TW594855B - Gap filling method for forming void-free dielectric layer - Google Patents

Gap filling method for forming void-free dielectric layer Download PDF

Info

Publication number
TW594855B
TW594855B TW92114854A TW92114854A TW594855B TW 594855 B TW594855 B TW 594855B TW 92114854 A TW92114854 A TW 92114854A TW 92114854 A TW92114854 A TW 92114854A TW 594855 B TW594855 B TW 594855B
Authority
TW
Taiwan
Prior art keywords
dielectric layer
scope
item
source gas
patent application
Prior art date
Application number
TW92114854A
Other languages
Chinese (zh)
Other versions
TW200426921A (en
Inventor
Chien-Hung Lu
Chung-Yeh Lee
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW92114854A priority Critical patent/TW594855B/en
Application granted granted Critical
Publication of TW594855B publication Critical patent/TW594855B/en
Publication of TW200426921A publication Critical patent/TW200426921A/en

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A gap filling method for forming a void-free dielectric layer in a semiconductor manufacturing process is disclosed, which uses high density plasma-chemical vapor deposition (HDPCVD). Firstly, 30-60 cm<3>/min of silane (SiH4) as a source gas, 40-80 cm<3>/min of oxygen (O2) as a source gas, and additionally 80-150 cm<3>/min of helium (He) as a sputtering gas are used to perform a deposition for 40 seconds, which forms a dielectric layer with thickness of 500 angstroms. Then, 50-80 cm<3>/min of SiH4 as a source gas, 90-110 cm<3>/min of O2 as a source gas, and additionally 80-150 cm<3>/min of He as a sputtering gas are used to perform deposition for 65 seconds so that a dielectric layer such as silicon dioxide (SiO2) is formed on the substrate and the dielectric layer has the total thickness of 4500 angstroms, in which the LFRF power and the HFRF power are set at the same value in the power range of 2750-3250 W. The gap filling method can achieve good filling effectiveness for those gaps with high aspect ratios to avoid the formation of voids in the dielectric layer.

Description

594855594855

案號 92114854 五、發明說明(1) 【發明所屬之技術領域】 本發明是有關於一種在半導體製程中沈積一介電層於 基板上之方法’特別是有關於一種溝填導線間間隙並形成 無孔洞介電層的高密度電漿化學氣相沈積法。 【先前技術】 在半導體電路之元件中,通常使用一内金屬介電層 (Inter-Metal Dielectrics ;IMD)來作為導線間與其他導· 體隔離以及電性絕緣之用。隨著積體電路的製程越來越精 密之後’半導體元件的尺寸不斷的縮小,導線與導線間的 距離也越來越短,導致寄生電容(parasitic Capacit〇r) 的現象越來越嚴重。 經過數十年的發展,化學氣相沈積(c h e m i cal vapor deposi t ion, CVD)已儼然成為半導體製程中最重要而且主 要的薄膜沈積工具。在積體電路製程中,經常使用的化學 氣相沈積法技術主要有:(1 )·常壓化學氣相沈積法 (atmospheri c-pressure CVD、縮寫 APCVD)、(2)·低壓化 學氣相沈積法(low-pressure CVD、縮寫LPCVD)、(3)·電 漿輔助化學氣相沈積法(plasma enhanced CVD、縮寫 PECVD)。 電漿輔助化學氣相沈積法(PECVD )係利用電漿作為 能量輔助來源,使得沈積反應的溫度得以降低,反應溫度 約為45 0 °C。在積體電路製程中,電漿輔助化學氣相沈積 法可以用來沈積二氧化矽(Si02)與氮化矽(Si3N4)等介電質Case No. 92114854 V. Description of the invention (1) [Technical field to which the invention belongs] The present invention relates to a method for depositing a dielectric layer on a substrate in a semiconductor process, and particularly to a trench filling and forming a gap between wires. void-free dielectric layer is a high density plasma chemical vapor deposition. [Prior art] In the components of semiconductor circuits, an inter-metal dielectric layer (IMD) is usually used to isolate and electrically isolate other conductors between conductors. As the integrated circuit manufacturing process becomes more and more precise, the size of the semiconductor devices continues to shrink, and the distance between the wires is getting shorter and shorter, resulting in parasitic capacitance (parasitic capacitance). After several decades of development, chemical vapor deposition (c h e m i cal vapor deposi t ion, CVD) have become an important semiconductor manufacturing process and the film deposition tool main. In integrated circuit manufacturing process, a chemical vapor deposition technique is often used are: (1) atmospheric pressure chemical-vapor deposition (atmospheri c-pressure CVD, abbreviated APCVD), (2) · LPCVD Method (low-pressure CVD, abbreviation LPCVD), (3) · plasma-assisted chemical vapor deposition (plasma enhanced CVD, abbreviation PECVD). Plasma-assisted chemical vapor deposition (PECVD) uses plasma as an auxiliary source of energy to reduce the temperature of the deposition reaction, which is about 45 ° C. In integrated circuit manufacturing process, plasma enhanced chemical vapor deposition can be used to deposit silicon dioxide (Si02) and silicon nitride (Si3N4) dielectric, etc.

TW1110(040504)CRF.ptc 第5頁 594855 9a 5. 10 案號9211 五、發明說明(2) 層 請^照第1圖’乃繪示半導體製程時形成介電層前之 d面示w圖在一基板1 2上配置多條導線1 4,而介於每兩 條導線1 4之間具有一間隙。如第2圖所示,乃繪示傳統沈 積介電層時之剖面示意圖,自箭號[1所示之方向沈積一介 電物質10於導線14之上以及基板12之部分表面上並溝填導 線14間之間隙。由於介電物質1〇沈積時對導線14之表面位 置a 、,導線14之側面位置b以及介於兩導線間之基板表面、TW1110 (040504) CRF.ptc Page 5 594855 9a 5. 10 Case No. 9211 V. Description of the invention (2) Layers please refer to Figure 1 ', which is a diagram showing the d surface before the dielectric layer is formed during the semiconductor process A plurality of wires 14 are disposed on a substrate 12, and a gap is provided between every two wires 14. As shown in FIG. 2, it is a schematic cross-sectional view of a conventional deposition of a dielectric layer. A dielectric substance 10 is deposited from the direction indicated by the arrow [1 on the wire 14 and a part of the surface of the substrate 12 and trench filled. The gap between the wires 14. Since the dielectric material when deposited on the surface of the bit 1〇 wires 14 of the wire lateral position facing a ,, b, and interposed between the substrate surface 14 of the two conductors,

位置c等位置的覆蓋能力並不一致,亦即階梯覆蓋(step coverage)現象。通常,介電物質1〇對&amp;點位置的覆蓋能力 最好,以致於當進行沈積介電物質1 0之過程時,此三個位 置上的沈積速率將不相同,且當兩導線間之間隙距離w越 小,或是兩導線間之間隙深度h越大,亦即h/w的比值越大 14種因階梯覆蓋現象所造成的沈積速率差異也就越顯 著在此h/w的比值稱之為外觀比值(a ect rat io, AR) 〇Coverage location position c and the like are not uniform, i.e., step coverage (step coverage) phenomenon. Typically, the dielectric material of 1〇 &amp; best coverage point position, so that when performing the process 10, the deposition rate of three positions on this will not be the same dielectric material is deposited, and when the wires between the two The smaller the gap distance w, or the greater the gap depth h between the two conductors, that is, the greater the h / w ratio, the more significant the 14 deposition rate differences caused by the step coverage phenomenon are. The h / w ratio It is called appearance ratio (a ect rat io, AR).

當半導體元件的積集度越來越高,溝填一高外觀比 之間隙會比填充—低外觀比值之間隙要來的困難,第2圖 ^所描述之沈積速率差異現象也將越嚴重。當進行溝填, 咼外觀比值之間隙的過程時,介電物質丨〇時對導線表面&gt; 置a的沈積速率遠高於對導線側面位置^及基板表面位置c 的沈積速率,谷易產生突·16(〇νεΓ]^ηδ) 物質1〇將無法完全填入間隙中,以致於於溝填完成:丄 電層20之中形成孔洞(v〇ids)18 ’如第3圖所示乃繪示As semiconductor devices become more and more dense, trench filling with a high aspect ratio gap becomes more difficult than filling with a low aspect ratio gap. The difference in deposition rate described in Figure 2 ^ will also become more serious. When the process of the gap is the groove fill, 咼 appearance ratio of, when the dielectric substance Shu square of the surface of the wire &gt; opposing a deposition rate much higher than that of the wire side position ^ and the deposition rate of the surface position c of the substrate, the valley is easy to produce 16 · 16 (〇νεΓ) ^ ηδ) Substance 10 will not completely fill the gap, so that the trench filling is completed: holes (v〇ids) 18 are formed in the galvanic layer 20, as shown in Figure 3. shows

594855 案號 92114854 年 月 曰 修正 五、發明說明(3) 統介電層沈積完成之剖面示意圖。 在半導體製程裡,孔洞(voids) 18的產生影響元件甚 巨,例如在介電層沈積過程完成後,後續之操作步驟如利 用化學機械研磨法(chemical mechanical polishing)使 沈積之介電層表面平坦化,孔洞(v o i d s) 1 8暴露使得的容 易填塞進因化學機械研磨法造成之雜質,影響到介電層的 電性,甚至於造成半導體元件斷路或漏電的現象,嚴重降 低產品的良率。 【發明内容】 有鑑於此,本發明的目的就是在提供一種於半導體製 程中利用高密度電漿化學氣相沈積(high dens i ty plasma-chemical vapor deposition,HDPCVD)法以形成 不具孔洞之介電層的溝填方法。 根據本發明的目的,提出一種溝填之方法,係利用高 密度電漿化學氣相沈積(high density plasma-chemical vapor deposition,HDPCVD)法以沈積介電層於基板上, 基板上配置有多條導線,導線之間形成有多個間隙,此溝 填方法如下所述:Docket No. 92114854 594855 correction of said five months, to complete the schematic description of the invention (3) EC dielectric layer deposition profile. In the semiconductor manufacturing process, the generated holes (voids) 18 impact element is very huge, for example, after the dielectric layer deposition process is completed, subsequent the steps such that the dielectric layer is deposited of a flat surface using a chemical mechanical polishing method (chemical mechanical polishing) The exposure of holes and voids makes it easy to fill in the impurities caused by chemical mechanical polishing, which affects the electrical properties of the dielectric layer, and even causes the semiconductor element to be disconnected or leaked, which seriously reduces the yield of the product. SUMMARY OF THE INVENTION In view of this, object of the present invention is to provide a semiconductor manufactured by using Cheng Zhongli HDP chemical vapor deposition (high dens i ty plasma-chemical vapor deposition, HDPCVD) method to form the dielectric does not have the holes the method of filling the groove layer. According to the purpose of the present invention, a trench filling method is proposed, which uses a high-density plasma-chemical vapor deposition (HDPCVD) method to deposit a dielectric layer on a substrate, and a plurality of strips are arranged on the substrate. Conductors, with multiple gaps formed between the conductors, this trench filling method is described below:

a)· 使用作為反應之來源氣體石夕曱烧(silane,Si H4) 與氧(oxygen,〇2),用以沈積介電層於基板上,其氣體使 用量範圍約為:石夕曱炊(Si H4) ·· 30〜60 cm3/ min ;氧(〇2): 40〜80 cm3/min。在反應同時並加入一氣體使用量範圍約 為80〜150 cm3/min之濺擊氣體氦(helium,He),並且LFRFa) · used as a source of the reaction gas burning stone Yue Xi (silane, Si H4) and oxygen (Oxygen, 〇2) for depositing a dielectric layer on a substrate, which is used in an amount ranging from about gas: stone cooking Xi Yue (Si H4) ·· 30~60 cm3 / min; oxygen (〇2): 40~80 cm3 / min. At the same time as the reaction, a splash gas helium (Heium, He) with a gas usage range of about 80 to 150 cm3 / min was added, and LFRF

TW1110(040504)CRF.ptc 第7頁 594855 案號 92114854 曰 修正 五、發明說明(4) ---- 電力及HFRF電力設為相同值,電力範圍約為275〇一325() w (watt)。此步驟a進行約4〇秒,此時介電層厚度約為5〇〇埃 (Angst rom,A ) 〇 b)·使用同為碎甲烧(silane ’Si H4)與氧(oxygen, 〇2)之來源氣體以接續沈積,形成一如二氧化矽(s丨)之介 電層於基板上。氣體使用量範圍約為:矽甲烷(SiD :5〇 〜80 cm3/ min ;氧(〇2) :90 〜110 cm3/ min。在反應同時並 加入一氣體使用量範圍約為30〜70 cm3/ min之錢擊氣體氬· (argon,Ar),並且LFRF電力及HFRF電力設為相同值,電 力範圍約為2 7 5 0 - 3 2 5 0 w。此步驟b進行約6 5秒,而介電層 總厚度約為4 500埃。 為讓本發明之上述目的、特徵、和優點能更明顯易 懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說 明如下: 【實施方式】 第4圖乃依照本發明一較佳實施例所繪示沈積介電層 時之剖面示意圖。請參照第4圖,在一基板1 2上配置多條 導線14,介於每兩條導線14之間具有一間隙。利用高密度 電漿化學氣相沈積(high density plasma-chemical vapor deposition,HDPCVD)之方法自箭號U所示之方向來 沈積一介電物質30於導線14之上以及基板12之部分表面上 並溝填導線1 4間間隙,以形成介電層。介電層之材料可以TW1110 (040504) CRF.ptc Page 7 594855 Case No. 92114854 Amendment V. Description of Invention (4) ---- The power and HFRF power are set to the same value, and the power range is about 275〇-325 () w (watt) . This step a is performed for about 40 seconds. At this time, the thickness of the dielectric layer is about 500 angstroms (Angst rom, A). B) Use the same silane 'Si H4' and oxygen (〇2). ) Source gas is successively deposited to form a dielectric layer like silicon dioxide (s 丨) on the substrate. The gas used in an amount ranging from about: Silicon methane (SiD: 5〇~80 cm3 / min; oxygen (〇2): 90 ~110 cm3 / min and at the same time added to a reaction gas used in an amount ranging from about 30~70 cm3 /. min of argon gas blow money · (argon, Ar), HFRF and LFRF power and the power set to the same value, the power range from about 2 7 5 0 -. 3 2 5 0 w b this step is performed for about 65 seconds, and referral the total thickness of the dielectric layer is about 4500 angstroms to make the above-described object of the present invention, features, and advantages can be more comprehensible, a preferred embodiment hereinafter, and accompanied with figures are described in detail as follows: [ Embodiment 4 FIG. 4 is a schematic cross-sectional view of a dielectric layer deposited according to a preferred embodiment of the present invention. Please refer to FIG. 4, a plurality of wires 14 are arranged on a substrate 12 between each two There is a gap between the wires 14. A dielectric substance 30 is deposited on the wires 14 using a high-density plasma-chemical vapor deposition (HDPCVD) method in a direction shown by an arrow U. And a part of the surface of the substrate 12 is filled with gaps between the wires 14 to form a dielectric layer. The material of the dielectric layer can

TW1110(040504)CRF.ptc 第8頁 594855TW1110 (040504) CRF.ptc Page 8 594855

例如二氧化矽之介電層。此高密度電漿化學氣相沈積之方 法至少包括以下兩步驟: a)·使用包括矽甲烷(Siiane,SiH4)與氧(〇xygen, 〇2 )之來源氣體,用以沈積介電物質3 〇於基板丨2上。反應同 時並加入一濺擊氣體氦(he 1 ium,He),以用來對此介電層 提供離子濺擊(sputter i ng)之作用以增加離子轟擊的效 果。此步驟a進行約40秒,此時介電層厚度約為5〇〇埃 (Angst rom,A ) 〇For example, the dielectric layer of silicon dioxide. This high-density plasma chemical vapor deposition method includes at least the following two steps: a) Use a source gas including silicon methane (Siiane, SiH4) and oxygen (〇xygen, 〇2) to deposit a dielectric substance 3 〇 On the substrate 丨 2. At the same time as the reaction, a splash gas helium (he 1 ium, He) was added to provide an ion sputtering effect on the dielectric layer to increase the effect of ion bombardment. This step a is performed for about 40 seconds. At this time, the thickness of the dielectric layer is about 500 angstroms (Angst rom, A).

b)·同樣使用包括石夕甲烧(silane,Si H4)與氧 (oxygen,〇2)之來源氣體以接續沈積而形成一介電層,例 如二氧化矽(S i 〇2)層,於基板1 2上。反應同時並加入另一 濺擊氣體氬(argon,Ar),以用來對此介電層提供離子濺 擊(sputter ing)之作用以增加離子轟擊的效果。此步驟1) 進行約6 5秒,而介電層總厚度約為4 5 0 〇埃。 步驟a中所述之各氣體使用量範圍較佳為··矽曱烷 (SiH4) : 30 〜60 cm3/min ;氧(〇2) : 40 〜80 cm3/min ;氦b) · Xi also used comprising A burning stone (silane, Si H4) with a source of oxygen (Oxygen, 〇2) connecting the gas formed by depositing a dielectric layer such as silicon dioxide (S i 〇2) layer, in On the substrate 1 2. At the same time, another sputter gas, argon (Ar), is added to the reaction to provide ion sputtering to this dielectric layer to increase the effect of ion bombardment. This step 1) is performed for about 65 seconds, and the total thickness of the dielectric layer is about 450 angstroms. A step of said respective gas is preferably used in an amount ranging ·· Si Yue alkoxy (SiH4): 30 ~60 cm3 / min; oxygen (〇2): 40 ~80 cm3 / min; helium

(He) : 80〜1 50 cm3/min。而且LFRF電力及HFRF電力設為相 同值,電力範圍約為2750-3250 w。在此步驟a中,自底層 往上長之速率(bottom-up rate)較沈積速率大,使得對於 介於兩導線間之基板表面位置c的沈積速率遠大於對導線 1 4之表面位置a以及導線之側面位置b的沈積速率。當介於 導線間之間隙距離不變時,介於導線間之間隙深度減少, 此導線中間隙結構之外觀比值也隨之下降。 步驟b中所述之各氣體使用量範圍較佳為:矽曱烷(He): 80 ~ 1 50 cm3 / min. In addition, the LFRF power and HFRF power are set to the same value, and the power range is about 2750-3250 w. In step a, the length of the rate from the bottom up (bottom-up rate) than the deposition rate is large, so that the deposition rate for the interposed surface of the substrate between the position c is much greater than the two wires of the wire surface and the position of a 1 4 b side of the position of the wire deposition rate. When the gap between the constant distance between conductors, interposed between the wire to reduce the gap depth, the appearance ratio of this conductor in the slot structure also decreased. The range of each gas used in step b is preferably: silane

TW1110(040504)CRF.ptc 第9頁 594855 93. 5. 10TW1110 (040504) CRF.ptc Page 9 594855 93. 5. 10

(SiH4) : 50 〜80 cmvmin ;氧(〇2) : 9〇 〜11〇 cm3/min ;氬 (Ar) : 30〜70 cmVmin。而且LFRF電力及HFRF電力設為相 同值’電力範圍約為275 0-3250 w。在此步驟b中,因氣體 氬(Ar)之分子量40較氣體氦(He)之分子量2要大,故步驟b 之沈積速率比步驟a之沈積速率要快,可彌補因沈積速率 慢所導致的產能不佳的問題。(SiH4): 50 ~80 cmvmin; oxygen (〇2): 9〇 ~11〇 cm3 / min; argon (Ar): 30~70 cmVmin. HFRF and LFRF power and power to the same value 'power ranging from about 275 0-3250 w. In step b, due to the molecular weight of gas of argon (Ar) of 40 more helium (He) of molecular weight 2 to be large, so step b the deposition rate is faster than the deposition rate in step a in, can compensate for the deposition rate is slow resulting The problem of poor productivity.

案號 921USFU \yj j 在步驟a與步驟b中,所使用之LFRF電力及HFRF電力 (power )皆設為相同值,主要目的在於避免粒子 (particle)的產生,若二步驟使用不同之lfrf與HFRF,當 步驟a完成後’再進行步驟b時,會有電力(p〇wer )轉換 的動作,增加形成粒子的來源(particle source )。 請參照第5A圖〜第5D圖,皆為利用掃描式電子顯微鏡 (Scanning Electron Microscope,SEM)所顯示之本發明 之溝填製程後的結果片。第5 A圖及第5 B圖取自半導體元 件中央區域之剖面’而第5C圖及第5D圖取自半導體元件邊 緣區域之剖面。因此’利用本發明之高密度電漿化學氣相 沈積方法’使付即使疋具南外觀比值(a S P e C t Γ a t i 〇 )之結 構亦可達成良好之溝填效果,避免在介電層中產生孔洞 (void) 〇 本發明上述實施例所揭露之高密度電漿化學氣相沈積 方法,可應用於溝填半導體元件基板上導線間之間隙以形 成介電層上。此形成不具孔洞介電層之方法,至少具有以 下優點: 一、本發明之高密度電漿化學氣相沈積方法所採用Case No. 921USFU \ yj j In step a and step b, the LFRF power and HFRF power used are set to the same value, the main purpose is to avoid the generation of particles. If the two steps use different lfrf and HFRF, when step 'a' is performed again after step a is completed, there will be a power conversion action, which increases the particle source. Please refer to FIG. 5A to FIG. 5D, which are the result sheets after the trench filling process of the present invention is displayed by using a scanning electron microscope (SEM). Figures 5A and 5B are taken from a cross section of a central region of a semiconductor element 'and Figures 5C and 5D are taken from a cross section of an edge region of a semiconductor element. Thus 'high-density plasma chemical vapor deposition method of the present invention' that the pay Cloth structure even with South appearance ratio (a SP e C t Γ ati square) of the groove can achieve good filling effect, prevent the dielectric layer generating a high density plasma chemical vapor deposition holes (void) square embodiment of the present invention, the above-described embodiment disclosed, the grooves may be applied to fill the gap between the semiconductor element on the substrate to form a conductor on the dielectric layer. This method does not form a dielectric layer having a hole, having at least the following advantages: a high-density plasma chemical vapor deposition process employed in the present invention

TW1110(040504)CRF.pte 第10頁 594855 S3· 5· _ 案號 92114854_月日 修正 五、發明說明(7) 的二步驟可以於同一基材來實行,如此不僅不需使用各別 的單一設備,更可因為半導體元件及基材在製程中未暴露 於大氣之中,而避免了界面氧化、吸濕及微塵等問題,而 提高了晶片的良率與元件的電性及可靠性。 二、本發明之高密度電漿化學氣相沈積方法提供均 勻且無氣泡的溝填能力,且對於即使是具高外觀比值 (aspect rat ίο)之結構亦可達成良好之溝填效果,避免在 介電層中產生孔洞(void)。 的二沈 (cent 整個半 半導體 被充份 綜 然其並 本發明 本發明 準〇 、本發明之 積步驟,對 er-to-edge 導體元件之 元件邊緣的 利用,提高 上所述,雖 非用以限定 之精神和範 之保護範圍 高密度 於半導 )各位 表面上 填補效 半導體 然本發 本發明 圍内, 當視後 體元件 置皆具 做出不 果,使 元件的 明已以 ,任何 當可作 附之中 之「中心至邊緣」 有良好的溝填能力,能在 含任何孔洞的沉積,改進 得半導體元件之面積能夠 製造良率。 一較佳實施例揭露如上, 熟習此技藝者,在不脫離 各種之更動與潤飾,因此 請專利範圍所界定者為TW1110 (040504) CRF.pte Page 10 594855 S3 · 5 · _ Case No. 92114854_ Month Day Amendment 5. The two steps of the invention description (7) can be implemented on the same substrate, so not only do not need to use separate single equipment, but also because the semiconductor element and the substrate during the manufacturing process is not exposed to the atmosphere, to avoid oxidation of the interface, dust and moisture problems, to improve the yield and reliability of the electrical element and the wafer. Second, a high density plasma chemical vapor deposition method of the present invention to provide a uniform and bubble-free trench filling capabilities, and even for high aspect ratio with (aspect rat ίο) of the structure can achieve a good effect of groove fill, to avoid A void is created in the dielectric layer. The entire semi-semiconductor is fully integrated with the present invention and the product steps of the present invention. The use of the edge of the er-to-edge conductor element is improved, although it is not used. to define the spirit and scope of the scope of protection to high density semiconductor) fill efficiency on the semiconductor surface and then the inner peripheral present invention, when the element is set to make the respective fields of view no avail, in that the element is clear, when any It can be attached in the "center-to-edge" grooves have a good filling ability, in the hole-containing deposit any, improvement can be obtained of the area of the semiconductor device production yield. A preferred embodiment is disclosed above. Those skilled in this art will not deviate from various changes and retouches. Therefore, please define the scope of the patent as:

594855 案號 92114854 Λ_η 曰 修正 圖式簡單說明 第1圖乃繪示半導體製程時形成介電層前之剖面示意 圖。 第2圖乃繪示傳統沈積介電層時之剖面示意圖。 第3圖乃繪示傳統介電層沈積完成之剖面示意圖。 第4圖乃依照本發明一較佳實施例所繪示沈積介電層 時之剖面示意圖。 第5Α圖〜第5D圖乃利用掃描式電子顯微鏡(SEM)所顯示 之溝填後的結果照片。 圖式標號說明 10 :介電物質 12 :基板 14 :導線 16 :突懸 18 :孔洞 a ·· 導 線 表 面 位 置 b 導 線 側 面 位 置 c 基 板 表 面 位 置 w 間 隙 距 離 距 離 h 間 隙 深 度 2 0 :介電層 30 :介電物質 U :沈積方向 I圓Docket No. 594855 92114854 Λ_η said correction briefly described drawings forming a schematic cross-sectional view of a front dielectric layer of Figure 1 is the schematic diagram of the semiconductor manufacturing process. FIG. 2 is a schematic cross-sectional view of a conventional dielectric layer. FIG. 3 is a schematic cross-sectional view showing the completion of a conventional dielectric layer deposition. FIG. 4 is a schematic cross-sectional view illustrating a process of depositing a dielectric layer according to a preferred embodiment of the present invention. The first to third 5Α FIG. 5D is the result of using a groove photograph scanning electron microscope (SEM) of fill displayed. FIG formula numeral 10: dielectric substance 12: substrate 14: wire 16: overhang 18: a hole surface position of the wire b ·· position c wire side surface of the substrate from the position of the gap distance w gap depth h 2 0: dielectric layer 30 : dielectric substance U: depositing a circular direction I

TW1110(040504)CRF.ptc 第12頁TW1110 (040504) CRF.ptc Page 12

Claims (1)

594855 93. 5. i〇 _案號92114854_年月日__ 六、申請專利範圍 1 · 一種溝填之方法,係利用高密度電漿化學氣相沈 積(high density plasma-chemical vapor deposition , HDPCVD)法以沈積一介電層於一基板上,該基板上配置有 複數條導線,該些導線之間形成有複數個間隙,該溝填方 法包括: a) ·使用一來源氣體及一第一濺擊氣體以沈積該介電 層於該基板上,其中,該來源氣體係包括矽甲烷 (si lane,Si H4)與氧(oxygen,02),該第一濺擊氣體係為 氦(hel ium,He);以及 b) ·使用該來源氣體以及一第二濺擊氣體以接續沈 積,其中,該第二濺擊氣體係為氬(arg0n,Ar)。 2·如申請專利範圍第1項所述之溝填方法,其中該介 電層之材料係包括二氧化矽(S i 〇2 )。 3·如申請專利範圍第1項所述之溝填方法,其中進行 步驟a約40秒此時該介電層厚度約為5〇〇埃(Angstr〇m, A )’之後接續進行步驟b約6 5秒,該介電層總厚度約為 4 5 0 0 埃。 4·如申請專利範圍第1項所述之溝填方法,其中於步 驟a中作為該來源氣體之矽甲烷(SiH4),其使用量範圍約為 30 〜60 cm3/ min 〇 5.如申請專利範圍第1項所述之溝填方法,其中於步 驟a中作為該來源氣體之氧(〇2),其使用量範圍為4〇〜8〇 cm3/miη 〇 6·如申請專利範圍第1項所述之溝填方法,其中作為Docket No. 594855 93. The i〇_ __ six 92114854_ date, the patented method of filling the range of 1 • one groove, based high-density plasma chemical vapor deposition (high density plasma-chemical vapor deposition, HDPCVD ) Method is to deposit a dielectric layer on a substrate, a plurality of wires are arranged on the substrate, and a plurality of gaps are formed between the wires. The trench filling method includes: a) using a source gas and a first click sputtering gas to deposit the dielectric layer on the substrate, wherein the system comprises a silicon source gas methane (si lane, Si H4) and oxygen (oxygen, 02), the first strike sputtering system helium gas (hel ium , He); and b) using the source gas and a second sputtering gas for subsequent deposition, wherein the second sputtering gas system is argon (Ar0n, Ar). 2. The trench filling method as described in item 1 of the scope of the patent application, wherein the material of the dielectric layer comprises silicon dioxide (Si02). 3. The application of the method of filling the groove patentable scope of clause 1, wherein a step for about 40 seconds at which time the dielectric layer thickness of about 5〇〇 Angstroms (Angstr〇m, A) 'after the subsequent step b about In 65 seconds, the total thickness of the dielectric layer is about 450 Angstroms. 4. The trench filling method described in item 1 of the scope of patent application, wherein in step a, the amount of silicon methane (SiH4) used as the source gas is in the range of about 30 to 60 cm3 / min. the method of claim groove filled range clause 1, wherein the step a as the oxygen source gases (〇2), which is used in an amount ranging 4〇~8〇cm3 / miη 〇6 · Patent application range as items 1 The trench filling method, wherein 594855 83. 5. 10 案號 92114854 六、申請專利範圍 該第一濺擊氣體之氦(He),其使用量範圍為80〜150 c m3 / m i η 〇 7·如申請專利範圍第1項所述之溝填方法,其中於步 驟b中作為該來源氣體之矽甲烷(S i Η4 ),其使用量範圍約為 50 〜80 cm3/ min 〇 8·如申請專利範圍第1項所述之溝填方法,其中於步-驟b中作為該來源氣體之氧(〇2),其使用量範圍約為90〜 110 cm3/ min 〇83. 5.10 594,855 Docket No. 92114854 six, the scope of patented first strike sputtering gases helium (He), which is used in an amount in the range of 80~150 c m3 / mi η · 〇7 patent application as an item range The trench filling method described above, wherein in the step b, the silicon methane (S i Η 4) used as the source gas has a usage range of about 50 to 80 cm3 / min. 〇8. The trench described in item 1 of the scope of patent application The filling method, wherein in step b as the source gas oxygen (〇2), the usage range is about 90 ~ 110 cm3 / min. 9 ·如申請專利範圍第1項所述之溝填方法,其中其中 作為該第二濺擊氣體之氬(Ar),其使用量範圍約為30〜70 c m3 / m i η 〇 1 0 ·如申請專利範圍第1項所述之溝填方法,其中於 該溝填方法中所施加之LFRF電力(power)及HFRF電力設為 相同值,其電力範圍約為27 50〜325 0 w( watt)。 11· 一種形成不具孔洞之介電層的溝填方法,該方法 包括: 提供一基板; 於該基板上配置複數條導線,該些導線之間具有複數 個間隙;以及 以南密度電漿化學氣相沈積(HDpcVD)法進行一溝填製 程,該溝填製程包括: a )·使用一來源氣體及一第一濺擊氣體以沈積該 介,層於該基板上,其中,該來源氣體係為矽甲烷(siH4) 與氧(oxygen,〇2),該第一濺擊氣體係為氦(hel ium,9. The application of the method of filling the groove patentable scope of clause 1, wherein wherein the second argon as the sputtering gas attack (Ar), which is used in an amount ranging from about 30~70 c m3 / mi η as 0.5 〇1 The trench filling method according to item 1 of the scope of the patent application, wherein the LFRF power and the HFRF power applied in the trench filling method are set to the same value, and the power range is about 27 50 ~ 325 0 w (watt) . • one method of filling the groove 11 with the dielectric layer without forming the hole, the method comprising: providing a substrate; a plurality of wires arranged on the substrate, having a plurality of gaps between the conductive lines; and a south-density plasma chemical vapor A phase filling (HDpcVD) method is used to perform a trench filling process. The trench filling process includes: a) using a source gas and a first sputtering gas to deposit the interlayer on the substrate, wherein the source gas system is Silicon methane (siH4) and oxygen (oxygen, 02). The first splash gas system is helium (helium, TW1110(040504)CRF.ptc 第14頁 594855 -m 92J.14854_年月 B 絛正 · 六、申請專利範圍 &gt; . He);以及 b )·使用該來源氣體以及一第二濺擊氣體以接續 , /尤積’其中’該第一錢擊氣體係為氬(argon,Ar)。 12·如申請專利範圍第11項所述之溝填方法,其中該 _ 介電層之材料係包括二氧化矽(S i 02)。 1 3 ·如申請專利範圍第11項所述之溝填方法,其中進 行步驟a約40秒此時該介電層厚度約為5〇〇埃(Angstrom, A ),之後接續進行步驟b約6 5秒,該介電層總厚度約為 450 0 埃。 14·如申請專利範圍第11項所述之溝填方法,其中於痛I 步驟a中作為該來源氣體之石夕曱烧(S i H4 ),其使用量範圍約 , 為30 〜60 cm3/ min 〇 15·如申請專利範圍第11項所述之溝填方法,其中於 步驟a中作為該來源氣體之氧(〇2 ),其使用量範圍約為4 〇〜 ’ 8 0 c m3 / m i η 〇 ‘ 1 6 ·如申請專利範圍第11項所述之溝填方法,其中於 _ 步驟a中作為該第一濺擊氣體之氦(He),其使用量範圍約 - 為80 〜150 cm3/ min 〇 17·如申請專利範圍第11項所述之溝填方法,其中於 φ 步驟b中作為該來源氣體之矽甲烷(S i H4),其使用量範圍約 為50 〜80 cm3/min 〇 18·如申請專利範圍第11項所述之溝填方法,其中於 步驟b中作為該來源氣體之氧(〇2),其使用量範圍約為90〜 11 0 cm3/m i η 〇TW1110 (040504) CRF.ptc page 14 594855 -m 92J.14854_ sash B n · six years, the scope of patented &gt;.He); and B) · use of the second source gas and a sputtering gas to blow Continuing, / youji 'wherein' the first money impingement system is argon (Ar). 12. The trench filling method as described in item 11 of the scope of patent application, wherein the material of the dielectric layer includes silicon dioxide (Si 02). 1 3 · The trench filling method as described in item 11 of the scope of patent application, wherein step a is performed for about 40 seconds and the thickness of the dielectric layer is about 500 angstroms (Angstrom, A), and then step b is performed for about 6 In 5 seconds, the total thickness of the dielectric layer is about 4500 Angstroms. 14. The trench filling method as described in item 11 of the scope of patent application, wherein Shi Xiyao (S i H4), which is the source gas in step I of pain I, is used in an amount ranging from about 30 to 60 cm3 / min 〇15 · The trench filling method as described in item 11 of the scope of patent application, wherein in step a, as the source gas of oxygen (〇2), the usage range is about 4 0 ~ '80 c m3 / mi η 〇 '1 6 · The trench filling method as described in item 11 of the scope of patent application, wherein the helium (He) used as the first splash gas in step _ is in a range of about 80 to 150 cm3 / min 〇17. The trench filling method described in item 11 of the scope of patent application, wherein in the φ step b, the silicon methane (S i H4) used as the source gas has a usage range of about 50 to 80 cm3 / min 〇18. The trench filling method as described in item 11 of the scope of patent application, wherein in step b as the source gas oxygen (〇2), the usage range is about 90 ~ 110 cm3 / mi η 〇 TW1110(040504)CRF.ptc 第15頁 594855 93. 5. 10 _案號92114854_年月曰 修正_ 六、申請專利範圍 19. 如申請專利範圍第11項所述之溝填方法,其中其 中作為該第二濺擊氣體之氬(Ar),其使用量範圍約為30〜 7 0 c in3 / m i η 〇 20. 如申請專利範圍第11項所述之溝填方法,其中於 該溝填製程中所施加之LFRF電力(power)及HFRF電力設為 相同值,其電力範圍約為2750〜3250 w( watt)。TW1110 (040504) CRF.ptc Page 15 of 594855 93. 5. 10 _Case No. 92114854_ Year Month and Amendment _ 6. Application for Patent Scope 19. The method for filling in grooves as described in item 11 of the scope of patent application, where as argon (Ar) sputtering the second blow gases, used in an amount ranging from about 30~ 7 0 c in3 / mi η 〇20. the application of the method of filling the groove patentable scope of item 11, wherein the process to fill the groove LFRF power (power) is applied in the same value and the HFRF power, which power range from about 2750~3250 w (watt). TW1110(040504)CRF.ptc 第16頁TW1110 (040504) CRF.ptc Page 16
TW92114854A 2003-05-30 2003-05-30 Gap filling method for forming void-free dielectric layer TW594855B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92114854A TW594855B (en) 2003-05-30 2003-05-30 Gap filling method for forming void-free dielectric layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92114854A TW594855B (en) 2003-05-30 2003-05-30 Gap filling method for forming void-free dielectric layer

Publications (2)

Publication Number Publication Date
TW594855B true TW594855B (en) 2004-06-21
TW200426921A TW200426921A (en) 2004-12-01

Family

ID=34076217

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92114854A TW594855B (en) 2003-05-30 2003-05-30 Gap filling method for forming void-free dielectric layer

Country Status (1)

Country Link
TW (1) TW594855B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1716546B (en) * 2004-06-30 2012-01-04 台湾积体电路制造股份有限公司 Dielectric layer and integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1716546B (en) * 2004-06-30 2012-01-04 台湾积体电路制造股份有限公司 Dielectric layer and integrated circuit

Also Published As

Publication number Publication date
TW200426921A (en) 2004-12-01

Similar Documents

Publication Publication Date Title
TW432476B (en) A silicon carbide deposition for use as a barrier layer and an etch stop
US6967405B1 (en) Film for copper diffusion barrier
US6417092B1 (en) Low dielectric constant etch stop films
US7807563B2 (en) Method for manufacturing a layer arrangement and layer arrangement
US7910210B2 (en) Method of producing a layer arrangement, method of producing an electrical component, layer arrangement, and electrical component
KR101144535B1 (en) Dielectric barrier deposition using nitrogen containing precursor
US8759952B2 (en) Oxygen-rich layers underlying BPSG
US10978342B2 (en) Interconnect with self-forming wrap-all-around barrier layer
WO2008056748A1 (en) Interlayer insulating film, wiring structure, electronic device and method for manufacturing the interlayer insulating film, the wiring structure and the electronic device
TW472350B (en) Si-rich surface layer capped diffusion barriers
US7470584B2 (en) TEOS deposition method
Sage et al. Investigation of different methods for isolation in through silicon via for 3D integration
US8487413B2 (en) Passivation film for electronic device and method of manufacturing the same
TW594855B (en) Gap filling method for forming void-free dielectric layer
US20060046469A1 (en) Method for manufacturing a semiconductor device
KR101015534B1 (en) Method of manufacturing a low k dielectric film and manufacturing air-gap using the low k dielectric film
TW543101B (en) Method of achieving high adhesion of CVD copper thin films on TaN substrates
JP2980340B2 (en) CVD method
KR100778866B1 (en) Method for forming metal dffusion barrier with tisin
KR100644046B1 (en) Method for manufacturing the capacitor of semiconductor device
TW531841B (en) Fabrication method of inter metal dielectrics to avoid damaging the wafer
JP2739829B2 (en) Method for manufacturing semiconductor device
KR100588636B1 (en) Method for manufacturing inter-metal dielectric layer of the semiconductor device
CN114256144A (en) Semiconductor element with inclined isolation layer and preparation method thereof
KR20070003022A (en) Semiconductor device with amorphous carbon layer and method for manufacturing the same

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent