TW593699B - Low thermal expansion alloy sheet and method for manufacturing the same - Google Patents

Low thermal expansion alloy sheet and method for manufacturing the same Download PDF

Info

Publication number
TW593699B
TW593699B TW92103869A TW92103869A TW593699B TW 593699 B TW593699 B TW 593699B TW 92103869 A TW92103869 A TW 92103869A TW 92103869 A TW92103869 A TW 92103869A TW 593699 B TW593699 B TW 593699B
Authority
TW
Taiwan
Prior art keywords
less
thermal expansion
plane
low thermal
alloy sheet
Prior art date
Application number
TW92103869A
Other languages
Chinese (zh)
Other versions
TW200303928A (en
Inventor
Akio Kobayashi
Koichiro Fujita
Katsuhisa Yamauchi
Tamako Ariga
Kunikazu Tomita
Original Assignee
Jfe Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corp filed Critical Jfe Steel Corp
Publication of TW200303928A publication Critical patent/TW200303928A/en
Application granted granted Critical
Publication of TW593699B publication Critical patent/TW593699B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/06Screens for shielding; Masks interposed in the electron stream
    • H01J29/07Shadow masks for colour television tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/07Shadow masks
    • H01J2229/0727Aperture plate
    • H01J2229/0733Aperture plate characterised by the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

The invention provides a low thermal expansion alloy sheet consisting essentially of: 30 to 34% Ni, 2 to 6% Co, 0.6% or less Mn, 0.1% or less Ai, 0.02% or less C, 0.3% or less Si, 0.01% or less P, 0.005% or less S, 0.01% or less N, by mass, and balance of Fe, and having 50% or more of (200) plane integrated intensity and 20% or less of (220) plane integrated intensity. The present alloy sheet assures high etching speed and excellent etching dimensional accuracy, and therefore is very suitable for a shadow mask in cathode-ray tube.

Description

593699 玖、發明說明 【發明所屬之技術領域】 本發明係關於使用於布朗管之蔭罩(shadow masq 等之Fe-Ni-Co系低熱膨脹合金薄板及其製造方法) 【先前技術】 布朗管之蔭罩,係對紊材的金屬薄板,進行蝕刻加工 以牙孔作成用以使電子束通過的孔,並進行退火 史成 形谷易,依布朗管的形狀進行壓合成形而製作後,再行 組裝到布朗管中。 向來’作爲布朗管的蔭罩的素材,習知者爲F e — 3 6 % N 土 合金等的F e - N i系合金薄板。此合金,由於熱膨脹係數 較軟鋼低’不易發生經由電子束加熱而熱膨脹所產生之 蔭罩的變形。其結果爲,不易發生起因於通過蔭罩的孔 之電子束未打到螢光面的既定位置所產生的色偏移。 然而’習知的F e - N i系合金,其熱膨脹係數未必充分 地低,且機械強度較弱,易因於布朗管搬運之時的振動 等之衝擊而容易變形,故無法完全防止其色偏移。因此, 較此 F e - N i系合金之熱膨脹係數更低且耐衝擊性亦優 的材料受到殷切的期盼。 作爲這樣的材料,代表 Fe-32%Ni-5%Co 合金之 Fe-Ni-Co系合金薄板被開發出來。此合金較Fe-Ni系 合金之熱膨脹係數低,且機械強度高,惟,蝕刻特性(速 度及尺寸精度)較差。因此,有關Fe_Ni-C〇系合金薄 板的蝕刻特性之各種改良的嘗試一直在進行中。例如’ 312/發明說明書(補件)/92-05/92103869 593699 於日本專利第2 7 2 3 7 1 8號公報或日本專利第3 Ο 2 2 5 7 3 號公報中提出了控制結晶方位的技術。 於日本專利第 2723718號公報中,提出一種合金薄 板,其係含有 28~34%Ni、 2 〜7%C〇、0.1 〜1.0%Mn、 0.10% 以下的S i及0 . 0 1 %以下的C,其平均結晶粒徑爲3 0 // m 以下,結晶粒的6 0〜9 5 %係聚集於{ 1 0 ◦}面,且{ 1 0 0 }面 的結晶方位爲對於{ 1 〇 〇 }[ 〇 〇 1 ]爲± 5〜4 5。(而以土 1 〇〜3 0 °爲佳)聚集。於此技術中記述著:藉由使{ 1 0 ◦ } 面的聚集度提高,使板厚方向的蝕刻速度上昇,而使蝕 刻因子(蝕刻深度/橫方向蝕刻量)提高,藉由使其由 { 1 0 ◦ }面的結晶方位若干地往{ 1 Q Q } [ ◦ 0 1 ]偏移而聚 集,使蝕刻孔的真圓度提高。如此作法的結晶方位之控 制,可以經由在再結晶退火後進行冷加工進行,經由冷 加工的加工率之控制,可得到任意的結晶方位之分散。 於日本專利第3 Q 2 2 5 7 3號公報的技術中,則揭示出一 種合金薄板’其{系含有 30~60%Ni、 5〜20%C〇、 0.25% ΜΤ 的 Si、 0.50% 下白勺 Mn、 0.002% 白勺 C、 0.005% 以下的P、0 . Q 〇 5 %以下的S,而其他的雜質元素之全含 有量爲 0.10%以下,其(200)(與上述{100}同)面的強 度爲 5 0 %以上者。於此技術中,藉由(2 0 0 )面的高聚集 化與使C量降低爲◦. 0 0 2 %以下,可使蝕刻速度提高。 因此,於熱軋製或冷軋製後,可於露點爲-1 〇 ~ 4 0 °的環 境下進行脫碳退火。 然而,於日本專利第2 7 2 3 7 1 8號公報的技術中,藉由 312/發明說明書(補件)/92-05/92103 869 593699 U 〇 Q }面的高聚集化,雖可提升蝕刻速度,卻無法滿 蝕刻尺寸精度。於蝕刻尺寸精度方面,孔徑的參戔小犬 較孔的形狀本身爲重要,但隨著蝕刻速度的上 、 一 扎徑 的參差會跟著增大。又,爲了提高各個孔的真圓度,提 出使結晶方位對{ 1 〇 Q } [ 〇 Q i ]偏移而聚集,惟,欲於實 際的製程中施行通常會有困難。此技術中,係於再結晶 退火後施行冷加工,惟,{ i 〇 Q }面的聚集較弱,是問題 所在。 若欲再舉出其他的方法,尙有例如:於退火前的軋製 時使其方向改變的方法,此在實驗室雖爲可能,於工廠 中欲使線圈狀的薄板之軋製方向改變是非常困難的。 於曰本專利第3 〇 2 2 5 7 3號公報中記載之技術,欲提昇 触刻速度,必須施行脫碳退火,製造步驟的控管增加, 導致成本亦增加。又,亦有因於(2 〇㈧面的高聚集化所 導致之孔徑的參差增大的問題。最近,於蔭罩方面,曰 益朝著高精細化、高亮度化進展著,而對飩刻的尺寸精 度之要求更趨嚴格,此技術般的寬廣的成分範圍·,欲滿 足其要求是有困難的。且在寬廣的成分範圍中,亦無法 得到充分的熱膨脹係數。 【發明內容】 本發明係以提供蝕刻速度快速、蝕刻尺寸精度優異的 F e · N i - C 〇系低熱膨脹合金薄板爲目的。 上述目的’可藉由一種低熱膨脹合金薄板來達成.,其 係含有實際以質量%計之 Ni:30〜34%、Co:2~6%、 312/發明說明書(補件)/92-05/92103869 593699593699 发明 Description of the invention [Technical field to which the invention belongs] The present invention relates to a shadow mask used for a Brown tube (a Fe-Ni-Co low thermal expansion alloy sheet of shadow masq and the like and a method for manufacturing the same) [Prior Art] The Brown Tube The shadow mask is a thin metal sheet made of turbid material. It is etched to make holes for the electron beam to pass through the holes. It is annealed to form Gu Yi. It is formed by pressing and forming according to the shape of the Brown tube. Assembled into a Brown tube. Conventionally, as a material of a shadow mask of a brown tube, a known person is a F e-Ni alloy sheet such as F e-36% N earth alloy. Since this alloy has a lower coefficient of thermal expansion than that of soft steel, it is difficult for the shadow mask to deform due to thermal expansion due to electron beam heating. As a result, the color shift caused by the fact that the electron beam passing through the holes of the shadow mask is not hit to a predetermined position on the fluorescent surface is hard to occur. However, the conventional F e-Ni alloy does not necessarily have a sufficiently low thermal expansion coefficient and weak mechanical strength, and is easily deformed due to the shock of vibration and the like when the Brown tube is transported, so it cannot completely prevent its color. Offset. Therefore, materials with a lower thermal expansion coefficient and superior impact resistance than this F e-Ni alloy are eagerly expected. As such a material, a Fe-Ni-Co-based alloy sheet representing a Fe-32% Ni-5% Co alloy has been developed. This alloy has a lower thermal expansion coefficient and higher mechanical strength than Fe-Ni series alloys, but its etching characteristics (speed and dimensional accuracy) are poor. Therefore, various attempts have been made to improve the etching characteristics of the Fe_Ni-Co-based alloy sheet. For example, '312 / Invention Specification (Supplement) / 92-05 / 92103869 593699 was proposed in Japanese Patent No. 2 7 2 3 7 1 8 or Japanese Patent No. 3 0 2 2 5 7 3 technology. In Japanese Patent No. 2723718, an alloy thin plate is proposed, which contains 28 to 34% Ni, 2 to 7% C0, 0.1 to 1.0% Mn, 0.1% or less of Si, and 0.01% or less. C, whose average crystal grain size is 3 0 // m or less, 60 to 95% of the crystal grains are gathered on the {1 0 ◦} plane, and the crystal orientation of the {1 0 0} plane is for {1 〇〇 } [〇〇1] is ± 5 to 45. (While soil 10 ° ~ 30 ° is preferred) gather. In this technique, it is described that by increasing the degree of aggregation of the {1 0 ◦} plane, the etching rate in the thickness direction is increased, and the etching factor (etching depth / etching amount in the horizontal direction) is increased. The crystal orientation of the {1 0 ◦} plane is slightly shifted toward {1 QQ} [◦ 0 1] to gather, which improves the roundness of the etched holes. The control of the crystal orientation in this way can be performed by cold working after recrystallization annealing, and the dispersion of arbitrary crystal orientation can be obtained by controlling the processing rate of the cold working. In the technology of Japanese Patent No. 3 Q 2 2 5 7 3, an alloy thin plate is disclosed, whose {series contains 30 ~ 60% Ni, 5 ~ 20% C0, 0.25% MT Si, 0.50% Mn, 0.002% C, 0.005% or less P, 0. Q 5% or less S, and the total content of other impurity elements is 0.10% or less, which is (200) (the same as the above {100} Same) The intensity of the surface is 50% or more. In this technique, the etch rate can be increased by increasing the concentration of the (2 0 0) plane and reducing the amount of C to 0. 2% or less. Therefore, after hot rolling or cold rolling, decarburization annealing can be performed in an environment with a dew point of -10 to 40 °. However, in the technology of Japanese Patent No. 2 7 2 3 7 1 8, it can be improved by the high aggregation of 312 / Invention Specification (Supplement) / 92-05 / 92103 869 593699 U 〇Q} plane. Etching speed, but unable to fully etch dimensional accuracy. In terms of etching dimensional accuracy, the size of the hole size is more important than the shape of the hole itself, but as the etching speed increases, the variation in diameter will increase. In addition, in order to improve the roundness of each hole, it is proposed to shift the crystal orientation to {1 〇 Q} [〇 Q i] to gather, but it is usually difficult to implement it in the actual manufacturing process. In this technique, cold working is performed after recrystallization and annealing. However, the weak aggregation of {i 〇 Q} planes is the problem. If you want to cite other methods, for example, there is a method of changing the direction during rolling before annealing. Although this is possible in a laboratory, it is necessary to change the rolling direction of a coiled sheet in a factory. Very difficult. In the technique described in the Japanese Patent No. 3202 2753, in order to increase the contacting speed, decarburization annealing must be performed, and the control of the manufacturing steps increases, resulting in an increase in cost. In addition, there is also a problem in that the pore diameter varies due to the high aggregation of the (20 mm) plane. Recently, in the shadow mask, Yue Yi has progressed toward high definition and high brightness, and has faced The requirements for dimensional accuracy are more stringent. This technology has a wide composition range. It is difficult to meet the requirements. And in a wide composition range, a sufficient thermal expansion coefficient cannot be obtained. [Contents of the Invention] This The purpose of the invention is to provide a F e · Ni-C 〇 series low thermal expansion alloy sheet with fast etching speed and excellent dimensional accuracy. The above-mentioned object can be achieved by a low thermal expansion alloy sheet. Ni%: 30 ~ 34%, Co: 2 ~ 6%, 312 / Invention Specification (Supplement) / 92-05 / 92103869 593699

Mn:〇.6%J^T 'Α1:〇.1%ΰΑΤ ^ C:0.〇2%]^T ' Si:0.3% 以下、P ·· 0 · 0 1 % 以下、S ·· 0 · ◦ 0 5 % 以下、N : 0 · 〇 i % 以下, 其餘部分爲由Fe所構成’且(2〇0)面的聚集度爲5〇备 以上’ (2 2 Ο )面的聚集度爲2 Q %以下者。又,此低熱膨 脹合金薄板,可得到於2 〇 ~ 1 〇 〇 °C下之平均熱膨脹係數 爲0 · 7 X 1 0 · 6 / °C以下之較低的熱膨脹係數。 若 ί乍成爲 Μη:〇·〇1 〜〇·1% 、 Α1:〇·〇〇5 〜0.04% 、 C:〇.〇Q5%以下、Si:0.09%以下,則可進一步得到優異 的蝕刻特性,使2 0 ~ 1 〇 〇 °C下之平均熱膨脹係數成爲〇 . 5 X 1 0 一 6 / °C 以下。 再者,若添力D B ·· 0 · 0 0 0 5〜. 0 0 3 0 %,則蝕刻尺寸精度 可大幅提昇。 這樣的低熱膨脹合金薄板,可經由下述製造方法而實 現,其係具有:對具有上述成分之熱軋製板至少反覆進 行1次以上之冷軋製與再結晶退火的步驟,與最終再結 晶退火之後’更進一步以3〇%以下的冷延伸率進行冷軋 製的步驟;而且,最終再結晶退火之前的冷軋製的冷延 伸率爲6 5 %以上,最終再結晶退火的溫度爲8 5 Q。(:以上。 【實施方式】 本發明者等,就蔭罩用之Fe-Ni-Co系合金薄板於進 行蝕刻加工時所產生的蝕刻速度與蝕刻孔徑之參差的情 形作了檢討。其結果得知:即使如習用的技術般以提高 (2〇Q)面的聚集度來使蝕刻速度提高,只要將(220)面 的聚集度降低,即可將蝕刻孔徑之參差度作成較小。以 312/發明說明書(補件)/92-05/92103869 593699 下,就其詳細予以說明。 1 ·成分Mn: 0.6% J ^ T 'Α1: 0.1% ΰΑΤ ^ C: 0.02%] ^ T' Si: 0.3% or less, P ·· 0 · 0 1% or less, S · · 0 · ◦ Less than 5%, N: 0 · 〇i% or less, the rest is composed of Fe 'and the degree of aggregation of the (200) plane is 50 or more, and the degree of aggregation of the (2 2 〇) plane is 2 Less than Q%. In addition, this low thermal expansion alloy sheet can obtain a relatively low thermal expansion coefficient with an average thermal expansion coefficient at 200 ° C to 100 ° C of 0 · 7 X 10 · 6 / ° C or lower. If η becomes Mn: 〇.〇1 ~ 〇.1%, Α1: 〇.〇〇〇5 ~ 0.04%, C: 〇〇〇5%, Si: 0.09% or less, further excellent etching characteristics can be obtained , So that the average thermal expansion coefficient at 20 to 100 ° C is 0.5 X 10-6 / ° C or less. In addition, if the addition force D B ·· 0 · 0 0 0 5 to. 0 0 3 0%, the accuracy of the etching size can be greatly improved. Such a low thermal expansion alloy sheet can be realized by the following manufacturing method, which includes the steps of cold rolling and recrystallization annealing the hot rolled sheet having the above composition at least once, and finally recrystallization After annealing, the step of cold rolling is further performed at a cold elongation of 30% or less; and the cold rolling elongation of the cold rolling before the final recrystallization annealing is 65% or more, and the temperature of the final recrystallization annealing is 8 5 Q. (: Above. [Embodiment] The present inventors reviewed the situation of the difference between the etching speed and the etching aperture when the Fe-Ni-Co alloy sheet for a shadow mask is etched. As a result, Known: Even if the etching rate is increased by increasing the aggregation degree of the (2Q) plane as in the conventional technique, as long as the aggregation degree of the (220) plane is reduced, the variation in the etching aperture can be made smaller. With 312 / Invention Specification (Supplement) / 92-05 / 92103869 593699 Details will be described below. 1 · Composition

Ni : N i爲欲得到低熱膨脹特性之必要的元素 加C ◦的情況下,N i量於3 2 %前後可得到最低的 脹係數。N i量若未滿3 0 %或超過3 4 %,則熱膨脹 法充分的降低。因此,N i量係定爲3 0〜3 4 %。 C〇 : C 〇係與N i —起用以得到低熱膨脹特性 的元素。C 〇量若未滿2 %或超過6 %,則熱膨脹係 充分的降低。因此,C 〇量係定爲2〜6 %。 Μη: Μ η若超過 0 · 6 %,則熱膨脹係數無法充 低。因此Μ η量係定爲Q . 6 %以下。要求較低的熱 數之情況下,其定爲Q . 1 %以下爲佳。另一方面 作爲脫氧元素或用以改善熱加工性之元素也有 此’以疋爲◦· 〇 1 %以上爲佳。 A 1 : A 1若超過 〇 · 1 %以上,則會以氮化物析 熱加工性變差,並使熱膨脹係數增大。故A 1量 ◦ . 1 %以下。於要求更低的熱膨脹係數的情況, 0.04%以下爲佳。另一方面,A1在熔製時亦有減 的介在物質的效果,因此,以定爲〇 . 〇 〇 5 %以上: C : C若超過0 . G 2 %,則會使蝕刻特性變差, 膨脹係數增大。因而,C量係定爲0 . 0 2 %以下。 更優異的鈾刻特性及更低的熱膨脹係數的情況, 爲0.005%以下爲佳。Ni: Ni is an element necessary to obtain low thermal expansion characteristics. When C is added, the lowest expansion coefficient can be obtained when the amount of Ni is around 32%. If the amount of Ni is less than 30% or more than 34%, the thermal expansion method is sufficiently reduced. Therefore, the amount of Ni is set to 30 to 34%. Co: Co is an element that is used together with Ni to obtain low thermal expansion characteristics. If the amount of C0 is less than 2% or more than 6%, the thermal expansion system is sufficiently reduced. Therefore, the amount of C0 is set to 2 to 6%. Μη: If Μη exceeds 0.6%, the thermal expansion coefficient cannot be lowered. Therefore, the amount of M η is set to Q.6% or less. When a lower heat number is required, it is preferably set to Q. 1% or less. On the other hand, it is also used as a deoxidizing element or an element for improving hot workability. It is preferable that 疋 is ≧ 1%. A 1: When A 1 exceeds ≧ 0.1%, the hot workability deteriorates due to nitride precipitation, and the thermal expansion coefficient increases. Therefore, the amount of A 1 ◦. 1% or less. In the case where a lower thermal expansion coefficient is required, 0.04% or less is preferable. On the other hand, A1 also reduces the effect of intervening substances during melting, so it is set to be 0.05% or more: C: If C exceeds 0. G 2%, the etching characteristics will be deteriorated. The expansion coefficient increases. Therefore, the amount of C is set to 0.02% or less. In the case of a more excellent uranium etching characteristic and a lower thermal expansion coefficient, it is preferably 0.005% or less.

Si: S i若超過 0 . 3 %,則會使蔭罩的黑化處 312/發明說明書(補件)/92-05/92103869 ,於添 低熱膨 係數無 所必須 數無法 分的降 膨脹係 ,Μ η於 效,因 出而使 係疋爲 以定爲 低鋼中 善佳。 且使熱 於要求 則以定 理性變 10 593699 差,且使熱膨脹係數增大。因此,s i量係定爲Q · 3 %以 下。於要求更低的熱膨脹係數的情況,則以〇 · 〇 9 %以下 爲佳。 p : p若超過〇 · ◦ 1 %,則會使蝕刻特性變差。因而, p量係定爲0.01%以下。 S : s若超過Q · 0 0 5 %,則會以硫化物析出致使熱加 工性變差。因而,S量係定爲〇 · 〇 Q 5 %以下。 N · N右與A 1等兀素共存,則會形成氮化物致使熱 加工性變差,並使蝕刻特性變差。此傾向,於N量超過 〇 · 0 1 %則更顯著。因而,N量係定爲〇 · 〇 1 %以下。 其目余的部份係爲貫質的F e即可。 再者,若添加B,則可更加減低蝕刻孔徑的參差。吾 人認爲此乃經由 B向粒界之偏析使粒界的腐蝕速度下 降’致使粒界與粒內的腐蝕速度(亦即蝕刻速度)的差減 小之故。又’ B,經由其整粒化作用,可抑制特定方位 的結晶粒之叢集化,故可使蝕刻孔之蝕刻速度等的參差 可減小,且使尺寸精度提高。爲了此目的,B至少須爲 0 · 0 0 0 5 %以上,惟,若超過0 · Q Q 3 Q %,則會使黑化處理 之黑化膜的密著性降低。因而,於添加B的情況,B量 Μ 0.0005-0.0030% ° 2. (200)面與(220)面的聚集度 如上述般,經由提局(2 〇 〇 )面的聚集度,可使板厚方 向的蝕刻速度上昇,而可使鈾刻因子提高。若就實際的 蝕刻加工之生產性考量,則鈾刻因子必須爲2 . 5以上, 312/發明說明書(補件)/92-05/92103869 593699 爲此目的,(2 0 Q )面的聚集度必須作成爲5 < 通常,若使(2 Ο Q )面的聚集度如上述般地 刻孔徑的參差會加大。然而,如以下所示般, 面的聚集度降低,則可使孔徑的參差減小。 用具有上述之本發明之範圍內之成份的合 製造條件以製造各種的合金薄板,就(2 0 0 ) 面的聚集度與孔徑的參差之間的關係做了調 此處,(2 0 0 )面的聚集度,係經由以 Μ ο K 射線進行繞射,測定奧士體7面(1 1 1 )、( 2 0 (311)、(331)、(420)、(422)的積分強度 面的強度除以無規則方位的試料之理論積分 (1 )來求出。 (200)面的聚集度(%)={i(200)/I(200)}/{ Σ i(hkl) /I(hkl ) } x 1 00 (1 i ( h k 1 ):測定的試料之(h k 1 )面的實測積 I ( h k 1 ):無規貝IJ方位的試料之(h k 1 )面的 度 Σ : 7面的和 (2 2 Ο )面的聚集度亦以相同的方法求出。 蝕刻特性,係經由對薄板樣品塗佈以光阻 後,將光阻劑的一部份除去,用F e C 1 3進行 半球形孔 1 〇個,將光阻膜除去後,測定壓 徑,由孔徑之最大與最小的差來作孔徑參差E 此差若未達1 5 // m,這樣的參差於實用上就 312/發明說明書(補件)/92-05/92103869 3 %以上。 提高,則蝕 只要使(2 2 0 金,改變其 面與(2 2 0 ) 查。 α射線之 X 0 )、(2 2 0)、 ,經由將各 強度之下式 ) :分強度 理論積分強 劑,經曝光 蝕刻以形成 延方向的孔 f勺評價。又, 無問題。 593699 又,上述之鈾刻因子(亦即蝕刻深度/橫方向的蝕刻量) 可經由此試驗測定。 結果示如圖1。 隨著(2 ◦ 0 )面的聚集度的增加,孔徑的參差也增大, 惟,只要使(2 2 0 )面的聚集度爲 2 ◦ %以下,則孔徑的參 差可在15//m以下。 其理由,可作如下的推測。 鈾刻特性的參差,主要是因於薄板面內分布著結晶方 位相異的部分,經蝕刻穿孔之孔的形狀係因於結晶方位 之相異而產生。欲提高蝕刻速度,可設法使(2 G Q )面高 聚集化,是所習知的。然而,即使是(2 0 0 )面的聚集度 相同的材料,亦存在有孔徑的參_差大者及參差小者。於 孔徑的參差大者,於(2 0 0 )面以外之(2 2 0 )面的聚集度 也高,薄板面內的(2 0 0 )面較多的部分易於穿孔成爲菱 形的形狀,於(2 2 0 )面多的部分則易沿壓延的直角方向 穿孔成長的橢圓形狀,致孔徑的參差加大。因而,只要 使(2 2 0 )面的聚集度降低,則可使孔徑的參差較小。 3 .製造方法 本發明之低熱膨脹合金薄板,可如下製造:對具有上 述本發明範圍內的成分之熱軋製板至少反覆進行i次以 上之冷軋製與再結晶退火,並於最終再結晶退火之後, 再以3 0 %以下的冷延伸率進行冷軋製;且,最終再結晶 退火之前的冷軋製的冷延伸率爲6 5 %以上,並使最終再 結晶退火的溫度爲8 5 0 °C以上。尤其,使最終再結晶退 13 312/發明說明書(補件)/92-05/92103869 593699 火之前的冷軋製的冷^ + 斥延伸率爲6 5 %以上、最終再結晶退 火的溫度爲 8 5 0 °C以μ # M i:者,對於使(2 〇 〇 )面的聚集度成 爲 5 0 %以上以提高鈾功丨、击〜 _ 霍虫d速度,是有效果的。又,最終再 結晶退火後更進一乐丨、, 災t 戈以3 〇 %以下的冷延伸率進行冷軋製 者,於使(2 2 0 )面的憨隹a ^ ^ f 7丨/-从 J A集度成爲2 0 %以下以減小孔徑的 參差,是有效果的。 綜合上述’本發明之低熱膨脹合金薄板的製造方法之 流程,係爲「熱軋製板+ (冷軋製+再結晶退火)χ n (『 -1) >最終冷乳製」,必要時,亦可在最終冷軋製後進行 回火。 本發明之熱軋製板,可經由將上述成分的合金進行熔 製’以造塊法或連續鑄造法作成厚板之後,加熱至9 0 0 °c以上進行熱軋製而製得。於造塊法中,對鑄造塊依需 要在1 0 Q 0 °C以上進行均質化熱處理之後,進行分塊軋 製作成厚板。又’以連續鑄造法所製造之厚板,依需要 在1 Q Q 0 °C以上進行均質化熱處理之後,可進行熱軋製。 熱軋製,例如可於8 5 0〜9 5 0 °C的終軋溫度、6 5 0 ~ 8 0 0 t: 的捲繞溫度下施行。 又,熱軋製板,可經由酸洗或硏削以除去表面的垢層, 如上述般反覆進行至少1次以上的冷軋製與再結晶退火 之後,再行製作成板厚爲◦· 〇 5 ~ 0 · S mm程度的薄板。 (實施例) 將表1所示之成分的鋼A〜E以電爐熔製。鋼A~E,任 一者皆爲32%Ni-5%Co類型的鋼’於鋼D與E中添加有 14 312/發明說明書(補件)/92-05/921〇3869 593699 B。將造塊後的鋼,於1 1 5 G t以上進行均熱處理,並進 行分塊軋製作成厚板。對厚板之表面全體以硏磨機硏 削,力口熱後,在8 5 0〜9 5 0 °C的終軋溫度、6 5 ◦〜8 0 0 °C的 捲繞溫度下進行熱軋製,作成板厚2 ~ 4 mm的線圈狀的熱 軋製板(熱軋製線圈)。 對熱軋製線圈進行酸洗將表面的垢層除去,進行下述 1 )〜3 )般的冷軋製與退火,製作成板厚◦. 1 2 mm的薄板 線圈。 1)首先,以冷延伸率 20~65%進行冷軋製之後,於 7 Ξ〜1〇〇〇t:白勺^ g ® ±或T* 胃ϋ ^ JX ° 2 )然後,如表2所示,改變最終再結晶退火之前的 冷軋製之冷延伸率,進行冷軋製之後,於8 0 Ot或8 5 ◦ °C的最終再結晶退火溫度下進行最終再結晶退火。 3 )最後,如表2所示,以2 8 %或4 Q %爲最終冷軋製 的冷延伸率進行最終冷軋製。 然後,以上述方法,測定(2 0 Q )面與(2 2 Q )面的聚集 度、孔徑的參差及蝕刻因子。並以下述的方法測定熱膨 脹係數。此方法爲,將熱膨脹係數測定用之試驗片,自 薄板線圈的寬方向之中央部分採取,於壓製成形爲蔭罩 之前的熱處理(亦即,在A r環境中進行8 5 ◦ °C X 1 5分 均熱後施行氣體冷卻)後,經由光干涉式熱膨脹測定裝 置測定2 0〜1 0 0 °C之間的平均熱膨脹係數。 結果示如表2。 本發明例之薄板 A3-A6、B2、B3、C2、C3、Dl、E1, 15 312/發明說明書(補件)/92-05/92103869 593699 由於全部之(200)面的聚集度爲 50%以上,故蝕刻因子 達2 · 5以上,蝕刻速度快。又,由於(2 2 0 )面的聚集度 爲2 0 %以下,故孔徑的參差爲1 5 // m以下,蝕刻尺寸精 度優異。而且,熱膨脹係數也全部爲〇 . 7 X 1 0 _ 6 / °C以 下。尤其是,以降低C、Si、Μη、A1的量之鋼C及E 所製造之薄板C1、C2、C3、E1,可得到◦.5X1C)·6/ °C以下的熱膨脹係數。 另一方面,比較例之薄板Al、A2、A7、A8、Bl、C1, 由於(2Q0)面的聚集度未達50%,故蝕刻因子未達2.5, 因而蝕刻速度慢。又,薄板A 9、A 1 0,由於(2 2 0 )面的 聚集度超過2 Q %,故孔徑的參差超過1 5 μ m,蝕刻尺寸 精度差。 又,經添加B者,較未添加B者之孔徑的參差更小, 蝕刻尺寸精度更爲優異。 16 312/發明說明書(補件)/92-05/92103 869 593699 表1 (質量%) 鋼 Ni Co C Si Μη P S N A1 B A 31.7 4.7 0.0034 0.03 0.27 0.001 0.0006 0.0014 0.023 <0.0002 B 32.1 4.9 0.0158 0.16 0.34 0.004 0.0036 0.0067 0.084 <0.0002 C 32.2 5.0 0.0032 0.02 0 . 03 0.001 0.0007 0.0022 0.032 <0.0002 D 31.9 4 . 8 0.003 8 0.02 0.31 0.001 0.0007 0.0024 0.024 0.0017 E 31.9 4.9 0.0039 0.01 0.08 0.001 0 . 0008 0 . 0031 0.028 0 . 0015 17 312/發明說明補件)/92-05/92103 869 593699 備考 ί |比較例 發明例 比較例 發明例 比較例 發明例 錄一 迭Ρ ink \ CLE3 U? 鐘'〇 VD VD VD VD V£) \D VD VD Γ- m m m LD 〇 〇 〇 O 〇 〇 〇 〇 O 〇 〇 ο o O O O o 〇 蝕刻因子 ch fN 00 rH 寸 VO n H (N σ\ r〇 H I> rH CN σ\ m 00 〇 rH 03 (M ro Γ0 ro CN CM m ON CM Γ0 CM OQ m OJ m 蝕刻孔徑 的參差 ("m) VD kD H 00 寸 o rH LD CN rH rH 寸 rH L0 寸 CN o tH 00 o rH CM if) rH rH Γ Η KD 00 VD o rH 00 03 rH CM CO CM rH tH (Ti fNJ rH 00 r- 00 (220)面 !聚集度 ί (%) CO rH LD tH r- rH Γ0 00 CM \D (N 03 寸 03 rH (N CN rH 寸 H if) ro tH Ch VD 寸 rH (200)面 聚集度 (%) CN CN rH P〇 寸 L0 (N r- m 00 \O σ\ m 寸 H (N rH If) 00 r- σ\ 03 fN LD 00 VD Γ0 ro 00 in r- 卜 rH ID ① LD 藏紧一 «S 00 (N 00 (N 00 OJ 00 (N 00 fN CO CN 00 (M O 寸 o 寸 o 寸 00 (N 00 CN 00 CN CO (N CO 03 00 03 CO CN CO CN 最終再結晶 退火溫度 (°C) I 850 850 850 850 850 850 800 850 850 850 850 850 850 850 850 850 850 850 褂 煺:闺一 ϋΚ o Γ0 o m LD VD LD 00 o Ch m σ\ 00 o LO Ln 00 in σ» o LD o LD 00 o m o LD 00 o 〇 f: ί PQ U Q ω 薄板 H < (N < m < 寸 < m < VD < < 00 < <T\ < A10 rH CQ CN PQ Γ0 PQ H U CM u m 〇 rH P rH ω 001 69οοεοΙ(Ν6/ςο-36/(φ}«)_κ^κ®/π e 593699 【圖式簡單說明】 圖1爲顯示(2 ◦ 0 )面與(2 2 0 )面的聚集度與蝕刻孔徑的 參差之間的關係之圖。 19 312/發明說明書(補件)/92-05/92103869If Si: Si exceeds 0.3%, the blackened portion of the shadow mask 312 / Invention Specification (Supplement) / 92-05 / 92103869 will be added, and it will be necessary to add a low thermal expansion coefficient, which is indispensable to reduce the expansion system. , Η η is effective, and because of this, the system is determined to be good in low steel. And if the heat is more than required, the rationality will become 10 593699, and the coefficient of thermal expansion will increase. Therefore, the amount of s i is set to Q · 3% or less. In the case where a lower thermal expansion coefficient is required, it is preferably 9.0% or less. p: If p exceeds 0 · ◦ 1%, the etching characteristics are deteriorated. Therefore, the amount of p is set to 0.01% or less. S: If s exceeds Q · 0.05%, sulfide precipitation will cause deterioration in thermal workability. Therefore, the amount of S is determined to be not more than 5%. Coexistence of N · N and A 1 and other elements causes nitride formation to deteriorate hot workability and deteriorate etching characteristics. This tendency is more significant when the amount of N exceeds 0.1%. Therefore, the amount of N is set to 0.001% or less. The remaining part of it can be a consistent Fe. Furthermore, if B is added, the variation in the etched hole diameter can be further reduced. I think this is because the B-grain boundary segregation reduces the corrosion rate of the grain boundary ’, which reduces the difference between the corrosion rate (ie, the etching rate) between the grain boundary and the grain. Also, 'B' can suppress the clustering of crystal grains in a specific orientation through its graining effect, so that variations in the etching rate of the etching holes can be reduced, and dimensional accuracy can be improved. For this purpose, B must be at least 0 · 0 0 0 5%, but if it exceeds 0 · Q Q 3 Q%, the adhesion of the blackened film to the blackening treatment is reduced. Therefore, in the case of adding B, the amount of B is 0.0005-0.0030% ° 2. The degree of aggregation of the (200) plane and (220) plane is as described above, and the degree of aggregation of the (200) plane can make the board The increase in the etch rate in the thick direction can increase the uranium etching factor. If considering the productivity of the actual etching process, the uranium etching factor must be 2.5 or more. 312 / Invention Specification (Supplement) / 92-05 / 92103869 593699 For this purpose, the degree of aggregation of the (2 0 Q) plane It is necessary to make it 5 < Generally, if the degree of aggregation of the (2 0 Q) plane is made as described above, the variation in the aperture diameter will increase. However, as shown below, if the degree of aggregation of the surface is reduced, the variation in the pore diameter can be reduced. The various manufacturing conditions of the alloys with the above-mentioned components within the scope of the present invention were used to manufacture various alloy sheets. The relationship between the degree of aggregation of the (2 0 0) plane and the variation in the pore diameter was adjusted. (2 0 0 The degree of aggregation of the) plane is determined by diffracting with M ο K rays to measure the integrated intensity of the 7 planes (1 1 1), (2 0 (311), (331), (420), (422) of the austenite The intensity of the surface is divided by the theoretical integral (1) of the sample with an irregular orientation. (200) The degree of aggregation of the surface (%) = {i (200) / I (200)} / {Σ i (hkl) / I (hkl)} x 1 00 (1 i (hk 1): the measured product of the (hk 1) plane of the measured sample I (hk 1): the degree of the (hk 1) plane of the random sample IJ orientation : The degree of aggregation of the 7-side and (2 2 〇) -side is also determined in the same way. The etching characteristics are obtained by coating a thin plate sample with a photoresist, and then removing a part of the photoresist, and using F e C 1 3 made 10 hemispherical holes. After removing the photoresist film, the diameter was measured. The difference between the largest and smallest pore diameters was used as the pore diameter difference E. If the difference did not reach 1 5 // m, such a difference was less than Practically 312 / Invention Specification (Supplement) / 92 -05/92103869 3% or more. If it is increased, the eclipse only needs to make (2 2 0 gold, change its surface and (2 2 0) check. X-ray of α-rays), (2 2 0), and (Formula below): Theoretical integral strength agent is divided into two parts and evaluated by exposure etching to form holes in the extension direction. Again, there is no problem. 593699 The uranium engraving factor (ie, etching depth / etching amount in the horizontal direction) may be The results of this test are shown in Fig. 1. As the degree of aggregation of the (2 ◦ 0) plane increases, the variation in the pore diameter also increases. However, as long as the degree of aggregation of the (2 2 0) plane is 2 ◦% or less The variation in the pore diameter can be below 15 // m. The reason can be inferred as follows. The variation in the uranium etching characteristics is mainly due to the fact that parts with different crystal orientations are distributed in the sheet surface, and the holes are etched and perforated. The shape is caused by the difference in crystal orientation. To increase the etching speed, it is known to increase the aggregation of the (2 GQ) plane. However, even the degree of aggregation of the (2 0 0) plane is the same. There are also materials with large and small pore diameters. Those with large pore diameters The degree of aggregation of the (2 2 0) plane other than the (2 0 0) plane is also high. The part with more (2 0 0) planes within the thin plate surface is easy to perforate into a rhombus shape, and there are many on the (2 2 0) plane The elliptical shape that is easily perforated in the right-angle direction of the calendering portion increases the variation of the pore diameter. Therefore, as long as the aggregation degree of the (2 2 0) plane is reduced, the variation of the pore diameter can be made smaller. 3. Manufacturing method The low thermal expansion alloy sheet of the present invention can be manufactured as follows: a hot-rolled sheet having a composition within the scope of the present invention is repeatedly subjected to cold rolling and recrystallization annealing at least i times, and finally recrystallized After annealing, cold rolling is performed at a cold elongation of 30% or less; and the cold rolling elongation of cold rolling before final recrystallization annealing is 65% or more, and the final recrystallization annealing temperature is 8 5 Above 0 ° C. In particular, the final recrystallization was depreciated 13 312 / Invention Specification (Supplement) / 92-05 / 92103869 593699 The cold rolling cold rolling before fire ^ + repellence elongation was 65% or more, and the final recrystallization annealing temperature was 8 At 50 ° C, μ # M i: It is effective to increase the degree of aggregation of the (200) plane to more than 50% to increase the uranium function and the speed of the d. In addition, after the final recrystallization annealing, it is further improved. Those who perform cold rolling at a cold elongation of 30% or less will make 憨 隹 a ^ ^ f 7 丨 /-on the (2 2 0) plane. It is effective to reduce the variation in pore diameter from JA concentration to less than 20%. In summary, the process of the method for manufacturing the low thermal expansion alloy sheet of the present invention is "hot rolled sheet + (cold rolling + recrystallization annealing) x n (" -1) > final cold milking ", if necessary) , Can also be tempered after the final cold rolling. The hot-rolled sheet of the present invention can be produced by melting the alloy of the above-mentioned composition 'into a thick sheet by the agglomeration method or the continuous casting method, and then heating it to a temperature of 900 ° C or higher for hot rolling. In the agglomeration method, the ingot is subjected to a homogenization heat treatment above 10 Q 0 ° C as required, and then subjected to block rolling to produce a thick plate. In addition, thick plates manufactured by the continuous casting method can be subjected to hot rolling after homogenizing heat treatment at 1 Q Q 0 ° C or more as necessary. Hot rolling can be performed, for example, at a final rolling temperature of 850 to 950 ° C and a coiling temperature of 650 to 800 t. In addition, the hot-rolled sheet can be removed by pickling or honing to remove the scale layer on the surface. After the cold rolling and recrystallization annealing are repeated at least once as described above, the sheet thickness can be made to be ◦ · 〇 5 to 0 · S mm. (Example) Steels A to E having the components shown in Table 1 were melted in an electric furnace. The steels A to E, each of which is a 32% Ni-5% Co type steel, are added to steels D and E 14 312 / Invention Specification (Supplement) / 92-05 / 921〇3869 593699 B. The agglomerated steel is subjected to soaking treatment at a temperature of 1 15 G t or more, and is subjected to block rolling to produce a thick plate. The entire surface of the thick plate is honed with a honing machine. After hot rolling, hot rolling is performed at a final rolling temperature of 8 500 to 95 ° C, and a coiling temperature of 6 5 to 8 0 ° C. It is made into coil-shaped hot-rolled sheet (hot-rolled coil) with a thickness of 2 to 4 mm. The hot-rolled coil is acid-washed to remove the scale layer on the surface, and cold-rolled and annealed as follows 1) to 3) to produce a thin-plate coil having a thickness of 12 mm. 1) First, after cold rolling at a cold elongation of 20 to 65%, at 7 7 to 10000 t: ^ g ® ± or T * stomach ϋ JX ° 2) Then, as shown in Table 2 It is shown that the cold elongation of cold rolling before the final recrystallization annealing is changed. After cold rolling, the final recrystallization annealing is performed at a final recrystallization annealing temperature of 80 Ot or 85 ° C. 3) Finally, as shown in Table 2, final cold rolling was performed with a cold elongation of 28% or 4 Q% as the final cold rolling. Then, the degree of aggregation of the (2 0 Q) plane and the (2 2 Q) plane, the variation in the pore diameter, and the etching factor were measured by the methods described above. The thermal expansion coefficient was measured by the following method. In this method, a test piece for measuring the coefficient of thermal expansion is taken from the central portion in the width direction of the sheet coil, and is subjected to a heat treatment before being pressed into a shadow mask (that is, performed in an Ar environment at 8 5 ◦ ° CX 1 5 Gas cooling is performed after isothermal heating), and then the average thermal expansion coefficient between 20 ° C and 100 ° C is measured by an optical interference type thermal expansion measuring device. The results are shown in Table 2. Sheets A3-A6, B2, B3, C2, C3, Dl, E1, 15 312 / Invention Specification (Supplements) / 92-05 / 92103869 593699 for all examples of the present invention, because the degree of aggregation of all (200) faces is 50% Above, the etching factor is 2.5 or more, and the etching speed is fast. In addition, since the degree of aggregation of the (2 2 0) plane is 20% or less, the variation in the pore diameter is 15 / m or less, and the etching size accuracy is excellent. In addition, all the coefficients of thermal expansion are 0.7 X 1 0 _ 6 / ° C or less. In particular, for thin plates C1, C2, C3, and E1 made of steels C and E that reduce the amount of C, Si, Mn, and A1, a thermal expansion coefficient of ◦. 5 × 1C) · 6 / ° C or less can be obtained. On the other hand, in the thin plates Al, A2, A7, A8, Bl, and C1 of the comparative example, since the degree of aggregation of the (2Q0) plane was not more than 50%, the etching factor was less than 2.5, and the etching rate was slow. In addition, for the thin plates A9 and A1 0, since the degree of aggregation of the (2 2 0) plane exceeds 2 Q%, the variation in the pore diameters exceeds 15 μm, and the accuracy of the etching dimensions is poor. In addition, the variation of the pore diameters was smaller with the addition of B, and the etching dimension accuracy was more excellent. 16 312 / Invention Specification (Supplement) / 92-05 / 92103 869 593699 Table 1 (mass%) Steel Ni Co C Si Mn PSN A1 BA 31.7 4.7 0.0034 0.03 0.27 0.001 0.0006 0.0014 0.023 < 0.0002 B 32.1 4.9 0.0158 0.16 0.34 0.004 0.0036 0.0067 0.084 < 0.0002 C 32.2 5.0 0.0032 0.02 0 .03 0.001 0.0007 0.0022 0.032 < 0.0002 D 31.9 4. 8 0.003 8 0.02 0.31 0.001 0.0007 0.0024 0.024 0.0017 E 31.9 4.9 0.0039 0.01 0.08 0.001 0. 0008 0. 0031 0.028 0. 0015 17 312 / Inventive Supplement) / 92-05 / 92103 869 593699 Remarks | Comparative Examples Invention Examples Comparative Examples Invention Examples Comparative Examples Recorded ink \ CLE3 U? Clock '〇VD VD VD VD V £) \ D VD VD Γ- mmm LD 〇〇〇O 〇〇〇〇〇 〇〇ο o o o o etch factor ch fN 00 rH inch VO n H (N σ \ r〇H I > rH CN σ \ m 00 〇rH 03 (M ro Γ0 ro CN CM m ON CM Γ0 CM OQ m OJ m Variation of etching aperture (" m) VD kD H 00 inch o rH LD CN rH rH inch rH L0 inch CN o tH 00 o rH CM if) rH rH Γ Η KD 00 VD o rH 00 03 rH CM CO CM rH tH (Ti fNJ rH 00 r- 00 (220) planes! Aggregation degree ί (%) CO rH LD tH r- rH Γ0 00 CM \ D (N 03 inch 03 rH (N CN rH inch H if) ro tH Ch VD inch rH (200) plane Aggregation (%) CN CN rH P〇 inch L0 (N r- m 00 \ O σ \ m inch H (N rH If) 00 r- σ \ 03 fN LD 00 VD Γ0 ro 00 in r- -rH ID ① LD Hidden «S 00 (N 00 (N 00 OJ 00 (N 00 fN CO CN 00 (MO inch o inch o inch 00 (N 00 CN 00 CN CO (N CO 03 00 03 CO CN CO CN Annealing temperature (° C) I 850 850 850 850 850 850 850 800 850 850 850 850 850 850 850 850 850 850 850 850 Gown: 闺 一 ϋΚ o Γ0 om LD VD LD 00 o Ch m σ \ 00 o LO Ln 00 in σ »O LD o LD 00 omo LD 00 o 〇f: ί PQ UQ ω sheet H < (N < m < inch < m < VD < < 00 < < T \ < A10 rH CQ CN PQ Γ0 PQ HU CM um 〇rH P rH ω 001 69οοεοΙ (Ν6 / ςο-36 / (φ) «) _ κ ^ κ® / π e 593699 [Simplified description of the figure] Figure 1 shows the display (2 ◦ 0) A graph showing the relationship between the degree of aggregation of the plane and the (2 2 0) plane and the variation in the etching aperture. 19 312 / Invention Specification (Supplement) / 92-05 / 92103869

Claims (1)

593699 ,一593699, a 93. 5. 12 替換本 1 · 一種低熱膨脹合金薄板,其係包含有實質上以質量% 計之 Ni:30〜34%、 C〇:2〜6%、 Mn:0.6%以下、Al:〇1%m 下、C : 0 · 0 2 %以下、S i : 0 · 3 %以下、p : 〇 · 〇丄%以下、 5 : 0 · 0 0 5 *以下、N: 0 · 以下,其餘部分爲由Fe所構成, 且,(2〇〇)面的聚集度爲50%以上,蝕刻因子達2.5以上, (22〇)面的聚集度爲20%以下,孔徑的參差爲15//m以下 者。 2 ·如申請專利範圍第1項之低熱膨脹合金薄板,其係含 有以質量 % 目十之 Μη:0·01~0·1%、Α1:〇·〇〇5〜0.04%、 C:0.005%以下、Si:0.09% 以下者。 3 ·如申請專利範圍第i項之低熱膨脹合金薄板,其係進 一步含有以質量%計之Β:0·0005~0·0030%者。 4 ·如申請專利範圍第2項之低熱膨脹合金薄板,其係進 一步含有以質量%計之Β:0·0005~0.0030%者。 5 . —種低熱膨脹合金薄板之製造方法,其特徵在於,係 具有: 對具有申請專利範圍第1至4項中任一項的成分之熱乳 製板至少反覆進行1次以上之冷軋製與再結晶退火的步 驟;與 於上述最終之再結晶退火之後,進一步以3 0 %以下的冷 延伸率進行冷軋製的步驟; 而且,上述最終再結晶退火之前的冷軋製的冷延伸率爲 6 5 %以上,上述最終再結晶退火的溫度爲8 5 0 °C以上。 20 326\總檔\92\92103869\92103869(替換)-293. 5. 12 Replacement 1 · A low thermal expansion alloy sheet containing Ni: 30 to 34%, C0: 2 to 6%, Mn: 0.6% or less, and Al: 〇 1% m, C: 0 · 02% or less, Si: 0 · 3% or less, p: 〇 · 〇 丄% or less, 5: 0 · 0 0 5 * or less, N: 0 · or less, the rest It is composed of Fe, and the degree of aggregation of the (200) plane is 50% or more, the etching factor is 2.5 or more, the degree of aggregation of the (22〇) plane is 20% or less, and the pore diameter variation is 15 // m or less By. 2 · The low thermal expansion alloy sheet according to item 1 of the scope of the patent application, which contains Mn: 0.01 ~ 0.1%, A1: 0.005 ~ 0.04%, C: 0.005% by mass%. Below, Si: 0.09% or less. 3. If the low thermal expansion alloy sheet according to item i of the patent application scope, it further contains B: 0 · 0005 ~ 0030% by mass%. 4 · If the low thermal expansion alloy sheet according to item 2 of the patent application scope, it further contains B: 0 · 0005 ~ 0.0030% by mass%. 5. A method for manufacturing a low thermal expansion alloy sheet, comprising: cold rolling a hot-rolled sheet with a component having any one of the scope of claims 1 to 4 at least once or more A step of annealing with recrystallization; a step of cold rolling with a cold elongation of 30% or less after the final recrystallization annealing; and a cold elongation of cold rolling before the final recrystallization annealing The temperature is 65% or more, and the temperature of the final recrystallization annealing is 850 ° C or more. 20 326 \ Total file \ 92 \ 92103869 \ 92103869 (Replace) -2
TW92103869A 2002-02-25 2003-02-25 Low thermal expansion alloy sheet and method for manufacturing the same TW593699B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002047477A JP2003247048A (en) 2002-02-25 2002-02-25 Low thermal expansion alloy thin sheet having excellent etch rate and etch precision and production method thereof

Publications (2)

Publication Number Publication Date
TW200303928A TW200303928A (en) 2003-09-16
TW593699B true TW593699B (en) 2004-06-21

Family

ID=27750695

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92103869A TW593699B (en) 2002-02-25 2003-02-25 Low thermal expansion alloy sheet and method for manufacturing the same

Country Status (3)

Country Link
JP (1) JP2003247048A (en)
TW (1) TW593699B (en)
WO (1) WO2003070996A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6058045B2 (en) * 2014-07-02 2017-01-11 新報国製鉄株式会社 High rigidity low thermal expansion casting and method for producing the same
KR102244229B1 (en) * 2016-09-29 2021-04-26 히타치 긴조쿠 가부시키가이샤 Manufacturing method of Fe-Ni alloy thin plate and Fe-Ni alloy thin plate
JP2020045564A (en) * 2018-09-13 2020-03-26 日立金属株式会社 Fe-Ni-BASED ALLOY THIN SHEET

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158438A (en) * 1989-11-17 1991-07-08 Yamaha Corp Fe-ni-co alloy for shadow mask
US5396146A (en) * 1992-04-27 1995-03-07 Hitachi Metals, Ltd. Shadow mask sheet, method of producing same and cathode ray tube provided therewith
JPH09157799A (en) * 1995-10-05 1997-06-17 Hitachi Metals Ltd Ferrum-nickel shadow mask blank having excellent etching property and ferrum-nickel shadow mask material having excellent moldability as well as production of shadow mask

Also Published As

Publication number Publication date
JP2003247048A (en) 2003-09-05
TW200303928A (en) 2003-09-16
WO2003070996A1 (en) 2003-08-28

Similar Documents

Publication Publication Date Title
TW593699B (en) Low thermal expansion alloy sheet and method for manufacturing the same
JPH08209306A (en) Iron-nickel alloy with low coefficient of thermal expansion
CN1662669A (en) Low-thermal expansion alloy thin sheet and its manufacturing method
WO2019244962A1 (en) Fe-ni-based alloy thin plate
JP3348565B2 (en) Method of producing Fe-Ni-based alloy thin plate for electronic parts and Fe-Ni-Co-based alloy thin plate excellent in degreasing property
TW200305653A (en) Low thermal expansion alloy sheet and method for manufacturing the same
US20050067067A1 (en) Method for producing a metal strip from an iron-nickel alloy for tensioned shadow masks
JPH0798975B2 (en) Method for producing Fe-Ni alloy
JP2002194440A (en) METHOD FOR PRODUCING Fe-Ni BASED ALLOY MATERIAL FOR PRESS FORMING TYPE FLAT MASK
JP2003253398A (en) Low thermal-expansion alloy thin-sheet with excellent etching rate and etching precision, and manufacturing method therefor
TWI243857B (en) Fe-Ni based alloy for press forming die flat mask and flat mask and color cathode-ray tube using the same
TW565622B (en) Low thermal expansion alloy sheet and method for manufacturing the same
JP3430926B2 (en) Steel plate for CRT inner frame and method of manufacturing the same
JP3401307B2 (en) Material for shadow mask excellent in recrystallization characteristics and manufacturing method
JP2909299B2 (en) Material for high-definition shadow mask, mask material and manufacturing method thereof
TW200400272A (en) Low thermal expansion alloy sheet and method for manufacturing the same
JPH0995740A (en) Production of low thermal expansion alloy thin sheet excellent in sheet shape and thermal shrinkage resistance
JP2597971B2 (en) Shadow mask
JPH0456107B2 (en)
JPH09268348A (en) Fe-ni alloy sheet for electronic parts and its production
JPH07268558A (en) Austenitic fe-ni alloy original sheet for shadow mask and its production
JP3401308B2 (en) Shadow mask material excellent in warm pressability and manufacturing method
JP3793131B2 (en) Method for manufacturing mask material for color picture tube
JP3251691B2 (en) Fe-Ni alloy material for lead frame and manufacturing method
JP2004300573A (en) Thin steel sheet excellent in ordinary temperature delayed aging property and baking hardenability, and its production method