TW200403499A - Optical device and display - Google Patents

Optical device and display Download PDF

Info

Publication number
TW200403499A
TW200403499A TW092117300A TW92117300A TW200403499A TW 200403499 A TW200403499 A TW 200403499A TW 092117300 A TW092117300 A TW 092117300A TW 92117300 A TW92117300 A TW 92117300A TW 200403499 A TW200403499 A TW 200403499A
Authority
TW
Taiwan
Prior art keywords
light
regions
polarizer
polarization
group
Prior art date
Application number
TW092117300A
Other languages
Chinese (zh)
Other versions
TW594263B (en
Inventor
Adrian Marc Simon Jacobs
Martin David Tillin
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Publication of TW200403499A publication Critical patent/TW200403499A/en
Application granted granted Critical
Publication of TW594263B publication Critical patent/TW594263B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • H04N13/359Switching between monoscopic and stereoscopic modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/361Reproducing mixed stereoscopic images; Reproducing mixed monoscopic and stereoscopic images, e.g. a stereoscopic image overlay window on a monoscopic image background

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

An optical device comprises an input polariser 4, a patterned retarder 5 and an output polariser 12. The retarder 5 has regions 8 and 9, at least one of which alters the polarisation of light from the input polariser 4. The regions supply light of different non-orthogonal polarisations 18, 19. The output polariser 7 has a transmission axis 12 such that light passing through the regions 8 and 9 of the retarder 5 and through the output polariser 7 is matched in amplitude, phase and polarisation. Such a device may be used as a switchable parallax barrier with an LCD 2 to provide a display which is switchable between an autostereoscopic 3D mode and a 2D mode.

Description

200403499 玖、發明說明: 【技術領域】 本發明係關於一種光學裝置,該種光學裝置譬如可被使 用在把夠以一維(2D)模式與自動立體三維(aut〇stere〇sc〇pic 3D)模式操作之顯示器内。本發明也關於包含此種光學裝置 的顯示器。 【先前技術】 EP 0 829 744提及一種可在二維和三維模式下操作的顯 不备。附圖中的圖1顯示在二維與三維模式下的此種顯示器 之一種範例的基本結構。在三維模式下,該顯示器包括一 緊湊的延伸背光1,該背光配置在實施成液晶裝置(Uquid crystal device LCD) 2的空間光線調變器(―制Hght modulator SLM)之後。液晶裝置2有一後方偏光器3和一前 方偏光器4。在三維模式下,該顯示器為前方視差格柵型, 其中忒視差格柵由形成在基板6上圖樣化之延遲器5與偏光 器7形成。 在也顯示於圖i之二維模式下,偏光器7被移除以使該視 差格栅的功能失效。 附圖中的圖2顯示在三維模式下的操作。延遲器5包括諸 如8的區域與諸如9的區域,區域8將穿過該區域的光線偏極 方向旋轉90度,區域9不改變穿過該區域的光線偏極方向。 區域8對應於視差格柵的光隙而區域9則對應於光隙間的不 透明格柵部份。 在圖2中,圖式平面内的偏極方向以雙箭頭表示而與圖式 -6 - 86294 200403499 平面垂直的偏極方向則以實心圓表示。來自背光1未被偏極 化的光線射入輸入偏光器3,輸入偏光器3幾乎阻擋所有與 圖式平面垂直的偏極化分量且有一透射軸10,該透射轴讓 圖式平面内的偏極化分量通過。液晶裝置2的型式被控制以 改變穿過該裝置的偏極化方向使90度旋轉,相當於最大亮 度。輸出偏光器4的透射軸11正交於輸入偏光器3的透射軸 1 〇 ’以使輸出偏光器4僅透射被偏極化成與圖式平面垂直的 光線。 通過區域9來自輸出偏光器4的光線之偏極化未被改變。 偏光器7的透射軸12與偏光器4之透射軸11正交,以使穿過 區域9的光線幾乎完全被阻擋且區域9看來黑暗或不透明。 牙過區域8的光線之偏極化方向被旋轉9〇度而平行於偏光 态7的透射軸12。因此偏光器7透射此光線以使圖樣化的延 遲斋5與偏光器7的組合被當作視差格栅。在顯示器的二維 模式下,偏光器7被移動到從顯示器到觀看者的光線路徑以 外或移除。因此該格栅結構不再可見,且來自區域8和區域 9的光線都透射到觀看者。 EP 〇 833 183, EP 0 887 692 與 EP 0 887 066進一步提出 另一種具有自動立體模式的顯示器範例,其中一圖樣化之 延遲器與一偏光器配合運作以當作視差格柵。這些文件中 提及的某些裝置也有二維模式,纟中該格柵在二維模式下 被以某種方錢失效。所有此類已知顯示器被設計成使三 維表現最佳化特収藉著使三料音最小化,⑽音相關 於透射過光隙區域的光線與圖樣化之延遲器的格栅區域的 86294 200403499 光線間的比率。這種顯示器的一種範例顯示於附圖中的圖3 中’该圖以圖式顯示一種顯示器範例以說明包含於其内的 二維模式。 圖3之顯示器與圖2之顯示器不同處在於有一額外的液晶 延遲器15配置在圖樣化之延遲器5與分析偏光器7之間。圖3 中,偏光器透射軸以帶有實心箭頭的實線表示,延遲器之 fe軸以帶有2心箭頭的實線表示,且光線偏極化以帶有實 心前頭的虛線表示。 在二維模式下,偏光器3的透射軸ίο朝向〇。方向-亦即垂 直。延遲器5的光隙區域之慢軸16朝向-22 5。方向,而格栅 區域的k軸17則朝向22.5。方向。所以來自光隙區域之光線 的偏極化方向18被旋轉到-45。方向,而來自格柵區域之光 線的偏極化方向19則被旋轉到45。方向。故偏極化方向丨8與 19彼此正交。延遲器15之慢軸2〇朝向-67·5。方向,以使來自 光隊區域和格柵區域的光線之偏極化方向分別被旋轉成如 21與22處所示般。分析偏光器7之透射軸12被旋轉到9〇。以 使來自光隙區域之光線的幾乎1 〇〇%都透射過,而來自格柵 區域之光線的幾乎〇%透射過(實際上,稍低於1 〇〇%的光線 從光隙區域透射過而光線也不是完全從格栅區域被阻擔, 但其差異不影響本說明的討論)。所以在三維模式下穿過格 概之光線的幾彳可平均數為5〇%。 在二維模式下,延遲器15被使失效且對通過顯示器之光 線的偏極化沒有影響。偏極化1 8與19相對於偏光器7之透射 轴12呈+45。與-45。,以使光線之透射侷限於理論上最大 86294 200403499 5〇%。但是衰減對前方視差格柵反射型或半透射半反射型 顯:态而言甚至更大。在此情況下,在二維模式下,光線 +過使失政”的視差格柵結構兩次而使反射模式下的最大 光線輸出為25%。此種相當低劣的光線輸出甚為不利_特別 是在諸如行動電話與個人數位助理器等小型或以電池供電 的裝置之h況下為然。譬如,在透射模式下,光線的損失 僅能靠提高背光輸出來補償,但這卻需要較大的電池或減 少電池使用壽命。 【發明内容】 根據本發明的第一種相態,本發明提出一種光學裝置, 孩光學裝置包括一輸入偏光器與一偏極化修改元件,該輸 入偏光器用來傳遞具有第一偏極化方向的光線,該偏極化 修改7L件從該輸入偏光器接收具有第一偏極化方向的光 線’該偏極化修改元件至少包括第一與第二組區域,該第 一組區域(或第一組的各區域)把來自輸入偏光器之光線的 偏極化改變成與第一偏極化方向不同之第二偏極化方向, 其特點在於第二組區域(或第二組的各區域)供應與第二偏 極化方向不同且不與第二偏極化方向垂直之第三偏極化方 向的光線。 該裝置可包括一輸出偏光器以分析來自該偏極化修改元 件之光線。 輸出偏光為與偏極化改變元件配合以使來自輸入偏光器 之光線在穿過第一組區域之各區域和輸出偏光器的第一光 線路徑上之衰減率大致相同於穿過第二組區域和輸出偏光 86294 200403499 器的第二光線路徑上之衰減率。 輸出偏光器與偏極化改變元件配合以使來自豸入偏光器 之光線在牙過第-組區域之各區域和冑出偏光器的第一光 線路徑上之相位改變大致相同於穿過第二組區域和輸出偏 光咨的第一光線路徑上之相位改變。 第一組區域與第二組區域可交錯配置且可分別包括第一 與第二平行長條。第一長條可有第一寬度且第二長條可有 比第一長條為寬的第二寬度。 第三偏極化方向可與第一偏極化方向相同。 邊裝置可有替代操作模式,在該模式下,輸出偏光器被 配置以傳冑來自第一、組區域與第1組區4中一組區域的光 線,並衰減來自第一組區域與第二組區域中另一組區域的 光、、泉汶第組區域與第二組區域中的一組區域可為該第 一組區域。輸出偏光器可被配置以在該替代模式下大致阻 擋來自第一組區域與第二組區域中另一組區域的光線。 偏極化改變元件可包括一圖樣化的延遲器。輸出偏光器 可被配置以對來自第一與第二組區域之光線的慢軸和快軸 分量透射相同的比率。輸出偏光器可被配置以僅透射來自 第一與第二組區域之光線的慢軸成分。 輸出偏光器可傳送偏極化方向正交於第一偏極化方向之 光線。 延遲器可包括光致聚合化聚合體。延遲器可在可見光頻 率下提供半波延遲。第二組(各)區域的慢軸可被定向與第一 組(各)區域的慢軸成55。的的方向。 -10- 86294 200403499 向與第一偏極化方向成 可定向與第一偏極化方向 弟一組(各)區域之慢轴可定 2 7 · 5 ,且第一組(各)區域之慢軸 成-27.5。〇 2 一組⑷區域之慢軸可定向與第一偏極化方向成55。, 且第二組(各)區域之慢軸可平行於第一偏極化方向。 孩裝置可進-步在輸人與輸出偏光器相同側之間包括另 -個偏極化修改元件當作偏極化修改元件。該另—個元件 可為另-個延遲器。該另—個延遲器可在可見光頻率下提 供半波延遲。該另一個延遲器可為液晶裝置。 孩另-個延遲器可包括至少_個區域,該區域之慢轴可 在大致平行於光線透過該延遲器傳播之方向的第一方向與 士致垂直於第一方向的第二方向之間切換。該另一個延遲 斋可為傅立德瑞克斯(Freedericksz)單元。 該第二方向可用在替代模式下且定向與第一偏極化方向 成 62.5°。 該另-個延遲器可包括至少—個區域,該區域之慢轴可 在大致垂直於光線穿過該另一個延遲器傳播之方向的第三 與第四方向之間切換。該第三方向可垂直於第一偏極化方 向,且該第四方向可用在替代模式下且可定向與第一偏極 化方向成62.5。。 該另一個元件可包括一偏極化旋轉器。該旋轉器可包括 至少一個提供55。偏極化旋轉之區域。該旋轉器可包括扭轉 向列液晶裝置。 該液晶裝置可在較接近輸入偏光器之液晶表面處有一平 -11 - 86294 200403499 行於第一偏極化方向之排列方向,且在較遠離輸入偏光器 之液晶表面處有一定向與第一偏極化方向成5 5。的排列方 向0 該液晶裝置可在較接近輸入偏光器之液晶表面處有一定 向與第一偏極化方向成_17.5。之排列方向,且在較遠離輸入 偏光器之液晶表面處有一定向與第一偏極化方向成72 5。的 排列方向。 該液晶裝置可在較接近輸入偏光器之液晶表面處有一定 向與第一偏極化方向成5。之排列方向,且在較遠離輸入偏 光器之液晶表面處有一定向與第一偏極化方向成%。的排 列方向。 該偏極化旋轉器可在替代模式下使失效。 ’本發明提供一種顯示器 種相態的裝置。 根據本發明的第二種相態 顯示器包括根據本發明第一 薇顯tf器可包括一諸如液晶 調變器。 該 空間光線調變器之空間光線 ^顯Γ器自動立體模式。該裝置在替代模式下可 形成一則万或背後视差格柵。 精於本技術領域者在閱讀 ± 貝卫'Γ解下又的詳細描述並參考 附圖後,即可清楚知道本發明的這考 【實旌方式】 -和其他優點 下文將參考圖式描述本發明的實施法。 圖4以圖示說明構成本 立體操作 榷3她法的具有三維自動 知作梃式和二維操作模式的三雒“、 、’隹自動體顯示器。圖4 86294 -12- 200403499 之顯示器與圖3中所示比較範例顯示器的不同點在於圖樣 化之延遲器的光隙區域之慢軸16朝向-27·5。方向,且延遲器 的格柵區域之慢軸17朝向27.5。方向。所以分別來自光隙區 域和格栅區域之光線的偏極化方向1 8和19不相垂直且其方 向相對於偏光器3之透射軸10成-與+55。。而且,液晶(lc) 延遲器15之慢軸20朝向-62.5。方向。所以來自格柵區域的光 線被旋轉而具有朝向〇。之方向的偏極化方向22且從而垂直 於分析偏光器7的透射軸12。所以光線大體上被消除以致大 體上有0%的光線透射穿過格柵區域。 來自光隙區域的光線之偏極化方向1 8被延遲器1 5旋轉以 具有朝向-70。的方向之偏極化方向21。所以偏極化方向21 朝向相對於偏光器7的透射軸12成20。方向,以致穿過光隙 區域的光線有88%透射過。所以在三維模式下的光線透射 以幾何平均44%表示且比圖3中所示範例者少6〇/〇。 在二維模式下,偏極化方向18與19朝向相對於偏光器7 之透射軸的角度大小為35。的方向。所以,穿過光隙區域和 格柵區域的光線有67%透射過,且這表示相對於圖3中所示 範例有17°/。的改善。 當光線以入射光線的偏極化方向與偏光器透射軸之間成 Θ角度透過諸如分析偏光器7之線性偏光器透射時,透射率 正比於cos2 (θ)且此關係顯示於圖5中。圖3與4中的角度㊀值 是在圖5中所示曲線的一部分上而有相當大的斜率或梯 度’而圖4中三維模式的㊀值是在圖5之曲線的一部分上而有 遠較低的梯度。所以,角度的微小變化會造成二維模式下 -13 - 86294 200403499 亮度相當大的改善盥二維媸斗τ、 /、一、,隹挺式下壳度相當小的減少。 圖6顯示構成本發明一種會 -、她法並形成自動立體顧示 一部分的光學裝置,哕氺興壯密 把J不备 以予裝置也構成本發明的一種實施 法且有自動立體三維操作握 & ρ ^ ^ —、 译知作梃式和二維操作模式。三維操作 模式—料;圖7中’二維操作模式顯示於圖8中。在二維模 式下’圖6之裝置和顯示器與圖4所示的裝置和顯示器不同 點在於偏光器4之透射軸丨丨定向與垂直線成·45。。因為液晶 裝置一般的配置是使其輸出偏光器的透射軸"相對於此種 裝置所顯示之影像的影像法線成_45。,這是圖7與後續圖式 中所示的方向。所以,圖式中所有角度都以法線為基準, 而且圖式顧示偏光器4之透射方向u定向_45。。故區域8之慢 轴定向-17.5°而區域9之慢軸則定向_72.5。。輸出偏光器7的 透射軸12定向45°。 延遲器25以可電氣切換半波延遲器的形式提供以在二維 和三維操作模式間切換。延遲器25可在兩種狀態之間切 換,延遲器在其中一種狀態下當作慢軸朝向17 5。的半波延 遲器(如圖7中所示三維自動立體模式下);延遲器在另一種 狀態下提供幾乎為零的延遲(如圖8中所示二維模式下)。譬 如,在二維模式下,慢軸可被切換成垂直於延遲器25的平 面且大致平行於透過該裝置與顯示器的光線路徑。可切換 延遲器25可實施成諸如具有反平行排列的傅利得瑞克斯組 態向列液晶裝置之液晶裝置。此種裝置在Liquid Crystals 2002 年第 29 卷第 1號中江如施(Jianru Shi)的 ’’Criteria for the first order Freedericksz transistor’’ 内提及。在此種裝置内, -14- 848 86294 2〇〇4〇3499 當電壓施加給液晶層的兩側時,液晶導向器-以及相關的慢 光學軸-位在大致垂直於該裝置的平面以對在垂直方向穿 過該裝置的光線呈現均勻的折射率,且從而沒有雙折射發 生。 該液晶裝置可被組態以在兩種狀態下都是均勻的,在該 情況下整個顯示器可以一個單元在二維與三維模式之間切 換。或者,也可在液晶裝置内提供畫有適當圖樣的電極以 使顯示器的不同區域可彼此獨立地為二維或三維操作而被 組態。 在三維模式下,延遲器5與25可有大致匹配的散佈。所 以,正父偏光為4與7的呈現連同匹配散佈的延遲器造成整 個可見光譜中穿過區域9之光線良好的消除,從而造成三維 模式下良好的串音表現。延遲器5與25的匹配散佈造成透過 光隙區域8之亮度更具消色差性的表現。 圖9顯示一種背後視差格柵顯示器,其中背後視差格柵是 由與圖7和8中所示相同類型的光學裝置形成的。但是在圖9 中所示裝置中,液晶裝置的背後偏光器變成光學裝置的輸 出偏光器7且輸入偏光器4與液晶裝置不同。而且,切換液 晶延遲器25依光線透射穿過該裝置的方向來看配置在圖樣 化之延遲器5的前面。這讓三維模式下實際界定背後視差格 柵疋圖樣化的延遲器5如圖1 〇中所示般較接近顯示液晶裝 置2 ’以減少格柵和顯示器像素間的距離。減少此距離使從 頭示器前方觀看的最佳距離得以縮短,譬如可在諸如行動 電話與個人數位助理器等手持裝置内觀看顯示器。 86294 -15- 200403499 背後視差格柵型顯示器更適合使用於同時具有透射與反 射掭作杈式的半透射半反射顯示器。藉將視差格栅配置在 顯示液晶裝置2的後面,在反射模式下光線通過前方視差格 柵兩次所造成的衰減得以大幅免除且這可獲得較亮的反射-模式。 : 如圖10中所示,切換液晶裝置25、圖樣化的延遲器和顯 · 示液晶裝置2被做成獨立的裝置,該等裝置在往後被放在一 起以形成完整的顯示器。所以,切換液晶裝置25有玻璃基 板40和41、圖樣化的延遲器5形成在玻璃基板微、且顯示. 液晶裝置2有玻璃基板43和44。 如圖11中所示,可藉將圖樣化之延遲器形成在切換液晶 裝置25的基板41上而省略基板42。因此可提供厚度較薄的 頭不器且在需要相當薄的裝置内具有應用優勢。 圖12顯示藉免除基板41並在切換液晶裝置25與顯示液晶 裝置2之間分旱基板44而進一步減少厚度。在此情況下,延 遲器5與偏光器7被實際形成為液晶裝置25内的内部構成元 書 件。這些構成元件-且特別是偏光器7_的種類必須是能夠耐 得住後續溫度與化學處理程序以形成裝置25之透明電極與 排列層的。EP 0 887 692和鮑伯羅夫(Bobrov)等人在Pr〇c. SID 2000 中的 ’’Lyotropic thin film polarisers’’ 中提及適合此 種内部應周的範例。 圖13顯示一種與圖9所示者不同的背後視差格柵裝置,其 不同點在於區域8與9的慢軸方向朝向1 〇。與-4 5。、液晶延遲 器25的慢軸在三維模式下朝向72 5。、且偏光器4的透射軸i i 86294 -16- 200403499 朝向55。。此種組態提供一種在圖13中所示二維模式下更具 有消色差性的輸出,且因此減少色彩再生的錯誤。 圖14顯示另一種背後視差格柵型顯示器的二維模式,其 中一維模式發生在液晶延遲器25關閉的情況下。當預期二 維模式是主要用途且功率消耗甚為重要-譬如在以電池供 電的裝置中-時,此種裝置可能是較佳的。 在圖14的顯示器中,區域8和9的軸分別朝向1〇〇。和45。。 在液晶延遲器25被關閉的二維模式下,延遲器的慢軸朝向 17.5 。偏光器4之透射軸丨丨正交於偏光器7之透射方向丨二且 朝向45。。當液晶延遲器25被啟動時,延遲大致被消除且顯 示功能處於自動立體三維模式下。 圖15顯示另一種背後視差格柵顯示器,其中液晶延遲器 25被當作偏光旋轉器以對來自偏光器4之光線產生μ。的偏 極化方向旋轉。延遲益25是扭轉向列裝置,該裝置在分別 較接近偏光器4和延遲器5的扭轉向列液晶層表面處的排列 方向50和51之間有—相對角度。排列方⑽被顯示為平行 於透射軸11且在排列方向50和51之間有55。的扭轉。但是液 晶裝置25可相對於透射軸丨丨旋制任何肖度且對通過其的 光線之偏極化方向產生5 5。的旋轉。 在二維模式下,裝置25提供55。的偏極化方向旋轉。對自 動互體三維模式操作而言,f壓施加到扭轉向列液晶層的 兩側以使液晶導向器垂直於該裝置平面方向排列且不提供 偏極化方向旋轉。 圖16中所示顯示器與圖15中所示顯示器不同點在於裝置 86294 -17- 200403499 25的扭轉是90。。此種裝置可”自我補償’,且可在較低電壓下 操作。藉適當選擇角度和延遲可用此裝置達成55。的旋轉。 本發明者在與本專利申請案同曰提出之名為” p〇larisati〇n200403499 发明 Description of the invention: [Technical Field] The present invention relates to an optical device, which can be used, for example, in one-dimensional (2D) mode and auto-stereoscopic three-dimensional (autostereoscopic 3D). In mode display. The invention also relates to a display comprising such an optical device. [Prior Art] EP 0 829 744 mentions a display that can be operated in two and three dimensional modes. Figure 1 of the accompanying drawings shows the basic structure of an example of such a display in two-dimensional and three-dimensional modes. In the three-dimensional mode, the display includes a compact extended backlight 1 that is configured after a spatial light modulator ("Hght modulator SLM") implemented as a liquid crystal device LCD 2. The liquid crystal device 2 has a rear polarizer 3 and a front polarizer 4. In the three-dimensional mode, the display is a front parallax grid type, in which the parallax grid is formed by a retarder 5 and a polarizer 7 which are patterned on a substrate 6. In the two-dimensional mode also shown in Fig. I, the polarizer 7 is removed to disable the function of the parallax barrier. Figure 2 of the accompanying drawings shows operation in three-dimensional mode. The retarder 5 includes a region such as 8 and a region such as 9. The region 8 rotates the polarizing direction of the light passing through the region by 90 degrees, and the region 9 does not change the polarizing direction of the light passing through the region. Region 8 corresponds to the light gap of the parallax grid and region 9 corresponds to the opaque grid portion between the light gaps. In Fig. 2, the direction of polar deflection in the plane of the drawing is indicated by a double arrow, and the direction of polar deflection perpendicular to the plane of Figure -6-86294 200403499 is indicated by a solid circle. The unpolarized light from the backlight 1 enters the input polarizer 3, and the input polarizer 3 blocks almost all polarization components perpendicular to the pattern plane and has a transmission axis 10, which transmits the polarization in the pattern plane. The polarization component passes. The type of the liquid crystal device 2 is controlled to change the polarization direction passing through the device and rotate 90 degrees, which is equivalent to the maximum brightness. The transmission axis 11 of the output polarizer 4 is orthogonal to the transmission axis 10 'of the input polarizer 3 so that the output polarizer 4 transmits only light polarized to be polarized perpendicular to the plane of the drawing. The polarization of the light passing through the region 9 from the output polarizer 4 is not changed. The transmission axis 12 of the polarizer 7 is orthogonal to the transmission axis 11 of the polarizer 4, so that light passing through the area 9 is almost completely blocked and the area 9 appears dark or opaque. The polarization direction of the light passing through the tooth region 8 is rotated 90 degrees and parallel to the transmission axis 12 of the polarization state 7. Therefore, the polarizer 7 transmits the light so that the patterned delay 5 and the combination of the polarizer 7 are used as a parallax barrier. In the two-dimensional mode of the display, the polarizer 7 is moved out of or removed from the light path from the display to the viewer. The grid structure is therefore no longer visible, and light from areas 8 and 9 is transmitted to the viewer. EP 〇 833 183, EP 0 887 692 and EP 0 887 066 further propose another example of a display with an auto-stereoscopic mode, in which a patterned retarder and a polarizer work together as a parallax barrier. Some of the devices mentioned in these documents also have a two-dimensional mode, in which the grille is invalidated at some cost in the two-dimensional mode. All such known displays are designed to optimize three-dimensional performance. By minimizing the three-tone sound, the chirp is related to the light transmitted through the light gap area and the grid area of the patterned retarder 86294 200403499 Ratio between rays. An example of such a display is shown in FIG. 3 of the accompanying drawings. The figure schematically shows an example of a display to illustrate the two-dimensional mode included therein. The display of FIG. 3 is different from the display of FIG. 2 in that an additional liquid crystal retarder 15 is disposed between the patterned retarder 5 and the analysis polarizer 7. In Figure 3, the polarizer transmission axis is indicated by a solid line with a solid arrow, the fe axis of the retarder is indicated by a solid line with a 2-center arrow, and the polarization of the light is indicated by a dashed line with a solid front. In the two-dimensional mode, the transmission axis οo of the polarizer 3 faces 〇. Direction-that is, vertical. The slow axis 16 of the light gap region of the retarder 5 faces -22 5. Direction, and the k-axis 17 of the grid area faces 22.5. direction. Therefore, the polarization direction 18 of the light from the light gap region is rotated to -45. Direction, and the polarization direction 19 of the light from the grid area is rotated to 45. direction. Therefore, the polarization directions 8 and 19 are orthogonal to each other. The slow axis 20 of the retarder 15 faces -67 · 5. Direction so that the polarization directions of the light from the light field area and the grid area are rotated as shown at 21 and 22, respectively. The transmission axis 12 of the analysis polarizer 7 is rotated to 90. So that almost 100% of the light from the light gap area is transmitted, and almost 0% of the light from the grid area is transmitted (in fact, slightly less than 100% of light is transmitted from the light gap area And the light is not completely obstructed from the grid area, but the difference does not affect the discussion of this note). So the average number of rays of light passing through the grid in 3D mode can be 50%. In the two-dimensional mode, the retarder 15 is disabled and has no effect on the polarization of the light passing through the display. The polarizations 18 and 19 are +45 with respect to the transmission axis 12 of the polarizer 7. With -45. So that the transmission of light is limited to a theoretical maximum of 86294 200403499 50%. However, the attenuation is significantly higher for the front parallax grille reflective or transflective type: even larger. In this case, in the two-dimensional mode, the light + excessive disparity "parallax grid structure is twice, so that the maximum light output in the reflection mode is 25%. This rather poor light output is very unfavorable_ especially This is true for small or battery-powered devices such as mobile phones and personal digital assistants. For example, in transmission mode, the loss of light can only be compensated by increasing the backlight output, but this requires a larger Battery or reduce battery life. [Summary] According to the first phase state of the present invention, the present invention proposes an optical device. The optical device includes an input polarizer and a polarization modification element, and the input polarizer is used for transmission. Light having a first polarization direction, the polarization modification 7L piece receiving light having a first polarization direction from the input polarizer ', the polarization modification element includes at least a first and a second set of regions, the The first group of regions (or regions of the first group) changes the polarization of the light from the input polarizer to a second polarization direction that is different from the first polarization direction. The second group of regions (or each region of the second group) supplies light in a third polarization direction that is different from the second polarization direction and is not perpendicular to the second polarization direction. The device may include an output polarization The analyzer analyzes the light from the polarization modification element. The output polarization is a first light path that cooperates with the polarization change element so that the light from the input polarizer passes through each region of the first group of regions and the output polarizer. The attenuation rate is about the same as the attenuation rate on the second light path passing through the second group of regions and the output polarizer 86294 200403499. The output polarizer cooperates with the polarization changing element to make the light from the polarizer enter the teeth. The phase change on the first light path passing through the regions of the first group and the polarizer out of the polarizer is substantially the same as the phase change on the first light path passing through the second group of regions and outputting the polarized light. The second set of regions may be staggered and may include first and second parallel bars, respectively. The first bar may have a first width and the second bar may have a second width wider than the first bar. The tri-polarization direction may be the same as the first polarization direction. The side device may have an alternative operating mode in which the output polarizer is configured to transmit light from one of the first, group, and first group areas 4 The group of regions, and attenuates the light from the other group of regions in the first group and the second group, and the group of regions in the second group of regions and the second group of regions can be the first group of regions. Output The polarizer can be configured to substantially block light from the first and second groups of regions in this alternative mode. The polarization changing element can include a patterned retarder. The output polarizer can be Configured to transmit the same ratio of the slow and fast axis components of light from the first and second groups of regions. The output polarizer can be configured to transmit only the slow axis components of light from the first and second groups of regions. Output The polarizer can transmit light whose polarization direction is orthogonal to the first polarization direction. The retarder may include a photopolymerized polymer. The retarder provides half-wave delay at visible frequencies. The slow axis of the second group (s) of regions can be oriented at 55 with the slow axis of the first group (s) of regions. Direction. -10- 86294 200403499 The slow axis of a group (area) that is orientable to the first polarization direction may be set to 2 7 · 5 and the slowness of the first group (area) is slow. The shaft becomes -27.5. 〇 2 The slow axis of a group of ⑷ regions can be oriented at 55 with the first polarization direction. And, the slow axis of the second group (s) of regions may be parallel to the first polarization direction. The device may further include another polarization modification element between the input and output polarizers on the same side as the polarization modification element. The other element may be another retarder. This other retarder provides half-wave delay at visible frequencies. The other retarder may be a liquid crystal device. The retarder may include at least one region whose slow axis can be switched between a first direction substantially parallel to a direction in which light propagates through the retarder and a second direction perpendicular to the first direction . The other delay is a Freedericksz unit. The second direction can be used in the alternative mode and the orientation is 62.5 ° from the first polarization direction. The other retarder may include at least one region whose slow axis is switchable between third and fourth directions substantially perpendicular to a direction in which light propagates through the other retarder. The third direction may be perpendicular to the first polarization direction, and the fourth direction may be used in the alternative mode and may be oriented to be 62.5 with the first polarization direction. . The other element may include a polarized rotator. The rotator may include at least one supply 55. Area of polarization rotation. The rotator may include a twisted nematic liquid crystal device. The liquid crystal device can have a flat surface near the liquid crystal surface of the input polarizer.-11-86294 200403499 An alignment direction running in the first polarization direction, and a liquid crystal surface farther from the input polarizer has an orientation and a first polarization. The polarization direction is 5 5. The arrangement direction of the liquid crystal device is 0. The liquid crystal device may have a direction of _17.5 with the first polarization direction near the liquid crystal surface of the input polarizer. It is arranged in an alignment direction, and there is an orientation on the liquid crystal surface farther from the input polarizer that is oriented at 72 5 with the first polarization direction. The arrangement direction. The liquid crystal device may have a certain direction at the liquid crystal surface closer to the input polarizer to be 5 with the first polarization direction. The alignment direction is such that there is an orientation at the liquid crystal surface farther away from the input polarizer than the first polarization direction. The direction of the arrangement. The polarized rotator can be disabled in alternative mode. The present invention provides a device for displaying various phase states. The second phase display according to the present invention includes the first Wei display tf according to the present invention and may include a modulator such as a liquid crystal. The spatial light modulator of the spatial light modulator is an auto-stereoscopic mode. The device can form a 10,000 or back parallax grille in alternative mode. Those skilled in the technical field will clearly understand this test of the present invention after reading the detailed description of the ± Beiwei'Γ solution and referring to the accompanying drawings. [Actual Mode]-and other advantages Invention of the law. Figure 4 illustrates the three-dimensional automatic display with three-dimensional automatic knowledge operation mode and two-dimensional operation mode that constitutes the three-dimensional operation method. Figure 4 The display and diagram of 86294 -12- 200403499 The difference of the comparative example display shown in 3 is that the slow axis 16 of the light gap region of the patterned retarder faces -27 · 5. The slow axis 17 of the grid region of the retarder faces 27.5. So, respectively The polarization directions 18 and 19 of the light from the light gap region and the grid region are not perpendicular and their directions are relative to the transmission axis 10 of the polarizer 3-and +55. Moreover, the liquid crystal (lc) retarder 15 The slow axis 20 is in the direction of -62.5 °. So the light from the grid area is rotated to have a polarization direction 22 in the direction of 0 ° and thus perpendicular to the transmission axis 12 of the analysis polarizer 7. So the light is roughly Elimination so that substantially 0% of the light is transmitted through the grid area. The polarization direction 18 of the light from the light gap area is rotated by the retarder 15 to have a polarization direction 21 of -70 °. So the polarization direction 21 is The transmission axis of the device 7 is 12 to 20. The direction is such that 88% of the light passing through the light gap region is transmitted. Therefore, the light transmission in the three-dimensional mode is represented by a geometric average of 44% and 6 less than the example shown in FIG. 3 〇 / 〇. In the two-dimensional mode, the polarization directions 18 and 19 are oriented at an angle of 35 ° with respect to the transmission axis of the polarizer 7. Therefore, the light passing through the light gap area and the grid area has 67 % Transmitted through, and this represents an improvement of 17 ° / ° compared to the example shown in Figure 3. When light passes through the polarizing direction of the incident light and the polarizer transmission axis at an angle of Θ, such as the analysis of the polarizer 7 When a linear polarizer transmits, the transmittance is proportional to cos2 (θ) and this relationship is shown in Figure 5. The angle values in Figures 3 and 4 are on a part of the curve shown in Figure 5 and have a considerable slope or Gradient 'and the threshold value of the three-dimensional mode in Figure 4 is a part of the curve in Figure 5 with a much lower gradient. Therefore, a small change in angle will cause a considerable improvement in brightness in the two-dimensional mode -13-86294 200403499 Wash the two-dimensional bucket τ, /, one, and the straight lower shell degree Fig. 6 shows an optical device constituting a meeting of the present invention, and forms part of the auto-stereoscopic display. The strong and strong J does not provide the device also constitutes an implementation method of the present invention and has automatic Stereo three-dimensional operation grip & ρ ^ ^ —, translated works and two-dimensional operation mode. Three-dimensional operation mode-material; Figure 2 'two-dimensional operation mode is shown in Figure 8. In two-dimensional mode' Figure 6 The device and display differ from the device and display shown in FIG. 4 in that the transmission axis of the polarizer 4 is oriented at 45 ° from the vertical line. Because the liquid crystal device is generally configured to output the transmission axis of the polarizer " The image normal to the image displayed by this device is _45. This is the direction shown in Figure 7 and subsequent figures. Therefore, all angles in the figure are based on the normal line, and the figure shows the transmission direction u of the polarizer 4 oriented _45. . Therefore, the slow axis of area 8 is oriented -17.5 ° and the slow axis of area 9 is oriented _72.5. . The transmission axis 12 of the output polarizer 7 is oriented at 45 °. The retarder 25 is provided in the form of an electrically switchable half-wave retarder to switch between two-dimensional and three-dimensional operation modes. The retarder 25 can be switched between two states. In one of the states, the retarder 25 acts as a slow axis facing 17 5. The half-wave retarder (as shown in Fig. 7 in three-dimensional autostereoscopic mode); the retarder provides almost zero delay in another state (as shown in Fig. 8 in two-dimensional mode). For example, in the two-dimensional mode, the slow axis can be switched to be perpendicular to the plane of the retarder 25 and approximately parallel to the path of light passing through the device and the display. The switchable retarder 25 can be implemented as a liquid crystal device such as a Fourier Rex configuration nematic liquid crystal device having an anti-parallel arrangement. Such a device is mentioned in Liquid Crystals 2002 Vol. 29 No. 1 Jianru Shi's 'Criteria for the first order Freedericksz transistor'. In such a device, -14- 848 86294 24004499 When the voltage is applied to both sides of the liquid crystal layer, the liquid crystal director-and the associated slow optical axis-are positioned approximately perpendicular to the plane of the device to Light passing through the device in a vertical direction exhibits a uniform refractive index, and thus no birefringence occurs. The liquid crystal device can be configured to be uniform in both states, in which case the entire display can be switched between 2D and 3D modes in a single unit. Alternatively, electrodes with appropriate patterns can be provided in the liquid crystal device so that different areas of the display can be configured for two-dimensional or three-dimensional operation independently of each other. In the three-dimensional mode, the retarders 5 and 25 may have approximately matching dispersions. Therefore, the presentation of the positive-parent polarized light of 4 and 7 together with the matched diffused retarders results in a good elimination of the light passing through the region 9 in the entire visible spectrum, resulting in good crosstalk performance in 3D mode. The matched dispersion of the retarders 5 and 25 results in a more achromatic performance of the brightness transmitted through the light gap region 8. FIG. 9 shows a rear parallax barrier display in which the rear parallax barrier is formed of an optical device of the same type as that shown in FIGS. 7 and 8. However, in the device shown in Fig. 9, the rear polarizer of the liquid crystal device becomes the output polarizer 7 of the optical device and the input polarizer 4 is different from the liquid crystal device. Further, the switching liquid crystal retarder 25 is arranged in front of the patterned retarder 5 as viewed in the direction in which light is transmitted through the device. This allows the retarder 5 that actually defines the parallax grid pattern in the three-dimensional mode to be closer to the display liquid crystal device 2 ′ as shown in FIG. 10 to reduce the distance between the grid and the pixels of the display. Reducing this distance reduces the optimal distance for viewing from the front of the headset, such as viewing the display in handheld devices such as mobile phones and personal digital assistants. 86294 -15- 200403499 The rear parallax grid type display is more suitable for transflective and transflective displays with both transmissive and reflective frames. By disposing the parallax barrier behind the display liquid crystal device 2, the attenuation caused by the light passing through the parallax barrier in the front twice in the reflection mode is largely eliminated and a brighter reflection-mode can be obtained. : As shown in FIG. 10, the switching liquid crystal device 25, the patterned retarder, and the display liquid crystal device 2 are made as separate devices, and these devices are put together later to form a complete display. Therefore, the switching liquid crystal device 25 has glass substrates 40 and 41, and the patterned retarder 5 is formed on the glass substrate and displays. The liquid crystal device 2 has glass substrates 43 and 44. As shown in FIG. 11, the substrate 42 can be omitted by forming a patterned retarder on the substrate 41 of the switching liquid crystal device 25. Therefore, a thin head can be provided and has application advantages in a device requiring a relatively thin thickness. FIG. 12 shows that the substrate 41 is eliminated and the substrate 44 is divided between the switching liquid crystal device 25 and the display liquid crystal device 2 to further reduce the thickness. In this case, the retarder 5 and the polarizer 7 are actually formed as internal constituent elements in the liquid crystal device 25. The types of these constituent elements, and in particular the polarizer 7_, must be able to withstand subsequent temperature and chemical processing procedures to form the transparent electrodes and alignment layers of the device 25. EP 0 887 692 and Bobrov et al. Mentioned in Prac. SID 2000 '' Lyotropic thin film polarisers '' an example suitable for this internal response. FIG. 13 shows a rear parallax barrier device different from that shown in FIG. 9, and the difference lies in that the slow axis directions of the regions 8 and 9 are oriented to 10 °. With -4 of 5. The slow axis of the liquid crystal retarder 25 faces 72 5 in the three-dimensional mode. The transmission axis of the polarizer 4 is i i 86294 -16- 200403499 facing 55. . This configuration provides an output that is more achromatic in the two-dimensional mode shown in Fig. 13, and thus reduces errors in color reproduction. Fig. 14 shows another two-dimensional mode of the rear parallax grid type display, in which the one-dimensional mode occurs when the liquid crystal retarder 25 is turned off. Such a device may be preferred when the two-dimensional mode is expected to be the main use and power consumption is important-such as in a battery-powered device. In the display of FIG. 14, the axes of regions 8 and 9 face 100 respectively. And 45. . In the two-dimensional mode in which the liquid crystal retarder 25 is turned off, the slow axis of the retarder faces 17.5. The transmission axis of the polarizer 4 is orthogonal to the transmission direction of the polarizer 7 and faces 45. . When the liquid crystal retarder 25 is activated, the delay is substantially eliminated and the display function is in the auto-stereoscopic three-dimensional mode. FIG. 15 shows another rear parallax barrier display in which the liquid crystal retarder 25 is used as a polarizing rotator to generate μ for the light from the polarizer 4. The polarization direction is rotated. The retardation benefit 25 is a twisted nematic device having a relative angle between the alignment directions 50 and 51 which are closer to the surface of the twisted nematic liquid crystal layer of the polarizer 4 and the retarder 5, respectively. The arrangement squares are shown as being parallel to the transmission axis 11 and 55 between the arrangement directions 50 and 51. The twist. However, the liquid crystal device 25 can be rotated with any angle with respect to the transmission axis and produce a polarization direction of the light passing therethrough. Rotation. In two-dimensional mode, the device 25 provides 55. The polarization direction is rotated. For automatic three-dimensional mode operation, f pressure is applied to both sides of the twisted nematic liquid crystal layer so that the liquid crystal directors are aligned perpendicular to the plane direction of the device and do not provide rotation in the polarization direction. The display shown in FIG. 16 differs from the display shown in FIG. 15 in that the device 86294 -17- 200403499 25 has a twist of 90. . Such a device can be "self-compensated" and can be operated at lower voltages. With proper choice of angle and delay, a rotation of 55. can be achieved with this device. The inventor proposed the same name as the "p 〇larisati〇n

Rotator,Parallax Barrier,Display and Optical Modulator"的 英國同時申請中專利申請案第〇215057.1號中提及此類裝 置。 對入射到扭轉向列液晶上的線性偏極化光線而言,若正 確選擇扭轉(φ)、延遲(An.d)、與來自偏光器之輸入導向器 的方向(Θ),則可用任何裝置扭轉角度獲得任何被選擇之偏 極化方位角值的線性偏極化。對線性偏極化光線相對於入 射偏極化方向旋轉45。而言,下列公式可藉將斯托克斯 (Stokes)參數列入傳播通過扭轉向列結構的線性偏極化光 線考慮而導出: tan(0Vl + ci2 j= + cx^ ^ 一 ίΏΐΛ·φπ ~λ~~ 其中λ是入射光線的波長。 圖17頦示一與圖16中所示不同的裝置,其不同點在於角 度與延遲已經被改變以使整個可見光譜都有最佳效能。當 電壓施加給裝置25的液晶層時,該裝置對系統沒有光學影 響。所以延遲和旋轉可對需要改變偏極化的狀態做最佳 化,以使通過圖樣化之延遲器5的光隙區域與格柵區域所產 生的強度與色彩大致相同。 圖18顯示具有可切換延遲器25之前方視差格栅顯示器, 86294 -18- 200403499Such a device is mentioned in Rotator, Parallels Barrier, Display and Optical Modulator < United Kingdom Patent Application No. 0215057.1. For the linearly polarized light incident on the twisted nematic liquid crystal, any device can be used if the twist (φ), retardation (An.d), and direction (Θ) from the input guide of the polarizer are correctly selected The twist angle obtains the linear polarization of any selected polarization polarization azimuth value. The linearly polarized light is rotated 45 relative to the direction of the incident polarization. In terms of the following formula, the following formula can be derived by taking the Stokes parameter into consideration of the linearly polarized light rays propagating by twisting the nematic structure: tan (0Vl + ci2 j = + cx ^ ^ 一 ίΏΐΛ · φπ ~ λ ~~ where λ is the wavelength of the incident light. Figure 17 shows a device different from that shown in Figure 16. The difference is that the angle and delay have been changed to make the entire visible spectrum have the best performance. When voltage is applied When the liquid crystal layer of the device 25 is given, the device has no optical influence on the system. Therefore, the delay and rotation can be optimized to change the state of polarization, so that the light gap area and the grid of the retarder 5 passing through the pattern can be optimized. The area produces roughly the same intensity and color. Figure 18 shows a front parallax grid display with switchable retarder 25, 86294 -18- 200403499

其中慢軸在三維模式(顯示於圖18的左下部)下的17. 5。與二 維模式(顯示於圖18的右下部)下的45°之間切換。此種可切 換延遲器可實施成同平面切換型液晶裝置,像是鐵電液晶 (ferroelectric liquid crystal FLC,譬如克拉克(Clark N.A.) 與拉嚷威爾(Lagarwell S_T·)在 1980 年 Appl. Phys· Lett·,36, 899 中提及者)、抗鐵電液晶(anti ferroelectric liquid crystal AFLC)、或雙穩態扭轉向歹J (bistable twisted nematic BTN) 裝置(譬如柏里曼(D.W· Berreman)與赫夫納(W.R. Heffner) 在1981年J. Appl· Phys·,52 3032中提及者)(譬如強達尼 (Chandani)等人在 1989年 Jpn· J Appl· Phys·,28,L1261 中提及 者)。偏光器4與7和圖樣化之延遲器5被如圖7中所示般配 置。The slow axis is 17.5 in a three-dimensional mode (shown in the lower left part of FIG. 18). Switch between 45 ° in 2D mode (shown in the lower right of Figure 18). This switchable retarder can be implemented as an in-plane switching liquid crystal device, such as a ferroelectric liquid crystal FLC, such as Clark NA and Lagarwell S_T · in Appl. Phys · 1980 Lett ·, mentioned in 36, 899), anti ferroelectric liquid crystal (AFLC), or bistable twisted nematic BTN (such as DW · Berreman) and WR Heffner (mentioned in J. Appl. Phys., 52 3032 in 1981) (for example, Chandani et al., In Jpn. J Appl. Phys., 28, L1261 in 1989) And). The polarizers 4 and 7 and the patterned retarder 5 are configured as shown in FIG.

圖19顯示一種類似於圖8中所示類型之顯示器,但是其中 諸模式間的切換是由機械方式進行的。圖20顯示二維模式 與三維模式間的切換是藉旋轉包括一非雙折射基板33、偏 光器7、及延遲器25的裝置32來進行的。明確地說,裝置32 繞著垂直軸旋轉1 80°以反轉光學路徑内個別元件的次序。 延遲器5形成在非雙折射基板34的一側。 二維組態顯示於圖20的左側而三維組態則顯示於右侧。 在二維模式下,偏光器7配置在圖樣化之延遲器5與均勻延 遲器25之間以使均勻延遲器25幾乎沒有影響且觀看者幾乎 看不到它。當把裝置32如箭頭35所示般繞著垂直軸旋轉 1 80°以切換到三維模式時,延遲器25配置在圖樣化之延遲 器5與偏光器7之間以形成一視差格栅。 86294 -19- 200403499 圖21顯示一種與圖20中所示者不同的裝置,其不同點在 於輸出偏光器7與均勻延遲器25形成在基板33的相同侧。此 種裝置的配置提供較佳的保護給延遲器25並減少用保護性 塗膜對基板的兩側做π硬塗膜"之需要。 抗反射塗膜可依需要提供且最好大致是非雙折射者以避 免對該裝置的光學效果造成不利改變。 圖22與23顯示另一種可以機械方式反轉的裝置,其中三 維與二維模式類似於圖14之可電氣切換顯示器。所以圖22 與234顯示器可被視為圖14之顯示器的"機械類似物",其 中切換液晶延遲器被譬如固定片狀延遲器代替。 圖24顯示一種相當簡單的”機械,,實施法,該實施法不需 要任何延遲器25。在二維模式下,區域8之慢軸被定向1〇〇。 方向、區域9之慢軸被定向45。方向、且偏光器之透射軸55 被足向55方向。為了要切換到三維模式,要求透射軸11垂 直於圖24中所示的方向。譬如,這可藉旋轉偏光器4來完成。 /、他包氣切換貫施法也有機械類似物,精於本技術領域 者可輕易了解之。在切換扭轉向列裝置的情況下,可使用 #轉固疋延遲&結構。譬如,此種結構可藉將對掌性接雜 液曰日永合物或反應内消旋材料以產生所需的螺旋狀 結構,接著再做聚合來使用。 吖^ ^上又所述的液晶模式,也可能採用平面外切換(oui SWl_ng 〇ps)類型。⑽類型可為均質排列或非 句貝排列,或混合排列(hybrid aligned HAN)。藉使用垂直 排列和备今雨々 ,、I包各向井性液晶材料可獲得任何均勻排列正介 86294 -20- 200403499 電向列液晶裝ΐ的反操作(到—好的接近程度)。所以,藉著 從-種排列改變成另-種排列,顯示器的未加電源狀』可 在二維模式和三維模式之間改變。可藉簡單地使厚度大到 兩倍(假設扭轉是0。)並將排列從均勻改變成垂直而使用 ΗΑΝ液晶裝置取代均勻排列向列液晶裝置。也可使用增你 索雙穩態向列(zenithal Bistable N_tie ζβν)模式,且其 具有真實雙穩態及非常低功㈣耗的優點,因為只需要從 -種狀態切換到另-種狀態的功率。在一種狀態下,聊 LCD擁有ΗΑΝ的組能,品左s j丨此 厂且心而在另一種狀態下,則擁有垂直排 列LCD組態。 上文所述的所有光學裝置可被使錢為前方或背後視差 格柵而且’如上又所述,顯示器的不同區域可同時在二 維和三維模式下操作。譬如,圖25顯示電極圖樣55和%在 扑切換LCD 25<範例的基板上以讓不同的區域同時以不同 挺式‘作。圖26也顯示該顯示器的外觀,其上部區域和下 邵區域在二維模式下操作以顯示文字,而中間區域則在三 ㈣式下操作以顯示影像。在此種設備中,希望不同區域 勺几度此匹配-譬如藉調整軟體内使用的灰階範園。 在本發明說明的整個描述中,角度的正值可為順時針方 向或圯時針方向,而負值則表示相反方向的角纟。而且, 所有偏極化方向與延遲器慢軸的角度均以,,咖_⑽。"表 二戶ΓΓ/Θ等同於各角度(㊀…⑽卜其中― :s疋在某些裝置的情況下,因為其結構的固有特 值比(Θ + 180。)好’因為如此可有較佳的效能。 86294 -21 - 200403499 所以可能提供—瀚、衾m 使用於也有二維操作=顯示器内的光學裝置。譬如當 種裝置可能提供l 動立體三維顯示器内時,此 發生三維模式下太、不备—維模式下亮度的提昇。雖然也會 唯模竹戍-儿度的降低’但感受的亮度降低遠小於- 的改善。此外,三獲得此種裝置整體效能 過格柵區域的光線斷絕 口為牙 斟拌、人士 、口裝置比較起來未大幅改變。 修改:且可麵t領域者而言’可清楚地知道有許多種其他 神。所以本至地進行修改而不背離本發明的範轉與精 範園的陳述的描述用意並不在限制所附專利申請 【0式::、,本發明之申請專利範圍應予廣義的解釋。 【圖式間早說明】 二藉由範例參考附圖進-步描述本發明,諸附圖中: 圖疋已知類型之顯示器在 斷面圖示; 作棱式下的橫 圖2是圖1之顯示器的橫斷面圖,說明三維操作模式. 示=:示—種顯I器之傳統三維與二維操作模式圖,該顧 “取化 < 延遲态的光隙區域和格柵區域之偏極化 罝; …=是_示構成本發明第-種實施例之顯示器的圖,該顯 :^樣化之廷遲器的光隙區域和袼樹區域之偏極化不相 垂直; 圖,穿過線性偏光器之透射相對於入射光線偏極化與 偏光杏透射軸之間的角度之圓; 86294 •22- 200403499 圖6以圖示說明構成本發明第二種實施法之顯示器的一 部分之光學裝置的橫斷面圖示; 圖7以圖示說明圖6之光學裝置與顯示器的三維和二維模 式; 圖8以圖示說明圖6之光學裝置與顯示器的三維和二維模 式; 圖9以圖示說明構成本發明第三種實施法之顯示器的一 部分之光學裝置的橫斷面圖示; 圖10是顯示圖9之顯示器不同實體配置的橫斷面圖; 圖11是顯示圖9之顯示器不同實體配置的橫斷面圖; 圖12是顯示圖9之顯示器不同實體配置的橫斷面圖; 圖13以圖示說明構成本發明第四種實施法之光學裝置與 顯示器; 圖14以圖示說明構成本發明第五種實施法之光學裝置與 顯示器; 圖15以圖示說明構成本發明第六種實施法之光學裝置與 顯示器; 圖16以圖示說明構成本發明第七種實施法之光學裝置與 顯不裔, 圖17以圖示說明構成本發明第八種實施法之光學裝置與 圖1 8以圖示說明構成本發明第九種實施法之光學裝置與 顯不益, 圖19以圖示說明構成本發明第十種實施法之光學裝置與 -23 86294 200403499 顯示器; 圖20疋圖19中所示光學裝置與顯示器的橫斷面圖示; 圖21疋圖19中所示光學裝置與顯示器的橫斷面圖示; 圖22疋構成本發明第+ 一種實施法之光學裝置與顯示器 的橫斷面圖示; 圖23疋說明圖22之裝置與顯示器的圖示; 圖24疋說明構成本發明第十二種實施法之光學裝置與顯 示器的圖示;且Fig. 19 shows a display similar to that shown in Fig. 8, but in which switching between modes is performed mechanically. Fig. 20 shows that the switching between the two-dimensional mode and the three-dimensional mode is performed by rotating a device 32 including a non-birefringent substrate 33, a polarizer 7, and a retarder 25. Specifically, the device 32 is rotated 180 ° about the vertical axis to reverse the order of the individual elements in the optical path. The retarder 5 is formed on one side of the non-birefringent substrate 34. The two-dimensional configuration is shown on the left side of FIG. 20 and the three-dimensional configuration is shown on the right side. In the two-dimensional mode, the polarizer 7 is arranged between the patterned retarder 5 and the uniform retarder 25 so that the uniform retarder 25 has little influence and the viewer hardly sees it. When the device 32 is rotated 180 ° around the vertical axis as shown by arrow 35 to switch to the three-dimensional mode, the retarder 25 is arranged between the patterned retarder 5 and the polarizer 7 to form a parallax grid. 86294 -19- 200403499 Fig. 21 shows a device different from that shown in Fig. 20 in that the output polarizer 7 and the uniform retarder 25 are formed on the same side of the substrate 33. The arrangement of such a device provides better protection to the retarder 25 and reduces the need to use a protective coating film to make a π hard coating film on both sides of the substrate. Anti-reflection coatings are available on demand and are preferably approximately non-birefringent to avoid adversely changing the optical effect of the device. 22 and 23 show another device that can be mechanically reversed, in which the three-dimensional and two-dimensional modes are similar to the electrically switchable display of FIG. Therefore, the displays of Figs. 22 and 234 can be regarded as "mechanical analogs" of the display of Fig. 14, in which the switching liquid crystal retarder is replaced by, for example, a fixed sheet retarder. Figure 24 shows a fairly simple "mechanical," implementation that does not require any retarder 25. In the two-dimensional mode, the slow axis of zone 8 is oriented 100. The direction and the slow axis of zone 9 are oriented 45. The transmission axis 55 of the polarizer is oriented to the direction of 55. In order to switch to the three-dimensional mode, the transmission axis 11 is required to be perpendicular to the direction shown in FIG. 24. For example, this can be accomplished by rotating the polarizer 4. / 、 He also has mechanical analogues for gas switching switching, which can be easily understood by those skilled in the art. In the case of switching torsional nematic devices, # 转 固 疋 Delay & structure can be used. For example, this structure It can be used by mixing the palmitic dopant solution with the Japanese yung compound or reacting the meso material to produce the desired helical structure, and then polymerizing it. The liquid crystal mode described above and above may also be flat. Outer switching (oui SWl_ng 〇ps) type. The type of ⑽ can be homogeneous or non-sentence or hybrid aligned (hybrid aligned HAN). By using vertical alignment and preparation of rain, I package isotropic liquid crystal material can Get any uniform Column Zhengsuke 86294 -20- 200403499 The reverse operation of the nematic liquid crystal display device (to-a good degree of proximity). Therefore, by changing from one arrangement to another arrangement, the display's unpowered state can be found in Change between 2D mode and 3D mode. You can change the alignment from uniform to vertical by simply making the thickness twice as large (assuming that the twist is 0.) instead of using a uniformly aligned nematic liquid crystal device. Use the zenithal Bistable N_tie ζβν mode, which has the advantages of true bistable and very low power consumption, because only the power required to switch from one state to another state. In one state, the chat LCD has the combined power of ΗΑΝ, and the factory is attentive, and in the other state, it has a vertically arranged LCD configuration. All the optical devices described above can be used to make money forward or The rear parallax grille and 'as mentioned above, different areas of the display can be operated in both 2D and 3D modes at the same time. For example, Figure 25 shows the electrode pattern 55 and% on the substrate of the switching LCD 25 < example The same area is used in different positions at the same time. Figure 26 also shows the appearance of the display. The upper and lower areas are operated in two-dimensional mode to display text, while the middle area is operated in three-frame mode to display the image. In this kind of device, it is desirable to match the degrees in different areas-for example, by adjusting the gray scale range used in the software. In the entire description of the present invention, the positive value of the angle can be clockwise or clockwise , And negative values represent the angle 纟 in the opposite direction. Moreover, the angles of all the polarization directions and the slow axis of the retarder are equal to, 咖 _ 咖. &Quot; Table 2 ΓΓ / Θ is equivalent to each angle (㊀ ... ⑽ Bu which-: s 疋 in the case of some devices, because of the inherent characteristic ratio of its structure (Θ + 180. ) Good ’because it has better performance. 86294 -21-200403499 So it is possible to provide—Han, 衾 m are also used for two-dimensional operation = optical device in the display. For example, when such a device may be provided in a stereoscopic three-dimensional display, this occurs when the three-dimensional mode is too, unprepared—the brightness is increased in the three-dimensional mode. Although there is also a decrease in the degree of childlikeness, the decrease in perceived brightness is much less than that of-. In addition, the overall performance of the device obtained by this method has passed through the grille. The light cutoff is dental, and the device has not changed significantly. Modification: And to those in the field of t ’, it ’s clear that there are many other gods. Therefore, the modifications made here without departing from the scope of the present invention and the description of Jingyuanyuan's statement are not intended to limit the appended patent applications. [Formula 0 ::, the scope of patent application of the present invention should be interpreted in a broad sense. [Early explanation of drawings] The invention will be further described by way of example with reference to the accompanying drawings. In the drawings: Fig. 疋 A known type of display is shown in a cross-section; A cross-sectional view of the display, illustrating the three-dimensional operation mode. Display =: Display—The traditional three-dimensional and two-dimensional operation mode diagram of a kind of display device. Polarization 罝; ... = is a diagram showing a display constituting the first embodiment of the present invention, which shows that the polarization gaps of the sampled retarder and the linden tree are not perpendicular to each other; The circle passing through the linear polarizer with respect to the angle between the polarization of the incident light and the transmission axis of the polarized apricot; 86294 • 22- 200403499 Figure 6 illustrates a part of the display constituting the second embodiment of the present invention. A cross-sectional view of the optical device of the optical device; FIG. 7 illustrates the three-dimensional and two-dimensional modes of the optical device and the display of FIG. 6; FIG. 8 illustrates the three-dimensional and two-dimensional modes of the optical device and the display of FIG. 6; FIG. 9 illustrates one example of a display constituting a third embodiment of the present invention. A cross-sectional view of a part of the optical device; FIG. 10 is a cross-sectional view showing different physical configurations of the display of FIG. 9; FIG. 11 is a cross-sectional view showing different physical configurations of the display of FIG. 9; Cross-sectional views of different physical configurations of the display of Fig. 9; Fig. 13 illustrates the optical device and display constituting the fourth embodiment of the present invention; Fig. 14 illustrates the optical device and display constituting the fifth embodiment of the present invention; Display; FIG. 15 illustrates the optical device and the display constituting the sixth embodiment of the present invention; FIG. 16 illustrates the optical device and the display constituting the seventh embodiment of the present invention; The optical device constituting the eighth embodiment of the present invention and FIG. 18 are diagrams illustrating the optical device constituting the ninth embodiment of the present invention and the advantages and disadvantages, and FIG. 19 is a diagram illustrating the tenth embodiment of the present invention. Optical device and -23 86294 200403499 display; Figure 20 疋 Cross section illustration of optical device and display shown in Figure 19; Figure 21 疋 Cross section illustration of optical device and display shown in Figure 19; Figure 22 疋Constitute A cross-sectional view of an optical device and a display according to a + th embodiment of the invention; FIG. 23 疋 illustrates a device and a display of FIG. 22; FIG. 24 疋 illustrates an optical device and a display constituting a twelfth embodiment of the invention Icon;

圖25頭不切換液晶裝置之電極圖樣及包含此種液晶裝置 之顯示器的外觀範例。 逢圖式中類似的編號表示類似的構成元件。 【圖式代表符號說明】Fig. 25 shows an example of an electrode pattern of a liquid crystal device without switching and an appearance of a display including such a liquid crystal device. Similar numbers in the drawings indicate similar constituent elements. [Schematic representation of symbols]

2 3 4 5、25 6 7 9 10 、 11 、 12 15 16 、 17 、 2〇 背光 液晶裝置 後方偏光器 前方偏光器 延遲器 基板 輸出偏光器 區域 透射軸 液晶延遲器 慢軸 光隙偏極化方向 格概偏極化方向2 3 4 5, 25 6 7 9 10, 11, 12, 15 16, 16, 17, 20 backlight LCD device rear polarizer front polarizer retarder substrate output polarizer area transmission axis liquid crystal retarder slow axis light gap polarization direction Lattice polarization direction

18、21 19、22 86294 -24- 200403499 33、34 非雙折射基板 35 旋轉方向 4〇、41、42、43、44 玻璃基板 50、51 4非歹J方向 55、56 I極圖樣 86294 -25-18, 21 19, 22 86294 -24- 200403499 33, 34 Non-birefringent substrate 35 Rotation direction 40, 41, 42, 43, 44 Glass substrate 50, 51 4 Non-J direction 55, 56 I pole pattern 86294 -25 -

Claims (1)

200403499 拾、申請專利範園: 1· 一種光學裝置,包括一用以傳送具有第一偏極化方向之 光線的輸入偏光器’和一用以從該輸入偏光器接收該具 有第一偏極化方向之光線的偏極化修改元件,該偏極化· 修改兀件包括至少第一和第二組區域,該第一組區域之 / 各該區域把來自該輸入偏光器之光線的偏極化方向改變 _ 成與該第一偏極化方向不同之第二偏極化方向,且該第 二組區域之各該區域供應具有第三偏極化方向之光線, 該第三偏極化方向與該第二偏極化方向不同且非正交。· 2·如申請專利範圍第1項之裝置,包括一輸出偏光器,以分 析來自該偏極化修改元件之光線。 3·如申請專利範圍第2項之裝置,其中該輸出偏光器與該偏 極化修改兀件配合運作,以使來自該輸入偏光器之光線 在穿過該第一組區域之各該區域與該輸出偏光器的各第 一光線路徑時的衰減率,大致相同於在穿過該第二組區 域之各該區域與該輸出偏光器的各第二光線路徑時的衰 減率。 ⑩ 4·如申請專利範圍第2項之裝置,其中該輸出偏光器與該偏 極化修改元件配合運作,以使來自該輸入偏光器之光線 在穿過該第一組區域之各該區域與該輸出偏光器的各第 一光線路控時的相位改變,大致相同於在穿過該第二組 區域之各該區域與該輸出偏光器的各第二光線路徨時的. 相位改變。 5·如申請專利範圍第1項之裝置,其中該第一與第二組區域 86294 200403499 之該等區域交錯配置且分 ^ , , j匕括弟一和第二平杆具攸 6·如申請專利範圍第5項之,番^ 十仃長條。 覓度,且該第二長條具有比該 条”有弟一 7·如申請專利範圍第1項之妒 一見度。 兮儿 其中該第三偏極化方向盥 0亥第一偏極化方向相同。 ’、 8·如申請專利範圍第2項之F晉,θ 士杜 ^ " /、有替代的操作模式,其 甲β輸出偏光态被配置以傳 1 t不自5亥弟一與弟二組區域 ::一、、且“、之忒寺區域的光線,並衰減來自該第一盥 弟二組區域其中另一組區域之該等區域的光線。、 9·如申請專利範圍第8項之奘 〇 貝之《置’其中該第-與第二組區域 八中一組區域是該第—組區域。 10. 如申請專利範圍物之裝置,#中該輸出偏光器被大致 配置成在該替代模式下阻擒來自該第一與第二組區域其 中該另一組區域的光線。 11. 如申請專利範圍第w之叢置中該偏極化修改元件包 括一圖樣化之延遲器。 12. 如申請專利範圍第2項之裝置,#中該輸出偏光器被配置 成將來自β亥第-肖第二組區域之光線的慢轴分量和快轴 分量以相同比率透射。 13·如申凊專利圍第12項之裝置,其中該輸出偏光器被配 置成僅透射來自該第一與第二組區域之光線的慢軸分 量。 14·如申請專利範圍第2項之裝置,其中該輸出偏光器傳送具 有與該第一偏極化方向垂直的偏極化方向之光線。 86294 -2- 15. 16. 17. 18. 19. 20. 21. 22. 23., 如申睛專利範圍第21項之裝置, 供可見光頻率下的半波延遲器。 申晴專利範圍第22項之裝置, 晶裝置。 如申請專利範圍第1 1項之裝置,其中該延遲器包括光致 聚合化聚合體。 如申請專利範圍第π項之裝置,其中該延遲器提供可見 光頻率下的半波延遲器。 如申凊專利範圍第1 6項之裝置,其中該第二組區域之各 忒區域的慢軸被定向相對於該第一組區域之各該區域的 慢軸成5 5。之方向。 如申請專利範圍第17項之裝置,其中該第一組區域之各 該區域的慢軸敎向相對於該第—偏極化方向成27 5。的 方向’且其中該第二組區域之各該區域的慢軸被定向相 對於該第一偏極化方向成_27·5。的方向。 如申請專利範圍第17項之裝置,其中該第一組區域之各 «域的慢軸被定向相對於㈣—偏極化方向成55。的 :向’且其中該第二組區域之各該區域的慢軸平行於該 弟一偏極化方向。 如申凊專利範圍第1項之裝 一 '罝向包括另一個偏極化修改 疋件在該輸入輸出偏光器相同側當作該偏極化修改元 件0 如申請專利範圍第20項之裝置, 衣夏具Τ邊另一個元件是另 一個延遲器。 其中該另一個延遲器提 其中该另一個延遲器是 200403499 2(如申請專利範圍第23項之裳置,其中該另一個延遲器包 括至個區域,該區域之慢軸可再—第一方向與一第 方向之間切換,該第一方向大致平行於光線傳播通過 该另一個延遲器的方向,該第二方向大致垂直於該第一 方向。 25.如中請專利範圍第綱之裝置,其中該另—個延遲器是 傅利彳于^克斯(Freedericksz)單元。 26·如申請專利範圍第24項之裝置,包括一輸出偏光器且有 替代操作模式,該輸出偏光器用來分析來自該偏極化修 改7L件之光線,該輸出偏光器在該替代操作模式下被配 置以傳送來自該第一與第二組區域其中一組區域之該等 區域的光線並衰減來自該第一與第二組區域其中另一組 區域之該等區域的光線,該偏光器被大致配置成在該替 代杈式下阻擋來自該第一與第二組區域中該另一組區域 的光線,該第二方向係供該替代模式下使用且定向相對 於4第一偏極化方向成62.5。的方向。 27·如申請專利範圍第22項之裝置,其中該另—個延遲器包 括至少一個區域,該區域之慢軸可在第三與第四方向間 2換,該等方向大致垂直於光線傳播通過該另一個延遲 益、的方向。 秩申明專利範圍第27項之裝置,包括一輸出偏光器且有 替代操作模式,該輸出偏光H用來分析來自該偏極化修 改凡件之光線,該輸出偏光器在該替代操作模式下被配 置以傳送來自該第一與第二組區域其中一組區域之該等 竭 86294 200403499 區域的光線,並衰減來自該第一與第二組區域其中另一 組區域之該等區域的光線,該偏光ϋ被大致配置成在咳 替代模式下阻擋來自該第一與第二組區域中該另一組: 域的光線’ 4第二方向垂直於該第_偏極化方向且該第 四方向係供㈣代模式下使用且定向相對於該第一偏極 化方向成62.5。的方向。 29.如申請專利範圍第2〇項之裝置,其中該另—個元件是偏 極化旋轉器。 --- w ^口 侧1倚尤器,該 輸出偏光器用來分析來自該偏極化修改元件之光線,該 輸出偏光ϋ傳送偏極化方向正交於該第—偏極化方向^ ::旋:旋轉器包括至少-個區域,該區域提供55。的偏 3 1.如申請專利範圍第3〇項 向列液晶裝置。Μ之衣置’其中«轉器包括扭轉 32. ==專利範圍第31項之裝置,其中該液晶裝置在較接 二:入:先器之液晶表面處有有一平行於該第 面處有-相對於該第—偏二 =輸 液晶表 33. 如申钱專利…為極化方向成55。的排列方向。 近扑1項之裝置,其中該液晶裝置在較接 方光器之液晶表面處有—相對於該第一偏極化 曰…广非列方向’且在較遠離該輸入偏光器之液 :表面處有-相對於該第—偏極化方向成72.5。的排列方 86294 200403499 士申明專利範圍第3丨項之裝置,其中該液晶裝置在較接 k忒輸入偏光器之液晶表面處有一相對於該第一偏極化 方向成5。之排列方向,且在較遠離該輸入偏光器之液晶 面處有相對於該第一偏極化方向成95。的排列方· 向。 . 35^申請專利範圍第29項之裝置,包括一輸出偏光器且有· 替代操作模式,該輸出偏光器用來分析來自該偏極化修 改70件之光線,該輸出偏光器在該替代操作模式下被配 置以傳送來自該第一與第二組區域其中一組區域之該# 鲁 區域的光線並衰減來自該第一與第二組區域其中另一組 區域之該等區域的光線’該偏光ϋ被大致配置成在該替 代模式下阻擋來自該第一與第二組區域中該另一組區域 的光線,該偏極化旋轉器在該替代模式下被使失效。 36· -種包括光學裝置的顯示器,該光學裝置包括一用以傳 运具有第一偏極化方向之光線的輸入偏光器和一用以從 名輸入偏光器接收該具有第一偏極化方向之光線的偏極 化修改7G件,該偏極化修改元件包括至少第一和第二組 φ 區或β亥苐組區域之各該區域把來自該輸入偏光器之 光線的偏極化方向改變成與該第一偏極化方向不同之第 二偏極化方向,且該第二組區域之各該區域供應具有第 三偏極化方向之光線,該第三偏極化方向與該第二偏極 化方向不同且非正交。 . 37.如申請專利範圍第36項之顯示器,包括間光線調變 器0 86294 3 8 ·如申睛專利 _ 空門#绩 工、之顯不裔,其中該調變器是液晶 二間光線调變器。 39.如申請專利範圍第36 , 40如由咬宙 貝之”、,貝丁口口具有自動立體模式。 申明專利範圍第39項3示p, 右夫夫 貝 < ,,、貝不口口包括一輸出偏光器且 曰代操作模式,該輸出偏光器用來分析來自該偏極化 件之光線,该輸出偏光器在該替代操作模式下被 '以傳迗來自該第-與第二組區域其中-組區域之該 :域的光線並衰減來自該第一與第二組區域其中另一 區或之4等區域的光線,該偏光器被大致配置成在該 替代換式下阻擋來自該第一與第二組區域中該另一組區 域的光線ϋ置在該替代模式下形成前方或背後視差 格桃。 86294200403499 Patent application park: 1. An optical device including an input polarizer for transmitting light having a first polarization direction and an input polarizer for receiving the first polarization from the input polarizer. Polarization modification element of light in a direction, the polarization modification element includes at least a first and a second set of regions, each of the first set of regions / each of the regions polarizes the light from the input polarizer Direction change_ to a second polarization direction different from the first polarization direction, and each of the regions of the second set of regions supplies light having a third polarization direction, and the third polarization direction and The second polarization direction is different and non-orthogonal. 2. The device of item 1 of the patent application scope includes an output polarizer to analyze light from the polarization modification element. 3. The device according to item 2 of the patent application range, wherein the output polarizer operates in cooperation with the polarization modification element so that light from the input polarizer passes through each of the areas of the first group of areas and The attenuation rate of each first light path of the output polarizer is substantially the same as the attenuation rate when passing through each of the regions of the second set of regions and each second light path of the output polarizer. · 4. The device according to item 2 of the scope of patent application, wherein the output polarizer operates in cooperation with the polarization modification element so that light from the input polarizer passes through each of the areas of the first group of areas and The phase change of the first polarizer when the output polarizer is controlled is substantially the same as the phase change when passing through each of the region of the second group of regions and the second optical conductor of the output polarizer. 5. The device according to item 1 of the scope of patent application, in which the first and second groups of areas 86294 200403499 are staggered and divided ^,, j 括 一 and the second flat rod are useful The fifth of the scope of the patent, Fan ^ Shizhang strip. And the second strip has a degree of jealousy that is greater than that of the article "7. Such as the first scope of patent application. Xier where the third polarization direction is the first polarization direction The same. ', 8. If F is the second item in the scope of patent application, θ Shidu ^ " /, there is an alternative mode of operation, the polarized state of the A β output is configured to pass 1 t from 5 Areas of the second group :: 1 ,, and ", the light of the temple area, and attenuate the light from the other areas of the first group of the second group of areas. 9, 9. For example, in the scope of the patent application No. 8 〇 "Because" where the first and second group of regions is the first group of regions. 10. As in the patent-pending device, the output polarizer in # is roughly configured to block light from the other group of the first and second groups of regions in the alternative mode. 11. If the polarization modification element in the cluster of the scope of application for patent application includes a patterned retarder. 12. As for the device in the second item of the patent application, the output polarizer in # is configured to transmit the slow-axis component and the fast-axis component of the light from the second group area of the β-Hadi-Shaw at the same ratio. 13. The device as described in claim 12 of the patent, wherein the output polarizer is configured to transmit only the slow axis components of light from the first and second groups of regions. 14. The device according to item 2 of the patent application range, wherein the output polarizer transmits light having a polarization direction perpendicular to the first polarization direction. 86294 -2- 15. 16. 17. 18. 19. 20. 21. 22. 23. The device of item 21 in the patent application scope is for a half-wave retarder at the frequency of visible light. The device of Shen Qing's patent scope No. 22, crystal device. For example, the device of claim 11 in which the retarder comprises a photopolymerizable polymer. For example, the device of claim π, wherein the retarder provides a half-wave retarder at the frequency of visible light. For example, the device of claim 16 of the patent scope, wherein the slow axis of each of the second group of regions is oriented at 5 5 with respect to the slow axis of each of the first group of regions. Direction. For example, the device according to item 17 of the patent application scope, wherein the slow axis of each of the first group of regions is 275 with respect to the first polarization direction. And the slow axis of each of the regions of the second set of regions is oriented at −27 · 5 with respect to the first polarization direction. Direction. For example, the device of claim 17 in which the slow axis of each «domain of the first group of regions is oriented at 55 with respect to the ㈣-polarization direction. : Towards' and wherein the slow axis of each of the regions of the second group is parallel to the direction of polarization of the younger brother. For example, the installation of item 1 of the patent scope includes another polarization modification file on the same side of the input and output polarizer as the polarization modification element. Another element of the T-side of the clothes is another retarder. Wherein the other retarder is 200403499 2 (such as the position of the patent application No. 23, where the other retarder includes a region, the slow axis of the region can be re-first direction And a first direction, the first direction is substantially parallel to the direction in which light propagates through the other retarder, and the second direction is substantially perpendicular to the first direction. The other retarder is a Freedericksz unit. 26. If the device under the scope of patent application No. 24 includes an output polarizer and has an alternative operating mode, the output polarizer is used to analyze the polarizer The polarization modifies the light of the 7L pieces, and the output polarizer is configured in the alternative operating mode to transmit light from the areas of one of the first and second groups of areas and attenuate the light from the first and second areas The polarizer is generally configured to block light from the other group of the first and second groups of regions under the replacement fork type in the regions of the other group of regions. Field of light, the second direction is for use in the alternative mode and is oriented in a direction of 62.5 ° relative to the 4 first polarization direction. 27. For the device in the 22nd scope of the patent application, wherein the other delay The device includes at least one area, and the slow axis of the area can be changed between the third and fourth directions, and these directions are approximately perpendicular to the direction of light propagation through the other delay benefit. It includes an output polarizer and an alternative operating mode. The output polarized light H is used to analyze light from the polarized modification. The output polarizer is configured in the alternative operating mode to transmit the light from the first and the first. The light in one of the two sets of regions is 86294 200403499, and the light from the other of the first and second sets of regions is attenuated. The polarized light is generally configured to replace the cough. Block the light from the other group in the first and second groups of regions in the mode: 4 The second direction is perpendicular to the _ polarization direction and the fourth direction is for the generation mode It is used and oriented in a direction of 62.5 ° with respect to the first polarization direction. 29. The device according to item 20 of the patent application scope, wherein the other element is a polarization rotator. --- w ^ 口Side 1 tilter, the output polarizer is used to analyze the light from the polarization modification element, the output polarization ϋ transmission polarization direction is orthogonal to the first polarization direction ^ :: rotator includes at least -An area, which provides 55. Partial 3 1. Such as nematic liquid crystal device in the scope of patent application No. 30. M's clothes' where «rotator includes twisting 32. == device in patent scope No. 31, Wherein, the liquid crystal device is connected to the second: into: the liquid crystal surface of the prior device has a parallel to the first surface-relative to the first-two == liquid crystal table 33. If you apply for a patent ... 55. Arrangement direction. A device close to item 1, wherein the liquid crystal device is located on the liquid crystal surface closer to the square polarizer—relative to the first polarized polarized light, and the liquid crystal surface is farther away from the input polarizer: surface There is-72.5 with respect to this-polarization direction. The arrangement of the device is 86294 200403499. The device according to item 3 of the patent claim declares that the liquid crystal device has a position of 5 with respect to the first polarization direction at the liquid crystal surface connected to the k 忒 input polarizer. In the alignment direction, and at a position farther away from the liquid crystal plane of the input polarizer, it is 95 with respect to the first polarization direction. The arrangement direction · direction. 35 ^ The device of the scope of patent application No. 29 includes an output polarizer and an alternative operation mode. The output polarizer is used to analyze light from the polarized modification of 70 pieces. The output polarizer is in the alternative operation mode. Is configured to transmit light from the #Lu region of one of the first and second groups of regions and attenuate light from the regions of the other one of the first and second groups of regions. The polarized light The chirp is substantially configured to block light from the other group of the first and second groups of regions in the alternative mode, and the polarization rotator is disabled in the alternative mode. 36 ·-A display comprising an optical device, the optical device comprising an input polarizer for transporting light having a first polarization direction and an input polarizer for receiving the first polarization direction from a nominal input polarizer 7G pieces of polarization modification of light rays, the polarization modification element includes at least each of the first and second groups of the φ region or the beta helium group region which changes the polarization direction of the light from the input polarizer Into a second polarization direction different from the first polarization direction, and each of the regions of the second set of regions supplies light having a third polarization direction, the third polarization direction and the second polarization direction The polarization directions are different and non-orthogonal. 37. If the display of the scope of application for the patent No. 36, including the inter-light modulator 0 86294 3 8 · If you apply for the patent _ Kongmen # Ji Gong, Zhixianfu, where the modulator is a two-channel LCD light modulator Transformer. 39. If the scope of patent application is No. 36, 40, if it is made by biting Zhou Beizhi, the Beding mouth has an auto stereo mode. Item 39 of the declared patent scope is shown in 3p, Youfubei < The port includes an output polarizer and a generation mode of operation. The output polarizer is used to analyze the light from the polarizing element. The output polarizer is used in the alternative operation mode to pass from the first and second groups. Region of the-group of the region: the light of the region and attenuates the light from the other region or the 4th region of the first and second groups of regions, the polarizer is roughly configured to block the light coming from the region in the alternative. The light of the other group of the first and second groups of regions is placed in this alternative mode to form a parallax pattern of front or back.
TW092117300A 2002-06-28 2003-06-25 Optical device and display TW594263B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0215058A GB2390171A (en) 2002-06-28 2002-06-28 Optical device and display

Publications (2)

Publication Number Publication Date
TW200403499A true TW200403499A (en) 2004-03-01
TW594263B TW594263B (en) 2004-06-21

Family

ID=9939529

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092117300A TW594263B (en) 2002-06-28 2003-06-25 Optical device and display

Country Status (4)

Country Link
AU (1) AU2003238707A1 (en)
GB (1) GB2390171A (en)
TW (1) TW594263B (en)
WO (1) WO2004004362A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422865B (en) * 2010-10-28 2014-01-11 Au Optronics Corp Switchable three-dimensional display
TWI459261B (en) * 2012-04-16 2014-11-01 Chunghwa Picture Tubes Ltd Touch sensing three-dimensional display device
CN104702938B (en) * 2010-10-01 2017-04-12 株式会社日本显示器 3d image display device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027898B2 (en) * 2004-01-29 2007-12-26 株式会社有沢製作所 Polarized transmission screen and stereoscopic image display apparatus using the polarized transmission screen
US8605006B2 (en) 2009-12-23 2013-12-10 Nokia Corporation Method and apparatus for determining information for display
US9101956B2 (en) 2010-06-30 2015-08-11 3M Innovative Properties Company Mask processing using films with spatially selective birefringence reduction
JP6251569B2 (en) 2010-06-30 2018-01-10 スリーエム イノベイティブ プロパティズ カンパニー Diffuse reflective optical film with spatially selective birefringence reduction
KR101841310B1 (en) 2010-06-30 2018-03-22 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Retarder film combinations with spatially selective birefringence reduction
EP3537204A1 (en) 2010-09-22 2019-09-11 Koninklijke Philips N.V. Multi-view display device
US9081147B2 (en) 2012-01-03 2015-07-14 3M Innovative Properties Company Effective media retarder films with spatially selective birefringence reduction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046849A (en) * 1996-09-12 2000-04-04 Sharp Kabushiki Kaisha Parallax barrier, display, passive polarisation modulating optical element and method of making such an element
GB2317295A (en) * 1996-09-12 1998-03-18 Sharp Kk Parallax barrier and display
GB2331883A (en) * 1997-11-26 1999-06-02 Sharp Kk Dual image viewing system
GB2352573A (en) * 1999-07-24 2001-01-31 Sharp Kk Parallax barrier for a autostereoscopic display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104702938B (en) * 2010-10-01 2017-04-12 株式会社日本显示器 3d image display device
TWI422865B (en) * 2010-10-28 2014-01-11 Au Optronics Corp Switchable three-dimensional display
TWI459261B (en) * 2012-04-16 2014-11-01 Chunghwa Picture Tubes Ltd Touch sensing three-dimensional display device

Also Published As

Publication number Publication date
AU2003238707A1 (en) 2004-01-19
TW594263B (en) 2004-06-21
WO2004004362A1 (en) 2004-01-08
GB2390171A (en) 2003-12-31
GB0215058D0 (en) 2002-08-07

Similar Documents

Publication Publication Date Title
KR100678550B1 (en) Optical device and display operating in two dimensional and autostereoscopic three dimensional modes
US11874576B2 (en) Optical stack for privacy display
US11109014B2 (en) Privacy display apparatus
KR100483352B1 (en) Liquid crystal display device using thin film polarizers and retarders
JP4005808B2 (en) LCD privacy screen with zigzag wave plate
TWI363899B (en)
TW508469B (en) Liquid crystal display device
EP2990862A1 (en) In-plane switching liquid crystal display device
TW200403499A (en) Optical device and display
US9279995B2 (en) 3D display device and 3D display system
US8941801B2 (en) In-plane switched active retarder for stereoscopic display systems
JP2011170082A (en) Liquid crystal display device
Lee et al. Reflective liquid crystal display using a non-twist half-wave cell
Kim et al. Reflective and transflective liquid crystal display devices
TW200413800A (en) Multi-domain vertical alignment LCD using circular polarized light
TW200426432A (en) Liquid crystal display device and electronic machine
JP2008249915A (en) Liquid crystal display device
US10656467B2 (en) Liquid crystal module
WO2010016284A1 (en) Vertically aligned liquid crystal display device
CN111610666B (en) Liquid crystal panel and display device
CN113646695B (en) Diffuser for privacy displays
TWI361932B (en) Liquid crystal display device
Lee et al. P‐57: A Reflective Liquid Crystal Display with Fringe‐Field Switching Mode
KR102224092B1 (en) Trans-flective mode liquidcrystal display device
CN113646695A (en) Diffuser for a privacy display

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees