure. II. The method for preparing a light-emitting diode with a current blocking structure according to item 6 of the patent application ', wherein the dopant used in the implantation process is selected from the group consisting of protons, gas ions, and oxygen ions. 12 · —A method for preparing a light-emitting diode with a current blocking structure, including the following steps: forming an epitaxial structure on a substrate, wherein the epitaxial structure includes a coating layer, an upper coating layer, and a sandwiching layer; Between the upper coating layer and the lower coating layer H: \ HU \ HYG \ Nuclear Energy Institute \ 87172 \ 87172.DOC 595023 and a window layer disposed on the upper coating layer; forming an ohmic contact electrode on the epitaxial structure Forming a photoresist layer on the epitaxial structure, and the photoresist layer includes at least one opening; and performing at least one implantation process to form a current blocking structure in the epitaxial structure. 13. The method for preparing a light-emitting diode with a current blocking structure according to item 12 of the application, wherein the implantation process introduces a proton beam having a predetermined dose and a predetermined energy into the epitaxial structure. 14. The method for preparing a light-emitting diode with a current blocking structure according to item 13 of the application, wherein the predetermined dose is between 1 × 1012 and 9 × 10 × 6 dopant / cm 2. 15. The method for preparing a light-emitting diode with a current blocking structure according to item 13 of the scope of the patent application, wherein the predetermined energy is between 100 and 1000 仟 electron volts. 16. The method for preparing a light-emitting diode with a current blocking structure according to item 12 of the application, wherein the implantation process introduces a shellfish beam having a plurality of energies into the crystal structure. 17β The method for preparing a light-emitting diode with a current blocking structure according to item 12 of the scope of patent application, wherein the dopant used in the implantation process is selected from the group consisting of protons, nitrogen ions, and oxygen ions. H: \ HU \ HYG \ Nuclear Energy Institute \ 87 丨 72 \ 87 丨 72.DOC
TW92124379A 2003-09-03 2003-09-03 A light emitting diode with a current blocking structure and method for making the same TW595023B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92124379A TW595023B (en) 2003-09-03 2003-09-03 A light emitting diode with a current blocking structure and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92124379A TW595023B (en) 2003-09-03 2003-09-03 A light emitting diode with a current blocking structure and method for making the same

Publications (1)

Publication Number Publication Date
TW595023B true TW595023B (en) 2004-06-21

Family

ID=34076553

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92124379A TW595023B (en) 2003-09-03 2003-09-03 A light emitting diode with a current blocking structure and method for making the same

Country Status (1)

Country Link
TW (1) TW595023B (en)

Similar Documents

Publication Publication Date Title
US7271021B2 (en) Light-emitting device with a current blocking structure and method for making the same
US10347793B2 (en) Metallic contact for optoelectronic semiconductor device
CN104106132B (en) The method transmitting light emitting diode
US7993943B2 (en) GaN based LED with improved light extraction efficiency and method for making the same
US20140016660A1 (en) Metallic Contact for Optoelectronic Semiconductor Device
CN105742417B (en) A kind of vertical LED chip structure and preparation method thereof
TW200406070A (en) High-efficiency light-emitting diodes
TW201010145A (en) Light-emitting diode and method for forming the same
TW201203603A (en) Bond pad isolation and current confinement in an LED using ion implantation
CN110010542A (en) Miniature LED component, Minitype LED array and manufacturing method
KR20140058969A (en) Light emitting diode and method for manufacturing the same
WO2010051680A1 (en) Led which has current barrier layer distributed corresponding to upper electrodes and the fabricating method thereof
CN108305921B (en) A kind of light emitting diode (LED) chip with vertical structure and preparation method thereof
KR101203137B1 (en) GaN compound semiconductor light emitting element and method of manufacturing the same
CN104882520A (en) Epitaxial structure of coarsened LED chip, and manufacturing method thereof
JP4191566B2 (en) LIGHT EMITTING DIODE HAVING CURRENT BLOCK STRUCTURE AND METHOD FOR MANUFACTURING THE SAME
KR20110018563A (en) Iii nitride semiconductor light emitting device and method for fabricatiing the same
KR101239852B1 (en) GaN compound semiconductor light emitting element
TW595023B (en) A light emitting diode with a current blocking structure and method for making the same
US9318661B2 (en) Semiconductor light emitting device and method for manufacturing the same
JP2004146541A (en) Light emitting element and method of manufacturing same
CN206564265U (en) A kind of high brightness LED chip structure
CN109524526A (en) Novel deep-UV light-emitting diode chip and preparation method thereof
JPH0818100A (en) Compound semiconductor light emitting diode
JP2004146537A (en) Light emitting element and method of manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees