TW531841B - Fabrication method of inter metal dielectrics to avoid damaging the wafer - Google Patents

Fabrication method of inter metal dielectrics to avoid damaging the wafer Download PDF

Info

Publication number
TW531841B
TW531841B TW91104243A TW91104243A TW531841B TW 531841 B TW531841 B TW 531841B TW 91104243 A TW91104243 A TW 91104243A TW 91104243 A TW91104243 A TW 91104243A TW 531841 B TW531841 B TW 531841B
Authority
TW
Taiwan
Prior art keywords
layer
dielectric layer
metal dielectric
vapor deposition
inner metal
Prior art date
Application number
TW91104243A
Other languages
Chinese (zh)
Inventor
Jim-Jev Huang
Long-Shang Juang
Ming-De More
Chu-Hei Huang
Qi-Shen Lo
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW91104243A priority Critical patent/TW531841B/en
Application granted granted Critical
Publication of TW531841B publication Critical patent/TW531841B/en

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

The present invention disclosed a fabrication method of inter metal dielectrics by HDPCVD (high density plasma chemical vapor deposition) to avoid the generation of particle damaging and cracking; the process is mainly forming an oxide layer with high silicon concentration in situ by HDPCVD before depositing the inter metal dielectrics, and being in cooperation with gradual increase of the bias voltage, the damage to the wafer is reduced to the minimum.

Description

531841531841

五、發明說明(1) 發明領域: 本發明係有關於一種内 Dielectrics)之製作方法。 於半導體基底,利用高密度 電壓效應及晶圓碎裂之黎】作 發明背景: ' 金屬介電層(Inter —Metal 本發明特別是有關於一種適用 電漿化學氣相沉積並可避免弧 内金屬介電層的方法。 隨著半導體積體電路製造技術的發展,晶片中的元 數量不斷增加,元件的尺寸也因積集度的提昇而不斷地縮 小,金屬内連線的線寬及其結構間的區域也越來越小,而 當金屬内連線結構間的區域越小,對内金屬介電層的溝填 (gap fill)的要求就更高,以避免因溝填不完全而留下孔 洞0 相較於其它化學氣相沉積(chemical Vap〇r deposition,以下簡稱CVD),如電漿加強氣相沉積製程 (plasma enhanced chemical vapor depositi〇n,以下簡 稱PE4VD)所形成之内金屬介電層,高密度氣相沉積(high density plasma chemical vapor deposition,以下簡稱 HDP-CVD)製程所製作的内金屬介電層材料,具有極佳的溝 填特性,其尤其適用於次微米超大型積體電路⑼LSI)元件 的製作。 南密度電漿化學氣相沉積製程主要是利用其沉積及濺 鍍的雙重特性,達到一溝填良好之内金屬介電層。高密度 電漿化學氣相沈積技術主要是以氧()和矽曱烷(s丨& )當V. Description of the invention (1) Field of the invention: The present invention relates to a method for making internal electrics. In the semiconductor substrate, the use of high-density voltage effect and wafer chipping] as the background of the invention: 'Metal dielectric layer (Inter-Metal) The present invention relates in particular to a plasma chemical vapor deposition and can avoid metal in the arc Method of the dielectric layer. With the development of semiconductor integrated circuit manufacturing technology, the number of elements in the wafer has been increasing, the size of components has been continuously reduced due to the increase in the degree of integration, the line width of metal interconnects and their structures The area between the metal interconnects is also getting smaller and smaller, and the smaller the area between the metal interconnect structures, the higher the gap fill requirements of the inner metal dielectric layer, so as to avoid leaving the gap fill incomplete. Lower hole 0 Compared with other chemical vapor deposition (hereinafter referred to as CVD), such as the inner metal intermediary formed by plasma enhanced chemical vapor deposition process (hereinafter referred to as PE4VD) Electrical layer, high density plasma chemical vapor deposition (hereinafter referred to as HDP-CVD) manufacturing process of the inner metal dielectric layer material, has excellent trench filling characteristics, It is especially suitable for the fabrication of sub-micron ultra-large integrated circuit (LSI) devices. The South Density Plasma Chemical Vapor Deposition process mainly uses its dual characteristics of deposition and sputtering to achieve a well-filled inner metal dielectric layer. High-density plasma chemical vapor deposition technology is mainly based on oxygen () and silane (s 丨 &)

0503-6911TWF(N) ; TSMC2001-0668 ; Isabelle.ptd 第 5 頁 5318410503-6911TWF (N); TSMC2001-0668; Isabelle.ptd page 5 531841

ί i )電漿濺擊(sputter)以清除部分位在金屬内連線 ^緣=溝渠間的内金屬介電層突出部(QVerhang),以排 除,積㈣障礙,彡到改善介電層填人溝槽的效果。重複 亡述的沉積、濺鍍製程便可形成—溝填良好的内金屬介電 複的次數則依線寬以及元件的積集度而定,其中 右線見窄且積集度密的# ’則可增加沉積、濺鍍的重複次 數二:高密度電漿化學氣相沉積所形成之内金屬介電層包 括南挽度電漿未摻雜矽玻璃(HDP_USG)以及高密度電漿氟 矽玻璃(HDP-FSG)兩種,接下來即配合第u圖〜κ圖對 HDP-USG的製程加以說明。 首先,请先參照第1 A圖,提供一包含有半導體元件之 基底100。其次,形成一金屬層11〇於基底1〇〇上。 請參照第1B圖,先利用微影程序以及蝕刻步驟定義該 金屬層110,形成具特定圖案之金屬内連線丨丨2。 請參照第1 C圖,利用高密度電漿化學氣相沉積法,形 成未摻雜矽玻璃(USG)内金屬介電層1 2 0以填滿金屬内連線 結構間的區域並覆蓋該金屬内連線結構。 以H D P - C V D >儿積内金屬介電層具有極佳的溝填性能, 可在窄線寬或高元件密度的超大型積體電路中形成良好的 隔離。之後即可在所形成之内金屬介電層中以適當之微影 技術將欲作為插塞(ρ 1 ug)如鎢插塞的部份去除,沉積構成 插基的材料’.以回# (e t c h b a c k)技術如化學機械研磨法 (CMP)將不需要的插塞材料移除,即可進行下—製程步ί i) Plasma sputtering to remove part of the inner metal dielectric layer protrusion (QVerhang) located between the metal interconnects ^ edge = ditch to eliminate, build up obstacles, and improve the dielectric layer filling People trench effect. It can be formed by repeated deposition and sputtering processes-the number of times the internal metal dielectric is well filled in the trench depends on the line width and the degree of accumulation of the components, where the right line is narrow and the degree of accumulation is dense. The number of repetitions of deposition and sputtering can be increased. The inner metal dielectric layer formed by high-density plasma chemical vapor deposition includes Nanbundo Plasma Undoped Silica Glass (HDP_USG) and high-density plasma fluorosilicon. There are two types of glass (HDP-FSG). Next, the process of HDP-USG will be described with reference to Figures u ~ κ. First, referring to FIG. 1A, a substrate 100 including a semiconductor device is provided. Next, a metal layer 110 is formed on the substrate 100. Please refer to FIG. 1B. First, the lithography process and the etching step are used to define the metal layer 110 to form a metal interconnect with a specific pattern. Please refer to FIG. 1C. Using high-density plasma chemical vapor deposition, a metal dielectric layer 12 in undoped silica glass (USG) is formed to fill the area between the metal interconnect structures and cover the metal. Interconnection structure. H D P-C V D > In-product metal dielectric layer has excellent trench filling performance, which can form good isolation in ultra-large integrated circuits with narrow line width or high component density. After that, the portion to be used as a plug (ρ 1 ug) such as a tungsten plug can be removed by appropriate lithography technology in the formed inner metal dielectric layer, and the material constituting the plug base can be deposited. '以 回 # ( etchback) technology, such as chemical mechanical polishing (CMP), removes unwanted plugging material, which can be performed in the next process step

0503-6911TWF(N) ; TSMC2001-0668 ; Isabelle.ptd 第6頁 5318410503-6911TWF (N); TSMC2001-0668; Isabelle.ptd page 6 531841

,以m丨電常數(dieiectrie⑶nstant)通常大於4.0 =内金屬介電層而言,尤其是近來半導體技術朝向 ' 於〇·18,發展的趨勢下,使用USG做為内金屬介電 二易產生串音(cross talk)的問題,且其表面常常留下不 易清除的鎢殘留物或其它金屬殘留物,在後續製程中產生 電左(arcing)效應而對晶圓造成破壞。另外,hdp_usg 内金屬介電層的製作過程易造成晶圓上的結構碎裂,是另 一項有待解決的問題。 氟矽玻璃(FSG)的介電常數在3. 5左右,較USG的介電 常數小,不易有串音(cross talk)的問題。然而FSG所含 的摻雜離子極易向外擴散,尤其極易滲入下層的金屬及元 件而導致内金屬介電層的剝落,因此在形成FSG之内金屬 介電層前通常會以PE-CVD的方法在金屬内連線的結構上沉 積一層高含石夕量氧化層(silicon rich oxide,SR0)來防 止FSG内的離子向外擴散。某些情況下,在FSG的上層也會 加上一層SR0以防止離子向上方擴散。接下來配合第2A圖 〜2D圖對HDP-FSG的製程加以說明。 首先,請先參照第2 A圖,提供一包含有半導體元件之 基底200。其次,形成一金屬層210於基底200上。 請參照第2B圖,先利用微影程序以及蝕刻步驟定義該 金屬層210,形成具特定圖案之金屬内連線212。 請參照第2C圖,利用PE-CVD形成一 SR0層220,以覆蓋 晶圓表面。 接著請參照第2D圖,利用HDP-CVD形成一FSG内金屬介In the case of m 丨 electric constant (dieiectrie ⑶nstant) is usually greater than 4.0 = inner metal dielectric layer, especially in recent semiconductor technology toward '18 .18, the development trend, the use of USG as the inner metal dielectric is easy to generate strings The problem of cross talk, and often left on the surface of tungsten residues or other metal residues difficult to remove, in the subsequent process to produce electrical arcing effect and cause damage to the wafer. In addition, the manufacturing process of the metal dielectric layer in hdp_usg is likely to cause structural fragmentation on the wafer, which is another problem to be solved. The dielectric constant of fluorosilicone glass (FSG) is about 3.5, which is smaller than that of the USG, and it is not easy to have the problem of cross talk. However, the doped ions contained in FSG are easy to diffuse outward, especially the inner metal dielectric layer is easily penetrated due to the infiltration of the underlying metal and components. Therefore, PE-CVD is usually used before forming the inner metal dielectric layer in FSG. Method to deposit a high silicon rich oxide (SR0) layer on the metal interconnect structure to prevent the ions in the FSG from diffusing outward. In some cases, a layer of SR0 is added to the upper layer of the FSG to prevent ions from diffusing upward. Next, the processes of HDP-FSG will be described with reference to Figures 2A to 2D. First, please refer to FIG. 2A to provide a substrate 200 including a semiconductor device. Next, a metal layer 210 is formed on the substrate 200. Referring to FIG. 2B, the metal layer 210 is first defined using a lithography process and an etching step to form a metal interconnect 212 with a specific pattern. Referring to FIG. 2C, a SR0 layer 220 is formed by PE-CVD to cover the surface of the wafer. Next, please refer to FIG. 2D, and use HDP-CVD to form a metal interposer in FSG.

531841 五、發明說明(4) 電層2 3 0以填滿金屬内連線結構間的區域並覆蓋該金屬内 連線結構。最後請參見第2E圖,此時可視需要在内金屬介 電層2 3 0上再以PE-CVD沉積一層上層SRO 240。 接下來可如前文所述進行插塞的製作,並進行後續製 程。 、 傳統上SRO是以ΡΕ-CVD的方式形成,這意謂著晶圓必 需置放於不同的反應爐,使得整個製程的產能 (throughput)下降。與HDP-USG相同,HDP-FSG内金屬介電 層常在晶圓表面留下不易清除的鎢殘留物或其它金屬殘留 物’在後續製程中產生弧電壓效應而對晶圓造成破壞,其 製作過程亦常造成晶圓上的結構碎裂而降低產品良率。 發明目的及概述: 為改善上述問題,發明人提出以HDP技術同步(in si tu)形成SRO層的方法,同時配合階段式增強偏壓(bias) 的方式進行内金屬介電層的HDP-CVD。接下來配合一實施 例及第3 A圖至第3 E圖’對本發明的具體實施加以說明。 實施例: 依據本發明之製作方法’請先參照第3 a圖,一半導體 基底300,如一石夕基底,其上可形成任何所需之半導體元 件,此處為了簡化起見,僅以一平整的半導體基底3〇〇表 示之,其上形成一金屬層310。 請參照第3 B圖’先利用微影程序以及蝕刻步驟定義該 金屬層310,形成具特定圖案之金屬内連線gig。 請參照第3C圖’以同步高密度氣相沉積(HDp —CVD)形531841 V. Description of the invention (4) The electric layer 2 3 0 fills the area between the metal interconnect structures and covers the metal interconnect structures. Finally, please refer to FIG. 2E. At this time, an upper layer of SRO 240 may be deposited by PE-CVD on the inner metal dielectric layer 230 as required. Next, the plug can be manufactured as described above, and the subsequent processes can be performed. SRO is traditionally formed by PE-CVD, which means that wafers must be placed in different reactors, which reduces the throughput of the entire process. Similar to HDP-USG, the metal dielectric layer in HDP-FSG often leaves tungsten residues or other metal residues that are not easy to remove on the wafer surface. 'The arc voltage effect is generated in subsequent processes and the wafer is damaged. The process also often causes the structure on the wafer to crack and reduce product yield. Object and summary of the invention: In order to improve the above problems, the inventor proposes a method of forming an SRO layer by HDP technology in situ, and simultaneously performing HDP-CVD of the inner metal dielectric layer with a step-wise enhanced bias (bias). . Next, a specific implementation of the present invention will be described with reference to an embodiment and FIGS. 3A to 3E '. Embodiment: According to the manufacturing method of the present invention, please refer to FIG. 3a, a semiconductor substrate 300, such as a stone evening substrate, on which any desired semiconductor element can be formed. For simplicity, only a flat surface is used here. The semiconductor substrate 300 indicates that a metal layer 310 is formed thereon. Please refer to FIG. 3B ′, first define the metal layer 310 using a lithography process and an etching step to form a metal interconnect gig with a specific pattern. Please refer to FIG. 3C for the synchronous high-density vapor deposition (HDp-CVD) pattern.

0503-6911TWF(N) ; TSMC2001-0668 ; Isabelle.ptd 第 8 頁 531841 五、發明說明(5) 成一高含石夕量氧化層(silicon rich oxide, 以下簡稱 SRO) 32 0,覆蓋於晶圓表面。其中之HDP-CVD係以氧(〇2)和 矽甲烷(Si H4)當作反應物來沉積介電層於含金屬内連線 312之基底300表面,同時以氬(Ar)電漿濺擊以清除部分位 在金屬内連線3 1 2邊緣以及溝渠間的内金屬介電層突出 部。此反應係於低於0 . 1 T 〇 r r之壓力,較佳的是1 m t 〇 r r至 lOmtorr,大於3 0 0 0W之電力,較佳的是3 5 0 0至5 0 0 0W,在 大約3 0 0 °C之溫度(25 (PC〜35 0 °C)下進行,所形成之SR0層 320具有1.52 + /- 0.015的電阻,其厚度以介於1〇〇至250A 間為佳。由於SR0層32 0係利用HDP-CVD以同步(in situ)的 方式形成,因此晶圓不需來回置放在不同的反應槽間進行 内金屬介電層的製程,不僅節省了時間,同時也避免因更 換反應槽而可能產生的誤差及污染,有效地提高產率。 接著請參照第3D圖,利用HDP-CVD,形成一氟矽玻璃 (FSG)内金屬介電層2 3 0以填滿金屬内連線結構間的區域並 覆蓋於SR0層320上。其中該HDP-CVD系統係在進行沉積 前,先階段性地加強其偏壓,較佳者為將内金屬介電層之 高密度電漿氣相沉積製程中之偏壓係分為2 - 8個階段進次 增強至最高值,如以0 W、500 W、1250 W、2000 W、2800 W的方式加強至所需的偏壓如3 1 〇 0W。此一階段性偏壓增強 的方式,有效避免了晶圓上的結構碎裂,且其所形成的 HDP-FSG内金屬介電層表面上不會留下不易清除的鎢殘留 物或其它金屬殘留物,解決了這些殘留物在後續製程中產 生弧電壓效應而對晶圓造成破壞的問題。0503-6911TWF (N); TSMC2001-0668; Isabelle.ptd Page 8 531841 V. Description of the invention (5) A high silicon rich oxide (SRO) 32 0 is covered on the wafer surface . Among them, HDP-CVD uses oxygen (〇2) and silicon methane (Si H4) as reactants to deposit a dielectric layer on the surface of a substrate 300 containing metal interconnects 312, and at the same time, it is sprayed with argon (Ar) plasma. In order to remove part of the metal dielectric layer protrusions located on the edges of the metal interconnects 3 1 2 and between the trenches. This reaction is based on a pressure lower than 0.1 T 〇rr, preferably from 1 mt 〇rr to 10 mtorr, power greater than 3 0 0 W, more preferably 3 5 0 to 5 0 0 W, at about Performed at a temperature of 300 ° C (25 (PC ~ 350 ° C)), the formed SR0 layer 320 has a resistance of 1.52 +/- 0.015, and its thickness is preferably between 100 and 250A. Because The SR0 layer 32 0 is formed in a situ manner using HDP-CVD, so the wafer does not need to be placed back and forth between different reaction tanks to perform the process of the inner metal dielectric layer, which not only saves time, but also avoids The error and contamination that may occur due to the replacement of the reaction tank can effectively improve the yield. Next, referring to the 3D diagram, HDP-CVD is used to form a metal dielectric layer 2 3 0 in a fluorosilicon glass (FSG) to fill the metal. The area between the interconnect structures is overlaid on the SR0 layer 320. The HDP-CVD system prior to the deposition stepwise strengthens its bias voltage, preferably the high-density electrode of the inner metal dielectric layer. The bias voltage in the slurry vapor deposition process is divided into 2-8 stages to enhance it to the highest value, such as 0 W, 500 W, 1250 W, 2000 W The 2800 W method is strengthened to the required bias voltage, such as 3 100W. This step-wise bias enhancement method effectively avoids structural fragmentation on the wafer and the metal dielectric in the HDP-FSG formed by it Tungsten residues or other metal residues that are not easy to remove will not be left on the surface of the layer, which solves the problem that these residues cause arc voltage effects in subsequent processes and cause damage to the wafer.

0503-6911TWF(N) ; TSMC2001-0668 ; Isabelle.ptd 第9頁 531841 五、發明說明(6) ' 最後請參見第3E圖,此時可視需要在内金屬介電層 23 0上再以PE-CVD沉積一層上層SRO 240。 接下來即可進行插塞的製作。在所形成之内金屬介電 層中以適當之微影技術將欲作為插塞如鎢插塞的部份去除 二=ίίί的材料’以回蝕技術如化學機械研磨法將 的插塞材料移除,即可進行下一製程 後續製程。 I心〜 以上f貫施例處理的晶目,經檢測 有因鶴金屬殘留物或其它金屬殘留物引起的:電壓;,又 件下提高產品良率。 有錢在不降低產能的條 雖然本發明已以較佳實施例揭 限定本發明’任何熟習此技藝者巧並非用以 和範圍内,當可作更動與潤飾:離本發明之精神 視後附之申請專利範圍所界定者$帛% 8月之保護範圍當0503-6911TWF (N); TSMC2001-0668; Isabelle.ptd Page 9 531841 V. Description of the invention (6) 'Finally, please refer to Figure 3E. At this time, if necessary, use PE- on the inner metal dielectric layer 230. An upper layer of SRO 240 is deposited by CVD. Then you can make the plug. In the formed metal dielectric layer, the material intended to be used as a plug, such as a tungsten plug, is removed by appropriate lithography technology. The material is removed by etch-back technology such as chemical mechanical polishing. Divide, you can proceed to the next process. The cores treated in the above examples were detected to be caused by crane metal residues or other metal residues: voltage; and the product yield was improved in some cases. Rich money in terms of not reducing productivity Although the present invention has been limited to the present invention by a preferred embodiment, 'any person skilled in the art is not intended to use it within the scope, and can be modified and retouched: away from the spirit of the present invention Defined by the scope of patent application.

0503-6911TWF(N) ; TSMC2001-0668 ; Isabelle.ptd 第10頁 531841 圖式簡單說明 第1A圖至第1C圖係傳統HDP-USG内金屬介電層製程的 剖面示意圖; 第2A圖至第2E圖係傳統HDP-FSG内金屬介電層製程的 剖面示意圖;及 第3A圖至第3E圖依據本發明之一實施例之HDP-FSG内 金屬介電層製程的剖面示意圖。 符號說明: 100、2 0 0、30 0〜半導體基底; 110、210、310〜金屬層; 112、212、312〜金屬内連線; 120〜HDP-USG ; 220 、 320〜SRO ; 230 、 330〜HDP-FSG ; 240、340 〜上層 SRO。0503-6911TWF (N); TSMC2001-0668; Isabelle.ptd Page 10 531841 Figures 1A to 1C are schematic cross-sectional views of the metal dielectric layer process in traditional HDP-USG; Figures 2A to 2E FIG. 3 is a schematic cross-sectional view of a conventional metal dielectric layer process in HDP-FSG; and FIGS. 3A to 3E are cross-sectional schematic views of a metal dielectric layer process in HDP-FSG according to an embodiment of the present invention. Explanation of symbols: 100, 2000, 300 ~ semiconductor substrate; 110, 210, 310 ~ metal layer; 112, 212, 312 ~ metal interconnect; 120 ~ HDP-USG; 220, 320 ~ SRO; 230, 330 ~ HDP-FSG; 240, 340 ~ upper SRO.

0503-6911TWF(N) ; TSMC2001-0668 ; Isabelle.ptd 第 11 頁0503-6911TWF (N); TSMC2001-0668; Isabelle.ptd page 11

Claims (1)

