594263 玖、發明說明: 【技術領域】 本發明係關於一種光學裝置,該種光學裝置譬如可被使 用在能夠以二維(2D)模式與自動立體三維(aut0stere〇scopic 3D)模式操作之顯示器内。本發明也關於包含此種光學裝置 - 的顯示器。 _ 【先前技術】 EP 0 829 744提及一種可在二維和三維模式下操作的顯 示器。附圖中的圖1顯示在二維與三維模式下的此種顯示器 _ 之一種範例的基本結構。在三維模式下,該顯示器包括一 緊湊的延伸背光1,茲背光配置在實施成液晶裝置⑴quid crystal device LCD) 2 的空間光線調變器(spatial Hght modulator SLM)之後。 液晶裝置2有一後方偏光器3和一前594263 (1) Description of the invention: [Technical Field] The present invention relates to an optical device, which can be used, for example, in a display capable of operating in a two-dimensional (2D) mode and an autostereoscopic 3D mode. . The invention also relates to a display comprising such an optical device. _ [Prior art] EP 0 829 744 mentions a display which can be operated in two and three modes. Figure 1 of the accompanying drawings shows the basic structure of an example of such a display in two-dimensional and three-dimensional modes. In three-dimensional mode, the display includes a compact extended backlight 1, which is configured after the spatial Hght modulator SLM implemented as a liquid crystal device LCD 2. The liquid crystal device 2 has a rear polarizer 3 and a front
器7形成。器 7 Forming.
差格柵的功能失效。 。延遲器5包括諸Poor grille function. . The retarder 5 includes
在圖2中’圖式平面内的偏極 附圖中的圖2顯示在三維模式下的操作。 如8的區域與諸如9的區域,區域8將穿過該 万向以雙箭頭表示而與圖式 86294 -6- 594263 平面垂直的偏極方向則以實心圓表示。來自背光1未被偏極 化的光線射入輸入偏光器3,輸入偏光器3幾乎阻擋所有與 圖式平面垂直的偏極化分量且有一透射軸10,該透射軸讓 圖式平面内的偏極化分量通過。液晶裝置2的型式被控制以 改變穿過該裝置的偏極化方向使90度旋轉,相當於最大亮 度。輸出偏光器4的透射軸11正交於輸入偏光器3的透射軸 1 0 ’以使輸出偏光器4僅透射被偏極化成與圖式平面垂直的 光線。 通過區域9來自輸出偏光器4的光線之偏極化未被改變。 偏光器7的透射軸12與偏光器4之透射軸11正交,以使穿過 區域9的光線幾乎完全被阻擋且區域9看來黑暗或不透明。 +過區域8的光線之偏極化方向被旋轉9 〇度而平行於偏光 器7的透射軸12。因此偏光器7透射此光線以使圖樣化的延 遲斋5與偏光器7的組合被當作視差格柵。在顯示器的二維 模式下’偏光器7被移動到從顯示器到觀看者的光線路徑以 外或移除。因此該格柵結構不再可見,且來自區域8和區域 9的光線都透射到觀看者。 EP 0 833 183, EP 〇 887 692 與 EP 0 887 666進一步提出 另一種具有自動立體模式的顯示器範例,其中一圖樣化之 延遲备與一偏光器配合運作以當作視差格栅。這些文件中 提及的某些裝置也有二维模式,其中該格柵在二維模式下 被以某種方式使失效。所有此類已知顯示器被設計成使三 維表現最佳化-特別是藉著使三維串音最小化,該串音相關 於透射過光隙區域的光線與圖樣化之延遲器的格栅區域的 86294 光線間的比率。這種顯示器的—種範例顯示於附圖中的圖3 中,該圖以圖式顯示一種顯示器範例以說明包含於其内的 一維模式。 圖3之顯示器與圖2之顯示器不同處在於有一额外的液晶 延遲器置在圖樣化之延遲器5與分析偏光器7之間。圖3 中,偏光器透射軸以帶有實心箭頭的實線表示,延遲器之 k軸以帶有空心箭頭的實線表示,且光線偏極化以帶有實 心岫頭的虛線表示。 在二維模式下,偏光器3的透射軸10朝向〇。方向_亦即垂 直。延遲器5的光隙區域之慢軸16朝向_22 5。方向,而格栅 區域的慢軸17則朝向22_5。方向。所以來自光隙區域之光線 的偏極化方向18被旋轉到-45。方向,而來自格柵區域之光 線的偏極化方向19則被旋轉到45。方向。故偏極化方向18與 19彼此正交。延遲器15之慢軸2〇朝向_67 5。方向,以使來自 光1¥:區域和格柵區域的光線之偏極化方向分別被旋轉成如 21與22處所示般。分析偏光器7之透射抽12被旋轉到9〇。以 使來自光隙區域之光線的幾乎100%都透射過,而來自格柵 區域之光線的幾乎0%透射過(實際上,稍低於1〇〇%的光線 從光隙區域透射過而光線也不是完全從格柵區域被阻擋, 但其差異不影響本說明的討論)。所以在三維模式下穿過格 柵之光線的幾何平均數為50%。 在二維模式下,延遲器15被使失效且對通過顯示器之光 線的偏極化沒有影響。偏極化1 8與19相對於偏光器7之透射 軸12呈+45°與-45。,以使光線之透射侷限於理論上最大 86294 50% °但是衰減對前方視差格柵反射型或半透射半反射型 顯示器而言甚至更大。在此情況下,在二維模式下,光線 牙過”使失效”的視差格柵結構兩次而使反射模式下的最大 光線輸出為25%。此種相當低劣的光線輸出甚為不利-特別 是在諸如行動電話與個人數位助理器等小型或以電池供電 的衣置之情況下為然。譬如’在透射模式下,光線的損失 僅能靠提高背光輸出來補償,但這卻需要較大的電池或減 少電池使用壽命。 【發明内容】 根據本發明的第一種相態,本發明提出一種光學裝置, 孩光學裝置包括一輸入偏光器與一偏極化修改元件,該輸 入偏光裔用來傳遞具有第一偏極化方向的光線,該偏極化 4改元件伙遠輸入偏光器接收具有第一偏極化方向的光 線’該偏極化修改元件至少包括第一與第二組區域,該第 一組區域(或第一組的各區域)把來自輸入偏光器之光線的 偏極化改變成與第一偏極化方向不同之第二偏極化方向, 其特點在於第二組區域(或第二組的各區域)供應與第二偏 極化方向不同且不與第二偏極化方向垂直之第三偏極化方 向的光線。 該裝置可包括一輸出偏光器以分析來自該偏極化修改元 件之光線。 輸出偏光器與偏極化改變元件配合以使來自輸入偏光器 之光線在穿過第一組區域之各區域和輸出偏光器的第一光 線路徑上之衰減率大致相同於穿過第二組區域和輸出偏光 86294 器的第二光線路徑上之衰減率。 輸出偏光器與偏極化改變㈣配合以使來自輸人偏光器 之光線在穿過第-組區域之各區域和輸出偏光器的第一光 線路徑上之相位改變大致相同於穿過第二組區域和輸出偏 光器的第二光線路徑上之相位改變。 第一組區域與第二組區域可交錯配置且可分別包括第一 與第二平行長條。第-長條可有第—寬度且第二長條可有 比第一長條為寬的第二寬度。 第三偏極化方向可與第一偏極化方向相同。 孩裝置可有替代操作模式,在該模式下,輸出偏光器被 配置以傳遞來自第一組區域與第二組區域中一組區域的光 線,並衰減來自第一組區域與第二組區域中另一組區域的 光線。該第一組區域與第二組區域中的一組區域可為該第 一組區域。輸出偏光器可被配置以在該替代模式下大致阻 擋來自第一組區域與第二組區域中另一組區域的光線。 偏極化改變元件可包括一圖樣化的延遲器。輸出偏光器 可被配置以對來自第一與第二組區域之光線的慢軸和快軸 分量透射相同的比率。輸出偏光器可被配置以僅透射來自 第一與第二組區域之光線的慢軸成分。 輸出偏光器可傳送偏極化方向正交於第一偏極化方向之 光線。 延遲器可包括光致聚合化聚合體。延遲器可在可見光頻 率下提供半波延遲。第二組(各)區域的慢軸可被定向與第一 組(各)區域的慢軸成55。的的方向。 86294 -10- 594263 第一組(各)區域之慢軸可定向與第一偏極化方向 27.5。’且第二組(各)區域之慢軸可定向與第一偏極化方 成-27.5。。 句 第一組(各)區域之慢軸可定向與第一偏極化方向成Μ。, _ 且第二組(各)區域之慢軸可平行於第一偏極化方向。 ' 该裝置可進-步在輸人與輸出偏光器相同側之間包括另、 -個偏極化修改元件當作偏極化修改元件。該另一個元件 可為另一個延遲器。該另一個延遲器可在可見光頻率下提 供半波延遲。該另一個延遲器可為液晶裝置。 _ 該另一個延遲器可包括至少一個區域,該區域之慢軸可 在大致平行於光線透過該延遲器傳播之方向的第一方向與 大致垂直於第-方向的第二方向之間切換。該另一個延遲 态可為傅立德瑞克斯(preecjericksz)單元。 該第二方向可用在替代模式下且定向與第一偏極化方向 成 62.5。。 該另一個延遲器可包括至少一個區域,該區域之慢軸可 | 在大致垂直於光線穿過該另一個延遲器傳播之方向的第三 與第四方向之間切換。該第三方向可垂直於第一偏極化方 向,且茲第四方向可用在替代模式下且可定向與第一偏極 化方向成62.5。。 該另一個元件可包括一偏極化旋轉器。該旋轉器可包括 至少一個提供55。偏極化旋轉之區域。該旋轉器可包括扭轉 向列液晶裝置。 - 孩液晶裝置可在較接近輸入偏光器之液晶表面處有一平 86294 -11 - 594263 行於第一偏極化方向之排列方向,且在較遠離輸入偏光器 之液晶表面處有一定向與第一偏極化方向成5 5。的排列方 向0 該液晶裝置可在較接近輸入偏光器之液晶表面處有一定 / 向與第一偏極化方向成_17.5。之排列方向,且在較遠離輸入 - 偏光器之液晶表面處有一定向與第一偏極化方向成72·5。的 排列方向。 孩夜晶裝置可在較接近輸入偏光器之液晶表面處有一定 向與第-偏極化方向成5。之排列方向,且在較遠離輸入㉟鲁 光器之液晶表面處有一定向與第一偏極化方向成95。的排 列方向。 該偏極化旋轉器可在替代模式下使失效。 根據本發明的第二種相態,本發明提供—種顯示器,該 顯示器包括根據本發明第一種相態的裝置。 ^ 及〜、7F态可包括一諸如液晶空間光線調變器之空間 調變器。 該顯:器可有―自動立體模式。該裝置在替代模式下可 形成一前方或背後视差格柵。 精於本技術領域者在閱讀並 附圖後,即可清楚知…0、下又“細描迷並參考 、 、k本各明的這些和其他優點。 【實施方式】 下文將參考圖式描述本發明的實施法 圖4以圖示說明構成本發明一 互體操作模式和二維操作模式的 種霄施法的具有三維自動 三維自動立體顯示器。圖4 86294 -12- 594263 之顯示器與圖3中所示比較範例顯示器的不同點在於圖樣 化之延遲器的光隙區域之慢軸16朝向_27·5。方向,且延遲器 的格柵區域之慢軸17朝向27.5。方向。所以分別來自光隙區 域和格栅區域之光線的偏極化方向丨8和丨9不相垂直且其方 白相對於偏光器3之透射軸1 〇成·與+55。。而且,液晶(LC) 延遲态15之慢軸20朝向-62·5。方向。所以來自格栅區域的光 線被旋轉而具有朝向0。之方向的偏極化方向22且從而垂直 於分析偏光器7的透射軸12。所以光線大體上被消除以致大 體上有〇%的光線透射穿過格栅區域。 來自光隙區域的光線之偏極化方向18被延遲器15旋轉以 具有朝向-70。的方向之偏極化方向21。所以偏極化方向21 朝向相對於偏光器7的透射軸12成20。方向,以致穿過光隙 區域的光線有88%透射過。所以在三維模式下的光線透射 以幾何平均44%表示且比圖3中所示範例者少6%。 在二維模式下,偏極化方向18與丨9朝向相對於偏光器7 之透射軸的角度大小為3 5。的方向。所以,穿過光隙區域和 格栅區域的光線有67%透射過,且這表示相對於圖3中所示 範例有17%的改善。 ^光、、泉以入射光線的偏極化方向與偏光器透射轴之間成 θ角度透過諸如分析偏光器7之線性偏光器透射時,透射率 、〜“ c 〇 s (Q)且此關係顯不於圖5中。圖3與4中的角度㊀值 疋在圖5中所示曲線的一部分上而有相當大的斜率或梯 又而圖4中二維模式的㊀值是在圖$之曲線的一部分上而有 逐較低的梯度。所以,角度的微小變化會造成二維模式下 86294 -13 - 594263 党度相當大的改善與二雄播斗、 、、 、,隹杈式下亮度相當小的減少。 圖6顯示構成本發明—種每 見她法並形成自動立體顯示器 一部分的光學裝置,該光學裝 义予衣罝也構成本發明的一種實施 法且有自動立體三維操作媪户^ _ μ > , 、 私彳乍杈式和二維操作模式。三維操作 模式顯示於圖7中’二維操作模式顯示於圖8中。在二維模 式下’圖6之裝置和顯示器與圖4所示的裝置和顯示器不同 點在於偏光器4之透射軸丨丨定向與垂直線成_45。。因為液晶 裝置-般的配置是使其輸出偏光器的透射軸"相對於此種 裝置所顯示之影像的影像法線成_45。,這是圖7與後續圖式 中所示的方向。所以,圖式中所有角度都以法線為基準, 而且圖式頰示偏光器4之透射方向11定向-45。。故區域8之慢 軸定向-17.5°而區域9之慢軸則定向_72 5。。輸出偏光器7的 透射軸12定向45°。 延遲裔25以可電氣切換半波延遲器的形式提供以在二維 和三維操作模式間切換。延遲器25可在兩種狀態之間切 換,延遲器在其中一種狀態下當作慢軸朝向17.5。的半波延 遲器(如圖7中所示三維自動立體模式下);延遲器在另一種 狀態下提供幾乎為零的延遲(如圖8中所示二維模式下)。譬 如,在二維模式下,慢轴可被切換成垂直於延遲器25的平 面且大致平行於透過該裝置與顯示器的光線路徑。可切換 延遲器25可實施成諸如具有反平行排列的傅利得瑞克斯組 態向列液晶裝置之液晶裝置。此種裝置在Liquid Crystals 2002年第 29卷第 1 號中江如施(Jianru Shi)的"Criteria for the first order Freedericksz transistor” 内提及。在此種裝置内’ -14- 86294 594263 當電壓施加給液晶層的兩側時,液晶導向器-以及相關的慢 光學軸-位在大致垂直於該裝置的平面以對在垂直方向穿 過該裝置的光線呈現均勻的折射率,且從而沒有雙折射發 生。 該液晶裝置可被組態以在兩種狀態下都是均勻的,在該 情況下整個顯示器可以一個單元在二維與三維模式之間切 換。或者,也可在液晶裝置内提供畫有適當圖樣的電極以 使顯示器的不同區域可彼此獨立地為二維或三維操作而被 組態。 在二維模式下,延遲器5與25可有大致匹配的散佈。所 以,正又偏光器4與7的呈現連同匹配散佈的延遲器造成整 個可見光譜中穿過區域9之光線良好的消除,從而造成三維 模式下良好的_音表現。延遲器5與25的匹配散佈造成透過 光隙區域8之亮度更具消色差性的表現。 圖9顧示-種背後視差格柵顯示器,其中背後視差格拇是 由與圖7和8中所示相同類型的光學裝置形成的。但是在圖9 中所示裝置中,液晶裝置的背後偏光器變成光學裝置的輸 出偏光器7且輸入偏光器4與液晶裝置不同。而且,切換液 晶延遲器25依光線透射f過該裝置的方向來看配置在圖樣 化之延遲器5的前面。這讓三維模式下實際界定背後視差格 概之圖樣化的延遲器5如圖叫所示般較接近顯示液晶裳 置^以二咸少格栅和顯示器像素間的距離。《少此距離使從 顯示器前方觀看的最佳距離得以縮短,譬如可在諸如行動 電話與個人數位助理器等手持裝置内觀看顯示器。 86294 -15- 594263 背後視差格柵型顯示器更適合使用於同時具有透射與反 射操作模式的半透射半反射顯示器。藉將視差格柵配置在 顯示液晶裝置2的後面,在反射模式下光線通過前方視差格 栅兩次所造成的衰減得以大幅免除且這可獲得較亮的反射 模式。 如圖10中所不,切換液晶裝置25、圖樣化的延遲器和顯 示液晶裝置2被做成獨立的裝置,該等裝置在往後被放在一 起以形成完整的顯示器。所以,切換液晶裝置25有玻璃基 板40和41、圖樣化的延遲器5形成在玻璃基板42上、且顯示 液晶裝置2有玻璃基板43和44。 如圖11中所示,可藉將圖樣化之延遲器形成在切換液晶 裝置25的基板41上而省略基板42。因此可提供厚度較薄的 顯示器且在需要相當薄的裝置内具有應用優勢。 圖12顯示藉免除基板41並在切換液晶裝置25與顯示液晶 裝置2之間分享基板44而進一步減少厚度。在此情況下,延 遲器5與偏光器7被實際形成為液晶裝置25内的内部構成元 件這些構成元件•且特別是偏光器7 -的種類必須是能夠耐 得住後續溫度與化學處理程序以形成裝置25之透明電極與 排列層的。ΕΡ 〇 887 692和鮑伯羅夫(Bobrov)等人在Pr*oc. SID 2000 中的 Lyotropic thin film polarisers’’中提及適合此 種内部應周的範例。 圖13顯示一種與圖9所示者不同的背後視差格柵裝置,其 不同點在於區域8與9的慢軸方向朝向10。與-45。、液晶延遲 器25的慢軸在三維模式下朝向72.5。、且偏光器4的透射軸11 86294 -16- 594263 朝向55。。此種組態提供一種在圖13中所示二維模式下更具 有消色差性的輸出,且因此減少色彩再生的錯誤。 圖14顯示另一種背後視差格栅型顯示器的二維模式,其 中一維模式發生在液晶延遲器2 5關閉的情況下。當預期二 維模式是主要用途且功率消耗甚為重要-譬如在以電池供 電的裝置中-時,此種裝置可能是較佳的。 在圖14的顯示器中,區域8和9的軸分別朝向1〇〇。和45。。 在液晶延遲器25被關閉的二維模式下,延遲器的慢軸朝向 17.5°。偏光器4之透射軸丨丨正交於偏光器7之透射方向I〕且 朝向45。。當液晶延遲器25被啟動時,延遲大致被消除且顯 示功能處於自動立體三維模式下。 圖15顯示另一種背後視差格柵顯示器,其中液晶延遲器 25被當作偏光旋轉器以對來自偏光器4之光線產生55。的偏 極化方向旋轉。延遲器25是扭轉向列裝置,該裝置在分別 較接近偏光器4和延遲器5的扭轉向列液晶層表面處的排列 方向50和51之間有一相對角度。排列方向5〇被顯示為平行 於透射軸11且在排列方向50和51之間有55。的扭轉。但是液 晶裝置25可相對於透射軸丨丨旋轉到任何角度且對通過其的 光線之偏極化方向產生55。的旋轉。 在一、、隹模式下,裝置2 5提供5 5。的偏極化方向旋轉。對自 動三體二維模弍操作雨言,電壓施加到扭轉向列液晶層的 兩侧以使液晶導向器垂直於該裝置平面方向排列且不提供 偏極化方向旋轉。 圖16中所示顯示器與圖15中所示顯示器不同點在於裝置 -17- 86294 594263 25的扭轉是90°。此種裝置可”自我補償”且可在較低電壓下 操作。藉適當選擇角度和延遲可用此裝置達成55。的旋轉。 本發明者在與本專利申請案同曰提出之名為”P〇larisationPolarization in the ' schematic plane in FIG. 2 FIG. 2 in the drawings shows operation in a three-dimensional mode. For example, the area of 8 and the area such as 9, area 8 will pass through the cardinal direction and are indicated by double arrows, while the direction of polar deflection perpendicular to the plane of the figure 86294-6-594263 is indicated by a solid circle. The unpolarized light from the backlight 1 enters the input polarizer 3, and the input polarizer 3 blocks almost all polarization components perpendicular to the pattern plane and has a transmission axis 10, which transmits the polarization in the pattern plane. The polarization component passes. The type of the liquid crystal device 2 is controlled to change the polarization direction passing through the device and rotate 90 degrees, which is equivalent to the maximum brightness. The transmission axis 11 of the output polarizer 4 is orthogonal to the transmission axis 10 'of the input polarizer 3 so that the output polarizer 4 transmits only light polarized to be polarized perpendicular to the plane of the drawing. The polarization of the light passing through the region 9 from the output polarizer 4 is not changed. The transmission axis 12 of the polarizer 7 is orthogonal to the transmission axis 11 of the polarizer 4, so that light passing through the area 9 is almost completely blocked and the area 9 appears dark or opaque. The polarization direction of the light passing through the region 8 is rotated 90 degrees and parallel to the transmission axis 12 of the polarizer 7. Therefore, the polarizer 7 transmits the light so that the patterned delay 5 and the combination of the polarizer 7 are used as a parallax barrier. In the two-dimensional mode of the display, the 'polarizer 7 is moved out of or removed from the light path from the display to the viewer. The grid structure is therefore no longer visible, and light from areas 8 and 9 is transmitted to the viewer. EP 0 833 183, EP 〇 887 692 and EP 0 887 666 further propose another example of a display with an auto-stereoscopic mode, in which a patterned delay device works in conjunction with a polarizer to act as a parallax barrier. Some of the devices mentioned in these documents also have a two-dimensional mode in which the grid is disabled in some way in the two-dimensional mode. All such known displays are designed to optimize three-dimensional performance-particularly by minimizing three-dimensional crosstalk, which is related to the light transmitted through the light gap area and the patterned grid area of the retarder. 86294 Ratio between rays. An example of such a display is shown in Figure 3 of the accompanying drawings, which schematically shows an example of a display to illustrate the one-dimensional mode included therein. The display of FIG. 3 is different from the display of FIG. 2 in that an additional liquid crystal retarder is placed between the patterned retarder 5 and the analysis polarizer 7. In Figure 3, the polarizer transmission axis is indicated by a solid line with a solid arrow, the k-axis of the retarder is indicated by a solid line with a hollow arrow, and the polarization of light is indicated by a dotted line with a solid hoe. In the two-dimensional mode, the transmission axis 10 of the polarizer 3 faces zero. The direction is vertical. The slow axis 16 of the optical gap region of the retarder 5 faces _22 5. Direction, while the slow axis 17 of the grid area faces 22_5. direction. Therefore, the polarization direction 18 of the light from the light gap region is rotated to -45. Direction, and the polarization direction 19 of the light from the grid area is rotated to 45. direction. Therefore, the polarization directions 18 and 19 are orthogonal to each other. The slow axis 20 of the retarder 15 faces _67 5. Direction so that the polarization directions of the light from the 1 ¥: area and the grid area are rotated as shown at 21 and 22, respectively. The transmission beam 12 of the analysis polarizer 7 is rotated to 90. So that almost 100% of the light from the light gap area is transmitted, and almost 0% of the light from the grid area is transmitted (in fact, slightly less than 100% of the light is transmitted from the light gap area and the light is transmitted It is not completely blocked from the grid area, but its differences do not affect the discussion of this note). So the geometric mean of the rays that pass through the grid in 3D mode is 50%. In the two-dimensional mode, the retarder 15 is disabled and has no effect on the polarization of the light passing through the display. The polarizations 18 and 19 are + 45 ° and -45 with respect to the transmission axis 12 of the polarizer 7. In order to limit the transmission of light to a theoretical maximum of 86294 50% °, but the attenuation is even greater for front parallax grid reflective or transflective displays. In this case, in the two-dimensional mode, the light passes through the parallax grid structure that "disables" twice, so that the maximum light output in the reflection mode is 25%. This rather poor light output is very detrimental-especially in small or battery-powered clothing such as mobile phones and personal digital assistants. For example, in the transmission mode, the loss of light can only be compensated by increasing the backlight output, but this requires a larger battery or a reduced battery life. [Summary of the Invention] According to a first phase state of the present invention, the present invention provides an optical device. The optical device includes an input polarizer and a polarization modification element, and the input polarization is used to transmit a first polarization The polarized polarization modification element and the far-input polarizer receive light having a first polarization direction. The polarization modification element includes at least first and second groups of regions, and the first group of regions (or Each region of the first group) changes the polarization of the light from the input polarizer to a second polarization direction different from the first polarization direction, which is characterized by the second group of regions (or each of the second group) (Region) supplies light in a third polarization direction that is different from the second polarization direction and is not perpendicular to the second polarization direction. The device may include an output polarizer to analyze light from the polarization modification element. The output polarizer cooperates with the polarization changing element so that the attenuation rate of the light from the input polarizer on the first light path passing through the regions of the first group of regions and the output polarizer is substantially the same as that of passing through the second group of regions. And the attenuation rate on the second light path of the output polarizer 86294. The output polarizer cooperates with the polarization change ㈣ so that the phase change of the light from the input polarizer on the first light path through the regions of the first group and the output polarizer is substantially the same as that of the second group The phase of the area and the second light path of the output polarizer changes. The first group of regions and the second group of regions may be staggered and may include first and second parallel strips, respectively. The first bar may have a first width and the second bar may have a second width wider than the first bar. The third polarization direction may be the same as the first polarization direction. The device may have an alternative operating mode in which the output polarizer is configured to pass light from one of the first and second groups of regions, and attenuate light from the first and second groups of regions. Light from another set of areas. One of the first group of regions and the second group of regions may be the first group of regions. The output polarizer may be configured to substantially block light from the first and second groups of regions in this alternative mode. The polarization changing element may include a patterned retarder. The output polarizer can be configured to transmit the slow axis and fast axis components of the light from the first and second sets of regions at the same ratio. The output polarizer may be configured to transmit only the slow axis components of light from the first and second sets of regions. The output polarizer can transmit light having a polarization direction orthogonal to the first polarization direction. The retarder may include a photopolymerized polymer. The retarder provides half-wave delay at visible frequencies. The slow axis of the second group (s) of regions can be oriented at 55 with the slow axis of the first group (s) of regions. Direction. 86294 -10- 594263 The slow axis of the first group (s) of regions can be oriented with the first polarization direction 27.5. 'And the slow axis of the second group (s) of regions can be oriented at -27.5 with the first polarization. . Sentence The slow axis of the first group (s) of regions can be oriented at M with the first polarization direction. , _, And the slow axis of the second group (s) of regions may be parallel to the first polarization direction. 'The device can further include, between the input and output polarizers, another polarization modification element as a polarization modification element. The other element may be another retarder. This other retarder provides half-wave delay at visible frequencies. The other retarder may be a liquid crystal device. _ The other retarder may include at least one region whose slow axis is switchable between a first direction substantially parallel to a direction in which light propagates through the retarder and a second direction substantially perpendicular to a first direction. The other delay state may be a preecjericksz unit. This second direction can be used in the alternative mode and the orientation is 62.5 with the first polarization direction. . The other retarder may include at least one region whose slow axis may be switched between third and fourth directions substantially perpendicular to the direction in which light propagates through the other retarder. The third direction may be perpendicular to the first polarization direction, and the fourth direction may be used in the alternative mode and may be oriented to be 62.5 with the first polarization direction. . The other element may include a polarized rotator. The rotator may include at least one supply 55. Area of polarization rotation. The rotator may include a twisted nematic liquid crystal device. -The LCD device can have a flat 86294 -11-594263 line in the first polarization direction on the liquid crystal surface closer to the input polarizer, and an orientation and first on the liquid crystal surface farther from the input polarizer The polarization direction is 5 5. The arrangement direction of the liquid crystal device is 0. The liquid crystal device can have a certain / direction near the liquid crystal surface of the input polarizer to be -17.5 with the first polarization direction. And the orientation is farther away from the liquid crystal surface of the input-polarizer than the orientation of the first polarization direction is 72 · 5. The arrangement direction. The night crystal device may have a certain direction at the liquid crystal surface closer to the input polarizer to be 5 with the first polarization direction. The alignment direction is, and there is an orientation at a distance from the input liquid crystal surface of the liquid crystal which is 95% to the first polarization direction. The direction of the arrangement. The polarized rotator can be disabled in alternative mode. According to a second phase state of the present invention, the present invention provides a display including the device according to the first phase state of the present invention. ^ And ~, 7F states may include a space modulator such as a liquid crystal space light modulator. The display can have-auto stereo mode. The device can form a front or back parallax grille in alternative mode. Those who are proficient in the technical field can clearly understand after reading and attaching to the drawings, “0,” and “those detailed descriptions and references,” and “K” each of these and other advantages. [Embodiment] The following will be described with reference to the drawings Implementation method of the present invention FIG. 4 illustrates a three-dimensional auto three-dimensional auto-stereoscopic display with three-dimensional auto three-dimensional auto-stereoscopic display constituting an inter-body operation mode and a two-dimensional operation mode of the present invention. The display of FIG. 4 86294-12-594263 and FIG. 3 The difference of the shown comparative example display is that the slow axis 16 of the light gap region of the patterned retarder faces _27 · 5. And the slow axis 17 of the grating region of the retarder faces 27.5. The polarization directions of the light rays in the gap region and the grid region are not perpendicular to each other and their square white relative to the transmission axis of the polarizer 3 is 10% and +55. Moreover, the liquid crystal (LC) retardation state 15 The slow axis 20 is oriented in the direction of -62 · 5. Therefore, the light from the grid area is rotated to have a polarization direction 22 oriented in the direction of 0. and thus perpendicular to the transmission axis 12 of the analysis polarizer 7. So the light is generally Was eliminated so that 〇% of the light is transmitted through the grid area. The polarization direction 18 of the light from the light gap area is rotated by the retarder 15 to have a polarization direction 21 of -70. So the polarization direction 21 is oriented It is 20 relative to the transmission axis 12 of the polarizer 7. The direction is such that 88% of the light passing through the light gap region is transmitted. Therefore, the light transmission in the 3D mode is represented by a geometric average of 44% and is larger than the example shown in FIG. 3 In the two-dimensional mode, the polarization directions 18 and 9 are oriented in a direction of an angle of 3 to 5. with respect to the transmission axis of the polarizer 7. Therefore, the light passing through the light gap area and the grid area 67% of the light is transmitted, and this represents a 17% improvement over the example shown in Figure 3. ^ Light, springs pass through the polarization direction of the incident light and the polarizer transmission axis at an angle of θ such as analysis When the linear polarizer of the polarizer 7 transmits, the transmittance, ~ "c s (Q), and this relationship is not shown in FIG. 5. The values of the angles 疋 in Figs. 3 and 4 are on a part of the curve shown in Fig. 5 and have a considerable slope or ladder. The value of 二维 in the two-dimensional mode in Fig. 4 is on a part of the curve in Fig. $. By the lower gradient. Therefore, a small change in the angle will cause a considerable improvement in the degree of partyness in the two-dimensional mode. FIG. 6 shows an optical device constituting the present invention, which forms a part of an autostereoscopic display. The optical device is also an embodiment of the present invention and has an autostereoscopic three-dimensional operation. ^ _ Μ > ,, Private mode and 2D operation mode. The three-dimensional operation mode is shown in FIG. 7 and the two-dimensional operation mode is shown in FIG. 8. In the two-dimensional mode, the device and the display of FIG. 6 differ from the device and the display shown in FIG. 4 in that the transmission axis of the polarizer 4 is oriented at _45 with the vertical line. . Because the general arrangement of the liquid crystal device is such that the transmission axis of the output polarizer is "_45" with respect to the image normal to the image displayed by this device. This is the direction shown in Figure 7 and subsequent figures. Therefore, all angles in the diagram are based on the normal, and the transmission direction 11 of the cheek polarizer 4 is oriented to -45. . So the slow axis of area 8 is oriented -17.5 ° and the slow axis of area 9 is oriented _72 5. . The transmission axis 12 of the output polarizer 7 is oriented at 45 °. The delay line 25 is provided in the form of an electrically switchable half-wave retarder to switch between two-dimensional and three-dimensional operation modes. The retarder 25 can be switched between two states. In one of the states, the retarder 25 acts as a slow axis toward 17.5. The half-wave retarder (as shown in Fig. 7 in three-dimensional autostereoscopic mode); the retarder provides almost zero delay in another state (as shown in Fig. 8 in two-dimensional mode). For example, in the two-dimensional mode, the slow axis can be switched to be perpendicular to the plane of the retarder 25 and approximately parallel to the path of light passing through the device and the display. The switchable retarder 25 can be implemented as a liquid crystal device such as a Fourier Rex configuration nematic liquid crystal device having an anti-parallel arrangement. Such a device is mentioned in "Criteria for the first order Freedericksz transistor" by Liquid Crystals, Volume 29, No. 1, 2002 (Jianru Shi). In this device, '-14- 86294 594263 when voltage is applied When given to both sides of the liquid crystal layer, the liquid crystal director-and the associated slow optical axis-are positioned approximately perpendicular to the plane of the device to present a uniform refractive index to the light passing through the device in a vertical direction, and thus there is no birefringence The LCD device can be configured to be uniform in both states, in which case the entire display can be switched between 2D and 3D modes in a single unit. Alternatively, the picture can also be provided in the LCD device. Properly patterned electrodes so that different areas of the display can be configured independently for two-dimensional or three-dimensional operation. In the two-dimensional mode, the retarders 5 and 25 can have approximately matching dispersions. Therefore, the positive polarizer 4 The presentation of and 7 together with the matched diffused retarder results in a good cancellation of the light passing through region 9 in the entire visible spectrum, resulting in a good sound performance in 3D mode. The matched dispersion of retarders 5 and 25 results in a more achromatic performance of the brightness transmitted through the light gap region 8. Fig. 9 shows a kind of rear parallax grid display, in which the rear parallax grid is composed of the same as that shown in Figs. The same type of optical device is shown. However, in the device shown in FIG. 9, the rear polarizer of the liquid crystal device becomes the output polarizer 7 of the optical device and the input polarizer 4 is different from the liquid crystal device. Also, the liquid crystal retarder 25 is switched It is arranged in front of the patterned retarder 5 according to the direction of the light transmission f passing through the device. This allows the patterned retarder 5 which actually defines the parallax pattern behind in 3D mode to be closer to the display liquid crystal as shown in the figure Changzhi ^ uses the distance between the two-screen grid and the pixels of the display. "This distance shortens the optimal distance for viewing from the front of the display, such as viewing the display in handheld devices such as mobile phones and personal digital assistants. 86294 -15- 594263 Rear parallax grid type display is more suitable for transflective and transflective displays with both transmissive and reflective modes of operation. At the back of the display liquid crystal device 2, the attenuation caused by the light passing through the front parallax grille twice in the reflection mode is largely eliminated and a brighter reflection mode can be obtained. As shown in FIG. 10, the liquid crystal device 25 is switched and the pattern is changed. The retarder and display liquid crystal device 2 are made as separate devices, and these devices are put together to form a complete display. Therefore, the switching liquid crystal device 25 has glass substrates 40 and 41, and a patterned retarder 5 It is formed on the glass substrate 42 and the display liquid crystal device 2 has glass substrates 43 and 44. As shown in FIG. 11, the patterned retarder can be formed on the substrate 41 of the switching liquid crystal device 25, and the substrate 42 can be omitted. Therefore, a thin display can be provided and has application advantages in a device that requires a relatively thin thickness. FIG. 12 shows that the substrate 41 is eliminated and the substrate 44 is shared between the switching liquid crystal device 25 and the display liquid crystal device 2 to further reduce the thickness. In this case, the retarder 5 and the polarizer 7 are actually formed as internal constituent elements in the liquid crystal device 25. These constituent elements, and in particular the polarizer 7-must be of a type capable of withstanding subsequent temperatures and chemical treatment procedures to The transparent electrodes of the device 25 and the alignment layer are formed. Ep O 887 692 and Bobrov et al. In L * tropical thin film polarisers '' in Pr * oc. SID 2000 mention examples suitable for this type of internal response. FIG. 13 shows a rear parallax barrier device different from that shown in FIG. 9 with a difference in that the slow axis directions of the regions 8 and 9 are toward 10. With -45. The slow axis of the liquid crystal retarder 25 faces 72.5 in the three-dimensional mode. The transmission axis 11 of the polarizer 4 is 86 86294 -16- 594263. . This configuration provides an output that is more achromatic in the two-dimensional mode shown in Fig. 13, and thus reduces errors in color reproduction. FIG. 14 shows another two-dimensional mode of the rear parallax grille type display, in which the one-dimensional mode occurs when the liquid crystal retarder 25 is turned off. Such a device may be preferred when the two-dimensional mode is expected to be the main use and power consumption is important-such as in a battery-powered device. In the display of FIG. 14, the axes of regions 8 and 9 face 100 respectively. And 45. . In the two-dimensional mode in which the liquid crystal retarder 25 is turned off, the slow axis of the retarder faces 17.5 °. The transmission axis of the polarizer 4 is orthogonal to the transmission direction I of the polarizer 7] and faces 45. . When the liquid crystal retarder 25 is activated, the delay is substantially eliminated and the display function is in the auto-stereoscopic three-dimensional mode. FIG. 15 shows another rear parallax barrier display in which the liquid crystal retarder 25 is used as a polarizing rotator to produce 55 from the polarizer 4. The polarization direction is rotated. The retarder 25 is a twisted nematic device having a relative angle between the alignment directions 50 and 51 which are closer to the surface of the twisted nematic liquid crystal layer of the polarizer 4 and the retarder 5, respectively. The arrangement direction 50 is shown as being parallel to the transmission axis 11 and 55 between the arrangement directions 50 and 51. The twist. However, the liquid crystal device 25 can be rotated to any angle with respect to the transmission axis and generate 55 for the polarization direction of the light passing therethrough. Rotation. In one or two modes, the device 2 5 provides 5 5. The polarization direction is rotated. For the operation of the automatic three-body two-dimensional die, a voltage is applied to both sides of the twisted nematic liquid crystal layer so that the liquid crystal directors are aligned perpendicular to the plane direction of the device and do not provide polarization direction rotation. The display shown in FIG. 16 differs from the display shown in FIG. 15 in that the twist of the device -17- 86294 594263 25 is 90 °. Such devices are "self-compensating" and can be operated at lower voltages. With proper choice of angle and delay, 55 can be achieved with this device. Rotation. The inventor proposed the same name as "Polarisation"
Rotator, Parallax Barrier, Display and Optical Modulator”的 英國同時申請中專利申請案第0215057.1號中提及此類裝 置。 對入射到扭轉向列液晶上的線性偏極化光線而言,若正 確選擇扭轉(Φ)、延遲(Δη·(ί)、與來自偏光器之輸入導向器 的方向(Θ),則可用任何裝置扭轉角度獲得任何被選擇之偏 極化方位角值的線性偏極化。對線性偏極化光線相對於入 射偏極化方向旋轉45。而言,下列公式可藉將斯托克斯 (Stokes)參數列入傳播通過扭轉向列結構的線性偏極化光 線考慮而導出: tan “ Vl + q 2) = -\/l + q 2 α 一 Δη 与 JT ~~λ~ 其中λ是入射光線的波長。 圖17顯示一與圖16中所示不同的裝置,其不同點在於角 度與延遲已經被改變以使整個可見光譜都有最佳效能。當 電壓施加給裝置25的液晶層時,該裝置對系統沒有光學影 響。所以延遲和旋轉可對需要改變偏極化的狀態做最佳 化’以使通過圖樣化之延遲器5的光隙區域與格柵區域所產 生的強度與色彩大致相同。 圖18顯示具有可切換延遲器25之前方視差格柵顯示器, -18 - 86294 594263 其中慢軸在三維模式(顯示於圖18的左下部)下的1 7 · 5。與二 維模式(顯示於圖1 8的右下部)下的45。之間切換。此種可切 換延遲器可實施成同平面切換型液晶裝置,像是鐵電液晶 (ferroelectric liquid crystal FLC,譬如克拉克(Clark N.A.) 與拉嘎威爾(Lagarwell S.T.)在 1980 年 Appl. Phys. Lett·,36, 899 中提及者)、抗鐵電液晶(_丨 ferr〇eiecti^c crystal AFLC)、或雙% 怨扭轉向列(bistable twisted nematic BTN) 裝置(譬如柏里曼(D.W. Berreman)與赫夫納(W.R. Heffner) 在1981年J· Appl· PhyS.,52 3032中提及者)(譬如強達尼 (Chandani)等人在 1989年 Jpn. J Appl· Phys·,28, L1261 中提及 者)。偏光器4與7和圖樣化之延遲器5被如圖7中所示般配 置。 圖19顯不一種類似於圖8中所示類型之顯示器,但是其中 堵杈式間的切換是由機械方式進行的。圖2〇顯示二維模式 與三維模式間的切換是藉旋轉包括一非雙折射基板33、偏 光斋7、及延遲态25的裝置32來進行的。明確地說,裝置32 %著垂直轴旋轉1 8〇。以反轉光學路徑内個別元件的次序。 延遲器5形成在非雙折射基板34的一側。 一維組怨顯示於圖2〇的左側而三維組態則顯示於右側。 在一維杈式下,偏光器7配置在圖樣化之延遲器5與均勻延 遲一25之間以使均勻延遲器乃幾乎沒有影響且觀看者幾乎 看不到它。當把裝置32如箭頭35所示般繞著垂直軸旋轉 18〇以切換到三維模式時,延遲器25配置在圖樣化之延遲 器5與偏絲7之間以形成—視差格拇。 86294 -19 - 圖21顯示一種與圖20中所示者不同的裝置,其不同點在 於輸出偏光器7與均勻延遲器25形成在基板33的相同侧。此 種裝置的配置提供較佳的保護給延遲器25並減少用保護性 塗膜對基板的兩側做”硬塗膜Π之需要。 抗反射塗膜可依需要提供且最好大致是非雙折射者以避 免對該裝置的光學效果造成不利改變。 圖22與23顯示另一種可以機械方式反轉的裝置,其中三 維與一維模式類似於圖14之可電氣切換顯示器。所以圖22 與23之顯π器可被視為圖14之顯示器的,,機械類似物,,,其 中切換液晶延遲器被譬如固定片狀延遲器代替。 圖24顯示一種相當簡單的”機械"實施法,該實施法不需 要任何延遲益25。在二維模式下,區域8之慢軸被定向1〇〇。 方向、區域9之慢軸被定向45。方向、且偏光器之透射軸55 被定向55。方向。為了要切換到三維模式,要求透射軸 直於圖24中所示的方向。譬如,這可藉旋轉偏光器4來完成。 其他電氣切換實施法也有機械類似物,精於本技術領域 者可輕易了解之。在切換扭轉向列裝置的情況下,可使用 扭咎固定延遲咨結構。譬如,此種結構可藉將對掌性摻雜 物加入液晶聚合物或反應内消旋材料以產生所需的螺旋狀 、、、。構接者再做聚合來使用。 相對於上文所述的液晶模式,也可能採周平面外切換(oui 〇f Plane switching 〇ps)類型。◦以類型可為均質排列或非 自貝排列,或混合排列(hybrid aligned HAN)。藉使用垂直 排歹J和負介電各向異性液晶材料可獲得任何均勻排列正介 86294 -20- 594263 黾向列液晶裝置的反操作(到一好的接近程度)。所以,藉著 從一種排列改變成另一種排列,顯示器的未加電源狀態可 在一維模式和二維模式之間改變。可藉簡單地使厚度大到 兩倍(假設扭轉是〇。)並將排列從均勻改變成垂直而使用 HAN液晶裝置取代均勻排列向列液晶裝置。也可使用增你 索雙%惑向列(Zenithal Bistable Nematic ZBN)模式,且其 具有真貫雙穩怨及非常低功率消耗的優點,因為只需要從 一種狀態切換到另一種狀態的功率。在一種狀態下, LCD擁有HAN的組態,而在另一種狀態下,則擁有垂直排 列LCD組態。 上文所述的所有光學裝置可被使用做為前方或背後視差 格柵。而且,如上文所述,顯示器的不同區域可同時在二 維和三維模式下操作。譬如,圖25顯示電極圖樣55和%在 一切換LCD 25之範例的基板上以讓不同的區域同時以不同 模式操作。圖26也顯示該顯示器的外觀,其上部區域和下 部區域在二維模式下操作以顯示文字,而中間區域則在三 維模式下操作以顯示影像。在此種設備中,希望不同區域 的凴度能匹配-譬如藉調整軟體内使用的灰階範圍。 在本發明說明的整個描述中,角度的正值可為順時針方 向或逆時針方向,而負值則表示相反方向的角度。而且, 所有偏極化方向與延遲器慢軸的角度均以,,m〇dul〇 18〇。,,表 不。所以各角度θ等同於各角度(θ + η · 180)。,其中n為任 何整數。但是在某些裝置的情況下,因為其結構的固有特 性,Θ值比(Θ + 180。)好,因為如此可有較佳的效能。 86294 -21 - 594263 所以可能提供―種適用於顯 使用於也有-飧p ^ 門打尤子裝置。譬如當 乜哥一維糙作模式的自動 種裝置可能据仳% 版一、,隹續不态内時,此 發生三維模式下亮…-度的&升。雖然也會 - 又,牛低,但感受的亮度降低遠小於二 本接式下感雙的亮户裎罝 的改i ^ 升’㈣可獲得此種裝置整體效能 的改善。此外,三維措二 、 ’工下串首效能的提昇不大,因為穿 匕::區域的光線斷絕和已知裝置比較起來未大幅改變。 對精於本技術領域者而言, ^ , ^ j α疋地知迢有許多種其他 U且可1工易地進行修改而不背離本發明的範田壽與精 神。所以本文所陳述的描述用意並不在限制所附專利申靖 範圍的範本發明之申請專利範圍應予廣義的解釋。 【圖式簡單說明】 上文藉由範例參考附圖進一步描述本發明,諸附圖中: 圖1是已知類型之顯示器在三維與二維操作模式下的橫 斷面圖示; 圖2是圖1之顯示器的橫斷面圖,說明三維操作模式; 圖3顯示一種顯示器之傳統三維與二維操作模式圖,該顯 π益圖樣化之延遲為的光隙區域和格柵區域之偏極化相垂 直; 圖4是顯示構成本發明第一種實施例之顯示器的圖,該顯 示器圖樣化之廷遲器的光隙區域和格柵區域之偏極化不相 垂直; 圖5是穿過線性偏光器之透射相對於入射光線偏極化與 偏光器透射軸之間的角度之圖; -22- 86294 594263 圖6以圖示說明構成本發明第二種實施法之顯示器的一 部分之光學裝置的橫斷面圖示; 圖7以圖示說明圖6之光學裝置與顯示器的三維和二維模 式; 圖8以圖示說明圖6之光學裝置與顯示器的三維和二維模 式; 圖9以圖示說明構成本發明第三種實施法之顯示器的一 部分之光學裝置的橫斷面圖示; 圖10是顯示圖9之顯示器不同實體配置的橫斷面圖; 圖11是顯示圖9之顯示器不同實體配置的橫斷面圖; 圖12是顯示圖9之顯示器不同實體配置的橫斷面圖; 圖13以圖示說明構成本發明第四種實施法之光學裝置與 顯示器; 圖14以圖示說明構成本發明第五種實施法之光學裝置與 顯示器; 圖15以圖示說明構成本發明第六種實施法之光學裝置與 顯示器; 圖16以圖示說明構成本發明第七種實施法之光學裝置與 顯示器; 圖17以圖示說明構成本發明第八種實施法之光學裝置與 顯示器; 圖1 8以圖示說明構成本發明第九種實施法之光學裝置與 顯示器; 圖19以圖示說明構成本發明第十種實施法之光學裝置與 86294 -23 - 594263 顯示器; 圖20是圖19中所示光學裝置與顯示器的橫斷面圖示; 圖21是圖19中所示光學裝置與顯示器的橫斷面圖示; 圖22是構成本發明第十一種實施法之光學裝置與顯示器 的橫斷面圖示; 圖23是說明圖22之裝置與顯示器的圖示; 圖24是說明構成本發明第十二種實施法之光學裝置與顯 示器的圖示;且 圖2 5顯示切換液晶裝置之電極圖樣及包含此種液晶裝置 之顯示器的外觀範例。 諸圖式中類似的編號表示類似的構成元件。 【圖式代表符號說明】 1 背光 2 液晶裝置 3 後方偏光器 4 前方偏光器 5、25 延遲器 6 基板 7 輸出偏光器 8、9 區域 10 、 11 、 12 透射軸 15 液晶延遲器 16 、 17 ^ 20 慢軸 18、21 光隙偏極化方向 19、22 格柵偏極化方向 86294 -24- 33、 >34 非雙折射基板 35 旋轉方向 40、 .41、 42、43、44 玻璃基板 50、 * 51 排列方向 55、 ‘56 電極圖樣 594263 86294 -25 -Rotator, Parallax Barrier, Display and Optical Modulator "is mentioned in the UK co-pending patent application No. 0215057.1. For linearly polarized light incident on twisted nematic liquid crystal, if the twist is selected correctly ( Φ), delay (Δη · (ί), and the direction (Θ) of the input guide from the polarizer, any device can be used to twist the angle to obtain any selected polarization polarization azimuth value. Linear polarization The polarized light is rotated 45 relative to the direction of the incident polarization. In terms of this, the following formula can be derived by considering the Stokes parameter as a linearly polarized light that propagates by twisting the nematic structure: tan " Vl + q 2) =-\ / l + q 2 α-Δη and JT ~~ λ ~ where λ is the wavelength of the incident light. Fig. 17 shows a different device from that shown in Fig. 16. The difference is that the angle and delay have been changed so that the entire visible spectrum has the best performance. When a voltage is applied to the liquid crystal layer of the device 25, the device has no optical impact on the system. Therefore, the retardation and rotation can be optimized to change the state of polarization, so that the intensity and color produced by the patterned light gap region and grid region of the retarder 5 are approximately the same. Figure 18 shows a front parallax grid display with a switchable retarder 25, -18-86294 594263 where the slow axis is 17 · 5 in 3D mode (shown in the lower left of Figure 18). With 45 in 2D mode (shown in the lower right of Fig. 8). Switch between. This switchable retarder can be implemented as an in-plane switching liquid crystal device, such as ferroelectric liquid crystal FLC, such as Clark NA and Lagarwell ST in 1980 Appl. Phys. Lett ·, Mentioned in 36, 899), anti-ferroelectric liquid crystal (_ 丨 ferr〇eiecti ^ c crystal AFLC), or dual% twisted nematic (bistable twisted nematic BTN) device (such as DW Berreman) And WR Heffner (mentioned in J. Appl. PhyS., 52 3032 in 1981) (for example, Chandani et al. In Jpn. J Appl. Phys., 28, L1261 in 1989) Mentioned by). The polarizers 4 and 7 and the patterned retarder 5 are configured as shown in FIG. Fig. 19 shows a display similar to the type shown in Fig. 8, but in which the switching between the shutters is performed mechanically. Fig. 20 shows that the switching between the two-dimensional mode and the three-dimensional mode is performed by rotating the device 32 including a non-birefringent substrate 33, a polarized light frame 7, and a retardation state 25. Specifically, the device was rotated 32% by 180% on the vertical axis. To reverse the order of individual components in the optical path. The retarder 5 is formed on one side of the non-birefringent substrate 34. One-dimensional group complaints are shown on the left side of Figure 20 and three-dimensional configurations are shown on the right side. In the one-dimensional type, the polarizer 7 is arranged between the patterned retarder 5 and the uniform delay -25 so that the uniform retarder has little effect and the viewer hardly sees it. When the device 32 is rotated 180 ° around the vertical axis as shown by the arrow 35 to switch to the three-dimensional mode, the retarder 25 is arranged between the patterned retarder 5 and the partial wire 7 to form a parallax grid. 86294 -19-FIG. 21 shows a device different from that shown in FIG. 20 in that an output polarizer 7 and a uniform retarder 25 are formed on the same side of the substrate 33. The configuration of such a device provides better protection to the retarder 25 and reduces the need for a "hard coating film" on both sides of the substrate with a protective coating film. An anti-reflective coating film can be provided as needed and preferably is approximately non-birefringent 22 and 23 show another device that can be mechanically reversed, in which the three-dimensional and one-dimensional modes are similar to the electrically switchable display of Fig. 14. Therefore, Figs. 22 and 23 The π display can be regarded as the mechanical analogue of the display of Fig. 14, in which the switching liquid crystal retarder is replaced by, for example, a fixed sheet retarder. Fig. 24 shows a rather simple "mechanical" implementation, which implements The method does not require any delay. In the two-dimensional mode, the slow axis of area 8 is oriented 100. Direction, the slow axis of area 9 is oriented 45. The transmission axis 55 of the polarizer is oriented 55. direction. In order to switch to the three-dimensional mode, the transmission axis is required to be straight in the direction shown in FIG. 24. This can be done, for example, by rotating the polarizer 4. Other electrical switching implementations also have mechanical analogs that can be easily understood by those skilled in the art. In the case of switching torsional nematics, a torsional fixed structure can be used. For example, this structure can be added to the liquid crystal polymer or reactive meso material to produce the desired spiral shape by adding a palmitic dopant. Constructors use aggregations again. Compared with the above-mentioned liquid crystal mode, it is also possible to adopt a type of oui 〇f Plane switching 〇ps. ◦The type can be homogeneous or non-self-aligned, or hybrid aligned (HAN). By using vertical J and negative dielectric anisotropic liquid crystal materials, it is possible to obtain any uniformly aligned positive dielectric 86294 -20- 594263 装置 nematic liquid crystal device (to a good degree of proximity). Therefore, by changing from one arrangement to another, the unpowered state of the display can be changed between one-dimensional mode and two-dimensional mode. The HAN liquid crystal device can be used instead of the uniformly arranged nematic liquid crystal device by simply making the thickness twice as large (assuming that the twist is 0) and changing the arrangement from uniform to vertical. You can also use the Zenithal Bistable Nematic ZBN mode, which has the advantages of true bistable complaints and very low power consumption, because you only need to switch from one state to another. In one state, the LCD has the HAN configuration, and in the other state, it has the vertical LCD configuration. All the optical devices described above can be used as a front or back parallax barrier. Moreover, as mentioned above, different areas of the display can be operated in both 2D and 3D modes simultaneously. For example, Fig. 25 shows that the electrode pattern 55 and% are on a substrate of an example of switching LCD 25 so that different regions can operate in different modes at the same time. Figure 26 also shows the appearance of the display, with the upper and lower regions operating in two-dimensional mode to display text, and the middle region operating in three-dimensional mode to display images. In such devices, it is desirable to match the power of different areas-for example, by adjusting the grayscale range used in the software. Throughout the description of the invention, positive values of the angle may be clockwise or counterclockwise, while negative values indicate angles in the opposite direction. Moreover, the angles of all the polarization directions and the slow axis of the retarder are in the range of, m0dul0 180. ,, No. Therefore, each angle θ is equivalent to each angle (θ + η · 180). , Where n is any integer. However, in the case of some devices, because of the inherent characteristics of its structure, the value of Θ is better than (Θ + 180.), because it can have better performance. 86294 -21-594263 So it is possible to provide-a kind of suitable for display use also has-飧 p ^ Mendayouzi device. For example, when the automatic seeding device in the one-dimensional rough cropping mode of the elder brother may continue to be in a state of abnormality, this occurs in the three-dimensional mode. The degree of bright-amplification is increased. Although it will be-again, low in cattle, but the perceived reduction in brightness is much less than that of two bright households with a double connection. The improvement i ^ liter ㈣ can achieve the improvement of the overall performance of this device. In addition, the improvement of the performance of three-dimensional measures is not significant, because the light cut off in the dagger :: area has not changed significantly compared with known devices. For those skilled in the art, ^, ^ j α knows that there are many other U and can be easily modified without departing from the fan Tianshou and spirit of the present invention. Therefore, the description stated in this article is not intended to limit the scope of the attached patent application. The scope of patent application for the invention should be interpreted in a broad sense. [Brief description of the drawings] The present invention is further described above by way of example with reference to the accompanying drawings. In the drawings: FIG. 1 is a cross-sectional view of a known type of display in 3D and 2D operation modes; FIG. 2 is Fig. 1 is a cross-sectional view of a display illustrating a three-dimensional operation mode. Fig. 3 shows a conventional three-dimensional and two-dimensional operation mode of a display. The apparent pattern delay is the polarities of the light gap area and the grid area. The phase is vertical; Figure 4 is a diagram showing a display constituting the first embodiment of the present invention, and the polarized polarization of the light gap region and the grid region of the display retarder are not perpendicular; Figure 5 is a through Diagram of the transmission of a linear polarizer with respect to the angle between the polarization of the incident light and the transmission axis of the polarizer; -22- 86294 594263 Figure 6 illustrates the optical device forming part of the display of the second embodiment of the present invention Fig. 7 illustrates the three-dimensional and two-dimensional modes of the optical device and display of Fig. 6; Fig. 8 illustrates the three-dimensional and two-dimensional modes of the optical device and display of Fig. 6; Illustrated composition A cross-sectional view of an optical device that is part of a display of a third embodiment of the invention; FIG. 10 is a cross-sectional view showing different physical configurations of the display of FIG. 9; FIG. 11 is a cross-sectional view showing different physical configurations of the display of FIG. Sectional view; FIG. 12 is a cross-sectional view showing different physical configurations of the display of FIG. 9; FIG. 13 illustrates the optical device and the display constituting the fourth embodiment of the present invention; FIG. 14 illustrates the construction of the present invention; Optical device and display of the fifth embodiment; FIG. 15 illustrates the optical device and display of the sixth embodiment of the present invention; FIG. 16 illustrates the optical device and display of the seventh embodiment of the present invention; Figure 17 illustrates the optical device and display constituting the eighth embodiment of the present invention; Figure 18 illustrates the optical device and display constituting the ninth embodiment of the present invention; Figure 19 illustrates the configuration of the present invention The optical device of the tenth embodiment of the invention and the 86294 -23-594263 display; FIG. 20 is a cross-sectional view of the optical device and the display shown in FIG. 19; FIG. 21 is an optical device shown in FIG. A cross-sectional view of the device and the display; FIG. 22 is a cross-sectional view of the optical device and the display constituting the eleventh embodiment of the present invention; FIG. 23 is a view illustrating the device and the display of FIG. 22; FIG. 24 It is a diagram illustrating an optical device and a display constituting a twelfth implementation method of the present invention; and FIG. 25 shows an electrode pattern for switching a liquid crystal device and an appearance example of a display including such a liquid crystal device. Similar numbers in the drawings indicate similar constituent elements. [Illustration of representative symbols of the figure] 1 Backlight 2 Liquid crystal device 3 Rear polarizer 4 Front polarizer 5, 25 retarder 6 Substrate 7 Output polarizer 8, 9 Zone 10, 11, 11 Transmission axis 15 Liquid crystal retarder 16, 17 ^ 20 Slow axis 18, 21 Light gap polarization direction 19, 22 Grid polarization direction 86294 -24- 33, > 34 Non-birefringent substrate 35 Rotation direction 40, .41, 42, 43, 44 Glass substrate 50 , * 51 arrangement direction 55, '56 electrode pattern 594263 86294 -25-