531841 六、申請專利範圍 1· 一種内金屬介電層之製作方法,適用於半導體基底 ,該半導體基底上具有圖案^之金屬内連線結構,上述方 法包括下列步驟: 以高密度電漿氣相沉積在上述半導體基底上同步形成 一高含矽量氧化層,並且^莫該金屬内連線結構;及 以高密度電漿氣相沉^ 高含矽量氧化層上形成一 内金屬介電層,並且溝填該金屬内連線結構間的區域,其 中該高密度電漿氣相沉積^ =中之偏壓係以漸進方式增 強0 2·如申請專利範圍第1項所述内金屬介^電層之製作方 法,其中該高含矽量氧化層之高密度電漿氣相沉積係在 lmtorr至lOmtorr之壓力下進行。 3 ·如申請專利範圍第1項所述内金屬介電層之製作方 法,其中該高含矽量氧化層之高密度電漿氣相沉積係在 3500至5000W之電力下進行。 4·如申請專利範圍第丨項所述内金屬介電層之製作方 法,其中該高含矽量氧化層之高密度電漿氣相沉積係在 250 °C〜35(TC之溫度下進行' 法 5 ·如申請專利範圍第1項所述内金屬介電層之製作方 其中該高含矽量氧化層之厚度為1〇〇至25〇入 t ΐ申請專利範圍第1項所述内金屬彳電層之製作方 法:其中該内金屬介電層之高密度電裝氣相沉積製程中之 偏壓係分為2 - 8個階段進次增強至最高值。 7.如申請專利範圍第1項所述内金屬介電層之製作方531841 VI. Scope of patent application 1. A method for manufacturing an inner metal dielectric layer is suitable for a semiconductor substrate. The semiconductor substrate has a metal interconnect structure with a pattern ^. The above method includes the following steps: Deposited on the semiconductor substrate to form a high silicon-containing oxide layer simultaneously, and the metal interconnect structure is not formed; and a high-density plasma vapor deposition is used to form an internal metal dielectric layer on the high silicon-containing oxide layer; And fill the area between the metal interconnect structures, where the bias voltage in the high-density plasma vapor deposition ^ = is enhanced in a progressive manner 0 2 · Inner metal intermediary as described in item 1 of the scope of patent application ^ The manufacturing method of the electric layer, wherein the high-density plasma vapor deposition of the high silicon-containing oxide layer is performed under a pressure of lmtorr to 10mtorr. 3. The manufacturing method of the inner metal dielectric layer as described in item 1 of the scope of the patent application, wherein the high-density plasma vapor deposition of the high silicon-containing oxide layer is performed at a power of 3500 to 5000W. 4. The method for manufacturing an inner metal dielectric layer as described in item 丨 of the patent application scope, wherein the high-density plasma vapor deposition of the high silicon-containing oxide layer is performed at a temperature of 250 ° C to 35 (TC) ' Method 5 · The producer of the inner metal dielectric layer as described in item 1 of the scope of patent application, wherein the thickness of the high silicon-containing oxide layer is 100 to 2500 t. Method for making the electric layer: The bias voltage in the high-density electrical equipment vapor deposition process of the inner metal dielectric layer is divided into 2 to 8 stages and further enhanced to the highest value. 7. If the scope of patent application is the first The manufacturer of the inner metal dielectric layer described in item 0503-6911TWF(N) ; TSMC2001-0668 ; Isabelle.ptd0503-6911TWF (N); TSMC2001-0668; Isabelle.ptd 531841 六、申請專利範圍 法’其中5亥内金屬介雷爲达a & 8.如申請## ^ n二,"、阿街度電漿氟矽玻璃。 法 成 更包::當^匕項/斤述内金屬介電層之製作' 上層高含㈣If冗積在該内金屬介電層上形 ,該9半2 = 層之製作方法,適用於半導體基底 法包括下列步驟Z、®案化之金屬内連線結構’上述方 以高密度電数翁4曰、v-> d > 一 -八故旦" 相,儿積在上述半導體基底上同步形成 -同”:乳化層,並且覆蓋該金屬内連線結構;及 以冋在度電漿氣相沉積在該高含矽量氧化層上形成一 内金f ^電層,並且溝填該金屬内連線結構間的區域,其 中A南雄度電漿氣相沉積製程係在1 m t 〇 r r至1 〇 m t 〇 r r之壓 力、35 0 0至5 0 0 0W之電力,溫度在25(TC〜350 °C之間的環境 下進行,且其之偏壓係以漸進方式增強。 1 0 ·如申請專利範圍第9項所述内金屬介電層之製作方 法,其中該内金屬介電層之高密度電漿氣相沉積製程中之 偏壓係分為2 - 8個階段進次增強i最高值。531841 VI. Application for Patent Scope Law ′ Among them, the metal intermetallic lightning within 5 hours is up to a & 8. Such as the application ## ^ n two, " Ajiedu Plasma Fluorosilicon Glass. Law Cheng more packages :: When the production of the inner metal dielectric layer is described above, the upper layer containing ㈣If is redundantly formed on the inner metal dielectric layer, the method of making the 9 1/2 = layer is suitable for semiconductors The substrate method includes the following steps: Z, a metal interconnect structure that is described above, and the above-mentioned method is a high-density electrical number. The v- > d > phase is a phase that is accumulated on the semiconductor substrate. Simultaneous formation-same ": an emulsified layer and covering the metal interconnect structure; and a plasma deposited on the high silicon-containing oxide layer with rhenium plasma to form an internal gold f ^ electrical layer, and trench filling The area between the metal interconnect structures, in which the A-nanxicity plasma vapor deposition process is performed at a pressure of 1 mt 〇rr to 10 mt rr, an electric power of 350,000 to 50000W, and a temperature of 25 (The temperature is between TC ~ 350 ° C, and its bias is enhanced in a gradual manner. 1 0 · The method for manufacturing an inner metal dielectric layer as described in item 9 of the scope of patent application, wherein the inner metal dielectric The bias voltage in the high-density plasma vapor deposition process of the electric layer is divided into 2-8 stages to further enhance the highest value of i. 0503-6911TWF(N) ; TSMC2001-0668 ; Isabelle.ptd 第 13 頁0503-6911TWF (N); TSMC2001-0668; Isabelle.ptd page 13
TW91104243A 2002-03-07 2002-03-07 Fabrication method of inter metal dielectrics to avoid damaging the wafer TW531841B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91104243A TW531841B (en) 2002-03-07 2002-03-07 Fabrication method of inter metal dielectrics to avoid damaging the wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91104243A TW531841B (en) 2002-03-07 2002-03-07 Fabrication method of inter metal dielectrics to avoid damaging the wafer

Publications (1)

Publication Number Publication Date
TW531841B true TW531841B (en) 2003-05-11

Family

ID=28788532

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91104243A TW531841B (en) 2002-03-07 2002-03-07 Fabrication method of inter metal dielectrics to avoid damaging the wafer

Country Status (1)

Country Link
TW (1) TW531841B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795131B2 (en) 2006-12-15 2010-09-14 Touch Micro-System Technology Inc. Method of fabricating metal interconnects and inter-metal dielectric layer thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795131B2 (en) 2006-12-15 2010-09-14 Touch Micro-System Technology Inc. Method of fabricating metal interconnects and inter-metal dielectric layer thereof

Similar Documents

Publication Publication Date Title
TWI222170B (en) Interconnect structures containing stress adjustment cap layer
TW200415747A (en) Air gap dual damascene process and structure
TWI321346B (en) Method of forming metal line in semiconductor device
US6495448B1 (en) Dual damascene process
CN105762109A (en) Formation method of semiconductor structure
TW202131406A (en) Methods for etching metal films using plasma processing
JP2010199349A (en) Method for fabricating semiconductor device
US7732304B2 (en) Method of manufacturing semiconductor device
CN103066014A (en) Copper/ air gap preparation method
CN102054755B (en) Interconnecting structure and formation method thereof
US7687392B2 (en) Semiconductor device having metal wiring and method for fabricating the same
TW531841B (en) Fabrication method of inter metal dielectrics to avoid damaging the wafer
TW304297B (en)
CN102693935A (en) Manufacturing method of interconnection structure
KR100399909B1 (en) Method of forming inter-metal dielectric in a semiconductor device
KR100905828B1 (en) Metal line of semiconductor device and forming method thereof
KR20070054932A (en) Method of manufacturing semiconductor device
KR20060058583A (en) Conductive structure, method of manufacturing the conductive structure, semiconductor device including the conductive structure and method of manufacturing the semiconductor device
TW457683B (en) Cu damascene processes preventing hillock on the surface
KR100791707B1 (en) Method for polishing inter-metal dielectric layer of the semiconductor device
KR100769141B1 (en) Manufacturing method of semiconductor device
KR100459063B1 (en) Method for manufacturing intermetal dielectric layer of semiconductor device
KR100763675B1 (en) Method for polishing inter-metal dielectric layer of the semiconductor device
JP2002134505A (en) Method for manufacturing metal wiring
KR20050000871A (en) Gap fill enhancing method using high density plasma

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent