TW584873B - Permanent magnet, the magnetic core using it as the magnetic-biased magnet, and the inductance member using the same - Google Patents

Permanent magnet, the magnetic core using it as the magnetic-biased magnet, and the inductance member using the same Download PDF

Info

Publication number
TW584873B
TW584873B TW90122219A TW90122219A TW584873B TW 584873 B TW584873 B TW 584873B TW 90122219 A TW90122219 A TW 90122219A TW 90122219 A TW90122219 A TW 90122219A TW 584873 B TW584873 B TW 584873B
Authority
TW
Taiwan
Prior art keywords
magnet
magnetic
resin
core
powder
Prior art date
Application number
TW90122219A
Other languages
Chinese (zh)
Inventor
Teruhiko Fujiwara
Masayoshi Ishii
Haruki Hoshi
Keita Isogai
Hatsuo Matsumoto
Original Assignee
Nec Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Tokin Corp filed Critical Nec Tokin Corp
Application granted granted Critical
Publication of TW584873B publication Critical patent/TW584873B/en

Links

Abstract

The magnetic core provided with the superior direct current overlap characteristic and the core-loss characteristic can be obtained by properly arranging the magnet for bias in the gap of the magnetic core. The magnet is the bond magnet made of magnetic powder and the resin, and the volume ratio of the resin contents is above 20%, resistance coefficient is above 0.1 Omega.cm. And the magnetic powder used is the rare-earth magnetic powder with intrinsic permeability above 5 Koe, Curie Point Tc above 300 DEG C and the average grain diameter from 2.0 mum to 50 mum. When it is used as the magnetic core of the inductance member treated by the reflow-soldering, the Sm-Co magnetic powder of resin content above 30%, the intrinsic permeability (when used as magnetic powder) above 10 Koe, the Curie Point Tc above 500 DEG C and the average grain diameter above 2.5 mum is used. When it is used as the small-sized inductance member, the thin sheet magnet of the thickness under 500 mum can be realized.

Description

584873 五、 發明說明 ( 1 : ) [ 發 明所 屬 技 術 領 域 ] 本 發 明 係 爲 有 關 使用 於 扼 流 圈 或 變 壓 器 等之電 感 構 件 之 磁 心 意 即 磁 性 鐵 心 ( 以 下 5 單 稱 之 爲 厂 鐵心」 ) 之 偏 磁 用 的 永 久 磁 鐵 〇 另 外 本 發 明 係 爲 有 關 將 永久磁 鐵 作 爲 偏 磁 用 磁 鐵 以 及 使 用 該 磁 性 鐵 心 之 電 感 構‘ 件。 [ 習 知技 術 ] 過 去 以 來 例如 在 開 關 電 源 等 所使用 之 扼流圈 以 及 變 壓 器 之 中 一 般 , 交 流 係 重 疊 於 直 流 以 被 施 加。從而 9 於 該 等 扼 流 圈 以 及 變 壓 器 中所使 用 的 磁 性 鐵 心 ,可求 得 相 對 於 該 直 流 重 疊 爲 ^firr τπτ 磁 性 飽 和 、 且 透 磁 率 特性 (該種 特性係 稱 之 爲 厂 直 流 重 疊 特性 j 或 是 單 稱 爲 厂 重 疊 特性」 ) 爲 佳 之 產 品 〇 雖 爲 使用 肥 粒 鐵 磁 性 鐵 心 或 壓 粉 磁 性 鐵 心來作 爲 高 頻 用 之 磁 性 鐵 心 然 而 j 此 種 材料特性卻 向 來有肥粒 鐵 磁 性 鐵 心係 爲 初 透 磁 率 爲 較 局 而 飽 和 磁 數 密 度 爲 較小, 且 壓 粉 磁 性 鐡 心係 爲 初 透 磁 率 爲 較 低而 飽 和 磁 數 密 度爲較 大 之特 徵 〇 從而 y 壓 粉 磁 性 鐵 心係 多 採 用 壞 形形狀 。另一 方面 9 在 肥 粒 鐵 磁 性 鐵 心 的 情 況下 例如於 E 型 鐵 心之下支持部形 成 磁 性 空 隙 ( 磁 性間 隙 ) 藉 由 直 流 重 疊 而用以 進 行 迴 避 磁 性 飽 和 Ο 然 而 5 伴 隨 著 近年來 電 子 機 器 小 型 化 的 請求, 進 而 要 求 電 子 零 件 的小型化 磁 性 鐵 心 之 磁 性 間 隙 亦不得 不 要 求 到 最 小 限 度 , 相 對 於 直 流 重 疊 爲 -3. 強 烈 要 求 更 尚透磁 率 之 磁 性 584873 五、發明說明(2) 鐵心。 相對於此種要求,一般係必須選擇飽和磁化較高之磁性 鐵心、亦即必須得選擇在高磁場下選擇不致產生磁性飽和 之磁性鐵心。但,飽和磁化係爲在材料的組成下爲必然的 結果,而並未有可無限提高之物。 作爲該種解決方法,過去以來係提案有,將永久磁鐵配 置在設置有磁性鐵心之磁路的磁性間隙上,藉由直流重疊 而用以抵消直流磁場,亦即於磁性鐵心中給予偏磁。 使用此種永久磁鐵之偏磁方法,在提昇直流重疊特性方 面爲屬優越方法,然而,在另一方面,在使用金屬燒結磁 鐵後磁性鐵心之鐵心損耗便會明顯的增大,或是在使用肥 粒鐡鐵心後其重疊特性便無法安定,故而係相當無法實用 化之製品。 作爲該等問題之解決方式,係揭示有如日本專利公開第 昭50 — 133453號中’使用將保磁力較局之稀土類磁鐵粉 末與膠粘劑經混合壓縮後所形成之結合磁鐵來作爲偏磁用 永久磁鐵,藉此,而可改善直流重疊特性及鐵心溫度之上 昇。 然而,近年來,對於電源之電力變化效率之提昇的要求 可說是趨近於更爲嚴格,即使針對於扼流圈用以及變壓器 用之磁性鐵心,係僅能夠單純測定鐵心溫度而形成無法判 斷優劣之等級。爲此,不可或缺的是以鐵心損耗測定裝置 來求出之測定結果之判斷,在本案發明者們實際進行檢討584873 V. Description of the invention (1:) [Technical field to which the invention belongs] The present invention relates to the magnetic core of the inductive components used in chokes or transformers, that is, the magnetic core (hereinafter referred to as "factory core" 5) Permanent magnets for magnetic use. The present invention relates to an inductive component using a permanent magnet as a magnet for bias magnets and the magnetic core. [Knowledge] In the past, for example, in chokes used in switching power supplies and transformers, AC currents were superimposed on direct currents to be applied. Therefore, the magnetic cores used in these chokes and transformers can obtain ^ firr τπτ magnetic saturation with respect to the DC overlap, and the permeability characteristics (this kind of characteristic is called the factory DC overlap characteristic j or It is simply called the factory overlap characteristic. ") The better product. 0 Although it uses a ferrite core or a powder magnetic core as a high frequency magnetic core, j This material characteristic has always been a ferrite core. The initial magnetic permeability is relatively local and the saturation magnetic number density is small, and the powder magnetic core system has the characteristics of low initial magnetic permeability and large saturated magnetic number density. Therefore, the y powder magnetic core system is often used in bad conditions. Shape. On the other hand, in the case of a ferrite core with a ferrite core, for example, a magnetic gap (magnetic gap) is formed at the support portion under the E-type core, and DC saturation is used to avoid magnetic saturation. 0 However, with the recent miniaturization of electronic devices The request for miniaturization further requires the miniaturization of the magnetic core of the electronic component. The magnetic gap of the magnetic core must also be minimized, which is -3 compared to the DC overlap. Stronger magnetic permeability is still required 584873. 5. Description of the invention (2) Iron core. In contrast to this requirement, it is generally necessary to choose a magnetic core with a high saturation magnetization, that is, a magnetic core that does not cause magnetic saturation under high magnetic fields must be selected. However, the saturation magnetization is an inevitable result under the composition of the material, and there is nothing that can be infinitely improved. As such a solution, proposals have been made in the past that a permanent magnet is arranged on a magnetic gap provided with a magnetic circuit of a magnetic core, and a DC magnetic field is canceled by direct current superimposition, that is, a magnetic bias is provided in the magnetic core. The bias method using this kind of permanent magnet is an excellent method to improve the DC superposition characteristic. However, on the other hand, the core loss of the magnetic core will be significantly increased after the metal sintered magnet is used, or it is in use. The superposition characteristics of the fertilized iron core cannot be stabilized, so it is a product that cannot be practically used. As a solution to these problems, as disclosed in Japanese Patent Laid-Open No. Sho 50-133453, the use of a combined magnet formed by mixing and compressing a rare earth magnet powder with a weaker coercivity and an adhesive is used as a permanent magnet for biasing. The magnet can improve the DC superposition characteristic and the core temperature rise. However, in recent years, the requirements for the improvement of the efficiency of the power change of the power supply can be said to be more stringent. Even for magnetic cores for chokes and transformers, it can only be determined by simply measuring the core temperature and cannot be judged. Pros and cons. For this reason, it is indispensable to judge the measurement result obtained by the core loss measurement device, and the inventors of this case actually conducted a review

-4- 584873 五、發明說明(3) 的結果下’闡明了在日本專利公開第昭5 〇 一 1 3 3 4 5 3號所 示,於電阻率之値下,係會造成鐵心損耗特性之惡化。 又’伴隨於近年來電子機器的小型化,而日趨要求電感 構件之小型化,從而,亦再度要求偏磁用磁鐵之薄型化。 此外’近年來係以表面實裝形式之線圈爲其所要求,而 爲了表面實裝則需將線圈以回焊焊接處理來安裝。在該種 回焊條件下,則要求線圈之磁性鐵心的特性不致發生惡化 。另外,亦要求有磁鐵具有耐氧化性。 【發明所欲解決之問題】 本發明之課題,係爲在小型電感構件之磁路上至少於i 處以上具有間隙之磁性鐵心中,爲由該間隙兩端供給偏磁 ’而提供一種特別適用於作爲配置於該間隙附近之偏磁用 磁鐵之磁鐵。 【解決問題之手段】 在此’本發明之主要目的,係提供一種永久磁鐵,當作 爲使用磁性鐵心之偏磁用磁鐵時,可付與磁性鐵心優越的 直流重疊特性及鐵心損耗特性。 本發明之另一目的,係提供一種偏磁用之永久磁鐵,即 便是暴露在回焊(reflow)溫度下,亦不使磁性特性惡化 〇 本發明之進一步之目的,係提供具有優越的磁性特性與 鐵心損耗特性之磁性鐵心。 本發明之其他目的,係提供一種電感構件,爲使用具有-4- 584873 5. Under the result of the description of the invention (3), it is stated that, as shown in Japanese Patent Laid-Open No. 501-13 3 4 5 3, under the range of resistivity, it will cause core loss characteristics. deterioration. In addition, with the recent miniaturization of electronic devices, the miniaturization of inductive components has been increasingly demanded, and the thinning of magnets for bias magnets has been demanded again. In addition, in recent years, surface-mounted coils have been required, and for surface mounting, coils must be installed by reflow soldering. Under such reflow conditions, it is required that the characteristics of the magnetic core of the coil are not deteriorated. In addition, a magnet is also required to have oxidation resistance. [Problems to be Solved by the Invention] The problem of the present invention is to provide a magnetic core with gaps at least i above at least i on the magnetic circuit of a small inductive component, and to provide a magnetic bias that is particularly suitable for both ends of the gap. A magnet serving as a biasing magnet disposed near the gap. [Means for solving the problem] Here, the main object of the present invention is to provide a permanent magnet that can be used as a bias magnet for a magnetic core to provide superior DC superposition characteristics and core loss characteristics of the magnetic core. Another object of the present invention is to provide a permanent magnet for bias magnetism, which does not deteriorate the magnetic characteristics even when exposed to the reflow temperature. A further object of the present invention is to provide superior magnetic characteristics Magnetic core with core loss characteristics. Another object of the present invention is to provide an inductive component.

584873 五、發明說明(4) 優越的磁性特性與鐵心損耗特性之磁性鐵心。 【發明之開示】 依據本發明,係可獲得一種永久磁鐵,其特徵在於:使 磁鐵粉末分散於樹脂中,且具有0.1Ω · cm以上之比電阻 ,該磁鐵粉末係爲,固有保磁力爲5K0e以上、居里點Tc 爲3 00 °C以上、粉末粒徑爲150/zm以下。 在此,磁鐵粉末係爲,其粉末平均粒徑最佳爲2.0〜50 μ m。 於前述永久磁鐵中,前述樹脂含有量在體積比方面爲具 有20%以上爲最佳。 於前述永久磁鐡中,前述磁鐵粉末係以稀土類磁鐵粉末 爲最佳。 於前述永久磁鐵中,成形壓縮率達20%以上係爲最佳。 於前述永久磁鐵中,使用於其前述結合磁鐵之前述稀土 類磁鐵粉末中,係以添加有機矽烷偶合劑、鈦偶合劑爲最 佳。 於前述永久磁鐵中,於製作時係藉由使磁場配向而造成 異向性化爲最佳。 於前述永久磁鐵中,前述磁鐵粉末係以表面活性劑所包 覆爲最佳。 於前述永久磁鐵中,中心線平均粗度係爲以1 0 # Π1以下 最佳。 且,於前述永久磁鐵中,全體的厚度係爲以50〜1〇〇0〇 584873584873 V. Description of the invention (4) Magnetic core with superior magnetic characteristics and core loss characteristics. [Invention of the invention] According to the present invention, a permanent magnet can be obtained, which is characterized in that the magnet powder is dispersed in the resin and has a specific resistance of 0.1Ω · cm or more. The magnet powder has an inherent coercive force of 5K0e. Above, the Curie point Tc is above 300 ° C, and the powder particle size is below 150 / zm. Here, the magnet powder is such that the average particle diameter of the powder is preferably 2.0 to 50 μm. In the above-mentioned permanent magnet, the resin content is preferably 20% or more in volume ratio. In the permanent magnet, the magnet powder is preferably a rare earth magnet powder. Among the above-mentioned permanent magnets, a molding compression ratio of 20% or more is preferable. Among the aforementioned permanent magnets, it is preferable to use an organic silane coupling agent and a titanium coupling agent in the aforementioned rare earth magnet powder in which the aforementioned magnet is combined. Among the above-mentioned permanent magnets, the anisotropy is optimized by aligning the magnetic field at the time of fabrication. Among the above-mentioned permanent magnets, the above-mentioned magnet powder is preferably coated with a surfactant. In the aforementioned permanent magnet, the average thickness of the center line is preferably 10 # Π1 or less. In addition, in the aforementioned permanent magnet, the entire thickness is 50 to 100000 584873.

五、 發明說明(5) β m 爲 最佳。 在本 發明第1實施例中,永久磁鐵係以具有1 Ω • cm 以 上 之 比 電阻爲最佳。此外,係爲以模具成形或是熱 衝壓 所 製 造 〇 若 藉 由本發明之其他實施例時,永久磁鐵係爲於 全體 厚 度 爲 5 00 // m以下。在此情況下,係由樹脂與磁鐵 粉末 之 混 合 塗 料藉由刮片法(doctor blade )或印刷法等之 成膜 法 來 製 造 係爲最佳。此外,表面粗糙度(gross (光澤 度) ) 係以 達 25%以上爲最佳。 在 _、/一 刖 述永久磁鐵中,前述樹脂係以由聚丙稀樹脂、6 一 尼 龍 樹 脂、1 2 —尼龍樹脂、聚醯胺樹脂、聚乙烯樹 脂、 環 氧 樹 脂 中至少選擇一種爲最佳。 於 刖 述永久磁鐵中,在前述磁鐵的表面上係以被 覆上 耐 熱 溫 度 達120°C以上之樹脂、或是耐熱塗料係爲最佳。 於 刖 述永久磁鐵中,前述磁鐵粉末係以由SmCo NdFeB 、SmFeN中所選擇之稀土類粉末爲最佳。 藉 由 本發明所達成之於前述永久磁鐵之1個實施 例, 即 可 獲 得 具有下述特徵之永久磁鐵,即,前述磁鐵粉 末之 固 有保 磁 力達lOKOe以上,居里點達500°C以上,粉 末直 徑 爲 2. ,5 - 、5 0 // m 〇 於 藉 由前述第1實施例所達成之永久磁鐵中,前 述磁 鐵 粉 末係 爲以SmCo稀土類磁鐵粉末爲最佳。在此情 況下 , 刖 述 SmCo稀土類磁鐵粉末係以Sm ( CobalFe0.15 -7- 〜0.25 CV. Description of the invention (5) β m is the best. In the first embodiment of the present invention, the permanent magnet preferably has a specific resistance of 1 Ω • cm or more. In addition, it is made by mold forming or hot stamping. 〇 If other embodiments of the present invention are used, the permanent magnet is made to have an overall thickness of 5 00 // m or less. In this case, it is best to make the system from a mixed coating of resin and magnet powder by a film forming method such as a doctor blade method or a printing method. In addition, the surface roughness (gloss) is preferably at least 25%. Among the permanent magnets described above, the resin is preferably selected from at least one of polypropylene resin, 6-nylon resin, 12-nylon resin, polyamide resin, polyethylene resin, and epoxy resin. . Among the permanent magnets described above, the surface of the magnet is preferably coated with a resin having a heat-resistant temperature of 120 ° C or higher, or a heat-resistant coating. In the permanent magnet described above, the magnet powder is preferably a rare earth powder selected from SmCo NdFeB and SmFeN. According to one embodiment of the aforementioned permanent magnet achieved by the present invention, a permanent magnet having the following characteristics can be obtained, that is, the intrinsic coercive force of the aforementioned magnetic powder is above 10OKe, the Curie point is above 500 ° C, The diameter is 2.5, 5-, 50 / m. Among the permanent magnets achieved in the first embodiment, the magnet powder is preferably a SmCo rare earth magnet powder. In this case, the SmCo rare earth magnet powder is described as Sm (CobalFe0.15 -7- ~ 0.25 C

584873 五、發明說明(6) U〇.〇5 〜〇·〇6ΖΓ〇.〇2 〜。.03) 7.0〜8.5 爲取{土。 於藉由前述第1實施例所達成之永久磁鐵中,前述樹脂 含有量以在體積比方面達30%以上爲最佳。 於藉由前述第1實施例所達成之永久磁鐵中,前述樹脂 係以軟化點達2 5 0 °C以上之熱可塑性樹脂爲最佳。 於藉由前述第1實施例所達成之永久磁鐵中,前述樹脂 係以碳化點達25 0°C以上之熱硬化性塑膠爲最佳。 於藉由前述第1實施例所達成之永久磁鐵中,前述樹脂 係以由聚醯胺樹脂、聚亞醯胺樹脂、環氧樹脂、聚苯醚硫 化物樹脂、矽樹脂、聚酯樹脂、芳香族聚醯胺樹脂、液晶 聚合物中至少選擇一種爲最佳。 若藉由本發明之其他實施例時,係可獲得一種具有偏磁 用磁鐵之磁性鐵心,於至少有1處以上之磁路之磁性間隙 的磁性鐵心中,爲由該間隙兩端供給偏磁,而在具有配置 於該磁性間隙附近之偏磁用磁鐵之磁性鐵心裡,其特徵在 於:該偏磁用磁鐵係爲以本發明所得之前述永久磁鐵。 該磁性鐵心之前述磁性間隙係以具有約50〜1 0000 // m 之間隙長爲最佳,若藉由第1實施例時,前述磁性間隙係 具有大於約50〇v m之間隙長,此外,若藉由其他實施例 時’則述磁性間隙係爲約5 0 0 m以下之間隙長。 若藉由依據本發明之又一其他實施例時,係可獲得一種 電感構件’其特徵在於:於具有以本發明所得之前述偏磁 用磁鐵之磁性鐵心中,係可獲得具有一個至少施加有1轉584873 V. Description of the invention (6) U〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇2. .03) 7.0 ~ 8.5 is taken as {soil. In the permanent magnet achieved in the first embodiment, the resin content is preferably 30% or more in volume ratio. Among the permanent magnets achieved by the first embodiment, the resin is preferably a thermoplastic resin having a softening point of 250 ° C or more. Among the permanent magnets achieved in the first embodiment, the resin is preferably a thermosetting plastic having a carbonization point of 250 ° C or more. In the permanent magnet achieved in the first embodiment, the resin is made of polyamide resin, polyimide resin, epoxy resin, polyphenylene ether sulfide resin, silicone resin, polyester resin, and aromatic resin. It is best to select at least one of the group polyamidamine resin and the liquid crystal polymer. If other embodiments of the present invention are used, a magnetic core having a magnet for bias magnetism can be obtained. In a magnetic core having a magnetic gap with at least one magnetic circuit, at least one magnetic gap is supplied from both ends of the gap. In a magnetic core having a biasing magnet disposed near the magnetic gap, the biasing magnet is a permanent magnet obtained according to the present invention. The magnetic gap of the magnetic core is preferably a gap length of about 50 ~ 1 0000 // m. If the first embodiment is adopted, the magnetic gap has a gap length of more than about 50 vm. In addition, In other embodiments, the magnetic gap is a gap length of about 500 m or less. According to still another embodiment according to the present invention, an inductive component can be obtained. It is characterized in that in a magnetic core having the aforementioned magnet for bias magnet obtained by the present invention, it is possible to obtain 1 turn

584873 五、發明說明(7 ) (turn )以上之捲線。 【本發明較佳實施例之詳細說明】 以下,將本發明之實施例而參照圖面進行說明。 參照第1圖,有關本發明第1實施例之磁性鐵心係爲將 2個E型肥粒鐵鐵心2於相互對接之物。於2個E型肥粒 鐵鐵心2之下支持部間的接合面係留有間隙,於該間隙係 用以插入爲供給偏磁磁場之永久磁鐵1。 又’參照第2圖,係由對於第1圖之磁性鐵心實施捲線 3、而構成電感構件。 參照第3圖,係揭示有關本發明其他實施例之磁性鐵心 。該磁性鐵心係爲使用環型形狀之鐵粉心5。於該鐵粉心 之磁路係設置有間隙,且於該間隙中插入用以供給偏磁磁 場之永久磁鐵4。 此外參照第4圖,圖中所示係對於第3圖之磁性鐵心施 加捲線6而形成之電感構件。 本案發明者們,係爲達成前述課題,針對於第1〜4圖 中以1及4所示之偏磁磁場供給用之永久磁鐵之可能性進 行檢討。其結果係爲發現,當永久磁鐵之比電阻達0.1 Ω •cm以上(較佳爲lQ.cm以上,越高越佳。)、且使 用固有保磁力iHc爲5KOe以上之永久磁鐵時,便可獲得 優越的直流重疊特性,並且,可形成不致產生鐵心損耗特 性之惡化的磁性鐵心。此係意喻著,用以獲得優越的直流 重疊特性而所必要的磁鐵特性,比較起能量積反倒是具有 584873 五、發明說明(8) 固有保磁力爲佳。從而,藉由將比電阻高而固有保磁力爲 高之永久磁鐵,用以作爲電感構件之磁性鐵心之偏磁用磁 鐵,而發現到可獲得充分且較高的直流重疊特性。 如上所述,比電阻較高、且固有保磁力較高之永久磁鐵 ,係將固有保磁力iHc爲5KOe以上之稀土類磁鐵粉末與 膠粘劑混合成形後獲得有稀土類結合磁鐵。然而,作爲磁 鐵粉末並不限定於稀土類磁鐵,若是固有保磁力iHc達 5 KOe以上之保磁力爲高之磁鐵粉末,不管是何種磁鐵粉 末之組合均可。稀土類磁鐵粉末之種類係有SmCo系、 NdFeb系、SmFeN系等。此外,若是考慮使用時之熱減磁 後,作爲磁鐵粉末則必須要有居里點Tc達3 00t以上,且 固有保磁力iHc爲5 KOe以上。 另外,當磁鐵粉末之平均最大粒徑形成爲50// m以上後 會造成鐵心損耗特性之惡化,故最好能將粉末之最大粒徑 設爲50// m以下,且最小粒徑若形成2.0// m以下後,將 會因粉碎而藉由粉末氧化而使得磁化顯著的減少之故,而 必須要有2 · 0 // m以上之粒徑。 要將比電阻實現於0.1 Ω · cm以上之一定高値,雖可藉 由調節膠粘劑、意即樹脂量而得以實現,然而,當樹脂量 在體積比方面未達20%以上時,便具有不易成形之困難。 此外,於磁鐵粉末添加有機矽烷偶合劑或鈦偶合劑等之 偶合材料,或是將粒子表面以界面活性材料包覆後,將成 形體中之粉末分散形成爲良好且提昇永久磁鐵之特性,故 -10- 五、發明說明(9 ) 可獲得更高特性之磁性鐵心。 又’爲獲得更高特性,亦可於成形時在配向磁場中成形 ,以具有異向性。 爲提昇磁鐵之耐氧化性,亦可將永久磁鐵表面被覆上耐 熱性樹脂或是耐熱性塗料。藉此,可達到同樣具有耐氧化 性與高特性者。 此外,作爲膠粘劑,係可以絕緣性樹脂與磁鐵粉末混合 、壓縮成形,在不給予磁鐵粉末影響者無論何種材料均可 。例如舉例來說,可有聚丙稀樹脂、6 -尼龍樹脂、1 2 — 尼龍樹脂、聚醯胺樹脂、聚乙烯樹脂、環氧樹脂。 接著,對於如前所述以回焊而使表面實裝之電感構件所 用之磁性鐵心之偏磁用永久磁鐵進行敘述。 在考慮回焊溫度後,爲避免於回焊時之熱減磁,作爲使 用之磁鐵粉末則必須要使用固有保磁力iHc爲lOKOe以上 ,居里點Tc爲500°C以上之物。以此種磁鐵粉末爲例,稀 土類磁鐵中係以SmCo磁鐵爲佳。 此外,磁鐵粉末之最小粒徑則必須要有2 · 5 // m。若是較 其爲小,則會因粉末熱處理及回焊時造成粉末氧化,而形 成磁化顯著的減少。 又,考慮暴露於回焊溫度之條件與成形之確實性,在體 積比則係以具有30%以上爲佳。 在樹脂方面,爲了不致因回焊時的溫度而碳化、軟化等 ,係爲使用碳化溫度達250°C以上之熱硬化樹脂、或是軟 -11- 584873 五、發明說明(1〇) 化溫度爲25 0°C以上之熱可塑性樹脂爲佳。 以此種樹脂爲例,係可列舉有:聚醯胺樹脂、聚亞醯胺 樹脂、環氧樹脂、聚苯醚硫化物樹脂、矽樹脂、聚酯樹脂 、芳香族聚醯胺樹脂、液晶聚合物。 另外,用以作爲被覆永久磁鐵之表面,係可使用耐熱溫 度達27(TC以上之熱硬化性樹脂(例如,環氧樹脂、含氟 樹脂)、或耐熱塗料,以提昇耐熱性。 此外,磁鐵粉末之平均粒徑較佳爲2.5〜25// m。大於該 範圍時,則表面粗度會過大而減低偏磁量。 磁鐵表面之中心線平均粗度Ra係以1 0 // m以下爲佳。 當表面粗度過粗,軟磁性磁性鐵心與插入之薄板磁鐵間便 會產生空隙,降低磁導係數,且減低作用於磁性鐵心之磁 束密度。 作爲扼流圈用及轉移用磁性鐵心,具有軟磁性特性之材 料不論何種均爲有效。一般而言,係爲使用有MnZn系或 NiZn系肥粒鐵、壓粉磁性鐵心、矽鋼板、非結晶質( amorphous)等。此外,針對磁性鐵心之形狀並未有特別 的限制,於環形鐵心、EE鐵心、EI鐵心等所有形狀之磁 性鐵心,皆可適用於本發明之永久磁鐵。將磁性間隙設於 該等鐵心之磁路之至少1處以上,且將永久磁鐵配置插入 於該間隙。間隙長度雖未有特別的限制,但是若間隙長度 過狹,其直流重疊特性將顯惡化。又,當間隙長度過廣時 ,因爲將減低透磁率,故而用以決定爲~自然而然所形成之 -12- 584873 五、發明說明(11 ) 間隙長。最佳之範圍係爲5 0〜1 0 0 0 〇 // m。 爲了更加減小磁性鐵心整體之尺寸,最佳爲將間隙長度 抑制於5 0 0 // m。在此情況下,爲了將偏磁用永久磁鐵插 入至間隙內,當然爲使永久磁鐵抑制在500 // m以下。 以下,將就本發明之實施例進行說明。於以下之實施例 的說明中,特別僅限於無特別的事件,且必須要有下述所 述者。 磁性鐵心之尺寸: E—E鐵心之磁路長爲7.5cm,實效斷面積爲0.74cm2, 間隙長爲G。 永久磁鐵: 斷面之尺寸及形狀,係設爲與磁性鐵心之斷面尺寸及形 狀相同,厚度爲T。 永久磁鐵之製造法: 將磁鐵粉末與樹脂混合,藉由模具成形以及/或是熱衝 壓、或是藉由刮片法所作之成膜法,成形指定尺寸及形狀 之結合磁鐵。 於成形時,因應需要施加配向磁場。 此外,刮片法係爲將混合物形成懸浮於溶劑之生料( slurry ),且使用刮片將此生料藉由塗覆方式而作成生薄 板’之後便切出指定的尺寸,因應需要以進行熱衝壓。 磁鐵特性之測定: 固有保磁力:製作直徑10mm以及厚度爲10mm之試料 -13- 584873 五、發明說明(12 ) ,使用直流BH追蹤裝置測定固有保磁力(iH〇 。 比電阻測定: 對於試料進行所謂的4端子法。係在試料之兩端面設置 電極,於兩電極間流通一定之電流,以電壓計測定求出試 料中央部之適當2點間的電位差。 著磁: 將永久磁鐵配置於磁性鐵心之磁性間隙中,使用電磁石 、或使用脈衝著磁機,於磁路方向著磁。 測定磁性鐵心之鐵心損耗: 於捲繞至磁性鐵心之線圈上,流通交流電流(頻率f, 交流磁場Ha),且藉由交流B- Η追蹤裝置(岩崎通信機 製SY - 8232 )進行測定。 直流重疊特性之測定: 將永久磁鐵試料配置於電感構件之磁性鐵心的間隙,將 於線圈流通交流電流(頻率f),同時重疊直流(與磁鐵 之著磁方向爲相反方向之重疊磁場Hm ),並以LCR儀器 測定電感,自鐵心常數與捲線數來計算透磁率,作爲直流 重疊特性(透磁率)。 粗糙度(光澤度)之測定: 粗糙度,係以表示當光接觸到薄板表面時之反射強度之 量,將測定部分上反射光強度、以及來自光澤標準板之反 射光強度之間的比値來決定。 表面磁束(熔化)之測定: -14- 584873 五、發明說明(13 ) 將結線於熔化測量器(例如:TOEI : TDF — 5 )之檢索 線圈中,使其試料通過時用以讀取變化之熔化量。 中心線粗度之測定: 藉由觸針法用以測定試料表面粗度之輪廓。將其中心線 用以使其上下面積相等般地拉伸,對於任意點求出由中心 線開始之距離。將該等無數個進行平均、自乘、平方根、 偏差之計算。將自中心所生之偏差作爲中心線粗度。 以下就實施例進行敘述。 實施例1 比電阻與鐵心損耗之間的關係 磁鐵粉末:Sm2Fe17N3 平均粒徑:3 μ m 固有保磁力iHc : 10.5KOe 居里點:470°C 膠粘劑:環氧樹脂 樹脂量(體積% ):調整成用以獲得比電阻 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度T : 1.5mm 形狀•面積·· E形之下支持部斷面 比電阻(Ω · cm) : S — 1 : 〇·〇1 S — 2 : 0·1 S — 3 : 1 S — 4 : 10 S — 5 : 100584873 Fifth, the description of the invention (7) (turn) or more. [Detailed description of preferred embodiments of the present invention] Hereinafter, embodiments of the present invention will be described with reference to the drawings. Referring to Fig. 1, the magnetic core according to the first embodiment of the present invention is a body in which two E-type ferrite cores 2 are butted against each other. A gap is left in the joint surface between the supporting portions under the two E-shaped fertilized iron cores 2. The gap is used to insert a permanent magnet 1 for supplying a bias magnetic field. Referring to Fig. 2 again, the magnetic core of Fig. 1 is wound with coil 3 and constitutes an inductance member. Referring to FIG. 3, a magnetic core according to another embodiment of the present invention is disclosed. This magnetic iron core is a ring-shaped iron powder core 5. A gap is provided in the magnetic circuit of the iron powder core, and a permanent magnet 4 for supplying a bias magnetic field is inserted into the gap. In addition, referring to Fig. 4, the figure shows an inductance member formed by applying a winding wire 6 to the magnetic core of Fig. 3. In order to achieve the aforementioned problems, the inventors of the present case reviewed the possibility of supplying permanent magnets for the bias magnetic fields shown by 1 and 4 in Figs. 1 to 4. As a result, it was found that when the specific resistance of the permanent magnet reaches 0.1 Ω · cm or more (preferably 1Q.cm or more, the higher the better.), And the permanent magnet with an intrinsic coercive force iHc of 5KOe or more can be used A superior magnetic superposition characteristic is obtained, and a magnetic core can be formed without deterioration of core loss characteristics. The meaning of this series is that the magnet characteristics necessary to obtain superior DC superimposition characteristics have 584873 compared to the energy product. V. INTRODUCTION OF THE INVENTION (8) The inherent coercive force is better. Therefore, by using a permanent magnet having a high specific resistance and a high intrinsic coercive force as a bias magnet for a magnetic core of an inductive member, it was found that sufficient and high DC superimposition characteristics can be obtained. As mentioned above, permanent magnets with high specific resistance and high intrinsic coercive force are obtained by mixing and forming a rare earth magnet powder with an intrinsic coercive force iHc of 5KOe or more with an adhesive to obtain a rare earth bonded magnet. However, the magnetic powder is not limited to rare earth magnets, and any magnetic powder combination may be used as long as the magnetic powder has a high coercive force with an intrinsic coercive force iHc of 5 KOe or more. The types of the rare earth magnet powder include SmCo, NdFeb, and SmFeN. In addition, after considering thermal demagnetization during use, the magnet powder must have a Curie point Tc of 300 t or more, and an intrinsic coercive force iHc of 5 KOe or more. In addition, when the average maximum particle diameter of the magnet powder is formed above 50 // m, the core loss characteristics will be deteriorated. Therefore, it is best to set the maximum particle diameter of the powder to 50 // m or less, and if the minimum particle diameter is formed, Below 2.0 // m, the magnetization will be significantly reduced by powder oxidation due to pulverization, and a particle size of 2 · 0 // m or more is required. To achieve a specific resistance above 0.1 Ω · cm, it can be achieved by adjusting the adhesive, which means the amount of resin. However, when the amount of resin is less than 20% by volume, it is difficult to form. Difficulties. In addition, by adding coupling materials such as an organic silane coupling agent or a titanium coupling agent to the magnet powder, or coating the surface of the particles with an interfacial active material, the powder in the formed body is dispersed to form a good and improve the characteristics of the permanent magnet. -10- V. Description of the invention (9) A magnetic core with higher characteristics can be obtained. In addition, in order to obtain higher characteristics, it can also be formed in an alignment magnetic field during forming to have anisotropy. In order to improve the oxidation resistance of the magnet, the surface of the permanent magnet may be coated with a heat-resistant resin or a heat-resistant paint. This makes it possible to achieve the same oxidation resistance and high characteristics. In addition, as the adhesive, it is possible to mix and compress the insulating resin with the magnet powder, and any material can be used without affecting the magnet powder. For example, there may be polypropylene resin, 6-nylon resin, 12-nylon resin, polyamide resin, polyethylene resin, and epoxy resin. Next, as described above, the permanent magnets for biasing the magnetic core used in the surface-mounted inductor member by re-soldering will be described. After considering the reflow temperature, in order to avoid thermal demagnetization during reflow, as the magnet powder used, it is necessary to use something with an inherent coercive force iHc of more than lOKOe and a Curie point Tc of more than 500 ° C. Taking such a magnet powder as an example, the rare earth magnet is preferably an SmCo magnet. In addition, the minimum particle size of the magnet powder must be 2 · 5 // m. If it is smaller, it will cause a significant reduction in magnetization due to powder oxidation during powder heat treatment and reflow. In addition, considering the conditions of exposure to the reflow temperature and the reliability of forming, the volume ratio is preferably 30% or more. In terms of resin, in order to prevent carbonization, softening, etc. due to the temperature during reflow, it is to use a thermosetting resin with a carbonization temperature of 250 ° C or higher, or soft -11-584873 V. Description of the invention (1〇) A thermoplastic resin with a temperature of 25 ° C or higher is preferred. Taking such a resin as an example, the resins include polyimide resin, polyimide resin, epoxy resin, polyphenylene ether sulfide resin, silicone resin, polyester resin, aromatic polyimide resin, and liquid crystal polymerization. Thing. In addition, the surface used to cover the permanent magnet can be made of a thermosetting resin (for example, epoxy resin, fluororesin) or a heat-resistant paint with a heat resistance temperature of 27 (TC or higher) to improve heat resistance. In addition, magnets The average particle diameter of the powder is preferably 2.5 ~ 25 // m. Above this range, the surface roughness will be too large to reduce the amount of bias. The average thickness of the center line of the surface of the magnet Ra is 1 0 // m or less When the surface roughness is too rough, a gap will be generated between the soft magnetic magnetic core and the inserted thin plate magnet, reducing the permeability and reducing the magnetic flux density acting on the magnetic core. As a magnetic core for chokes and transfers, Any material with soft magnetic properties is effective. Generally speaking, MnZn-based or NiZn-based ferrous iron, powder magnetic core, silicon steel plate, amorphous, etc. are used. In addition, magnetic properties The shape of the iron core is not particularly limited, and magnetic cores of all shapes, such as toroidal iron cores, EE iron cores, and EI iron cores, can be applied to the permanent magnets of the present invention. A magnetic gap is provided in these iron cores. At least one magnetic circuit, and the permanent magnet is inserted into the gap. Although the gap length is not particularly limited, if the gap length is too narrow, the DC overlapping characteristics will be significantly deteriorated. When the gap length is too wide Because it will reduce the magnetic permeability, it is used to determine the -12-584873 formed naturally. V. Description of the invention (11) The gap is long. The optimal range is 50 ~ 100 00 0 // m. In order to To further reduce the overall size of the magnetic core, it is best to suppress the gap length to 50 0 // m. In this case, in order to insert a permanent magnet for bias magnetism into the gap, of course, to keep the permanent magnet at 500 / / m or less. In the following, embodiments of the present invention will be described. In the description of the following embodiments, it is particularly limited to no special event and must have the following. The size of the magnetic core: E— The core length of the E core is 7.5cm, the effective cross-sectional area is 0.74cm2, and the gap length is G. Permanent magnet: The size and shape of the cross section are set to be the same as the size and shape of the cross section of the magnetic core, and the thickness is T. Manufacture of permanent magnets : Mix the magnet powder with the resin, and use the mold forming and / or hot stamping, or the film forming method by the doctor blade method, to form a combined magnet of a specified size and shape. When forming, apply an alignment magnetic field as needed. In addition, the doctor blade method is to form the mixture into a slurry suspended in a solvent, and use the doctor blade to form a raw sheet by coating method, and then cut out the specified size. Hot stamping. Measurement of magnet characteristics: Inherent coercive force: Make a sample with a diameter of 10mm and a thickness of 13mm -13-584873 V. Description of the invention (12). Use a DC BH tracking device to measure the intrinsic coercive force (iH0. Specific resistance measurement: The so-called 4-terminal method was performed on the sample. Electrodes were provided on both end surfaces of the sample, and a certain current was passed between the two electrodes. The potential difference between the appropriate two points in the center of the sample was measured with a voltmeter. Magnetization: The permanent magnet is placed in the magnetic gap of the magnetic core, and a magnet is used or a pulse magnet is used to magnetize in the direction of the magnetic circuit. Measurement of the core loss of the magnetic core: An AC current (frequency f, AC magnetic field Ha) was passed through a coil wound around the magnetic core, and the measurement was performed by an AC B-Η tracking device (SY-8232, manufactured by Iwasaki Communication Corporation). Measurement of DC overlap characteristics: The permanent magnet sample is arranged in the gap of the magnetic core of the inductive member, and an alternating current (frequency f) will flow through the coil, and a direct current (superimposed magnetic field Hm opposite to the direction of magnetization of the magnet), The inductance was measured with an LCR instrument, and the magnetic permeability was calculated from the core constant and the number of windings as the DC superimposed characteristic (permeability). Measurement of roughness (gloss): Roughness is the ratio between the intensity of the reflected light on the measured portion and the intensity of the reflected light from the gloss standard plate, which is the amount that reflects the intensity of light when it comes into contact with the surface of the sheet To decide. Measurement of surface magnetic flux (melting): -14- 584873 V. Description of the invention (13) The wire is connected to the retrieval coil of the melting measuring device (for example: TOEI: TDF — 5), which is used to read the change when the sample passes. The amount of melting. Measurement of centerline roughness: The stylus method is used to determine the contour of the sample surface roughness. The centerline is used to stretch the upper and lower areas equally, and the distance from the centerline is calculated for any point. These countless numbers are calculated by averaging, multiplication, square root, and deviation. The deviation from the center is taken as the centerline thickness. Examples will be described below. Example 1 Relationship between specific resistance and core loss Magnet powder: Sm2Fe17N3 Average particle size: 3 μm Inherent coercive force iHc: 10.5KOe Curie point: 470 ° C Adhesive: Epoxy resin amount (vol.%): Adjustment Manufacturing method to obtain specific resistance magnet: mold forming, non-orientation magnetic field magnet: thickness T: 1.5mm shape · area ·· cross section specific resistance of support part under E-shape (Ω · cm): S — 1: 〇 · 〇1 S — 2: 0 · 1 S — 3: 1 S — 4: 10 S — 5: 100

-15- 584873 五、發明說明(14 ) 固有保磁力:5K0e以上 著磁: 電磁鐵 磁性鐵心:EE鐵心(第1、2圖),MnZn肥粒鐵磁 性間隙長G : 1.5 m m 鐵心損耗測定:以f = 1 OOKHz, Ha= 0·1Τ (特斯拉( tesla))測定 直流重疊特性(透磁率从)測定··以f = 100KHz, lOOOe測定 ¥寸於各試料係使用同一種之磁性鐵心,測定後之各試料 的鐵心損耗,係如同下述表1所示。 【表1】 試料 S— 1 S— 2 S-3 S— 4 S—5 比電阻(Ω · cm) 無磁鐵(間隙) 0.01 0.1 1 10 100 鐵心損耗(kW/m3) 80 1,500 420 100 90 85 由表1可明顯得知,鐵心損耗係爲在比電阻未達0.1 Ω • cm而急速的上升,在1 Ω · cm以上則會急速的減少, 因此,比電阻最低係爲0· 1 Ω · cm,最高則以1 Ω · cm以 上爲佳。 於間隙中未使用有偏磁用磁鐵的情況下,鐵心損耗係爲 80 ( kW/m3),雖低於使用有偏磁用磁鐵的情況,但將 直流重疊特性(透磁率)設爲1 5後,則是顯示爲相當低 之値。 實施例2 磁鐵粉末粒徑與鐵心損耗之關係 -16- 584873 五、發明說明(15 ) 磁鐵粉末:S m 2C 〇 17 居里點:810°C 會b量積:28MGOe S - 1 :最大粒徑:200 // m,固有保磁力 12KOe S - 2 :最大粒徑:175 m,固有保磁力 12KOe S - 3 :最大粒徑:1 5 0 μ m,固有保磁力 12KOe S — 4 :最大粒徑:100 // m,固有保磁力 12KOe S— 5:最大粒徑:50//m,固有保磁力iHc: 膠粘劑:環氧樹脂 樹脂量:各個試料均爲10重量% 磁鐵製造法:模具成形,無配向磁場 著磁:電磁鐵 磁鐵:厚度T : 1 .5mm 形狀•面積:7mmX10mm 比電阻:S — 1 · 1.2 Ω · cm S — 2 : 1 ·5 Ω · cm S— 3: 2·0Ω · cm S — 4 ·· 3.0 Ω · cm S — 5 : 5 · 0 Ω · cm iHc : iHc : iHc : iHc : 1 IKOe -17· 584873 五、發明說明(16 ) 固有保磁力:與磁鐵粉末相同 磁性鐵心:環形鐵心(第3、4圖): Fe— Si — A1 (商標:塞坦斯特(音譯))鐵粉心 尺寸:外徑28mm,內徑14mm,高度10mm 磁性間隙長G : 0.5 m m 鐵心損耗測定:於f= ΙΟΟΚΗζ, Ha= 0.1T測定 直流重疊特性(透磁率)測定:f = ΙΟΟΚΗζ,Hm = 2000e 各試料之測定結果,係如同下述表2所示。 【表2】 試料 S —5 S — 4 S-3 S — 2 S— 1 比電阻 無磁鐵 -50 β m -100 β m -150 β m -175 β m -200 β m 鐵心損耗 (kW/m3) 100 110 125 150 250 500 由表2可明顯得知,鐵心損耗係爲在粉末最大粒徑超過 150μχη後會急速的上升。 於間隙中未使用有偏磁用磁鐵的情況下,鐵心損耗係爲 100 ( kW/m3),雖低於使用有偏磁用磁鐵的情況,但將 直流重疊特性(透磁率)設爲1 5後,則是顯示爲相當低 之値。 實施例3磁鐵之保磁力與直流重疊特性(透磁率)之關係 磁鐵粉末:S — 1 : Ba肥粒鐵 -18- 584873-15- 584873 V. Description of the invention (14) Inherent coercive force: 5K0e or more magnetization: Electromagnet core: EE core (Figures 1 and 2), MnZn ferrite ferromagnetic gap length G: 1.5 mm Core loss measurement: Measured at f = 1 OOKHz, Ha = 0 · 1T (tesla) DC overlap characteristics (permeability from) Measured at f = 100KHz, 1000e ¥ In each sample system, the same magnetic core is used The core loss of each sample after the measurement is as shown in Table 1 below. [Table 1] Sample S— 1 S— 2 S-3 S— 4 S—5 Specific resistance (Ω · cm) No magnet (gap) 0.01 0.1 1 10 100 Core loss (kW / m3) 80 1,500 420 100 90 85 It is obvious from Table 1 that the core loss increases rapidly when the specific resistance does not reach 0.1 Ω • cm, and decreases rapidly above 1 Ω · cm. Therefore, the minimum specific resistance is 0 · 1 Ω · cm, the highest is preferably 1 Ω · cm or more. When no bias magnet is used in the gap, the core loss is 80 (kW / m3), which is lower than that when a bias magnet is used, but the DC superimposition characteristic (permeability) is set to 1 5 After that, it is displayed as quite low. Example 2 Relationship between particle size of magnetic powder and core loss -16- 584873 V. Description of the invention (15) Magnet powder: S m 2C 〇17 Curie point: 810 ° C Volume product: 28MGOe S-1: Maximum particle size Diameter: 200 // m, inherent coercive force 12KOe S-2: maximum particle size: 175 m, inherent coercive force 12KOe S-3: maximum particle size: 150 μm, inherent coercive force 12KOe S — 4: maximum particle size Diameter: 100 // m, inherent coercive force 12KOe S— 5: Maximum particle size: 50 // m, inherent coercive force iHc: Adhesive: epoxy resin resin amount: 10% by weight of each sample Magnet manufacturing method: mold forming , Non-aligned magnetic field magnetization: electromagnet magnet: thickness T: 1.5mm shape • area: 7mmX10mm specific resistance: S — 1 · 1.2 Ω · cm S — 2: 1 · 5 Ω · cm S — 3: 2 · 0Ω · Cm S — 4 ·· 3.0 Ω · cm S — 5: 5 · 0 Ω · cm iHc: iHc: iHc: iHc: 1 IKOe -17 · 584873 5. Description of the invention (16) Inherent coercive force: same as magnet powder Magnetic core: Toroidal core (Figs. 3 and 4): Fe—Si—A1 (Trademark: Setensite) Transmitter core size: outer diameter 28m m, inner diameter 14mm, height 10mm Magnetic gap length G: 0.5 mm Measurement of core loss: Measurement of DC overlap characteristics (permeability) at f = ΙΟΟΚΗζ, Ha = 0.1T Measurement: f = ΙΟΟΚΗζ, Hm = 2000e Measurement results of each sample , As shown in Table 2 below. [Table 2] Sample S — 5 S — 4 S-3 S — 2 S — 1 Specific resistance without magnet-50 β m -100 β m -150 β m -175 β m -200 β m Core loss (kW / m3 ) 100 110 125 150 250 500 It is obvious from Table 2 that the core loss is a rapid increase after the maximum particle size of the powder exceeds 150 μχη. When no bias magnet is used in the gap, the core loss is 100 (kW / m3), which is lower than that when a bias magnet is used, but the DC superimposition characteristic (permeability) is set to 1 5 After that, it is displayed as quite low. Example 3 Relationship between the coercive force of the magnet and the DC superimposition characteristic (permeability) Magnet powder: S -1: Ba fertilizer grain iron -18- 584873

五、發明說明(17) 固有保磁力iHc : 4.0KOe 居里點Tc : 450t: S 一 2 · S m 2F e j7N 3V. Description of the invention (17) Inherent coercive force iHc: 4.0KOe Curie point Tc: 450t: S a 2 · S m 2F e j7N 3

固有保磁力iHc : 5.0KOe 居里點Tc : 470°C S 一 3 · S m 2C o 17Inherent coercive force iHc: 5.0KOe Curie point Tc: 470 ° C S-3 · S m 2C o 17

固有保磁力iHc : lO.OKOe 居里點Tc : 81〇t: 粒徑(平均):任何試料均爲3.0 e m 膠粘劑:任何試料均爲聚丙稀樹脂(軟化點80°C ) 樹脂量:50體積% 石兹鐵製造法:模具成形’無配向磁場 磁鐵: 厚度T : 1.5mm 形狀•面積:與鐵心之下支持部斷面相同 比電阻:S — 1 : 1 04 Ω · cm S — 2 : 103 Ω · cm • S — 3 : 1 Ο3 Ω · cm 固有保磁力:與磁鐵粉末相同 著磁: 脈衝著磁機 磁性鐵心:EE鐵心(第1、2圖):MnZn肥粒鐵磁性 間隙長G : 1 .5 m m 直流重疊特性(透磁率// )測定:在f = ΙΟΟΚΗζ,Hm= 0〜 2000e之範圍下使其變 -19- 584873 五、發明說明(18 ) 化而測定 使用同一之磁性鐵心,就各個試料反覆進行5次測定之 後的直流重疊特性係如第5〜8圖所示。 由該等圖面可得知,在已插入其保磁力僅有4K0e的肥 粒鐵磁鐵之鐵心中,隨著測定次數的增加,其直流重疊特 性則大幅的惡化。相反的,可得知插入有保磁力相當大的 結合磁鐵之鐵心,即便在反覆的測定之下亦不會有太大的 變化,顯示有相當安定的特性。藉由該等結果,爲了使肥 粒鐵磁鐵將保磁力減小,藉由施加至磁鐵之逆向磁場而引 起減磁或是磁化之反轉,而可推測直流重疊特性之惡化。 此外,可得知插入至鐵心之磁鐵爲保磁力達5K0e以上之 稀土類結合磁鐵,將顯示優越的直流重疊特性。 實施例4 磁鐵粉末粒徑與鐵心損耗以及表面磁束之間的 關係 石&鐵粉末:Sm2Co17 平均粒徑(//m) :S— 1:1.0 S 一 2:2.0 S - 3 : 25 S — 4 : 50 S— 5:55 S — 6 : 75 膠粘劑:聚乙烯樹脂 樹脂量:40體積% -20· 584873 五、發明說明(19) 磁鐵製造法:模具成形’無配向磁場 磁鐵:厚度τ : 1.5mm 形狀•面積:E形之下支持部斷面 比電阻:〇·1〜1〇〇Ω · cm (調節樹脂量) 固有保磁力:全部的試料均爲5K0e以上 著磁:模具成形,無配向磁場 磁性鐵心:EE鐵心(第1、2圖):MnZn肥粒鐵磁性 間隙長G : 0.5mm 各試料之表面磁束與鐵心損耗之測定結果,係如同下述 表3所示。 【表3】 試料 S—1 S-2 S — 3 S — 4 S 一 5 S — 6 比電阻(Vm) 無磁鐵 (間隙) 1.0 2.0 25 55 75 75 鐵心損耗 (kW/m3) 520 650 530 535 555 650 870 磁鐵之表面 磁束(Gauss) — 130 200 203 205 206 209 測定鐵心損耗後,將偏磁用永久磁鐵1自鐵心2取出’ 且將磁鐵之表面磁束以TOEI : TDF - 5測定,由該測定値 與磁鐵之尺寸以計算所求出之表面磁束亦揭示於表3。 在表3中,因平均粒徑1 · 〇 // m之鐵心損耗此大則粉末 之表面積則越大,故而有加速粉末之氧化。當平均粒徑於 -21 - 584873 五、發明說明(2〇) 5 5 // m以上時,鐵心損耗越大則粉末之平均粒徑形成越大 ,故造成有渦電流損失增大。 此外,將粉末粒徑1 .〇 // m之試料S - 1的表面磁束減少 ,用以減少有助於使粉碎中或是乾燥中粉末遭氧化而磁化 之磁性部分。 實施例5 樹脂量與比電阻與鐵心損耗間之關係 磁鐵粉末:Sm2Fe17N3 平均粒徑:5.0// m 固有保磁力iHc : 5KOe 居里點:470°C 膠粘劑:6 -尼龍樹脂 樹脂量(體積%) : S— 1:10 S— 2 : 15 S— 3 ·· 20 S - 4 : 32 S - 5 : 42 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度T : 1.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻(Ω · c m):參照表4 固有保磁力:全試料均爲5KOe以上 :電磁鐵 著磁Inherent coercive force iHc: lO.OKOe Curie point Tc: 81〇t: Particle size (average): Any sample is 3.0 em Adhesive: Any sample is polypropylene resin (softening point 80 ° C) Resin amount: 50 volume % Shizite manufacturing method: mold forming 'non-aligned magnetic field magnet: thickness T: 1.5mm shape / area: same specific resistance as the cross section of the support part under the iron core: S — 1: 1 04 Ω · cm S — 2: 103 Ω · Cm • S — 3: 1 〇3 Ω · cm intrinsic coercive force: same as magnet powder magnetization: pulse magnetizer magnetic core: EE core (Figures 1 and 2): MnZn ferrite ferromagnetic gap length G: 1 .5 mm DC overlap characteristic (permeability //) measurement: make it change in the range of f = ΙΟΟΚΗζ, Hm = 0 ~ 2000e -19- 584873 5. Description of the invention (18) and use the same magnetic core, The DC overlap characteristics after repeated measurement of 5 times for each sample are shown in Figures 5 to 8. From these drawings, it can be seen that in the core of a ferrite iron core with a coercive force of only 4K0e, the DC superimposition characteristic deteriorates significantly as the number of measurements increases. On the contrary, it can be seen that an iron core with a relatively large coercive force inserted into the core will not change much even after repeated measurement, and shows quite stable characteristics. Based on these results, in order to reduce the coercive force of the ferrous iron magnet, the reverse magnetic field applied to the magnet causes the demagnetization or the reversal of the magnetization, and the deterioration of the DC superposition characteristic can be estimated. In addition, it can be seen that the magnet inserted into the core is a rare-earth bonded magnet having a coercive force of 5K0e or more, and will exhibit superior DC superposition characteristics. Example 4 Relationship between particle diameter of magnetic powder and core loss and surface magnetic flux Stone & iron powder: Sm2Co17 Average particle diameter (/ m): S-1: 1.0 S-2: 2.0 S-3: 25 S — 4: 50 S— 5:55 S — 6: 75 Adhesive: Polyethylene resin resin amount: 40% by volume -20 · 584873 V. Description of the invention (19) Magnet manufacturing method: mold forming 'non-aligned magnetic field magnet: thickness τ: 1.5mm shape and area: specific resistance of the cross section of the support under the E-shape: 〇 · 1 ~ 100Ω · cm (adjust resin amount) Inherent coercive force: all samples are 5K0e or more magnetization: mold forming, no Alignment magnetic cores: EE cores (Figures 1 and 2): MnZn ferrite ferromagnetic gap length G: 0.5mm The measurement results of the surface magnetic flux and core loss of each sample are shown in Table 3 below. [Table 3] Sample S-1 S-2 S — 3 S — 4 S — 5 S — 6 Specific resistance (Vm) No magnet (gap) 1.0 2.0 25 55 75 75 Core loss (kW / m3) 520 650 530 535 555 650 870 Gauss of the surface of the magnet — 130 200 203 205 206 209 After measuring the core loss, take out the permanent magnet 1 for the bias magnet from the core 2 and measure the surface magnetic flux of the magnet with TOEI: TDF-5. Table 3 also shows the surface magnetic fluxes obtained by measuring the dimensions of the gadolinium and the magnet. In Table 3, because the core loss of the average particle diameter 1 · 〇 // m is larger, the surface area of the powder is larger, so the oxidation of the powder is accelerated. When the average particle size is -21-584873 V. Description of the invention (20) 5 5 // m or more, the larger the core loss, the larger the average particle size of the powder will be, which will increase the eddy current loss. In addition, the surface magnetic flux of sample S-1 with a powder particle size of 1.0 / m is reduced to reduce the magnetic portion that helps the powder to be oxidized and magnetized during crushing or drying. Example 5 Relation between resin content and specific resistance and core loss Magnet powder: Sm2Fe17N3 Average particle size: 5.0 // m Inherent coercive force iHc: 5KOe Curie point: 470 ° C Adhesive: 6-Nylon resin resin content (vol.%) ): S— 1:10 S— 2: 15 S— 3 ·· 20 S-4: 32 S-5: 42 Magnet manufacturing method: mold forming, non-aligned magnetic field magnet: thickness T: 1.5mm shape • area: E Specific resistance (Ω · cm) in the cross section of the support under the iron core: refer to Table 4 Inherent coercive force: All samples are 5KOe or more: Electromagnet magnetization

-22- 584873 五、發明說明(21 ) 磁性鐵心:EE鐵心(第1、2圖):MnZn肥粒鐵磁性 間隙長G : 1.5 m m 鐵心損耗測定:以f = 1 〇 Ο Κ Η z / H a = Ο · 1 T測定 就各試料所測定後之鐵心損耗如表4所示。 【表4】 試料 S— 1 S — 2 S-3 S — 4 S — 5 比電阻(Ω · cm) 無磁鐵 (間隙) 0.01 0.1 1.0 10 100 樹脂量(wt%) 一 10 15 20 32 42 鐵心損耗 (kW/m3) 80 1,500 420 95 90 85 由表4所示係可得知,樹脂量達2 0 wt %以上之比電阻 1以上之磁性鐵心中,係爲具有良好之鐡心損耗特性。 實施例6 樹脂量與直流重疊特性之間的關係 磁鐵粉末:Sm2Fe17N3 平均粒徑:5 // m 固有保磁力iHc : 5.0KOe 居里點:470°C 膠粘劑:1 2 -尼龍樹脂 樹脂量(體積 %) :S—1:1〇、S—2:i5 S一 3: 20、S — 4:32 磁鐵製造法:模具成形,無配向磁場 -23- 584873 五、發明說明(22 ) 磁鐵:厚度T : 1.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻:S — 1 : 0.01 Ω · cm S—2: 0.05Ω · cm S - 3 : 0.2 Ω · cm S — 4 : 15 Ω · cm 固有保磁力··全試料均爲5KOe以上 者磁:電磁鐵 磁性鐵心:EE鐵心(第1圖),MnZn肥粒鐵磁性間隙 長 G : 1 ·5mm 直流重疊特性(透磁率)之頻率特性之測定··於f= 1〜 lGGGGGKHz範圔內之各個頻率中測定直流重疊特性(透磁 率/Ο 。 使用同一之磁性鐵心,針對各個試料所測定之透磁率// 之頻率特性揭示於第9圖。 由第9圖可得知,樹脂量達20wt%以上之磁性鐵心,其 透磁率V之頻率特性到達高頻率爲止均爲良好。 實施例7 添加偶合材料與直流重疊特性之間的關係 磁鐵粉末:Sm2Fe17N3 平均粒徑:5 // m 固有保磁力iHc : 5.0KOe 居里點:470°C 偶口材料: S - 1 ·欽偶合劑,〇 · 5 w t % -24- 584873 五、發明說明(23 ) S - 2 :有機矽烷偶合劑,0.5wt% S - 3 :無偶合材料 膠粘劑:環氧樹脂 樹脂量:30體積% 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度T : 1.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻:S — 1 : 10Ω · cm S — 2: 15Ω · cm S — 3 : 2 Ω · cm 固有保磁力:全試料均爲5KOe以上 著磁:電磁鐵 磁性鐵心:EE鐵心(第1、2圖),MnZn肥粒鐵磁性 間隙長G : 1.5mm 直流重疊特性(透磁率)之頻率特性之測定:於f= 1〜 1 00000KHZ範圍內之各個頻率中、以及於不同溫度中測定 透磁率。 針對使用試料S - 1〜S — 3情況下之直流重疊特性的頻 率特性之測定結果,係揭示於第1 0〜1 2圖。 由第10〜I2圖中係具有,夾設有添加本發明之鈦偶合 劑、有機矽烷偶合劑之結合磁鐵之磁性鐵心,係爲到高溫 爲止,//之頻率特性係呈安定。進行各個偶合處理之構件 具有優良的溫度特性,係因爲藉由添加偶合劑而使樹脂中 -25- 584873 五、發明說明(24 ) 的粉末分散性變佳,而藉由溫度而減少磁鐵的體積變化之 故。 實施例8 磁鐵表面被覆與磁束量之間的關係 磁鐵粉末:Sm2Fe17N3 平均粒徑:3 // m 固有保磁力iHc : lO.OKOe 居里點:470°C 膠粘劑:1 2 —尼龍 樹脂量:40體積% 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度T : 1.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻:1 〇〇 Ω · cm 固有保磁力:同於磁鐵粉末 表面被覆:S — 1:環氧樹脂 S- 2 :無 著磁:脈衝著磁機 著磁磁場 ι〇τ 磁性鐵心:EE鐵心(第1、2圖),MnZn肥粒鐵磁性 間隙長G : 1 ·5ιηιη 此外,磁鐵之表面被覆係爲將磁鐵浸漬於環氧樹脂之溶 液,接著取出、乾燥之後,以樹脂之硬化溫度進行熱處理 ,用以使其硬化。 -26- 584873 五、發明說明(25 ) 將試料S—1與比較對象之s— 2於大氣中,從120°c開 始以每次昇溫20°C的方式昇溫至220°C,再分別進行30 分鐘的熱處理,將每個經熱處理之試料自爐內取出,進行 表面磁束(熔化量)與直流重疊特性之測定。該等結果係 揭示於第1 3〜1 5圖。 第13圖係爲顯示由表面磁束之熱處理而產生變化之圖 。藉由該等結果可得知,相較於未進行被覆之磁鐵在以 200°C減磁49%之情況相比,在被覆有環氧樹脂的磁鐵所 插入的鐵心中,經過220°C之熱處理,其惡化程度也是達 到相當少的2 8 %,顯示出具有安定的特性。此種係可考慮 爲以藉由將磁鐵表面被覆上環氧樹脂而使得可抑制氧化, 且抑制熔化之減少。 此外,將該等結合磁鐵插入於鐵心,將測定直流重疊特 性之結果揭示如第1 4圖及第1 5圖。 參照第14圖,插入有試料S - 2之未披覆樹脂之磁鐵的 鐵心’係如第1 3圖所不可得知,伴隨於熱處理且熔化之 減少,減少了由磁鐵產生之偏磁磁場,且在2 2 0 °C下,透 磁率約爲30Oe左右則變換(shift )至低磁場側,造成特 性大幅度的惡化。相較之下,被覆有試料S 一 1之環氧樹 脂之構件,係如第1 5圖所示,僅於約〗7〇e而變換至低磁 場側。 如此,直流重疊特性係藉由被覆有環氧樹脂而與未披覆 樹脂之物相比較之下,爲有大幅度的改善。 -27- 584873 五、發明說明(26 ) 實施例9 磁鐵表面被覆與磁束量之間的關係 除了將磁鐵粉末設爲Sm2Co17、膠粘劑設爲聚丙稀樹脂 、表面被覆設爲含氟樹脂之外,均與實施例8相同。 與被覆有含氟樹脂之結合磁鐵(試料S - 1 )作爲比較對 象之未披覆樹脂之結合磁鐵(試料S — 2 ),將其以大氣中 • 220°C,於60分鐘左右自爐內取出,進行熔化測定、直 流重疊特性之測定,進行合計共5小時爲止之熱處理。該 等結果係揭示於第16〜18圖。 第16圖係爲顯示由表面磁束之熱處理而產生變化之圖 。藉由該等結果可得知,相較於未進行被覆之試料S - 2 的磁鐵在以5小時之處理下便減磁34%之情況相比,在被 覆有含氟樹脂之試料S - 1的磁鐵所插入的鐵心中,經過5 小時之熱處理,其惡化程度也是達到相當少的15%,顯示 出具有安定的特性。 此種係可考慮爲以藉由將磁鐵表面被覆上含氟樹脂而使 得可抑制氧化,且抑制熔化之減少。 此外,將該等試料S - 1與試料S - 2之結合磁鐡,分別 插入至相同磁性鐵心之間隙中,經直流重疊特性測定後之 結果係如第1 7圖及第1 8圖所示。參照第17圖,插入有 未披覆樹脂之試料S - 2之磁鐵鐵心,係如第1 6圖所示可 得知,藉由伴隨於熱處理之熔化之減少,減少了由磁鐵產 生之偏磁磁場,且在5小時後,透磁率約爲20Oe左右而 變換至低磁場側,造成特性大幅度的惡化。-22- 584873 V. Explanation of the invention (21) Magnetic core: EE core (Figures 1 and 2): MnZn ferrite magnetic gap length G: 1.5 mm Core loss measurement: f = 1 〇 〇 Ο / z / H a = 〇 · 1 T Table 4 shows the core loss measured for each sample. [Table 4] Sample S— 1 S — 2 S-3 S — 4 S — 5 Specific resistance (Ω · cm) No magnet (gap) 0.01 0.1 1.0 10 100 Amount of resin (wt%)-10 15 20 32 42 Iron core Loss (kW / m3) 80 1,500 420 95 90 85 According to the system shown in Table 4, the magnetic core with a specific resistance of 1 or more with a resin content of 20 wt% or more has good core loss characteristics. Example 6 Relation between resin content and DC overlap characteristics Magnet powder: Sm2Fe17N3 Average particle size: 5 // m Inherent coercive force iHc: 5.0KOe Curie point: 470 ° C Adhesive: 1 2-Nylon resin resin content (volume %): S—1: 1〇, S—2: i5 S—3: 20, S—4: 32 Magnet manufacturing method: mold forming, no orientation magnetic field-23-584873 V. Description of the invention (22) Magnet: thickness T: 1.5mm Shape and area: Specific resistance of the cross section of the support under the E-shaped iron core: S — 1: 0.01 Ω · cm S—2: 0.05 Ω · cm S-3: 0.2 Ω · cm S — 4: 15 Ω · Cm inherent coercive force ·· All samples are 5KOe or more Magnetic: Electromagnet Magnetic core: EE core (Figure 1), MnZn ferrite ferromagnetic gap length G: 1 · 5mm Frequency of DC overlap characteristic (permeability) Measurement of characteristics ... Measured the DC overlap characteristics (permeability / 0) at each frequency within the range of f = 1 to 1 GGGGGKHz. Using the same magnetic core, the measured magnetic permeability for each sample // the frequency characteristics are disclosed in Section 1. Figure 9. From Figure 9, it can be seen that the magnetic permeability V of a magnetic core with a resin content of more than 20wt% Frequency characteristics are good up to high frequencies. Example 7 Relationship between the addition of coupling material and DC overlap characteristics Magnet powder: Sm2Fe17N3 Average particle size: 5 // m Inherent coercive force iHc: 5.0KOe Curie point: 470 ° C Coupling material: S-1 · Chin coupling agent, 0.5 wt% -24-584873 V. Description of the invention (23) S-2: Organic silane coupling agent, 0.5wt% S-3: No coupling material adhesive: ring Oxygen resin content: 30% by volume. Magnet manufacturing method: mold forming, non-aligned magnetic field. Magnet: thickness T: 1.5mm. Shape / area: cross-section specific resistance of the support under the E-shaped core: S — 1: 10Ω · cm S — 2: 15Ω · cm S — 3: 2 Ω · cm Inherent coercive force: all samples are 5KOe or more magnetization: electromagnet magnetic core: EE core (Figures 1 and 2), long ferromagnetic gap of MnZn fertilizer particles G: Measurement of frequency characteristics of 1.5mm DC overlap characteristic (permeability): Permeability is measured at each frequency in the range of f = 1 to 1 00000KHZ, and at different temperatures. For samples S-1 to S-3 Measurement of Frequency Characteristics of DC Overlap Characteristics The results are shown in Figures 10 to 12. Figures 10 to 12 show a magnetic core with a bonded magnet added with the titanium coupling agent and the organic silane coupling agent of the present invention. The frequency characteristics of // are stable. The components subjected to each coupling treatment have excellent temperature characteristics, because the addition of a coupling agent makes the resin in the resin -25-584873 V. Invention Disclosure (24) the powder dispersibility is improved, and the volume of the magnet is reduced by the temperature The reason for change. Example 8 Relationship between magnet surface coating and magnetic flux amount Magnet powder: Sm2Fe17N3 Average particle size: 3 // m Inherent coercive force iHc: lO.OKOe Curie point: 470 ° C Adhesive: 1 2-Nylon resin amount: 40 Volume% magnet manufacturing method: mold forming, non-orientation magnetic field magnet: thickness T: 1.5mm shape • area: cross section specific resistance of support part under E-shaped iron core: 100 Ω · cm inherent coercive force: same as magnet powder surface Coating: S — 1: Epoxy resin S-2: No magnetization: Pulse magnetization magnetizing magnetic field ι〇τ Magnetic core: EE core (Figures 1 and 2), long ferromagnetic gap of MnZn fertilizer particles G: 1 · 5ιηιη In addition, the surface coating of the magnet is a solution in which the magnet is immersed in an epoxy resin, then taken out and dried, and then heat-treated at the curing temperature of the resin to harden it. -26- 584873 V. Description of the invention (25) The sample S-1 and the comparison target s-2 are heated in the atmosphere from 120 ° C to 220 ° C each time by 20 ° C, and then carried out separately. After 30 minutes of heat treatment, each heat-treated sample was taken out of the furnace, and the surface magnetic flux (melting amount) and DC overlap characteristics were measured. These results are disclosed in Figures 13 to 15. Fig. 13 is a graph showing changes caused by heat treatment of the surface magnetic flux. From these results, it can be seen that, compared with the case where the magnet not coated was demagnetized at 200 ° C by 49%, compared with the case where the magnet covered with epoxy resin was inserted at 220 ° C, The degree of deterioration of heat treatment also reached a relatively small amount of 28%, showing stable characteristics. Such a system is considered to be capable of suppressing oxidation and suppressing a reduction in melting by coating the surface of the magnet with epoxy resin. In addition, these bonded magnets are inserted into the core, and the results of measuring the DC superimposition characteristics are shown in Figs. 14 and 15. Referring to FIG. 14, the core of the uncoated magnet with sample S-2 is not known as in FIG. 13. With the heat treatment and the reduction of melting, the bias magnetic field generated by the magnet is reduced. And at 220 ° C, the permeability is shifted to the low magnetic field side with a magnetic permeability of about 30 Oe, causing a significant deterioration in characteristics. In contrast, the component covered with the epoxy resin of sample S-1 was transformed to the low magnetic field side only as shown in Fig. 15 only at about 70e. In this way, the DC superimposition characteristics are greatly improved by coating with epoxy resin compared with those without coating resin. -27- 584873 V. Description of the invention (26) Example 9 The relationship between the surface coating of the magnet and the amount of the magnetic flux, except that the magnet powder is set to Sm2Co17, the adhesive is set to polypropylene resin, and the surface coating is set to fluororesin. This is the same as in Example 8. The bonded magnet (sample S-2) coated with a fluororesin-coated bonded magnet (sample S-1) as a comparison target, and uncoated with the resin (sample S-2) was placed in the furnace at about 220 ° C in the air in about 60 minutes. It was taken out, and the fusion | melting measurement and DC superposition characteristic were measured, and heat processing was performed for a total of 5 hours. These results are shown in Figures 16-18. Fig. 16 is a graph showing changes caused by heat treatment of a surface magnetic beam. From these results, it can be known that compared to the case where the magnet of sample S-2 which is not covered is demagnetized by 34% under a treatment of 5 hours, the sample S-1 which is covered with fluororesin is After 5 hours of heat treatment in the core inserted by the magnet, the deterioration degree is also relatively small by 15%, showing stable characteristics. Such a system is considered to be capable of suppressing oxidation and suppressing a reduction in melting by coating the surface of the magnet with a fluorine-containing resin. In addition, the combined magnetic cores of these samples S-1 and S-2 were respectively inserted into the gaps of the same magnetic core, and the results after measuring the DC superimposition characteristics are shown in Fig. 17 and Fig. 18 . Referring to Fig. 17, the magnet core with sample S-2 uncoated with resin is shown in Fig. 16. As a result of the reduction in melting caused by heat treatment, the bias magnet generated by the magnet is reduced. Magnetic field, and after 5 hours, the permeability changes to about 20 Oe and shifts to the low magnetic field side, which causes a significant deterioration in characteristics.

-28- 584873 五、發明說明(27 ) 相較之下,被覆有含氟樹脂之試料s - 1的磁鐵,係如 第1 8圖所示,僅於約8〇e而變換至低磁場側。 如此,直流重疊特性係藉由被覆有含氟樹脂而與未披覆 樹脂之物相比較之下,爲有大幅度的改善。 由上所述可得知,將表面以含氟樹脂進行被覆後之結合 磁鐵,係用以抑制氧化且具有優良的特性。此外,有關於 其他耐熱性之樹脂或耐熱塗料亦可獲得相同的結果。 實施例1 0 樹脂種類以及樹脂量與成形性之間的關係 磁鐵粉末:Sm2Co17 平均粒徑:5.0 // m 固有保磁力:15.0KOe 居里點:8 1 0 °C 膠粘劑:S - 1 :聚丙烯樹脂 S - 2 : 6 -尼龍 S — 3 : 1 2 —尼龍 將磁鐵粉末與作爲膠粘劑之各樹脂以使樹脂含有量於1 5 〜40體積%之間進行變化,不施加配向磁場,藉由熱衝壓 而成形厚度〇.5mm之磁鐵。 其結果可得知,無論是採用何種樹脂,若不將樹脂含有 量達到20體積%以上則無法成形。 實施例11 磁鐵粉末與直流重疊特性之間的關係 磁鐵粉末:S— 1 : Sm2Fe17N3 平均粒徑:3.0//m -29· 584873 五、發明說明(28) 保磁力iHc : lOKOe 居里點Tc : 470°C 量:1 0 0重量部 S - 2 : Sm2Fe17N3 平均粒徑:5.0 // m 保磁力iHc : 5KOe 居里點Tc : 470°C 量:1 0 0重量部 S - 3 : Ba肥粒鐵 平均粒徑:1.0 // m 保磁力iHc : 4KOe 居里點Tc : 450°C 量:100重量部 膠粘劑:S — 1 : 聚丙稀樹脂 樹脂量:40體積部 S — 2 : 1 2 —尼龍 樹脂量:40體積部 S - 3 : 1 2 —尼龍 樹脂量:40體積部 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度T : 0.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻:S — 1 : 10 Ω · cm -30- 584873 五、發明說明(29 ) S — 2 : 5 Ω · c m S — 3 : 1 04 Ω · c m 以上 固有保磁力:s-l、S— 2: 5K0e以上 S— 3 : 4K0e 以下 著磁:脈衝著磁機 者磁磁場 4T 磁性鐵心:EE鐵心(第1圖):MnZn肥粒鐵磁性間隙 長 G : 0.5mm 直流重疊特性(透磁率):在f = lOOKHz,Hm = 0〜 2000e之範圍內使其變化而進行測定 直流重疊特性之測定,係將由各試料S - 1至S - 3使用 同一之磁性鐵心,分別進行5次測定,其結果係如第19〜 2 1圖所示。作爲比較,測定於磁性間隙在未插入有偏磁用 磁鐵的情況下之直流重疊特性,其結果係如第22圖所示 〇 由第21圖可得知,將以插入配置有保磁力僅有4KOe的 肥粒鐵磁鐵分散於1 2 -尼龍樹脂之試料S - 3之磁鐡鐵心 ,隨著測定次數的增加,其直流重疊特性則有相當大的惡 化。相反的,在使用保磁力達l〇KOe以及5KOe之 Sm2Fe17N3磁鐵粉末與使用聚丙稀、抑或12-尼龍樹脂之 試料S — 1以及S - 2的磁鐵之情況中,可見如第1 9圖及 第20圖所示,即便在反覆的測定之下亦不會有太大的變 化,顯示有相當安定的特性。 -31 - 584873 五、發明說明(3〇) 藉由該等結果,爲使肥粒鐵磁鐵將保磁力減小,以施加 至磁鐵之逆向磁場而減磁、或引起磁化之反轉,而可推測 出直流重疊特性惡化之構件。此外,可得知插入至磁性間 隙之偏磁用永久磁鐵爲保磁力達5K0e以上之永久磁鐵, 將顯示優越的直流重疊特性。 實施例12 磁鐵粉末粒徑與鐵心損耗之間的關係 磁鐵粉末:Sm2Co17 居里點:810°C s — 1 :平均粒徑:1 ·〇 " m,保磁力:5K0e S - 2:平均粒徑:2.0//m,保磁力:8K0e S — 3 :平均粒徑:25/z m,保磁力:lOKOe S — 4 :平均粒徑:50// m,保磁力:llKOe S— 5:平均粒徑:55//m,保磁力:llKOe 膠粘劑:6 —尼龍樹脂 樹脂量:30體積% 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度T : 0.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻:S — 1 : 0.05 Ω · cm S — 2 : 2.5 Ω · cm S - 3 : 1.5 Ω · cm S - 4 : 1.0 Ω · cm S — 5 : 0.5 Ω · cm-28- 584873 V. Description of the invention (27) In contrast, the magnet covered with the sample s-1 of the fluororesin is shown in Fig. 18, and is switched to the low magnetic field side only at about 80e. . In this way, the DC superimposition characteristics are greatly improved by coating with a fluororesin as compared with an uncoated resin. From the above, it can be seen that the bonded magnet having a surface covered with a fluororesin is used to suppress oxidation and has excellent characteristics. In addition, the same results can be obtained with other heat-resistant resins or heat-resistant coatings. Example 1 0 Resin type and relationship between resin amount and moldability Magnet powder: Sm2Co17 Average particle diameter: 5.0 // m Inherent coercive force: 15.0KOe Curie point: 8 1 0 ° C Adhesive: S-1: Poly Acrylic resin S-2: 6-Nylon S-3: 1 2-Nylon The magnet powder and each resin as an adhesive are changed so that the resin content is between 15 and 40% by volume. No alignment magnetic field is applied. Hot stamping to form a magnet with a thickness of 0.5mm. As a result, it was found that no matter what resin is used, molding cannot be performed unless the resin content is 20% by volume or more. Example 11 Relationship between magnet powder and DC superposition characteristics Magnet powder: S-1: Sm2Fe17N3 Average particle size: 3.0 // m -29 · 584873 V. Description of the invention (28) Coercive force iHc: lOKOe Curie point Tc: 470 ° C volume: 1 0 0 weight part S-2: Sm2Fe17N3 average particle diameter: 5.0 // m coercive force iHc: 5KOe Curie point Tc: 470 ° C volume: 1 0 0 weight part S-3: Ba fertilizer grain Average particle size of iron: 1.0 // m Coercive force iHc: 4KOe Curie point Tc: 450 ° C Quantity: 100 parts by weight Adhesive: S — 1: Polypropylene resin content: 40 parts by volume S — 2: 1 2 — Nylon Resin content: 40 vol. S-3: 1 2 — Nylon resin volume: 40 vol. Magnet manufacturing method: mold forming, non-oriented magnetic field magnet: thickness T: 0.5mm shape • area: cross section of support part under E-shaped iron core Specific resistance: S — 1: 10 Ω · cm -30- 584873 V. Description of the invention (29) S — 2: 5 Ω · cm S — 3: 1 04 Ω · cm or more Inherent coercive force: sl, S — 2: 5K0e or more S—3: 4K0e or less Magnetism: Pulse magnetizer 4T Magnetic field Magnetic core: EE core (Figure 1): MnZn ferrite Gap length G: 0.5mm DC overlap characteristic (permeability): The DC overlap characteristic is measured by changing it in the range of f = 10OKHz and Hm = 0 to 2000e. It is determined by each sample S-1 to S-3 The same magnetic core was used for 5 measurements, and the results are shown in Figures 19 to 21. For comparison, the DC superimposition characteristics of the magnetic gap without the bias magnet is inserted. The results are shown in Fig. 22. As can be seen from Fig. 21, only the coercive force is inserted into the gap. 4KOe's ferrous iron magnets are dispersed in the magnetic core of 1-Nylon resin sample S-3. As the number of measurements increases, the DC superimposition characteristics deteriorate considerably. On the contrary, in the case of using Sm2Fe17N3 magnet powder with a coercive force of 10KOe and 5KOe and magnets using polypropylene or 12-nylon resin samples S-1 and S-2, it can be seen as shown in Fig. 19 and Fig. As shown in Figure 20, even after repeated measurement, there will not be much change, and it shows quite stable characteristics. -31-584873 V. Description of the invention (30) Based on these results, in order to reduce the coercive force of the ferrous iron magnet, to reduce the magnetization by applying a reverse magnetic field to the magnet, or to cause the reversal of magnetization, It is presumed that a component with degraded DC superposition characteristics. In addition, it can be seen that the permanent magnets for bias magnetism inserted into the magnetic gap are permanent magnets having a coercive force of 5K0e or more, and will exhibit superior DC superimposition characteristics. Example 12 Relationship between particle diameter of magnetic powder and core loss Magnet powder: Sm2Co17 Curie point: 810 ° C s — 1: Average particle diameter: 1 · 〇 " m, coercive force: 5K0e S-2: average particle Diameter: 2.0 // m, coercive force: 8K0e S — 3: average particle size: 25 / zm, coercive force: lOKOe S — 4: average particle size: 50 // m, coercive force: llKOe S— 5: average particle size Diameter: 55 // m, Coercive force: llKOe Adhesive: 6 — Nylon resin resin amount: 30% by volume Magnet manufacturing method: Mold forming, non-aligned magnetic field Magnet: Thickness T: 0.5mm Shape • Area: Supported under an E-shaped iron core Sectional specific resistance: S — 1: 0.05 Ω · cm S — 2: 2.5 Ω · cm S-3: 1.5 Ω · cm S-4: 1.0 Ω · cm S — 5: 0.5 Ω · cm

-32- 584873-32- 584873

五、發明說明(31 ) 固有保磁力:與磁鐵粉末相同 著磁:脈衝著磁機V. Description of the invention (31) Inherent coercive force: same as magnet powder

著磁磁場 4T 磁性鐵心、· EE鐵心(第1圖):MnZn肥粒鐵磁性間隙 長 G : 0 · 5mm 鐵心損耗:以f = 3 OOKHz, jja = 〇· 1 τ測定 測定之鐵心損耗結果,如表5所示。 【表5】 試料 S— 1 S —2 S—3 S — 4 S — 5 粉末粒徑(β m) 1.0 2.0 25 50 55 鐵心損耗(kW/m3 ) 690 540 550 565 820 由表5可得知,用於偏磁用永久磁鐵之磁鐵的粉末平均 粒徑在2.0〜5 0 // m,則具有優秀之鐵心損耗特性。 實施例13 粗糙度(光澤度)與熔化(表面磁束)之間的 關係 磁鐵粉末:Sm2Fe17N3 平均粒徑:3 // m 保磁力iHc : lOKOe 居里點:470°C 膠粘劑:1 2 -尼龍樹脂 樹脂量:35體積% 磁鐵製造法:模具成形,無配向磁場 著磁:脈衝著磁機 -33- 584873 五、發明說明(32 ) 著磁磁場 4T 磁鐵:尺寸:lcmXlcm,厚度:〇.4mm 形狀•面積:E形鐵心之下支持部斷面 比電阻:3 Ω · cm 固有保磁力:lOKOe 測定上述磁鐵之表面磁束(熔化)與光澤度(粗糙度量 )’其結果顯示於表6。 粗糙度(%) 12 17 23 26 33 38 熔化(Gauss ) 37 49 68 100 102 102 由表6之結果,粗糙度達25%以上之薄板磁鐵中係具有 優良的磁鐵特性。此係爲所製作之薄板磁鐵之總量達25% 以上,則薄板磁鐵之充塡率形成爲90%以上之故。 在此,所謂充塡率係將成形體之重量除以體積以求出密 度,將該密度除以磁鐵合金之真密度所得之値,係代表於 該成形體中合金之佔有體積率。 此外,在本實施例中,雖然針對揭示有使用12 -尼龍樹 脂之構件進行試驗之結果,然而,除此之外,例如即便是 聚乙烯、聚丙稀、6-尼龍樹脂亦可獲得相同之結果。 實施例14 粗糙度與熔化與壓縮率之間的關係 磁鐵粉末:Sm2Fe17N3 平均粒徑:5 // m 保磁力iHc : 5KOe -34- 584873 五、發明說明(33) 居里點:470°C 膠粘劑:聚醯胺樹脂 樹脂量:40體積% 磁鐵製造法:刮片法,無配向磁場,乾燥後熱衝壓 著磁:脈衝著磁機Magnetic field with 4T magnetic core, EE core (Figure 1): MnZn ferrite ferromagnetic gap length G: 0 · 5mm Core loss: f = 3 OOKHz, jja = 〇 · 1 τ measured core loss results, As shown in Table 5. [Table 5] Sample S— 1 S —2 S—3 S — 4 S — 5 Particle size (β m) 1.0 2.0 25 50 55 Core loss (kW / m3) 690 540 550 565 820 The average particle diameter of the powder used for the permanent magnets for bias magnets is 2.0 ~ 5 0 // m, which has excellent core loss characteristics. Example 13 Relationship between roughness (gloss) and melting (surface magnetic flux) Magnet powder: Sm2Fe17N3 Average particle size: 3 // m Coercive force iHc: lOKOe Curie point: 470 ° C Adhesive: 1 2-Nylon resin Resin content: 35% by volume Magnet manufacturing method: Mould forming, non-aligned magnetic field magnetization: Pulse magnetizer -33-584873 V. Description of the invention (32) Magnetizing magnetic field 4T Magnet: Size: lcm × lcm, thickness: 0.4mm shape • Area: Specific resistance of the cross section of the support under the E-shaped core: 3 Ω · cm Inherent coercive force: lOKOe The surface magnetic flux (melt) and gloss (roughness) of the magnet were measured. The results are shown in Table 6. Roughness (%) 12 17 23 26 33 38 Melt (Gauss) 37 49 68 100 102 102 According to the results in Table 6, the thin-plate magnets with a roughness of 25% or more have excellent magnet characteristics. This is because the total amount of the thin-plate magnets produced is more than 25%, so the filling rate of the thin-plate magnets is more than 90%. Here, the so-called filling rate is the density obtained by dividing the weight of the formed body by the volume to obtain the density, and dividing the density by the true density of the magnet alloy represents the volume ratio of the alloy in the formed body. In addition, in this embodiment, although the test results are disclosed for members using 12-nylon resin, other than that, for example, even polyethylene, polypropylene, and 6-nylon resin can obtain the same results. . Example 14 Relationship between roughness and melting and compression rate Magnet powder: Sm2Fe17N3 Average particle size: 5 // m Coercive force iHc: 5KOe -34- 584873 V. Description of the invention (33) Curie point: 470 ° C Adhesive : Polyamine resin resin amount: 40% by volume Magnet manufacturing method: Squeegee method, no alignment magnetic field, hot stamping magnetization after drying: pulse magnetizer

著磁磁場 4T 磁鐵:尺寸:lcmXlcm,厚度:500/zm 形狀•面積:E形鐵心之下支持部斷面 比電阻:50 Ω · cm 固有保磁力:與磁鐵粉末相同 改變熱衝壓之壓力,獲得壓縮率在〇〜22 (%)爲止之 相異的試料。藉由熱衝壓而將壓縮率定義爲,壓縮率=1 一(熱衝壓後之厚度/熱衝壓前之厚度)。 針對各個試料,測定光澤度與表面磁束,其結果顯示於 表7。 粗糙度(%) 8 17 22 25 29 40 熔化(Gauss ) 33 38 49 99 100 101 壓縮率(%) 0 5 13 20 21 22 【表7】 _____ 由表7之結果,粗糙度達25%以上便可獲得良好之磁鐵 特性。此理由亦係爲粗糙度達25 %以上,則薄板磁鐡之充 塡率形成爲90%以上之故。此外,就壓縮率來看可得知在 壓縮率達到20%以上,便可獲得良好之磁鐵特性。此理由 -35- 584873 五、發明說明(34 ) 亦係爲壓縮率達20 %以上,則薄板磁鐡之充塡率形成爲 90%以上之故。 在本實施例中,雖然揭示藉由以聚乙烯樹脂進行以上述 組成、配合比之實驗結果,然而,即使是除此之外的配合 比及其他(例如於聚丙稀、尼龍等)樹脂中亦可獲得相同之 結果。 實施例1 5 添加界面活性劑與鐵心損耗之間的關係 磁鐵粉末:Sm2Fe17N3 平均粒徑:2.5// m 保磁力iHc : 12KOe 居里點:470°C 添加物:界面活性材料:S - 1 :磷酸納 0.3wt% S — 2:羧甲基纖維素鈉鹽 0.3 wt% S - 3 :砍酸鈉 0.3wt% 膠粘劑:聚丙稀樹脂 樹脂量(體積%) : 35體積% 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度:〇.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻:S— 1、S— 2、S— 3 均爲 10Ω · cm 固有保磁力:與磁鐵粉末相同 著磁:脈衝著磁機4T magnet with magnetic field: size: lcmXlcm, thickness: 500 / zm shape • area: specific resistance of the cross section of the support under the E-shaped core: 50 Ω · cm inherent coercive force: the same as the magnet powder. Samples with different compression ratios ranging from 0 to 22 (%). The compression ratio is defined by hot stamping as follows: the compression ratio = 1 (thickness after hot stamping / thickness before hot stamping). The gloss and surface magnetic flux were measured for each sample. The results are shown in Table 7. Roughness (%) 8 17 22 25 29 40 Melt (Gauss) 33 38 49 99 100 101 Compression ratio (%) 0 5 13 20 21 22 [Table 7] _____ From the results of Table 7, the roughness reaches 25% or more. Good magnet characteristics can be obtained. This reason is also because the roughness reaches 25% or more, and the charge rate of the thin-plate magnetic core is formed to 90% or more. In addition, it can be seen from the viewpoint of the compression ratio that when the compression ratio reaches 20% or more, good magnet characteristics can be obtained. This reason -35- 584873 V. The description of the invention (34) is also the reason that the compression rate of the thin plate magnetic core is more than 90%. In this example, although the experimental results of the above composition and blending ratio are disclosed by using a polyethylene resin, even the blending ratio other than this and other (such as polypropylene, nylon, etc.) resins also The same result can be obtained. Example 1 5 Relationship between adding surfactant and core loss Magnet powder: Sm2Fe17N3 Average particle size: 2.5 // m Coercive force iHc: 12KOe Curie point: 470 ° C Additive: Interface active material: S-1: Sodium phosphate 0.3 wt% S — 2: Carboxymethylcellulose sodium salt 0.3 wt% S-3: Sodium cholate 0.3 wt% Adhesive: Polypropylene resin content (vol%): 35vol% Magnet manufacturing method: mold forming , Non-aligned magnetic field magnet: Thickness: 0.5mm Shape • Area: Specific resistance of the cross section of the support under the E-shaped iron core: S-1, S-2, S-3 are all 10Ω · cm Inherent coercive force: with magnet powder Same magnetization: pulse magnetization

-36- 584873 五、發明說明(35 ) 著磁磁場 4T 磁性鐵心:EE鐵心(第1圖):MnZn肥粒鐵磁性間隙 長 G ·· 0 · 5 m m 鐵心損耗:以f = 300KHz, Ha= 0.1T測定 作爲比較試料(S - 4 ),係以磁鐵粉末之平均粒徑係具 有5.0/zm、以及未使用界面活性材料之點,製作出相異之 永久磁鐵試料,同樣的,測定鐵心損耗。 所測定之鐵心損耗係揭示於表8。 【表8】 試料名 鐵心損耗(kW/m3) S— 1 磷酸納添加品 480 S — 2 羧甲基纖維素鈉鹽添加品 500 S —3 矽酸鈉 495 S — 4 無添加劑 590-36- 584873 V. Description of the invention (35) 4T magnetic field magnetic core: EE core (Fig. 1): MnZn ferrite core ferromagnetic gap length G ·· 0 · 5 mm Core loss: f = 300KHz, Ha = The 0.1T measurement was used as a comparative sample (S-4). The average particle size of the magnet powder was 5.0 / zm, and no interface active material was used to produce a different permanent magnet sample. Similarly, the core loss was measured. . The measured core loss is shown in Table 8. [Table 8] Sample name Core loss (kW / m3) S — 1 Sodium phosphate additive 480 S — 2 Carboxymethyl cellulose sodium salt additive 500 S — 3 Sodium silicate 495 S — 4 No additive 590

藉由表8,係顯示添加界面活性劑之物爲具有良好之鐵 心損耗特性。此爲,藉由添加界面活性劑而防止1次粒子 之凝集,爲用以抑制渦電流損。在本實施例中,雖顯示爲 添加有磷酸鹽之結果,然,即便是添加此種以外之界面活 性劑,亦相同的可獲得具良好鐵心損耗特性之結果。 實施例1 6 比電阻與鐵心損耗間之關係 磁鐵粉末:Sm2Fe17N3 平均粒徑:5 /z m 固有保磁力iHc : 5.0KOe 居里點:470°C -37- 584873 五、發明說明(36 ) 膠粘劑:聚丙稀樹脂 樹脂量:調整 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度:〇.5mm 形狀•面積:E形之下支持部斷面 比電阻(Ω · cm) : S— 1 : 0·05 S — 2 _· 0 · 1 S - 3 : 0.2 S - 4 : 0.5 S — 5 ·· 1 · 0 固有保磁力:5.0KOe 著磁:脈衝著磁機 著磁磁場 4 T 磁性鐵心:EE鐵心(第1圖):MnZn肥粒鐵磁性間隙 長 G : 0.5mm 鐵心損耗測定:以f = 300KHz,Ha = 0.1T測定 測定後之鐵心損耗如表9所示。 【表9】 試料 S— 1 S — 2 S-3 S — 4 S — 5 比電阻(Ω · cm) 0.05 0.1 0.2 0.5 1.0 鐵心損耗(kW/m3) 1180 545 540 530 525 由表9可得知,鐵心損耗係爲在比電阻達〇 ·丨Ω · cm以 上之磁性鐵心係爲良好。此係爲藉由提昇薄板磁鐵之比電 •38- 584873 五、發明說明(37) 阻而使得渦電流損失得以控制之故。 接著,針對以焊接回焊所處理之電感元件,使用其之偏 磁用磁鐵的實施例進行敘述。 實施例1 7 磁鐵粉末之種類與直流重疊特性之間的關係 磁鐵粉末:Nd2Fe14B 平均粒徑:3〜3 · 5 // m 保磁力iHc : 9K0e 居里溫度Tc : 310°C 磁鐵粉末:Sm2Fe17N3 平均粒徑:3〜3.5// m 保磁力 iHc : 8.8KOe 居里溫度Tc : 470°C 磁鐵粉末:Sm2Co17 平均粒徑:3〜3.5//m 保磁力iHc : 17K0e 居里溫度Tc : 810°C 膠粘劑:聚醯胺樹脂(軟化點:300°C ) 樹脂量:50體積% 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度:10.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻(Ω · cm) : 10〜30 固有保磁力:S— 1 : 9KOeTable 8 shows that the surfactant added has good core loss characteristics. This is to prevent aggregation of primary particles by adding a surfactant, and to suppress eddy current loss. In this embodiment, the results are shown by adding phosphate. However, even if a surfactant other than this is added, the same results can be obtained with good core loss characteristics. Example 1 6 Relationship between specific resistance and core loss Magnet powder: Sm2Fe17N3 Average particle size: 5 / zm Inherent coercive force iHc: 5.0KOe Curie point: 470 ° C -37- 584873 V. Description of the invention (36) Adhesive: Polypropylene resin content: Adjustment magnet Manufacturing method: Mold forming, non-aligned magnetic field Magnet: Thickness: 0.5mm Shape • Area: Specific resistance (Ω · cm) of support section under E-shape: S— 1: 0 · 05 S — 2 _ · 0 · 1 S-3: 0.2 S-4: 0.5 S — 5 ·· 1 · 0 Inherent coercive force: 5.0KOe Magnetizing: Pulse magnetizing magnetic field 4 T Magnetic core: EE core (Figure 1): Ferromagnetic gap length of MnZn fertilizer particles G: 0.5mm Core loss measurement: The core loss after measurement is measured at f = 300KHz, Ha = 0.1T, as shown in Table 9. [Table 9] Sample S— 1 S — 2 S-3 S — 4 S — 5 Specific resistance (Ω · cm) 0.05 0.1 0.2 0.5 1.0 Core loss (kW / m3) 1180 545 540 530 525 The core loss is good for magnetic cores with a specific resistance of 〇 · 丨 Ω · cm or more. This is because the eddy current loss can be controlled by increasing the specific electricity of the thin-plate magnet. 38-584873 V. Invention Description (37). Next, an embodiment in which an inductive element processed by solder reflow is used and a magnet for bias magnetization is used will be described. Example 1 7 Relationship between the type of magnet powder and DC superimposition characteristics Magnet powder: Nd2Fe14B Average particle size: 3 ~ 3 · 5 // m Coercive force iHc: 9K0e Curie temperature Tc: 310 ° C Magnet powder: Sm2Fe17N3 Average Particle size: 3 ~ 3.5 // m Coercive force iHc: 8.8KOe Curie temperature Tc: 470 ° C Magnet powder: Sm2Co17 Average particle size: 3 ~ 3.5 // m Coercive force iHc: 17K0e Curie temperature Tc: 810 ° C Adhesive: Polyamide resin (softening point: 300 ° C) Resin content: 50% by volume Magnet manufacturing method: Mold forming, non-orientation magnetic field Magnet: Thickness: 10.5mm Shape • Area: Cross section ratio of support under the E-shaped core Resistance (Ω · cm): 10 ~ 30 Inherent coercive force: S— 1: 9KOe

-39- 584873 五、發明說明(38) S — 2 : 8.8KOe S- 3 : 17K0e 著磁:脈衝著磁機-39- 584873 V. Description of the invention (38) S — 2: 8.8KOe S- 3: 17K0e magnetization: pulse magnetization

著磁磁場 4T 磁性鐵心:EE鐵心(第1圖):ΜηΖη肥粒鐵磁性間隙 長 G : 1 ·5mm 直流重疊特性(透磁率):使其以f = ΙΟΟΚΗζ, Ha = 0〜 2000e之範圍變化進行測定 直流重疊特性,係以在回焊爐之溫度條件爲270°C的高 溫槽下’於進行維持1小時後冷卻至常溫、放置2小時之 處理前後所測定。此外,作爲比較例之於磁性間隙未插入 有任何試料亦是爲以上述同樣方式製作,進行直流重疊特 性之測定。其結果揭示於第23圖。 由第23圖可得知,在回焊前,較未插入有任何試料之 全部的磁鐵間隙試料,其直流重疊特性係較爲延伸者。然 而’另一方面,在回焊之後可得知,在插入有Tc爲低之 Nd2Fe14B結合磁鐵與Sm2Fe17N3結合磁鐵之試料中之直流 重疊特性將會惡化,未插入試料者係喪失其優勢性。此外 ’在Tc爲高的Sm2Co17結合磁鐵方面可得知,即便於回 焊後仍保持有其優勢性。 實施例18 樹脂之種類與磁鐵特性之間的關係 磁鐵粉末·· Sm2Co17 平均粒徑:3〜3.5//m -40- 584873 五、發明說明(39 ) 居里點Tc : 900°C 保磁力(iHc) : 17K0e 膠粘劑:S - 1 : 聚乙烯樹脂(軟化點·· 160t ) S — 2 : 聚醯胺樹脂(軟化點:300°C ) S — 3 : 環氧樹脂(硬化點:100°C ) 樹脂量:50體積% 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度T : 1.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻(Ω · cm ) : 10〜30 固有保磁力(iHc): S— 1、S— 2、S - 3(任一均爲):1.7KOe 著磁:脈衝著磁機 著磁磁場 4T 磁性鐵心:EE鐵心(第1圖):MnZn肥粒鐵磁性間隙 長 G : 1 ·5mm 直流重疊特性(透磁率)··以f = lOOKHz,Hm = 0〜 2000e之範圍進行測定 直流重疊特性,係以在回焊爐之溫度條件爲270°C的高 溫槽下,於維持1小時後冷卻至常溫、進行2小時放置處 理前後所測定。其結果揭示於第24圖。 由第24圖可得知,在回焊後,在使用軟化點300°C之聚 醯胺樹脂、於熱硬化性樹脂中具硬化溫度100°C之環氧樹 •41 · 584873 五、發明說明(4〇) 脂的結合磁鐵中,直流重疊特性在回焊前後約略相同。 相對於此,在使用軟化點1 60°C之聚乙烯樹脂的結合磁 鐵中,可知道與樹脂軟化而無法於間隙插入試料者具有同 等的直流重疊特性。 實施例1 9 磁鐵之種類(固有保磁力)與直流重疊特性之 間的關係 磁鐵粉末:S— 1 : Nd2Fe14B 平均粒徑:3〜3.5 // m 居里點Tc : 310°C 保磁力(iHc) : 5.0KOe S — 2 : Sm2Fe17N3 平均粒徑·· 3〜3 · 5 // m 居里點Tc : 470°C 保磁力(iHc) : 8.0KOe S — 3 · S m 2 C 〇 J 7 平均粒徑:3〜3 · 5 β m 居里點Tc : 810°C 保磁力(iHc) : 17.0KOe 膠粘劑:聚醯胺樹脂(軟化點:300°C ) 樹脂量:50體積% 磁鐵製造法:模具成形,無配向磁場 磁鐡:厚度T ·· 1.5mm 形狀•面積:E形鐵心之下支持部斷面Magnetic field 4T Magnetic core: EE core (Figure 1): MηZη Ferrite magnetic gap length G: 1 · 5mm DC overlap characteristic (permeability): change it in the range of f = ΙΟΟΚΗζ, Ha = 0 ~ 2000e The measurement of the DC overlap characteristics was performed before and after the treatment in a high-temperature tank at a temperature of 270 ° C in a reflow furnace, followed by cooling to normal temperature for 1 hour and leaving it for 2 hours. In addition, as a comparative example, no sample was inserted into the magnetic gap, and the sample was produced in the same manner as described above, and the DC superposition characteristic was measured. The results are shown in FIG. 23. As can be seen from Fig. 23, before reflow, the DC overlap characteristics of all the magnet gap samples without any samples inserted are relatively extended. However, on the other hand, after reflow, it can be known that the DC superimposition characteristics in a sample with a low Tc Nd2Fe14B bonded magnet and a Sm2Fe17N3 bonded magnet will deteriorate, and those who have not inserted the sample will lose their advantages. In addition, it can be seen from the aspect of the Sm2Co17 bonded magnet with a high Tc that it maintains its advantages even after re-soldering. Example 18 Relationship between the type of resin and magnet characteristics Magnet powder ·· Sm2Co17 Average particle size: 3 ~ 3.5 // m -40- 584873 V. Description of the invention (39) Curie point Tc: 900 ° C Coercive force ( iHc): 17K0e Adhesive: S-1: Polyethylene resin (softening point · 160t) S — 2: Polyamide resin (softening point: 300 ° C) S — 3: Epoxy resin (hardening point: 100 ° C ) Resin content: 50% by volume Magnet manufacturing method: Mold forming, non-aligned magnetic field Magnet: Thickness T: 1.5mm Shape • Area: Specific resistance (Ω · cm) of support section under E-shaped core: 10 ~ 30 Magnetic force (iHc): S— 1, S— 2, S-3 (any of them): 1.7KOe Magnetization: pulse magnetization magnetization magnetic field 4T Magnetic core: EE core (Figure 1): MnZn fertilizer particles Ferromagnetic gap length G: 1 · 5mm DC overlap characteristics (permeability) · DC overlap characteristics are measured in the range of f = 10OKHz, Hm = 0 ~ 2000e, based on the temperature of 270 ° C in the reflow furnace In a high-temperature tank, it was measured before and after it was maintained for 1 hour, cooled to normal temperature, and left and treated for 2 hours. The results are shown in Figure 24. Figure 24 shows that after reflow, epoxy resin with a softening point of 300 ° C and epoxy resin with a curing temperature of 100 ° C in a thermosetting resin • 41 · 584873 V. Description of the invention (4〇) In the bonded magnet with grease, the DC overlap characteristics are approximately the same before and after reflow. On the other hand, in a bonded magnet using a polyethylene resin having a softening point of 160 ° C, it is known that those who have softened with the resin and cannot insert the sample in the gap have the same DC superposition characteristics. Example 1 9 Relationship between the type of magnet (inherent coercive force) and DC superimposition characteristics Magnet powder: S-1: Nd2Fe14B Average particle size: 3 ~ 3.5 // m Curie point Tc: 310 ° C coercive force (iHc ): 5.0KOe S — 2: Sm2Fe17N3 average particle size · 3 ~ 3 · 5 // m Curie point Tc: 470 ° C coercive force (iHc): 8.0KOe S — 3 · S m 2 C 〇J 7 average Particle size: 3 ~ 3 · 5 β m Curie point Tc: 810 ° C Coercive force (iHc): 17.0KOe Adhesive: Polyamide resin (softening point: 300 ° C) Resin amount: 50% by volume Magnet manufacturing method: Mold forming, non-orientation magnetic field Magnetic 鐡: thickness T · 1.5mm shape · area: cross section of support part under E-shaped iron core

-42- 584873 五、發明說明(41 ) 比電阻(Ω · cm ) : 10〜30 固有保磁力(iHc):與磁鐵粉末相同 著磁:脈衝著磁機 著磁磁場 4 T 磁性鐵心:EE鐵心(第1圖):MnZn肥粒鐵磁性間隙 長 G : 1 ·5mm 直重疊特性(透磁率):使其以f=l〇〇KHz,Hm=0 〜1 50 ( Oe)之範圍變化進行測定 直流重疊特性係以在回焊爐之溫度條件爲270°C的高溫 槽下’於維持1小時後冷卻至常溫、進行2小時放置處理 則後所測定。此外,作爲比較例之於磁性間隙未插入有任 何試料亦是爲以上述同樣方式製作,進行直流重疊特性之 測定。其結果揭示於第25圖。 由第25圖可得知,於磁性間隙插入配置偏磁用永久磁 鐵之試料,無論何種試料,可知在回焊前係較未使用磁性 偏磁用永久磁鐵之試料,其直流重疊特性係爲提昇者。 另一方面,在回焊之後可得知,在使用有作爲偏磁用永 久磁鐵、且He爲低之Ba肥粒鐵燒結磁鐵與Sm2Fe17N3結 合磁鐵之試料,其直流重疊特性將會惡化。此爲,該等永 久磁鐵因爲其固有保磁力iHc爲低之故,而造成容易受到 熱減磁者。另外,在iHc爲高的Sm2C〇17結合磁鐵方面亦 可得知在回焊後,與其他之物相比較下,關於就直流重疊 特性方面可保持其優勢性。-42- 584873 V. Description of the invention (41) Specific resistance (Ω · cm): 10 ~ 30 Inherent coercive force (iHc): same as magnet powder magnetization: pulse magnetization magnetizing magnetic field 4 T magnetic core: EE core (Figure 1): Ferromagnetic gap length of MnZn fertilizer grains G: 1 · 5mm Straight overlap characteristics (permeability): Measured in a range of f = 100 kHz, Hm = 0 to 1 50 (Oe) The DC superimposition characteristics were measured after cooling for 1 hour in a high-temperature tank with a temperature of 270 ° C in a reflow furnace, and then cooling to room temperature, and then leaving it to stand for 2 hours. In addition, as a comparative example, no sample was inserted into the magnetic gap, and it was produced in the same manner as described above, and the DC superposition characteristic was measured. The results are shown in Figure 25. It can be seen from FIG. 25 that the sample for disposing the permanent magnet for the magnetic bias is inserted into the magnetic gap. Regardless of the sample, it can be seen that the sample without the permanent magnet for the magnetic bias is used before reflow. Ascender. On the other hand, after reflow, it can be seen that the DC superimposition characteristics of the samples using Ba ferrite sintered magnets and Sm2Fe17N3 bonded magnets, which are permanent magnets for bias magnets and low in He, are used. This is because these permanent magnets are vulnerable to thermal demagnetization because their inherent coercive force iHc is low. In addition, it is also known that the Sm2C〇17 bonded magnet with a high iHc can maintain its superiority in terms of DC overlap characteristics after reflow compared with others.

-43--43-

•、發明說明(42) 實施例? π 1」20磁鐵= 關係 磁鐵粉末: 磁鐵之種類(居里點)與直流重疊特性之間的• Description of the invention (42) Examples? π 1 ″ 20 magnet = relationship Magnet powder: The type of magnet (Curie point)

S— 1 : Nd2Fe14B 平均粒徑:3〜3 · 5 // m 居里點Tc : 310°C 保磁力(iHc) ·· 9K0e S — 2 · Sm2Fe,7N3 平均粒徑·· 3〜3 · 5 // m 居里點Tc : 470°C 保磁力(iHc) : 8.8KOe S — 3 · Sm2Co!7 平均粒徑:3〜3.5//m 居里點Tc : 810°C 保磁力(iHc) : 17K0e ®粘劑:聚醯胺樹脂(軟化點:3〇(TC ) 樹脂量:50體積% 磁鐵製造法:模具成形,無配向磁場S— 1: Nd2Fe14B Average particle size: 3 ~ 3 · 5 // m Curie point Tc: 310 ° C Coercive force (iHc) ·· 9K0e S — 2 · Sm2Fe, 7N3 Average particle size · 3 ~ 3 · 5 // m Curie point Tc: 470 ° C coercive force (iHc): 8.8KOe S — 3 · Sm2Co! 7 Average particle size: 3 ~ 3.5 // m Curie point Tc: 810 ° C coercive force (iHc): 17K0e ® Adhesive: Polyamide resin (softening point: 30 (TC) resin amount: 50% by volume) magnet manufacturing method: mold forming, no alignment magnetic field

形狀•面積:E形鐵心之下支持部斷面 比電阻(Ω · cm ) : 1 0〜3 0 (任何試料均是) 固有保磁力(iHc):與磁鐵粉末相同 者磁·脈衝著磁機Shape and area: Cross section of the support part under the E-shaped core. Specific resistance (Ω · cm): 1 0 ~ 3 0 (all samples are). Inherent coercive force (iHc): same as magnet powder.

著磁磁場 4T -44- 五、發明說明(43) 磁性鐵心:EE鐵心(第1圖):MnZn肥粒鐵磁性間隙 長 G : 1 ·5mm 直流重疊特性(透磁率):使其以f = ΙΟΟΚΗζ,Hm= 0 〜150〇e之範圍變化進行測定 直流重疊特性,係以在回焊爐之溫度條件爲270°C的高 溫槽下’於維持1小時後冷卻至常溫、進行2小時放置處 理前後所測定。此外,作爲比較例之於磁性間隙未插入有 任何試料亦是爲以上述同樣方式製作,進行直流重疊特性 之測定。其結果揭示於第2 6圖。 由第26圖可得知,於磁性間隙插入配置偏磁用永久磁 鐵之試料,無論何種試料,可知在回焊前係較未使用磁性 偏磁用永久磁鐵之試料,其直流重疊特性係爲提昇者。 另一方面,在回焊之後可得知,在使用有作爲磁性偏磁 用永久磁鐵、且居里點Tc爲低之Nd2Fe14B結合磁鐵與 Sm2Fe17N3結合磁鐵之試料,其直流重疊特性將會惡化, 且喪失了與未插入試料之優越性。此外,在居里點Tc爲 高的Sm2C〇17結合磁鐵方面亦可得知在回焊後,亦可保持 其優勢性。 實施例2 1 磁鐵粉末粒徑與鐵心損耗之間的關係 磁鐵粉末:Sm2Co17 平均粒徑(// m ) : S - 1 : 1 5 0 S— 2 : 100 S — 3 : 50 -45- 584873 五、發明說明(44 ) S — 4 : 10 S - 5 : 5.6 S — 6 : 3.3 S- 7 : 2.4 S — 8 : 1.8 膠粘劑:環氧樹脂 樹脂量:50體積% 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度:〇.5mm 形狀•面積:E形之下支持部斷面 比電阻:0.01〜100 Ω · cm (調節樹脂量) 固有保磁力:表1 〇 著磁:脈衝著磁機 著磁磁場 4T 磁性鐵心:EE鐵心(第1、2圖):MnZn肥粒鐵磁性 間隙長G ·· 0.5mm 相對於各個試料,使用同一之磁性鐵心、且將鐵心損耗 以f = 300KHZ、Hm= 1 000G之條件下,於常溫測定。測定 結果如表1 1所示。Magnetic field 4T -44- V. Explanation of the invention (43) Magnetic core: EE core (Fig. 1): MnZn ferrite ferromagnetic gap length G: 1 · 5mm DC overlap characteristic (permeability): make f = ΙΟΟΚΗζ, Hm = 0 ~ 150〇e to measure the DC overlap characteristics, in a reflow furnace temperature conditions of 270 ° C in a high-temperature bath 'after cooling for 1 hour to normal temperature, 2 hours of standing treatment Measured before and after. In addition, as a comparative example, no sample was inserted into the magnetic gap, and it was produced in the same manner as described above, and the DC superposition characteristic was measured. The results are shown in Figs. It can be seen from FIG. 26 that the sample in which the permanent magnet for the magnetic bias is inserted into the magnetic gap. Regardless of the sample, it is known that the sample without the permanent magnet for the magnetic bias is used before reflow, and the DC overlap characteristic is Ascender. On the other hand, after reflow, it can be seen that when using Nd2Fe14B bonded magnets and Sm2Fe17N3 bonded magnets, which are permanent magnets for magnetic bias and have a low Curie point Tc, the DC overlap characteristics will deteriorate, Loss of superiority with no sample inserted. In addition, it is also known that the Sm2C〇17 bonded magnet with a high Curie point Tc can maintain its advantages after reflow. Example 2 1 Relation between particle size of magnetic powder and core loss Magnet powder: Sm2Co17 Average particle size (// m): S-1: 1 5 0 S— 2: 100 S — 3: 50 -45- 584873 5 Explanation of the invention (44) S — 4: 10 S-5: 5.6 S — 6: 3.3 S— 7: 2.4 S — 8: 1.8 Adhesive: epoxy resin amount: 50% by volume Magnet manufacturing method: mold forming, no Orientation magnetic field magnet: Thickness: 0.5mm Shape / area: Specific resistance of the cross section of the support under the E-shape: 0.01 ~ 100 Ω · cm (Adjust the amount of resin) Inherent coercive force: Table 1 〇 Magnetization: Pulse magnetization Magnetic field 4T Magnetic core: EE core (Figures 1 and 2): MnZn ferrite ferrite magnetic gap length G ·· 0.5mm The same magnetic core is used for each sample, and the core loss is f = 300KHZ, Hm = Measured at 1 000 G at room temperature. The measurement results are shown in Table 11.

-46- 584873 五、發明說明(45 ) 試料 S-l S — 2 S — 3 S — 4 S — 5 S — 6 S-7 S — 8 平均粒徑 150 β m 100 β m 50// m 10 // m 5.6// m 3.3 β m 2.5 β m L8 β m Br(kG) 3.5 3.4 3.3 3.4 3.0 2.8 2.4 2.2 He ( KOe ) 25.6 24.5 23.2 21.5 19.3 16.4 12.5 9.5 【表11】 試料 S-1 S — 2 S — 3 S — 4 S — 5 S — 6 S — 7 S —8 粉末粒徑 無磁鐵 150μ m 100 β m 50// m 10// m 5.6 β m 3.3 β m 2Αβ m 1.8 β m 鐵心損耗 (kW/m3) 520 1280 760 570 560 555 550 520 520 接著,直流重疊特性,係以在回焊爐之溫度條件爲270 °C的高溫槽下,於進行維持1小時後冷卻至常溫、進行2 小時放置處理前後所測定。此外,作爲比較例之於磁性間 隙未插入有任何試料亦是以與上述同樣方式製作,進行直 流重疊特性之測定。其結果揭示於第27圖。 如表1 1所示可得知,當磁鐵粉末之最大粒徑(粉末粒 度)超過了 5〇//m之後,鐵心損耗便會急速的增大者。此 外,在回焊之後由第27圖可看到,粉末粒徑在2.5// m以 下,直流重疊特性便惡化。藉此,可得知將磁鐵粉末之平 均粒徑設爲2·5〜50//m的結合磁鐵作爲偏磁用永久磁鐵 之用,而可獲得即便於回焊後依舊是優越的直流重疊特性 ,且可獲得不致於產生鐵心損耗惡化之磁性鐵心。 -47- 584873 五、發明說明(46 ) 實施例22 比電阻與鐵心損耗間之關係 磁鐵粉末:Sm2Co17 平均粒徑:3 // m 固有保磁力iHc : 17K0e 居里點Tc : 810°C 膠粘劑:環氧樹脂 樹脂量(體積%):調整成獲得各個比電阻 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度:1.5mm 形狀•面積:E形之下支持部斷面 比電阻(Ω · cm) : S— 1 : 0·01 S- 2 : 0.1 S- 3 : 1 S— 4 : 10 S — 5 ·· 100 固有保磁力:5KOe以上 著磁:脈衝著磁機 著磁磁場 4T 磁性鐵心:EE鐵心(第1、2圖):MnZn肥粒鐵磁性 間隙長G: 1.5mm 鐵心損耗:以f= 300KHz,Ha= 1000G測定 針對各個試料而測定使用同一磁性鐵心所測定之鐵心損 耗’係如下表1 2所示。 •48- 584873 五、發明說明(47 ) 【表12】 試料 S— 1 S — 2 S — 3 S — 4 S — 5 比電阻 (Ω · cm) 無磁鐵 (間隙) 0.01 0.1 1 10 100 鐵心損耗 (kW/m3) 520 2100 1530 590 560 530 由表12可得知,當結合磁鐵之比電阻小於1Ω · cm後 ,鐵心損耗便將急速的惡化者。由以上的結果可得知,直 流偏磁用永久磁鐵之比電阻於1 Ω · cm以上,便可獲得鐵 心損耗特性之惡化較小之具優秀的直流重疊特性之磁性鐵 心。 實施例23 磁鐵之種類(固有保磁力)與直流重疊特性之 間的關係 磁鐵粉末:S— 1 : Sm ( COmFemCiXo.KZr。.^) 0.74 平均粒徑:5.0 // m 居里點Tc : 820°C 保磁力(iHc) ·· 8KOe S— 2 · Sm ( Co0 742Fe0 20Cu0 055Zr0 03 ) 0 75 平均粒徑:5.0// m 居里點Tc : 810°C 保磁力(iHc) : 20KOe 膠粘劑:環氧樹脂(硬化點:約1 5〇t ) 樹脂量:50體積% 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度T : 0.5mm 形狀•面積:E形鐵心之下支持部斷面 -49- 584873 五、發明說明(48) 比電阻(Ω · cm):任何試料均爲1 Ω · cin以 上 固有保磁力(iHc):與磁鐵粉末相同 著磁:脈衝著磁機 著磁磁場 4T 磁性鐵心:EE鐵心(第1圖):MnZn肥粒鐵磁性間隙 長 G ·· 0.5mm 直流重疊特性(透磁率):使其以f = ΙΟΟΚΗζ,Hm= 0 〜150Oe之範圍變化進行測定 直流重疊特性,係以在回焊爐之溫度條件爲270°C的高 溫槽下,於進行維持1小時後冷卻至常溫、進行2小時放 置處理前後所測定。此外,作爲比較例之於磁性間隙未插 入有任何試料亦是爲以上述同樣方式製作,進行直流重疊 特性之測定。其結果揭示於第28圖。 由弟28圖可得知’進一步地將使用有更局保磁力之 Sm2Co 1 7磁鐵粉末的結合磁鐵作爲偏磁用永久磁鐵的情況 下,可獲得即便於回焊後依舊是優越的直流重疊特性。使 用有藉由以上所組成具Sm ( Coba卜?6。15_。25匸11。。5-u3) 7.0-8.5之磁鐵粉末的結合磁鐵,可得知具 有良好之直流重疊特性。 實施例24 樹脂之種類與直流重疊特性之間的關係 磁鐵粉末:Sm2Co17 平均粒徑:3.0〜3.5//m -50- 584873 五、發明說明(49 ) 保磁力(iHc) : lOKOe 居里點Tc : 81CTC 膠粘劑:S — 1 :聚乙烯樹脂(軟化點:16〇°C ) 樹脂量:50體積% S - 2 : 聚醯胺樹脂(軟化點:300°C ) 樹脂量:50體積% S - 3 : 環氧樹脂(軟化點:l〇〇°C ) 樹脂量:50體積% 磁鐵製造法:模具成形,無配向磁場 石&鐵:厚度:〇.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻:10〜30 Ω · cm以上 固有保磁力:與磁鐵粉末相同 著磁:脈衝著磁機 著磁磁場 4T 磁性鐵心:EE鐵心(第1圖):MnZn肥粒鐵磁性間隙 長 G ·· 0 · 5 m m 直流重疊特性(透磁率):以f = lOOKHz,Hm = 0〜 150Oe之範圍進行測定 直流重疊特性之測定,係適用於相對同於使用各個樹脂 S 一 1至S 一 3所用的磁鐵試料之磁性鐵心所進行。 在回焊爐之溫度條件爲270°C的高溫槽下,維持1小時 後冷卻至常溫、進行2小時放置處理前後測定直流重疊特 -51 - 584873 五、發明説明(5〇) 性。此外,作爲比較例之於磁性間隙未插入有任何試料亦 是爲以上述同樣方式製作,進行直流重疊特性之測定。其 結果揭示於第29圖。 由第29圖揭示,於回焊後,在使用有軟化點30(TC之聚 醯胺樹脂、作爲硬化性樹脂之硬化溫度1 OOt之環氧樹脂 的結合磁鐵方面,相對於其直流重疊特性係於回焊前約略 相同,在使用軟化點1 60°C之聚乙烯樹脂的結合磁鐵方面 ’因樹脂遭到軟化,而具有與未使用直流偏磁用永久磁鐵 之磁料同等之直流重疊特性。 實施例25 添加偶合材料與鐵心損耗之間的關係 磁鐵粉末:Sm2Co17 平均粒徑:3.0〜3.5 // m 保磁力(iHc) : 17KOe 居里點Tc : 810°C 偶合材料: S - 1 :有機矽烷偶合劑,〇.5wt% S - 2:無偶合材料 膠粘劑:環氧樹脂 樹脂量(體積%) : 50體積% 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度T : 1.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻(Ω · cm) : S — 1:10、S-2:100 固有保磁力:17KOe -52- 584873 五、發明說明(51 ) 著磁:脈衝著磁機-46- 584873 V. Description of the invention (45) Sample Sl S — 2 S — 3 S — 4 S — 5 S — 6 S-7 S — 8 Average particle size 150 β m 100 β m 50 // m 10 // m 5.6 // m 3.3 β m 2.5 β m L8 β m Br (kG) 3.5 3.4 3.3 3.4 3.0 2.8 2.4 2.2 He (KOe) 25.6 24.5 23.2 21.5 19.3 16.4 12.5 9.5 [Table 11] Sample S-1 S — 2 S — 3 S — 4 S — 5 S — 6 S — 7 S — 8 Powder size without magnet 150 μ m 100 β m 50 // m 10 // m 5.6 β m 3.3 β m 2Αβ m 1.8 β m Core loss (kW / m3) 520 1280 760 570 560 555 550 520 520 520 Next, the DC superposition characteristic is based on the high temperature bath of the reflow furnace temperature of 270 ° C. After maintaining for 1 hour, it is cooled to room temperature and left for 2 hours. Measured before and after treatment. In addition, as a comparative example, no sample was inserted into the magnetic gap, and it was produced in the same manner as described above, and the DC superposition characteristic was measured. The results are shown in Figure 27. As shown in Table 11, it can be seen that when the maximum particle diameter (powder particle size) of the magnet powder exceeds 50 // m, the core loss will increase rapidly. In addition, it can be seen from FIG. 27 after re-soldering that when the powder particle size is 2.5 // m or less, the DC superposition characteristic is deteriorated. From this, it can be seen that a combination magnet having an average particle diameter of the magnet powder of 2.5 to 50 // m is used as a permanent magnet for bias magnetism, and an excellent DC overlap characteristic can be obtained even after reflow , And a magnetic core that does not cause deterioration of core loss can be obtained. -47- 584873 V. Description of the invention (46) Example 22 Relationship between specific resistance and core loss Magnet powder: Sm2Co17 Average particle size: 3 // m Inherent coercive force iHc: 17K0e Curie point Tc: 810 ° C Adhesive: Epoxy resin content (vol.%): Adjusted to obtain specific resistance magnets Manufacturing method: mold forming, non-aligned magnetic field magnet: thickness: 1.5mm shape • area: cross section specific resistance (Ω · cm) ): S— 1: 0 · 01 S- 2: 0.1 S- 3: 1 S— 4: 10 S — 5 ·· 100 Inherent coercive force: 5KOe or more magnetization: Pulse magnetizer magnetizing magnetic field 4T magnetic core: EE core (Figures 1 and 2): MnZn ferrite ferromagnetic gap length G: 1.5mm Core loss: measured at f = 300KHz, Ha = 1000G For each sample, the core loss measured using the same magnetic core is as follows: Table 12 shows. • 48-584873 V. Description of the invention (47) [Table 12] Sample S— 1 S — 2 S — 3 S — 4 S — 5 Specific resistance (Ω · cm) No magnet (gap) 0.01 0.1 1 10 100 Core loss (kW / m3) 520 2100 1530 590 560 530 As can be seen from Table 12, when the specific resistance of the combined magnet is less than 1Ω · cm, the core loss will rapidly deteriorate. From the above results, it can be seen that a permanent magnet for direct current bias has a specific resistance of 1 Ω · cm or more, and a magnetic core having excellent DC superposition characteristics with less deterioration in core loss characteristics can be obtained. Example 23 Relationship between the type of magnet (inherent coercive force) and DC superimposition characteristics Magnet powder: S-1: Sm (COmFemCiXo.KZr .. ^) 0.74 Average particle size: 5.0 // m Curie point Tc: 820 ° C Coercive force (iHc) ·· 8KOe S— 2 · Sm (Co0 742Fe0 20Cu0 055Zr0 03) 0 75 Average particle size: 5.0 // m Curie point Tc: 810 ° C Coercive force (iHc): 20KOe Adhesive: ring Oxygen resin (hardening point: approx. 150%) Resin content: 50% by volume Magnet manufacturing method: mold forming, non-oriented magnetic field Magnet: thickness T: 0.5mm Shape / area: cross section of support part under E-shaped core -49 -584873 V. Description of the invention (48) Specific resistance (Ω · cm): Any sample is 1 Ω · cin or above. Inherent coercive force (iHc): Same as magnet powder. Magnetization: Pulse magnetizer. Magnetic field. 4T magnetic core. : EE core (Figure 1): MnZn ferrite ferromagnetic gap length G ·· 0.5mm DC overlap characteristic (permeability): Measure the DC overlap characteristic by changing it in a range of f = ΙΟΟΚΗζ, Hm = 0 to 150Oe, It is maintained at a temperature of 270 ° C in a reflow furnace. After cooling to room temperature for 2 hours before and after the measuring process placed. In addition, as a comparative example, no sample was inserted into the magnetic gap, and it was produced in the same manner as described above, and the DC superposition characteristic was measured. The results are shown in Figure 28. From Figure 28, it can be seen that when the combined magnet using Sm2Co 1 7 magnet powder with more coercive force is used as a permanent magnet for bias magnetism, superior DC overlap characteristics can be obtained even after reflow. . The combination of magnets with Sm (Coba? 6.15_.25 匸 11.5-u3) 7.0-8.5 composed of the above-mentioned magnet powder is used to obtain good DC superposition characteristics. Example 24 Relationship between the type of resin and DC superimposed characteristics Magnet powder: Sm2Co17 Average particle size: 3.0 ~ 3.5 // m -50- 584873 V. Description of the invention (49) Coercive force (iHc): lOKOe Curie point Tc : 81CTC Adhesive: S — 1: Polyethylene resin (softening point: 160 ° C) Resin content: 50% by volume S-2: Polyurethane resin (softening point: 300 ° C) Resin content: 50% by volume S- 3: Epoxy resin (softening point: 100 ° C) Resin amount: 50% by volume Magnet manufacturing method: mold forming, non-orientation magnetic field stone & iron: thickness: 0.5mm shape • area: under E-shaped iron core Supporting section specific resistance: 10 ~ 30 Ω · cm or more Inherent coercive force: same as magnet powder magnetization: pulse magnetizer magnetizing magnetic field 4T magnetic core: EE core (picture 1): MnZn ferrite magnetic gap Length G ·· 0 · 5 mm DC overlap characteristics (permeability): The measurement of DC overlap characteristics in the range of f = lOOKHz, Hm = 0 ~ 150Oe, is suitable for the same as using each resin S-1 to S A magnetic core was used for the 3 magnet samples. In a high temperature bath with a reflow furnace temperature of 270 ° C, maintain it for 1 hour, cool to room temperature, and measure the DC overlap characteristics before and after 2 hours of standing treatment. -51-584873 5. Description of the invention (50). In addition, as a comparative example, no sample was inserted into the magnetic gap, and it was produced in the same manner as described above, and the DC superposition characteristic was measured. The results are shown in Figure 29. It is revealed from FIG. 29 that after reflow, the bonded magnets using a softening point of 30 ° C (polyamide resin and a hardening resin with a curing temperature of 100 t) have a DC superposition characteristic relative to the DC superposition characteristics. Before the re-soldering, it is almost the same. In the bonded magnet using a polyethylene resin with a softening point of 1 60 ° C, the resin has been softened, and it has the same DC overlap characteristics as the magnetic material without a permanent magnet for DC bias. Example 25 Relationship between the coupling material and core loss Magnet powder: Sm2Co17 Average particle size: 3.0 ~ 3.5 // m Coercive force (iHc): 17KOe Curie point Tc: 810 ° C Coupling material: S-1: Organic Silane coupling agent, 0.5wt% S-2: No coupling material Adhesive: Epoxy resin amount (vol%): 50vol% Magnet manufacturing method: Mold forming, non-aligned magnetic field magnet: Thickness T: 1.5mm Shape and area : Specific resistance of the cross section of the support under the E-shaped core (Ω · cm): S — 1:10, S-2: 100 Inherent coercive force: 17KOe -52- 584873 V. Description of the invention (51) Magnetization: pulsed Magnetic machine

著磁磁場 4T 磁性鐵心:EE鐵心(第1、2圖),MnZn肥粒鐵磁性 間隙長G : 1 . 5 m m 鐵心損耗:以f = 300KHz,Hm= 1000G測定 針對各個試料以使用同一磁性鐵心而測定之鐵心損耗, 係揭不如下表1 3。 【表13】 偶合處理 偶合處理 有 無 鐵心損耗 525 550 (kW/m3) 由表1 3可得知,藉由添加偶合劑而使損耗降低。此可 考慮爲藉由偶合處理而使得粉末間之絕緣形成爲良好者。 此外,即便是在回焊後之直流重疊特性中,施行偶合處 理後的結合磁鐵亦可得到良好的結果。此可考慮爲藉由偶 合處理而使得而用以防止回焊時之氧化者。如同上述的說 明,可藉由粉末之偶合處理獲得良好之結果。 實施例26 異向性磁鐵與直流重疊特性之間的關係 磁鐵粉末· Sm2Co17 平均粒徑:3·0〜3.5 // m 居里點Tc : 810°C 固有保磁力(iHc) : 17KOe -53- 584873 五、發明說明(52 ) 膠粘劑:環氧樹脂(硬化點 約25(TC ) 樹脂量(體積% ) : 50體積% 磁鐵製造法:模具成形,S— 1:配向磁場於厚度方向:2T S — 2 :無配向磁場 磁鐵:厚度:1.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻(Ω · c m) ·· 1 Ω · c m 固有保磁力(iHc) : 17KOe 著磁:脈衝著磁機 著磁磁場 2T 磁性鐵心:EE鐵心(第1圖),MnZn肥粒鐵磁性間隙 長 G : 1 ·5mm 鐵心損耗:以 f = ΙΟΟΚΗζ,Hm = 0〜150 ( Oe )之範圍 進行測定 直流重疊特性,係將已磁場配向之物與未進行其之各個 試料S — 1以及S - 2相對於同樣磁性鐵心而使用,在回焊 爐之溫度條件爲270°C的高溫槽下,維持1小時後冷卻至 常溫、進行2小時放置處理前後測定直流重疊特性。其結 果揭示於第30圖。 由第30圖可判定,已磁場配向之異向性磁鐵這一方在 與未磁場配向之磁鐵相比,可在回焊前後均可獲得良好之 直流重疊特性。 實施例27 著磁磁場與直流重疊特性之間的關係 -54- 584873 五、發明說明(53) 磁鐵粉末:Sm2Co17 平均粒徑:3〜3.5#m 居里點Tc : 810°C 固有保磁力(iHc) : 17K0e 膠粘劑:環氧樹脂(硬化點 約250°C ) 樹脂量(體積%) : 50體積% 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度· 1.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻(Ω · c m) ·· 1 Ω · c m 固有保磁力:17KOe 著磁:S—1:1T (電磁鐵) S— 2 : 2T (電磁鐵) S- 3 : 2.5T (電磁鐵) S - 4 : 3T (脈衝著磁) S- 5 : 3.5T (脈衝著磁) 磁性鐵心:EE鐵心(第1圖),ΜηΖη肥粒鐵磁性間隙 長 G : 1 ·5mm 直流重疊特性(透磁率):以f = ΙΟΟΚΗζ,Hm = 0〜150 ( 〇e)之範圍進行測定 直流重疊特性,係將各個試料S - 1至S - 5相對於同樣 磁性鐵心而使用,在回焊爐之溫度條件爲270°C的高溫槽 下,維持1小時後冷卻至常溫、進行2小時放置處理前後 -55- 584873 五、發明說明(54 ) 測定直流重疊特性。其結果揭示於第3 1圖。 由第3 1圖可得知,當著磁磁場達2 · 5 T (特斯拉)以上 ,則可在回焊前後均可獲得良好之直流重疊特性。 實施例2 8 磁鐵表面被覆與磁束量以及直流重疊特性之間 的關係 磁鐵粉末:Sm2Co17 平均粒徑:3 // m 固有保磁力iHc : 17K0e 居里點Tc : 810°C 膠粘劑:環氧樹脂 樹脂量:40體積% 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度T : 1.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻:1 Ω · cm 固有保磁力:17KOe 表面被覆:S - 1:環氧樹脂 S- 2 :無 著磁:脈衝著磁機 著磁磁場 1〇Τ 磁性鐵心:EE鐵心(第1、2圖):MnZn肥粒鐵磁性 間隙長G : 1.5mm 直流重疊特性(透磁率):使其以f = ΙΟΟΚΗζ,Hm= 0 -56- 五、發明說明(55) 〜2 5 0 0 e之範圍變化進行測定 此外’磁鐵表面被覆係爲,將浸漬於環氧樹脂溶液中之 磁鐵取出,乾燥後以樹脂之硬化溫度進行熱處理,使其硬 化之物者。 將試料S — 1與比較對象之s — 2於大氣中,從1 2 0 °C開 始以每次昇溫40°C的方式昇溫至270t,再分別進行30 分鐘的熱處理,將每個經熱處理而自爐內取出,進行表面 磁束(熔化量)與直流重疊特性之測定。該等結果係揭示 於第32〜34圖。 第32圖係爲顯示由表面磁束之熱處理而產生變化之圖 。藉由該等結果可得知,相較於未進行被覆之試料S - 2 磁鐵在以270 °C減磁28%之情況相比,在被覆有環氧樹脂 的S - 1試料磁鐵所插入的鐵心中,經過270°C之熱處理, 其惡化程度也是達到相當少的8%,顯示出具有安定的特 性。此種係可考慮爲以藉由將磁鐵表面被覆上環氧樹脂而 使得可抑制氧化,且抑制熔化之減少。 此外,將該等結合磁鐵插入於磁性鐵心(第1圖及第2 圖)之間隙,經直流重疊特性測定之結果係如第33圖及 第34圖所示。參照第33圖,插入有試料S— 2之未披覆 樹脂之磁鐵的鐵心,係如第32圖所示可得知,伴隨於熱 處理且熔化之減少,減少了由磁鐵產生之偏磁磁場,且在 2 7 0 °C下,透磁率約爲1 5 Ο e左右則變換至低磁場側,造成 特性大幅度的惡化。相較之下’被覆有試料之環氧 -57- 584873 五、發明說明(56 ) 樹脂之物’係如第3 4圖所示,在2 7 0 °C下僅於約5 0 e而 變換至低磁場側。 如此’直流重疊特性方面,在被覆有環氧樹脂與未披覆 樹脂之物相比較之下,可說是大幅度的進行改善。 實施例29 磁鐵表面被覆與磁束量之間的關係 除了將磁鐵粉末設爲聚醯胺、表面被覆設爲含氟樹脂之 外,均與實施例2 8相同。 與被覆有含氟樹脂之結合磁鐵(試料S- 1)作爲比較對 象之未披覆樹脂之結合磁鐵(試料S - 2),將其以大氣中 一 270°C,於60分鐘左右自爐內取出,進行熔化測定、直 流重疊特性之測定,進行合計共5小時爲止之熱處理。該 等結果係揭示於第35〜37圖。 第35圖係爲顯示由表面磁束之熱處理而產生變化之圖 。藉由該等結果可得知,相較於未進行被覆之試料S - 2 的磁鐵在以5小時之處理下便減磁58%之情況相比,在被 覆有含氟樹脂之試料S - 1的磁鐵所插入的鐵心中,經過5 小時之熱處理,其惡化程度也是達到相當少的22%,顯示 出具有安定的特性。 此種係可考慮爲以藉由將磁鐵表面被覆上含氟樹脂而使 得可抑制氧化,且抑制熔化之減少。 此外,將該等試料S - 1與試料S - 2之結合磁鐵,分別 插入至相同磁性鐵心之間隙中,經直流重疊特性測定後之 結果係如第36圖及第37圖所示。 -58- 五、發明說明(57) 參照第36圖,插入有未被覆樹脂之試料S- 2之磁鐵鐵 心,係如第35圖所示可得知,伴隨於熱處理且熔化之減 少,減少了由磁鐵產生之偏磁磁場,且在5小時後,透磁 率約爲30Oe左右而變換至低磁場側,造成特性大幅度的 惡化。 相較之下,被覆有含氟樹脂之試料S- 1的磁鐵,係如 第37圖所示,僅於約1 〇〇e而變換至低磁場側。如此,直 流重疊特性方面,在被覆有含氟樹脂與未被覆樹脂之物相 比較之下,可說是大幅度的進行改善。 由上所述可得知,將表面以含氟樹脂進行被覆後之結合 磁鐵,係用以抑制氧化且具有優良的特性。此外,有關於 其他耐熱性之樹脂或耐熱塗料亦可獲得相同的結果。 實施例30 樹脂量與成形性之間的關係 磁鐵粉末:Sm2Co17 平均粒徑:5 μ m 固有保磁力:17KOe 居里點:810°C 膠粘劑:聚醯胺樹脂 將磁鐵粉末與作爲膠粘劑之各樹脂以使樹脂含有量於1 5 〜40體積%之間進行變化,不施加於配向磁場,且藉由模 具成形而成形出厚度〇.5mm之磁鐵。 其結果可得知,無論是採用何種樹脂,若不將樹脂含有 量達到30體積%以上則無法成形。 -59- 584873 五、發明說明(58 ) 於環氧樹脂、聚亞醯胺樹脂、矽樹脂、聚酯樹脂、芳香 族聚醯胺樹脂、液晶聚合物中亦可獲得相同之結果。 實施例31 磁鐵粉末以及樹脂與直流重疊特性.之間的關係 磁鐵粉末:s — 1 : Sm2Co17 平均粒徑:5 // m 保磁力iHc : 15K0e 居里點Tc : 810°C 量:1〇〇重量部 S — 2 · S m 2 C 〇 17 平均粒徑:5 # m 保磁力iHc : 15KOe 居里點Tc : 810°C 量:100重量部 S — 3 · Sm2Fe17N3 平均粒徑:3 // m 保磁力 iHc : 10.5KOe 居里點Tc : 470°C 量:1〇〇重量部 S - 4 : B a肥粒鐵 平均粒徑:1 // m 保磁力iHc : 4KOe 居里點Tc : 450°C 量:1 0 0重量部 •60- 584873 五、發明說明(59 ) S _ 5 : S in 2 C 〇 j 7 平均粒徑:5 // m 保磁力iHc : 15K0e 居里點Tc : 810°C 量:100重量部 膠粘劑:S - 1 :聚醯胺樹脂 樹脂量:50重量部 S — 2 :環氧樹脂 樹脂量:50重量部 S - 3 :聚醯胺樹脂 樹脂量:50重量部 S _ 4 :聚醯胺樹脂 樹脂量:50重量部 S - 5 :聚丙稀樹脂 樹脂量:50重量部 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度:〇.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻:1Ω · cm以上 固有保磁力:與磁鐵粉末相同 著磁:脈衝著磁機 著磁磁場 4T 磁性鐵心:EE鐵心(第1圖):MnZn肥粒鐵磁性間隙Magnetic field 4T Magnetic core: EE core (Figures 1 and 2), MnZn ferrite magnetic gap length G: 1.5 mm Core loss: measured at f = 300KHz, Hm = 1000G For each sample to use the same magnetic core The measured core loss is not shown in Table 13 below. [Table 13] Coupling treatment Coupling treatment Yes / No Core loss 525 550 (kW / m3) As can be seen from Table 13, the loss is reduced by adding a coupling agent. This can be considered as the one in which the insulation between the powders is made good by the coupling treatment. In addition, even in the DC overlap characteristic after reflow, a good result can be obtained for the bonded magnet after the coupling process. This can be considered to prevent oxidation during reflow by coupling treatment. As explained above, good results can be obtained by coupling the powders. Example 26 Relation between anisotropic magnets and DC superposition characteristics Magnet powder · Sm2Co17 Average particle size: 3.0 · 3.5 / m Curie point Tc: 810 ° C Inherent coercive force (iHc): 17KOe -53- 584873 V. Description of the invention (52) Adhesive: epoxy resin (curing point is about 25 (TC) resin amount (vol%): 50vol% magnet manufacturing method: mold forming, S-1: alignment magnetic field in thickness direction: 2T S — 2: Non-aligned magnetic field magnet: Thickness: 1.5mm Shape • Area: Specific resistance (Ω · cm) ·· 1 Ω · cm Inherent coercive force (iHc): 17KOe Magnetization: Pulse Magnet magnetic field 2T Magnetic core: EE core (Fig. 1), MnZn ferrite magnetic gap length G: 1.5 mm Core loss: Measured in the range of f = ΙΟΟΚΗζ, Hm = 0 ~ 150 (Oe) The DC superposition characteristic is used when the magnetic field aligned object and each of the samples S-1 and S-2 that are not subjected to the same magnetic core are used. It is maintained in a high-temperature tank with a temperature of 270 ° C in the reflow furnace. Cool to room temperature after 1 hour, and measure for 2 hours DC overlap characteristics. The results are shown in Fig. 30. It can be determined from Fig. 30 that the anisotropic magnet with magnetic field alignment can obtain a good DC before and after reflow compared with a magnet without magnetic field alignment Example 27: Relation between the magnetic field and DC overlap characteristics -54- 584873 V. Description of the invention (53) Magnet powder: Sm2Co17 Average particle size: 3 ~ 3.5 # m Curie point Tc: 810 ° C Inherent Coercive force (iHc): 17K0e Adhesive: Epoxy resin (curing point about 250 ° C) Resin content (vol.%): 50 vol.% Magnet manufacturing method: mold forming, non-aligned magnetic field Magnet: thickness · 1.5mm shape • area: Cross section specific resistance of the support under the E-shaped core (Ω · cm) ·· 1 Ω · cm Inherent coercive force: 17KOe Magnetization: S—1: 1T (electromagnet) S— 2: 2T (electromagnet) S- 3: 2.5T (Electromagnet) S-4: 3T (Pulse magnetization) S- 5: 3.5T (Pulse magnetization) Magnetic core: EE core (Fig. 1), long ferromagnetic gap of MηZη fertilizer grain G: 1 5mm DC overlap characteristics (permeability): f = ΙΟΟΚΗζ, Hm = 0 ~ 150 (〇e) The DC superimposition characteristics are measured around each sample S-1 to S-5 with respect to the same magnetic core, and they are cooled to room temperature for 1 hour in a high-temperature tank with a reflow furnace temperature of 270 ° C. -55-584873 before and after 2 hours of standing treatment V. Description of the invention (54) Measure the DC overlap characteristic. The results are shown in Figure 31. As can be seen from Figure 31, when the magnetic field reaches 2.5 T (Tesla) or more, good DC overlap characteristics can be obtained before and after reflow. Example 2 8 Relationship between magnet surface coating, magnetic flux and DC superposition characteristics Magnet powder: Sm2Co17 Average particle size: 3 // m Inherent coercive force iHc: 17K0e Curie point Tc: 810 ° C Adhesive: epoxy resin Amount: 40% by volume Magnet manufacturing method: Mold forming, non-orientation magnetic field Magnet: Thickness T: 1.5mm Shape / Area: Section specific resistance of support section under E-shaped iron core: 1 Ω · cm Inherent coercive force: 17KOe Surface coating: S-1: Epoxy resin S- 2: No magnetization: Pulse magnetization magnetizing magnetic field 10 〇 Magnetic core: EE core (Figures 1 and 2): MnZn ferrite ferromagnetic gap length G: 1.5mm DC Overlap characteristics (permeability): measured by f = ΙΟΟΚΗζ, Hm = 0 -56- V. Description of the invention (55) ~ 2 5 0 0 e In addition, 'the surface of the magnet is covered by immersion in the ring The magnet in the oxygen resin solution is taken out, and after drying, it is heat-treated at the curing temperature of the resin to harden it. Sample S — 1 and s — 2 of the comparison target were heated in the atmosphere from 120 ° C to 270t at a temperature of 40 ° C each time, and then heat-treated for 30 minutes. Take out from the furnace, and measure the surface magnetic flux (melting amount) and DC overlap characteristics. These results are disclosed in Figures 32-34. Fig. 32 is a diagram showing changes caused by heat treatment of a surface magnetic beam. From these results, it can be seen that, compared with the case where the sample S-2 magnet that is not covered is demagnetized by 270 ° C by 28%, the magnet inserted in the sample S-1 magnet covered with epoxy resin is inserted. In the core, after the heat treatment at 270 ° C, the deterioration degree also reached a relatively small 8%, showing stable characteristics. Such a system is considered to be capable of suppressing oxidation and suppressing a reduction in melting by coating the surface of the magnet with epoxy resin. In addition, the results of the measurement of the DC superimposition characteristics of the bonded magnets inserted into the gaps of the magnetic core (Figures 1 and 2) are shown in Figures 33 and 34. Referring to FIG. 33, as shown in FIG. 32, the core of the uncoated magnet of the sample S-2 is inserted. As the heat treatment and the melting decrease, the bias magnetic field generated by the magnet is reduced. And at 27 ° C, when the magnetic permeability is about 150 o e, it will switch to the low magnetic field side, causing a significant deterioration in characteristics. In comparison, 'Epoxy-57-584873 covered with the sample V. Description of the invention (56) Resin thing' is shown in Figure 34, and it is only changed at about 5 0 e at 2 70 ° C To the low magnetic field side. In this way, the DC superimposition characteristics can be improved significantly compared with the epoxy-coated and uncoated materials. Example 29 The relationship between the surface coating of a magnet and the amount of a magnetic beam was the same as that of Examples 28 except that the magnet powder was made of polyamide and the surface coating was made of a fluororesin. The fluororesin-coated bonded magnet (sample S-1) and the uncoated resin-bound magnet (sample S-2) as a comparison target were heated from the furnace at 270 ° C in the atmosphere in about 60 minutes. It was taken out, and the fusion | melting measurement and DC superposition characteristic were measured, and heat processing was performed for a total of 5 hours. These results are shown in Figures 35 to 37. Fig. 35 is a graph showing changes caused by heat treatment of the surface magnetic flux. From these results, it can be seen that compared to the case where the magnet of sample S-2 which is not covered is demagnetized by 58% under a treatment of 5 hours, the sample S-1 which is covered with fluororesin is After 5 hours of heat treatment in the core inserted by the magnet, the deterioration degree is also quite small, which is 22%, showing stable characteristics. Such a system is considered to be capable of suppressing oxidation and suppressing a reduction in melting by coating the surface of the magnet with a fluorine-containing resin. In addition, the combined magnets of these samples S-1 and S-2 were respectively inserted into the gaps of the same magnetic core, and the results of measurement of the DC superimposition characteristics are shown in Fig. 36 and Fig. 37. -58- V. Description of the Invention (57) Referring to Fig. 36, the magnet core with sample S-2 not covered with resin was inserted, as shown in Fig. 35. As the heat treatment and melting decrease, the reduction The bias magnetic field generated by the magnet, and after 5 hours, the magnetic permeability was changed to about 30 Oe, and the magnetic field was changed to a low magnetic field side, which caused a significant deterioration in characteristics. In contrast, the magnet coated with the sample S-1 of the fluororesin was switched to the low magnetic field side only at about 100e as shown in Fig. 37. In this way, the direct current superimposition characteristics can be improved significantly compared to those coated with fluororesin and those not covered with resin. From the above, it can be seen that the bonded magnet having a surface covered with a fluororesin is used to suppress oxidation and has excellent characteristics. In addition, the same results can be obtained with other heat-resistant resins or heat-resistant coatings. Example 30 Relationship between resin amount and moldability Magnet powder: Sm2Co17 Average particle size: 5 μm Inherent coercive force: 17KOe Curie point: 810 ° C Adhesive: Polyamide resin Magnet powder and each resin as an adhesive In order to change the resin content between 15 and 40% by volume, without applying an alignment magnetic field, a magnet having a thickness of 0.5 mm was formed by mold forming. As a result, it was found that no matter which resin is used, molding cannot be performed unless the resin content is 30% by volume or more. -59- 584873 V. Description of the Invention (58) The same results can be obtained in epoxy resin, polyurethane resin, silicone resin, polyester resin, aromatic polyamide resin, and liquid crystal polymer. Example 31 The relationship between magnet powder and the superposition characteristics of resin and DC magnet powder: s — 1: Sm2Co17 average particle size: 5 // m coercive force iHc: 15K0e Curie point Tc: 810 ° C quantity: 100 Weight part S — 2 · S m 2 C 〇17 Average particle size: 5 # m Coercive force iHc: 15KOe Curie point Tc: 810 ° C Quantity: 100 weight part S — 3 · Sm2Fe17N3 Average particle size: 3 // m Coercive force iHc: 10.5KOe Curie point Tc: 470 ° C Quantity: 100 weight part S-4: B a Ferrite grain iron average particle size: 1 // m Coercive force iHc: 4KOe Curie point Tc: 450 ° Amount of C: 1 0 0 weight part • 60- 584873 V. Description of the invention (59) S _ 5: S in 2 C 〇j 7 Average particle size: 5 // m Coercive force iHc: 15K0e Curie point Tc: 810 ° Amount of C: 100 parts by weight Adhesive: S-1: Polyamide resin amount: 50 parts by weight S — 2: Epoxy resin amount: 50 parts by weight S-3: Polyamide resin amount: 50 parts by weight S _ 4: Polyurethane resin amount: 50 parts by weight S-5: Polypropylene resin amount: 50 parts by weight Magnet manufacturing method: mold forming, non-aligned magnetic field magnet: thickness: 0.5mm shape and surface : Specific resistance of the cross section of the support below the E-shaped iron core: 1 Ω · cm or above. Inherent coercive force: Same as magnet powder. Magnetization: Pulse magnetization. Magnetic field: 4T. Magnetic core: EE core (Fig. 1): MnZn fertilizer particles. Ferromagnetic gap

-61 - 584873 五、發明說明(6〇) 長 G : 0 · 5 mm 直流重疊特性(透磁率):以f = ΙΟΟΚΗζ,Hm = 0〜 2000e之範圍進行測定 使用相對於各個試料S - 1至S — 5相同之磁性鐵心,分 別就其進行反覆4次以270°(:保持30分鐘之後送入常溫冷 卻處理,於熱處理前與各個熱處理後測定直流重疊特性。 針對各個試料之合計5次的測定結果係揭示於第38圖〜 第42圖。 由第42圖可得知,將Sm2C〇17磁鐵粉末分散於聚丙稀 樹脂之試料S- 5的磁鐵插入配置於間隙中的磁性鐵心, 在第2次以後之直流重疊特性將會大幅度的有所惡化。此 種係因回焊而使得薄的永久磁鐵變形之故。 將保磁力僅有4KOe之Ba肥粒鐵分散於聚醯胺樹脂之 試料S - 4的磁鐵插入配置的鐵心中,係如第41圖所見可 得知,隨著測定次數的增加,直流重疊特性亦將大幅度的 惡化。 相反的,可得知使用保磁力達lOKOe以上之磁鐵粉末與 聚醯胺抑或環氧樹脂之試料S - 1至S - 3的磁鐵,插入配 置於磁性間隙的鐵心方面,係如同第38〜40圖所見一般 ,即便在反覆的測定之下,於直流重疊特性亦不會有太大 的變化,顯示有相當安定的特性。 藉由該等結果,爲使肥粒鐵磁鐵將保磁力減小,藉以施 加至磁鐵之逆向磁場進行減磁、或是引起磁化之反轉,而-61-584873 V. Description of the invention (60) Length G: 0 · 5 mm DC overlap characteristics (permeability): Measured in the range of f = ΙΟΟΚΗζ, Hm = 0 to 2000e. For each sample S-1 to S — 5 same magnetic cores were repeated 4 times at 270 ° (: Hold for 30 minutes, then sent to normal temperature cooling treatment, and DC overlap characteristics were measured before and after each heat treatment. For each sample total 5 times The measurement results are shown in Fig. 38 to Fig. 42. It can be seen from Fig. 42 that the magnet in which the Sm2C〇17 magnet powder was dispersed in the polypropylene resin sample S-5 was inserted into the magnetic core arranged in the gap. After 2 times, the DC overlap characteristics will be greatly deteriorated. This is because the thin permanent magnets are deformed due to re-soldering. The Ba fertilizer iron with a coercive force of only 4KOe is dispersed in the polyamide resin. As shown in Figure 41, the magnet of sample S-4 was inserted into the core. It can be seen that as the number of measurements increases, the DC overlap characteristic will also deteriorate significantly. On the contrary, it can be seen that the coercive force is lOKOe. Magnetic The magnets of samples S-1 to S-3 of iron powder and polyamide or epoxy resin are inserted into the core arranged in the magnetic gap as shown in Figures 38 to 40. Even after repeated measurement, The DC superimposed characteristics will not change much and show quite stable characteristics. With these results, in order to reduce the coercive force of the ferrous iron magnet, the reverse magnetic field applied to the magnet is used to demagnetize, or Cause reversal of magnetization, and

-62- 584873 五、發明說明(61 ) 可推測出直流重疊特性之惡化。 此外,可得知插入至鐵心之磁鐵爲保磁力達lOKOe以上 之磁鐵,將顯示優越的直流重疊特性。 此外,在本實施例中雖無揭示,然,在本實施例以外之 組合亦可確認的是,即便在以聚苯醚硫化物樹脂、矽樹脂 、聚酯樹脂、芳香族聚醯胺樹脂、液晶聚合物中所選擇的 樹脂中製作出的薄板磁鐵裡,亦可獲得同樣的效果。 實施例32 磁鐵粉末粒徑與鐵心損耗之關係 磁鐵粉末:Sm2Co17 居里點:810°C S— 1 :平均粒徑:2.0# m,保磁力iHc : lOKOe S一 2 :平均粒徑:2.5 // m,保磁力iHc : 14KOe S—3:平均粒徑:25//m,保磁力iHc: 17KOe S一 4 :平均粒徑:50// m,保磁力iHc : 18KOe S一 5 :平均粒徑:55/zm,保磁力iHc: 20KOe 膠粘劑:聚苯醚硫化物樹脂 樹脂量:30體積% 磁鐵製造法:模具成形,無配向磁場 磁鐵·厚度:0 · 5 m in 形狀•面積:E形鐵心之下支持部斷面 比電阻:S— 1 : 〇·〇1 Ω · cm S - 2 : 2.0 Ω · cm S - 3 : 1.0 Ω · cm 0.5 Ω · cm S— 4-62- 584873 V. Description of the Invention (61) It can be inferred that the deterioration of the DC overlap characteristic. In addition, it can be seen that the magnet inserted into the core is a magnet having a coercive force of 10 kOe or more, and exhibits excellent DC superposition characteristics. In addition, although not disclosed in this embodiment, it is also confirmed that combinations other than this embodiment can be confirmed even when using polyphenylene ether sulfide resin, silicone resin, polyester resin, aromatic polyamide resin, The same effect can be obtained in a thin-plate magnet made of a resin selected from liquid crystal polymers. Example 32 Relationship between the particle size of magnetic powder and core loss Magnet powder: Sm2Co17 Curie point: 810 ° CS-1: average particle size: 2.0 # m, coercive force iHc: lOKOe S-2: average particle size: 2.5 // m, coercive force iHc: 14KOe S-3: average particle size: 25 // m, coercive force iHc: 17KOe S-1 4: average particle size: 50 // m, coercive force iHc: 18KOe S-5: average particle size : 55 / zm, coercive force iHc: 20KOe Adhesive: polyphenylene ether sulfide resin resin amount: 30% by volume Magnet manufacturing method: mold forming, non-oriented magnetic field magnet · Thickness: 0 · 5 m in shape • Area: E-shaped iron core Specific resistance of the lower support section: S— 1: 〇 · 〇1 Ω · cm S-2: 2.0 Ω · cm S-3: 1.0 Ω · cm 0.5 Ω · cm S— 4

-63- 584873 五、發明說明(62 ) S— 5 ·· 0.015 Ω · cm 固有保磁力:與磁鐵粉末相同 著磁:脈衝著磁機 著磁磁場 4T 磁性鐵心:EE鐵心(第1圖):MnZn肥粒鐵磁性間隙 長 G : 0.5mm 鐵心損耗:以300KHz, Ha= 0.1T測定 測定之鐵心損耗揭示於表1 4。 【表__ 試料 S-1 S-2 S — 3 S — 4 S — 5 粉末粒徑 (// m) 2.0 2.5 25 50 55 鐵心損耗 (kW/m3 ) 670 520 540 555 790 由表14可得知,用於偏磁用永久磁鐵之磁鐵的粉末平; 均粒徑爲2 ·5〜5 0 // m方面,具有優越的鐵心損耗特性。 實施例33 粗糙度(光澤度)與熔化(表面磁束)之_白勺 關係 磁鐵粉末:Sm2Co17 平均粒徑:5 /z m 保磁力iHc : 17KOe 居里點:810°C 膠粘劑··聚醯胺樹脂 樹脂量:40體積% -64- 584873 五、發明說明(63 ) 磁鐵製造法:模具成形(一面使其隨衝壓壓力而變化) ,無配向磁場 著磁:脈衝著磁機 著磁磁場 4 T 磁鐵:厚度:0.3mm,lcmXlcm 比電阻:1 Ω · cm以上 固有保磁力:17KOe 測定上述磁鐵之表面磁束(熔化)與光澤度(粗糙度) ,其結果顯示於表1 5。 :表 15】 ___ 粗糙度(%) 15 21 23 26 33 45 熔化(Gauss) 42 5 1 54 99 101 102-63- 584873 V. Description of the invention (62) S-5 ·· 0.015 Ω · cm Inherent coercive force: same as magnet powder magnetization: pulse magnetizer magnetizing magnetic field 4T magnetic core: EE core (Figure 1): Ferromagnetic gap length G of MnZn fertilizer particles: 0.5mm Core loss: The core loss measured at 300KHz, Ha = 0.1T is shown in Table 14. [Table __ Sample S-1 S-2 S — 3 S — 4 S — 5 Particle size (// m) 2.0 2.5 25 50 55 Core loss (kW / m3) 670 520 540 555 790 Available from Table 14 It is known that the powder used for the magnets of the permanent magnets for bias magnets has an average core particle diameter of 2 · 5 ~ 5 0 // m and has excellent core loss characteristics. Example 33 Relationship between roughness (gloss) and melting (surface magnetic flux) Magnet powder: Sm2Co17 Average particle size: 5 / zm Coercive force iHc: 17KOe Curie point: 810 ° C Adhesive ·· Polyamide resin Resin content: 40% by volume -64- 584873 V. Description of the invention (63) Magnet manufacturing method: mold forming (on one side, it changes with the pressing pressure), magnetization without alignment magnetic field: pulse magnetization magnetic field 4 T magnet : Thickness: 0.3mm, lcmXlcm Specific resistance: 1 Ω · cm or more Inherent coercive force: 17KOe The surface magnetic flux (melt) and gloss (roughness) of the above magnets were measured. The results are shown in Table 15. : Table 15] ___ Roughness (%) 15 21 23 26 33 45 Gauss 42 5 1 54 99 101 102

由表15之結果,粗糙度達25%以上之結合磁鐵中係具 有優良的磁鐡特性。此係爲所製作之結合磁鐵之粗糙度達 25%以上,則薄板磁鐵之塡充率形成爲90%以上之故。 此外,使用聚苯醚硫化物樹脂、矽樹脂、聚酯樹脂、芳 香族聚醯胺樹脂、液晶聚合物中所選擇的樹脂作爲膠粘劑 ,亦可獲得同樣的效果。 實施例34 粗糙度與熔化與壓縮率之間的關係 磁鐵粉末:Sm2Co17 平均粒徑:5 // m 保磁力iHc : 17KOe 居里點:810°C -65- 584873 五、發明說明(64 ) 膠粘劑:聚醯胺樹脂 樹脂量:40體積% 磁鐵製造法:刮片法,無配向磁場,乾燥後熱衝壓(變 化衝壓壓力) 著磁:脈衝著磁機 著磁磁場 4T 磁鐵:尺寸:lcmXlcm,厚度:500//m 比電阻:1 Ω · cm以上 固有保磁力:17KOe 變化熱衝壓之壓力,可獲得壓縮率〇〜21 (%)爲止之 6個不同的試料。 針對各個試料,測定光澤度與表面磁束(熔化),其結 果顯示於表1 6。 【表16】 _ 粗糙度(%) 9 13 18 22 25 28 溶化(Gauss ) 34 47 51 55 100 102 壓縮率(% ) 0 6 11 14 20 21 由表16之結果,粗糙度達25%以上之結合磁鐵中係具 有優良的磁鐵特性。此理由亦是當粗糙度達25%以上,則 結合磁鐵之充塡率會形成於90%以上之故。此外,就壓縮 率來看,可得知當壓縮率達到20%以上便可獲得良好之磁 鐵特性。此理由亦是當壓縮率達到20%以上’則結合磁鐵 之塡充率會形成於90%以上之故。From the results in Table 15, the bonded magnet having a roughness of 25% or more has excellent magnetic properties. This is because the roughness of the manufactured bonded magnet is more than 25%, so the filling rate of the thin plate magnet is formed to be more than 90%. In addition, the same effect can be obtained by using a resin selected from polyphenylene ether sulfide resin, silicone resin, polyester resin, aromatic polyamide resin, and liquid crystal polymer as an adhesive. Example 34 Relationship between roughness and melting and compression ratio Magnet powder: Sm2Co17 Average particle size: 5 // m Coercive force iHc: 17KOe Curie point: 810 ° C -65- 584873 V. Description of the invention (64) Adhesive : Polyamide resin resin content: 40% by volume Magnet manufacturing method: Squeegee method, no orientation magnetic field, hot stamping after drying (variation of stamping pressure) Magnetization: Pulse magnetization Magnetizing magnetic field 4T Magnet: Size: lcmXlcm, thickness : 500 // m Specific resistance: 1 Ω · cm or more Inherent coercive force: 17KOe By changing the pressure of hot stamping, 6 different samples with compression ratios of 0 to 21 (%) can be obtained. For each sample, the gloss and surface magnetic flux (melting) were measured. The results are shown in Table 16. [Table 16] _ Roughness (%) 9 13 18 22 25 28 Melt (Gauss) 34 47 51 55 100 102 Compression ratio (%) 0 6 11 14 20 21 According to the results in Table 16, the roughness reaches 25% or more The combined magnet has excellent magnet characteristics. This reason is also that when the roughness reaches 25% or more, the filling rate of the combined magnet will be formed at 90% or more. In addition, from the viewpoint of the compression ratio, it can be known that when the compression ratio reaches 20% or more, good magnetic properties can be obtained. This reason is also that when the compression ratio reaches 20% or more, the charge rate of the combined magnet is formed at 90% or more.

-66- 584873 五、發明說明(65 ) 作爲膠粘劑方面,使用由聚苯醚硫化物樹脂、矽樹脂、 聚酯樹脂、芳香族聚醯胺樹脂、液晶聚合物中所選擇的樹 月旨,亦可獲得同樣的效果。 實施例35 添加界面活性劑與鐵心損耗之間的關係 磁鐵粉末:Sm2Co17-66- 584873 V. Description of the Invention (65) As the adhesive, a tree moon purpose selected from polyphenylene ether sulfide resin, silicone resin, polyester resin, aromatic polyamide resin, and liquid crystal polymer is used. The same effect can be obtained. Example 35 Relationship between Addition of Surfactant and Core Loss Magnet Powder: Sm2Co17

平均粒徑:5.0 // m 保磁力iHc : 17K0e 居里點Tc : 810°C 添加物:界面活性材料:S — 1 :磷酸納 0.5wt% S — 2 :羧甲基纖維素鈉鹽 0 · 5 wt % S- 3 :矽酸鈉 0.3wt% S - 4 ··無 膠粘劑:聚苯醚硫化物樹脂 樹脂量(體積: 35體積% 磁鐵製造法:模具成形,無配向磁場 磁鐵:厚度:0.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻·· 1 Ω · cm以上 固有保磁力: 著磁:脈衝著磁機Average particle size: 5.0 // m Coercive force iHc: 17K0e Curie point Tc: 810 ° C Additive: Interface active material: S — 1: Sodium phosphate 0.5wt% S — 2: Carboxymethyl cellulose sodium salt 0 · 5 wt% S- 3: Sodium silicate 0.3 wt% S-4 ·· No adhesive: Polyphenylene ether sulfide resin resin volume (volume: 35 vol%) Magnet manufacturing method: mold forming, non-aligned magnetic field magnet: thickness: 0.5 mm Shape and area: Specific resistance of the cross section of the support under the E-shaped iron core ·· 1 Ω · cm or more Inherent coercive force: Magnetization: Pulse magnetization

著磁磁場 4T 磁性鐵心:EE鐵心(第1圖):MnZn肥粒鐵磁性間隙 -67- 584873 五、發明說明(66 ) 長 G : 0.5mm 鐵心損耗:以f= 3 00KHz, Ha = 0.1T測定所測定之鐵 心損耗係揭示於表1 7。 【表1 7】 試料名 鐵心損耗(kW/m3) S— 1 磷酸納添加品 495 S- 2 羧甲基纖維素鈉鹽添加品 500 S- 3 矽酸鈉 485 S- 4 無添加劑 590 藉由表1 7,係顯示添加界面活性劑之試料爲呈現具有良 好之鐵心損耗特性。此爲藉由添加界面活性劑而防止1次 粒子之凝集,爲使抑制渦電流損失。 在本實施例中,雖顯示爲添加有磷酸鹽之結果,然而, 即便是添加此種以外之界面活性劑,亦相同的可獲得具良 好鐵心損耗特性之結果。 實施例36 比電阻與鐵心損耗間之關係 磁鐵粉末:Sm2Co17 平均粒徑:5.0 // m 保磁力iHc : 17KOe 居里點:810°C 膠粘劑:聚醯胺樹脂 樹脂量:調整 磁鐵製造法:模具成形,無配向磁場 -68- 584873 五、發明說明(67 ) 磁鐵:厚度:〇.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻· cm) : S — 1:0.05 S- 2 : 0.1 S- 3 : 0.2 S- 4 : 0.5 S 一 5 · 1.0 固有保磁力:17KOe 著磁:脈衝著磁機 著磁磁場 4 T 磁性鐵心:EE鐵心(第1圖):MnZn肥粒鐵磁性間隙 長 G : 0 · 5 mm 鐵心損耗:以f= 300KHz,Ha= 0.1T測定 測定後之鐵心損耗如表1 8所示。Magnetic field 4T Magnetic core: EE core (Figure 1): MnZn ferrite magnetic gap -67- 584873 V. Description of the invention (66) Length G: 0.5mm Core loss: f = 3 00KHz, Ha = 0.1T The measured core losses are shown in Table 17. [Table 1 7] Sample name Core loss (kW / m3) S— 1 Sodium phosphate additive 495 S- 2 Carboxymethyl cellulose sodium salt additive 500 S- 3 Sodium silicate 485 S- 4 Without additive 590 By Table 17 shows that the samples with added surfactants exhibited good core loss characteristics. This is to prevent primary particle aggregation by adding a surfactant, and to suppress eddy current loss. In this example, the results obtained by adding phosphate are shown. However, even if a surfactant other than this is added, a result with good core loss characteristics can be obtained in the same manner. Example 36 Relationship between specific resistance and core loss Magnet powder: Sm2Co17 Average particle size: 5.0 // m Coercive force iHc: 17KOe Curie point: 810 ° C Adhesive: Polyamide resin resin amount: Adjusting magnet manufacturing method: Mold Shaped, non-aligned magnetic field -68- 584873 V. Description of the invention (67) Magnet: Thickness: 0.5mm Shape • Area: Specific resistance of the cross section of the support under the E-shaped core · cm): S — 1: 0.05 S- 2 : 0.1 S- 3: 0.2 S- 4: 0.5 S-5 · 1.0 Inherent coercive force: 17KOe Magnetizing: Pulse magnetizing magnetizing magnetic field 4 T Magnetic core: EE core (Figure 1): MnZn ferrite grain ferromagnetism Gap length G: 0 · 5 mm Core loss: Table 1 8 shows the core loss after measurement at f = 300KHz and Ha = 0.1T.

-69- 584873 五、發明說明(68 ) 【表 18)_ 試料 S- 1 S-2 S — 3 S — 4 S — 5 比電阻 (Ω · cm) 0.05 0.1 0.2 0.5 1.0 鐡心損耗 (kW/m3) 1220 530 520 515 530 由表18可得知,比電阻達0.1 Ω · cm以上之磁性鐵心 係爲顯示有良好之鐵心損耗特性。此係爲藉由提昇薄板磁 鐵之比電阻而使得渦電流損失得以控制之故。 實施例37 比電阻與鐵心損耗以及直流重疊特性之間的關 係 磁鐵粉末:Sm2C〇17 平均粒徑:5 · 0 // m 固有保磁力iHc : 17KOe 居里點Tc : 810°C 膠粘劑:聚醯胺樹脂 樹脂量:調整(表19 ) 磁鐵製造法:模具成形,無配向磁場,熱衝壓 磁鐵:厚度:0.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻(Ω · cm) : S— 1 : 〇·〇5 S — 2 : 0· 1 S — 3 : 0.2 -70- 584873 五、發明說明(69 ) S — 4 : 0.5 S 一 5:1.0 固有保磁力:17KOe 著磁··脈衝著磁機 著磁磁場 4 T 磁性鐵心:EE鐵心(第1圖):MnZn肥粒鐵磁性間隙 長 G : 0.5mm 鐵心損耗:以f = 300KHz,Ha = 0.1T測定 鲁 直流重疊特性(透磁率)··使其以f = lOOKHz,Hm= 0 〜2000e之範圍下變化測定 同一磁性鐵心,測定各個試料之鐵心損耗,測定結果揭 示於表1 9 〇 -71 - 584873 五、發明說明(7〇) 【表19】 試料 磁鐵組成 樹脂量 比電阻 鐵心損耗 (vol% ) (Ω · cm) (kW/m3) S— 1 20 0.05 1230 S— 2 30 0.1 530 S— 3 S1Π2 Co ] 7 35 0.2 520 S — 4 40 0.5 515 S — 5 50 1 530 由表19可得知,比電阻達〇·1Ω · cm以上之磁性鐵心 係爲顯示有良好之鐵心損耗特性。此係爲藉由提昇薄板磁 鐵之比電阻而使得渦電流損失得以控制之故。 此外,對於相同之磁性鐵心爲使用試料S- 2之磁鐵, 進行反覆4次以270°C下保持30分鐘之後冷卻至常溫的處 理,於熱處理前與各個熱處理後測定直流重疊特性。合計 5次的測定結果係揭示於第43圖。於第43圖中,係爲了 用以比較,而亦顯示有於磁性間隙未插入磁鐵的情況下之 直流重疊特性。 另外,作爲比較例(S — 6 ),係將針對作爲磁鐵粉末爲 使用Ba肥粒鐵粉末(iHc= 4KOe)之磁鐵,於第44圖顯 示同樣的測定結果。 由第44圖可得知,以插入保磁力僅有4KOe之Ba肥粒 鐵之薄板磁鐵的鐵心,隨著測定次數的增加,其直流重疊 特性則有相當大的惡化。此種係因將保磁力減小,以施加-69- 584873 V. Description of the invention (68) [Table 18] _ Sample S- 1 S-2 S — 3 S — 4 S — 5 Specific resistance (Ω · cm) 0.05 0.1 0.2 0.5 1.0 Heart loss (kW / m3) 1220 530 520 515 530 As can be seen from Table 18, a magnetic core with a specific resistance of 0.1 Ω · cm or more shows good core loss characteristics. This is because the eddy current loss can be controlled by increasing the specific resistance of the thin-plate magnet. Example 37 Relationship between specific resistance and core loss and DC overlap characteristics Magnet powder: Sm2C〇17 Average particle size: 5 · 0 // m Inherent coercive force iHc: 17KOe Curie point Tc: 810 ° C Adhesive: Polyfluorene Amine resin amount: adjusted (Table 19) Magnet manufacturing method: mold forming, no orientation magnetic field, hot stamped magnet: thickness: 0.5mm shape / area: cross section specific resistance (Ω · cm) of support section under E-shaped core: S—1: 〇 · 〇5 S—2: 0 · 1 S—3: 0.2 -70- 584873 V. Description of the invention (69) S—4: 0.5 S—5: 1.0 Inherent coercive force: 17KOe magnetization ·· Pulse magnetization magnetizing magnetic field 4 T Magnetic core: EE core (Figure 1): MnZn ferrite ferromagnetic gap length G: 0.5mm Core loss: f = 300KHz, Ha = 0.1T to measure the DC-DC overlap characteristics (transparent Magnetic susceptibility) ·· Make it change in the range of f = 10OKHz, Hm = 0 ~ 2000e to measure the same magnetic core, measure the core loss of each sample, the measurement results are shown in Table 1 0 0-71-584873 V. Description of the invention (7 〇) [Table 19] Sample magnet composition Resin ratio Specific resistance core loss (vol%) (Ω · cm) (kW / m3) S— 1 20 0.05 1230 S— 2 30 0.1 530 S— 3 S1Π2 Co] 7 35 0.2 520 S — 4 40 0.5 515 S — 5 50 1 530 It can be seen that a magnetic core having a specific resistance of 0.1 Ω · cm or more shows a good core loss characteristic. This is because the eddy current loss can be controlled by increasing the specific resistance of the thin-plate magnet. In addition, the same magnetic core was a magnet using the sample S-2, and the process was repeated 4 times and kept at 270 ° C for 30 minutes and then cooled to normal temperature. The DC overlap characteristics were measured before and after each heat treatment. The measurement results in total 5 times are shown in Fig. 43. In Fig. 43, for comparison purposes, the DC superimposition characteristics are also shown when no magnet is inserted in the magnetic gap. As a comparative example (S-6), the same measurement results are shown in Fig. 44 for a magnet using Ba ferrite powder (iHc = 4KOe) as the magnet powder. It can be seen from Fig. 44 that the core of a thin-plate magnet inserted with Ba ferrite and iron with a coercive force of only 4 KOe has a significant deterioration in DC superimposition characteristics as the number of measurements increases. This system reduces the coercive force to apply

-72- 584873 五、發明說明(71 ) 至薄板磁鐵之逆向磁場以行減磁,又可推測出引起磁化之 反轉、且直流重疊特性惡化之物。 相對於此,由第43圖可得知,於插入保磁力達15K0e 之試料S - 2之薄板磁鐵的磁性鐵心,即便於反覆的測定 下亦無太大的變化,顯示出相當安定的直流重疊特性。 實施例38 磁鐵粉末粒徑與中心線平均粗度與磁鐵表面磁 束之間的關係 磁鐵粉末:Sm2Co17 平均粒徑(W in ):參照表2 0 膠粘劑:聚醯胺樹脂 樹脂量:40體積% 磁鐵製造法:刮片法,無配向磁場,熱衝壓 磁鐵:厚度:0.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻:1 Ω · cm以上 固有保持力:17KOe 磁性鐵心:EE鐵心(第1、2圖):MnZn肥粒鐵磁性 間隙長G : 0 · 5 m m 使其變化熱衝壓時之衝壓壓力,獲得顯示於表20之試 料 S— 1 至 S— 6。 測定各個試料之表面磁束、中心線平均粗度、偏磁量。 其結果揭示於表20。 【表20】 -73- 五、發明說明(72) 試料 平均粒徑 (//m) 舊直徑 (//m) 熱衝壓時之衝 壓壓力 (kgf/cm2) 中心線之平 均粗度 (βτη) 熔化量 (Gauss) 偏磁量 (Gauss ) S-1 2 45 200 1.7 30 600 S — 2 2.5 45 200 2 130 2500 S-3 5 45 200 6 110 2150 S — 4 25 45 200 20 90 1200 S — 5 5 45 100 12 60 1100 S-6 5 90 200 15 100 1400 在平均粒徑爲2.0//m之試料S— 1方面,當熔化量減低 則偏磁量減小。此種係可考慮爲因爲在製作程序中,進行 磁鐵粉末之氧化之故。 此外,在平均粒徑較大的試料S - 4方面,可考慮因粉 末充塡率較低之故而造成熔化率爲較低,且因磁鐵的表面 粗度爲較粗之故,與鐵心之間的密著性惡化而造成磁導係 數降低,進而使得偏磁量減低者。 另外,即便粒徑爲較小者,衝壓壓力不充分、表面粗度 爲較大之試料S- 5係爲,因粉末充塡率爲低而造成熔化 量下降,進而使得偏磁量減小。 又,在混雜著粗大粒之試料S - 6方面,可考慮因表面 粗度爲較粗之故,而使得偏磁量降低者。 ‘藉由該等結果可得知,磁性粉末之平均粒徑在2.5// m 以上25// m以下,且最大粒徑爲50// m以下者,將中心 線平均粗度Ra爲1 0 // m以下之薄板磁鐵插入至磁性鐵心 -74- 584873 五、發明說明(73 ) 之間隙時,如所示的可獲得優越的直流重疊特性。 實施例3 9 磁鐵之種類(固有保磁力)與直流重疊特性之 間的關係 磁鐵粉末:S - 1至S- 6之6種(磁鐵粉末與量揭示於 表21 ) 膠粘劑:種類與含有量揭示於表21 磁鐵製造法:S—l’S— 4,S - 5’S— 6: 模具成形,熱衝壓,無配向磁場 S — 2 :刮片法,熱衝壓 S — 3 :模具成形後,硬化 磁鐵:厚度T : 0.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻:全試料均爲(Κ1Ω · cm 固有保磁力(iHc):與磁鐵粉末相同 著磁:脈衝著磁機 著磁磁場 4 T 磁性鐵心:EE鐵心(第1圖):MnZn肥粒鐵磁性間隙 長 G : 0.5mm 直流重疊特性(透磁率):以f=100KHz,Hm=350e 測定 進行將各試料以在270°C之回焊爐內維持30分鐘之熱 處理後,再度測定直流重疊特性。 作爲比較例’亦針對於磁性鐵心之間隙未插入有磁鐵的-72- 584873 V. Description of the invention (71) The inverse magnetic field to the thin-plate magnet is used to demagnetize, and it can be estimated that it causes the reversal of the magnetization and the DC superposition characteristics are deteriorated. In contrast, it can be seen from FIG. 43 that the magnetic core of the thin plate magnet inserted with the sample S-2 with a coercive force of 15K0e does not change much even after repeated measurement, and it shows a fairly stable DC overlap. characteristic. Example 38 The relationship between the particle diameter of the magnet powder and the average thickness of the center line and the magnetic flux on the magnet surface Magnet powder: Sm2Co17 Average particle diameter (W in): Refer to Table 2 0 Adhesive: Polyamide resin resin amount: 40% by volume Magnet Manufacturing method: Squeegee method, non-aligned magnetic field, hot stamping magnet: thickness: 0.5mm shape • area: specific resistance of support section cross section below E-shaped core: 1 Ω · cm or more inherent holding force: 17KOe magnetic core: EE core (Figures 1 and 2): Ferromagnetic gap length G of MnZn fertilizer grains: 0 · 5 mm to change the stamping pressure during hot stamping. Samples S-1 to S-6 shown in Table 20 were obtained. Measure the surface magnetic flux, the average thickness of the center line, and the amount of bias of each sample. The results are shown in Table 20. [Table 20] -73- V. Description of the invention (72) Sample average particle size (// m) Old diameter (// m) Pressing pressure (kgf / cm2) during hot stamping Average thickness of centerline (βτη) Melting amount (Gauss) Bias amount (Gauss) S-1 2 45 200 1.7 30 600 S — 2 2.5 45 200 2 130 2500 S-3 5 45 200 6 110 2150 S — 4 25 45 200 20 90 1200 S — 5 5 45 100 12 60 1100 S-6 5 90 200 15 100 1400 In the sample S-1 with an average particle diameter of 2.0 // m, when the melting amount decreases, the amount of bias magnetism decreases. This is considered to be because the magnet powder is oxidized during the manufacturing process. In addition, for sample S-4 with a large average particle size, it is possible to consider that the melting rate is low due to the low powder filling rate, and that the surface roughness of the magnet is relatively coarse. The deterioration of the adhesiveness causes a decrease in magnetic permeability and a decrease in the amount of bias. In addition, even if the particle size is small, the sample S-5 series with insufficient pressing pressure and large surface roughness is the result that the melting amount decreases due to the low powder filling rate, which further reduces the amount of bias magnetism. For sample S-6 mixed with coarse particles, the surface roughness is considered to be relatively coarse, and the amount of bias magnetism is reduced. 'From these results, it can be known that the average particle diameter of the magnetic powder is 2.5 // m or more and 25 // m or less and the maximum particle size is 50 // m or less. The average thickness of the center line Ra is 10. // When a thin plate magnet below m is inserted into the magnetic core -74- 584873 V. When the gap of the invention description (73), superior DC superposition characteristics can be obtained as shown. Example 3 9 Relationship between types of magnets (inherent coercive force) and DC superimposition characteristics Magnet powder: 6 types of S-1 to S-6 (Magnet powder and amount are shown in Table 21) Adhesive: Type and content revealed In Table 21, magnet manufacturing method: S-1'S-4, S-5'S-6: mold forming, hot stamping, non-aligned magnetic field S-2: scraper method, hot stamping S-3: hardened magnet after mold forming: thickness T: 0.5mm Shape / area: Specific resistance of the cross section of the support under the E-shaped core: All samples are (K1Ω · cm Inherent coercive force (iHc): Same as magnet powder Magnetization: Pulse magnetizer Magnetizing magnetic field 4 T Magnetic core: EE core (Figure 1): MnZn ferrite ferromagnetic gap length G: 0.5mm DC overlap characteristic (permeability): measured at f = 100KHz, Hm = 350e. Each sample was tested at 270 ° C. After 30 minutes of heat treatment in the reflow furnace, the DC overlap characteristics were measured again. As a comparative example, it was also applied to the case where no magnet was inserted in the gap of the magnetic core.

-75- 584873 五、發明說明(74 ) 情況下測定。在此情況下,於熱處理前後,直流重疊特性 (實效等磁率)係一定爲70,即便隨著熱處理亦不會有所 變化。 各試料之測定結果揭示於表21。 【表21】 試料 磁鐵組成 iHc (KOe) 配合比 回焊前 β e (at350e) 回焊後 β e (at 3 5 Oe) 樹脂組成 S— 1 Sm (Coo^Feo^oCiiQ^jZro^) 7.7 15 100重量部 140 130 芳香族聚醯胺樹脂 一 100重量部 S — 2 Sm (C〇〇 ) 7.7 15 100重量部 120 120 可溶性聚醯胺樹月旨 一 100雷量部 S-3 Sm (Co0 742Fe〇 2〇Cu〇 055Zr0〇29) 7.7 15 100雷量部 140 120 環氧樹脂 一 100重量部 S-4 Sm2Fe17N3磁鐵粉末 10 100重量部 140 70 芳香族聚醯胺樹脂 一 100重量部 S — 5 Ba肥粒鐵磁鐵粉末 4.0 100雷量部 90 70 芳香族聚醯胺樹脂 — 100重量部 S — 6 Sm (Co0 742Fe0 2〇Cu〇 055Zr0 〇29) 7.7 15 100重量部 140 一 聚丙稀樹脂 一 100重量部 各試料S - 2以及S - 4與比較試料之直流重疊特性(透 磁率V )係揭示於第4 5圖。 藉由該等結果,係可推測出Ba肥粒鐵結合磁鐵(試料 S - 5 )爲了將保磁力減小,而藉由施加於結合磁鐵而逆向 之磁場減磁、或是引起磁化之反轉而造成直流重疊特性之 惡化。 -76- 584873 五、發明說明(75) 又,SmFeN磁鐵(試料S— 4)係爲保磁力較高之物, 爲使居里點Tc降低至47 0°C而產生熱減磁,此種可推測爲 藉由逆向之磁場而使得減磁的相乘效果造成特性的惡化。 另一方面,可得知的是作爲插入磁性鐡心之間隙的結合 磁鐵,於保磁力l〇KOe以上且Tc爲500°C以上之結合磁 鐵(試料S—1至S— 3、S— 6)中,顯示具有優越的直流 重疊特性。 實施例40 比電阻與鐵心損耗間之關係 磁鐵粉末· Sm ( CoojuFeo aoCuo owZro on) 7 7 平均粒徑:5 // m 保磁力iHc : 15KOe 居里點Tc : 810t: 膠粘劑:聚亞醯胺樹脂 樹脂量:調整(表) 磁鐵製造法:刮片法,乾燥後熱衝壓,無配向磁場 磁鐵:厚度:〇.5mm 形狀•面積:E形鐵心之下支持部斷面 比電阻(Ω · cm) : S — 1 : 0·06 S— 2 : 0·1 S — 3 : 0.2 S - 4 : 0·5 S- 5 : 1·0 固有保磁力:15KOe -77- 584873 五、發明說明(76 ) 著磁:脈衝著磁機 著磁磁場 4T 磁性鐵心:EE鐵心(第1圖):MnZn肥粒鐵磁性間隙 長 G : 0.5mm 鐵心損耗·以f= 300KHz,Ha=0.1T測定 '測f M 於同一磁性鐵心之各個試料之磁鐵的鐵心損耗 。測定結果揭示於表2 2。 【表22】 試料 磁鐵組成 樹脂量 (vol%) 比電阻 (Ω · cm) 鐵心損耗 (kW/m3) S- 1 25 0.06 1250 S-2 30 0.1 680 S-3 Sm (Co0 742Fe0 20Cu0 055Zr0 029 ) 7.7 35 0.2 600 S — 4 40 0.5 530 S 一 5 50 1.0 540 作爲比較例,具有完全相同間隙之EE鐵心,於相同測 定條件下之鐵心損耗特性係爲520 ( kW/ m3 )。由表22 可得知,鐵心損耗係爲在比電阻達〇. 1 Ω · cm以上之磁性 鐵心係顯示具有良好之鐵心損耗特性。此係爲藉由給予薄 板磁鐵之比電阻而使得渦電流損失得以控制之故。 【產業上利用之可能性】 藉由本發明,可容易地且以低廉價格提供具有優越直流 重疊特性與鐵心損耗特性之磁心,以及使用該磁心之電感 -78- 584873 五、發明說明(77) 構件。特別係可獲得以厚度500 // m以下之薄板磁鐵作爲 偏磁用磁鐵,而可達成磁心或電感構件之小型化。此外, 在焊接回焊溫度方面亦可實現強且薄形之偏磁磁鐵,故可 提供以小型化,且本身可表面實裝或電感構件。 圖式簡單說明 第1圖所示係有關本發明實施例之磁性鐵心之立體圖。 第2圖所示係於第1圖之磁性鐵心上施加捲線而形成電 感構件之正面圖。 第3圖所示係有關本發明其他實施例之磁性鐵心之立體 圖。 第4圖所示係於第3圖之磁性鐵心上施加捲線而形成電 感構件之正面圖。 第5圖所示係作爲於第3實施例之比較例,將有關相對 於偏磁用磁鐵形成之磁性鐵心之直流重疊磁場Hm之透磁 率//之變化(直流重疊特性)之測定資料反覆重疊之示意 圖。 第6圖所示係將作爲於第3實施例之偏磁用磁鐵之肥粒 鐵磁鐵(試料S — 1 )插入於磁性間隙之情況下,相對於其 磁性鐵心之直流重疊磁場Hm,而將有關透磁率//之變化 (直流重疊特性)的測定資料反覆重疊之示意圖。 第7圖所示係將作爲於第3實施例之偏磁用磁鐵之Sm —Fe - N磁鐵(試料S — 2 )插入於磁性間隙之情況下,相 對於其磁性鐵心之直流重疊磁場Hm,而將有關透磁率//-75- 584873 V. Description of the invention (74) Measurement. In this case, before and after the heat treatment, the DC superimposition characteristics (effective magnetic properties, etc.) must be 70, which does not change even with the heat treatment. The measurement results of each sample are shown in Table 21. [Table 21] Sample magnet composition iHc (KOe) Mix ratio β e (at350e) Before reflow β e (at 3 5 Oe) Resin composition S-1 Sm (Coo ^ Feo ^ oCiiQ ^ jZro ^) 7.7 15 100 parts by weight 140 130 Aromatic polyamine resin-100 parts by weight S — 2 Sm (C〇〇) 7.7 15 100 parts by weight 120 120 Soluble polyamines month purpose 100 100 thunder section S-3 Sm (Co0 742Fe 〇2〇Cu〇055Zr0〇29) 7.7 15 100 Lightning part 140 120 Epoxy resin-100 weight part S-4 Sm2Fe17N3 Magnet powder 10 100 weight part 140 70 Aromatic polyamide resin-100 weight part S — 5 Ba Ferrous iron powder 4.0 100 Lightning section 90 70 Aromatic polyamine resin — 100 parts by weight S — 6 Sm (Co0 742Fe0 2〇Cu〇055Zr0 〇29) 7.7 15 100 parts by weight 140 Polypropylene resin—100 weight The DC overlap characteristics (permeability V) of each of the samples S-2 and S-4 with the comparative sample are disclosed in Figs. 4-5. Based on these results, it can be inferred that in order to reduce the coercive force, the Ba ferrite-iron-bonded magnet (sample S-5) is demagnetized by applying a reverse magnetic field to the bonded magnet or causing reversal of magnetization As a result, the DC superposition characteristic is deteriorated. -76- 584873 V. Description of the invention (75) In addition, the SmFeN magnet (sample S-4) is a substance with high coercive force. In order to reduce the Curie point Tc to 47 0 ° C, thermal demagnetization occurs. It can be presumed that the multiplication effect of the demagnetization caused by the reverse magnetic field causes deterioration in characteristics. On the other hand, it can be seen that as a bonded magnet inserted into the gap of the magnetic core, a bonded magnet having a coercive force of 10KOe or more and a Tc of 500 ° C or more (samples S-1 to S-3, S-6) The display has superior DC overlap characteristics. Example 40 Relationship between specific resistance and core loss Magnet powder · Sm (CoojuFeo aoCuo owZro on) 7 7 Average particle size: 5 // m Coercive force iHc: 15KOe Curie point Tc: 810t: Adhesive: Polyurethane resin Resin content: adjustment (table) Magnet manufacturing method: Squeegee method, hot stamping after drying, non-orientation magnetic field Magnet: thickness: 0.5mm shape • area: specific resistance of the cross section of the support under the E-shaped core (Ω · cm) : S — 1: 0 · 06 S— 2: 0 · 1 S — 3: 0.2 S-4: 0 · 5 S- 5: 1 · 0 Inherent coercive force: 15KOe -77- 584873 V. Description of the invention (76) Magnetizing: Pulse magnetizing magnetic field 4T Magnetic core: EE core (Fig. 1): MnZn ferrite ferromagnetic gap length G: 0.5mm Core loss · Measured at f = 300KHz, Ha = 0.1T 'Measure f M The core loss of the magnet in each sample of the same magnetic core. The measurement results are shown in Table 22. [Table 22] Sample magnet composition resin amount (vol%) Specific resistance (Ω · cm) Core loss (kW / m3) S- 1 25 0.06 1250 S-2 30 0.1 680 S-3 Sm (Co0 742Fe0 20Cu0 055Zr0 029) 7.7 35 0.2 600 S — 4 40 0.5 530 S-5 50 1.0 540 As a comparative example, the core loss characteristics of an EE core with the same clearance are 520 (kW / m3) under the same measurement conditions. As can be seen from Table 22, the core loss is a magnetic core having a specific resistance of 0.1 Ω · cm or more. The core has a good core loss characteristic. This is because the eddy current loss is controlled by giving the specific resistance of the thin-plate magnet. [Possibility of industrial use] With the present invention, it is possible to easily and inexpensively provide a magnetic core having superior DC superimposition characteristics and core loss characteristics, and an inductor using the magnetic core. -78- 584873 V. Description of Invention (77) Component . In particular, a thin-plate magnet with a thickness of 500 // m or less can be obtained as a magnet for bias magnetism, and the miniaturization of the magnetic core or the inductance member can be achieved. In addition, strong and thin bias magnets can also be realized in terms of solder reflow temperature, so they can be miniaturized and can be surface-mounted or inductive components themselves. Brief Description of the Drawings Figure 1 shows a perspective view of a magnetic core according to an embodiment of the present invention. Fig. 2 is a front view of an induction member formed by applying a winding wire to the magnetic core of Fig. 1. Fig. 3 is a perspective view of a magnetic core according to another embodiment of the present invention. Fig. 4 is a front view of an induction member formed by applying a winding wire to the magnetic core of Fig. 3. FIG. 5 shows a comparison example of the third embodiment, in which measurement data on the change in permeability (DC overlap characteristic) of the DC superimposed magnetic field Hm with respect to a magnetic core formed by a bias magnet is overlapped (DC superimposed characteristics). The schematic. As shown in FIG. 6, when a ferrous iron magnet (sample S-1), which is a bias magnet for the third embodiment, is inserted into the magnetic gap, the DC superimposed magnetic field Hm of the magnetic core is changed. Schematic diagram of measurement data related to the change in permeability (DC overlap characteristic). Fig. 7 shows the case where the Sm-Fe-N magnet (sample S-2), which is the bias magnet for the third embodiment, is inserted into the magnetic gap, and the DC superimposed magnetic field Hm of the magnetic core is And about the magnetic permeability //

-79- 五、發明說明(78) 之變化(直流重疊特性)的測定資料反覆重疊之示意圖° 第8圖所示係將作爲於第3實施例之偏磁用磁鐵之Sm 一 Co磁鐵(試料S — 3 )插入於磁性間隙之情況下,相對 於其磁性鐵心之直流重疊磁場Hm,而將有關透磁率之 變化(直流重疊特性)的測定資料反覆重疊之示意圖。 第9圖所示係於第6實施例中,使用將樹脂量經由種種 變化之試料磁鐵S — 1至S — 4的情況下,磁性鐵心之直流 重疊特性(透磁率)//之頻率特性的測定資料。 第1 0圖所示係於第7實施例中,使用了添加有鈦偶合 劑之偏磁磁鐵(試料S - 1 )的情況下,於不同溫度下,磁 性鐵心之直流重疊特性(透磁率)//在不同溫度下之頻率 特性的測定資料之示意圖。 第11圖所示係於第7實施例中,使用了添加有有機矽 烷偶合劑之偏磁磁鐵(試料S — 2 )的情況下,磁性鐵心之 直流重疊特性(透磁率在不同溫度下之頻率特性的測 定資料。 第1 2圖所示係於第7實施例中,使用未添加有偶合劑 之偏磁磁鐵(試料S - 3 )的情況下,磁性鐵心之直流重疊 特性(透磁率在不同溫度下之頻率特性的測定資料。 第1 3圖所示係於第8實施例中,將未被覆樹脂之結合 磁鐵(試料S- 2)與以環氧樹脂被覆表面之結合磁鐵(試 料S - 2 )經過熱處理後的情況下,顯示其熔化量變化之測 定資料。 -80- 584873 五、發明說明(79 ) 第14圖所示係於第8實施例中,將未被覆樹脂之結合 磁鐵(試料S - 2 )以與插入作爲偏磁用磁鐵之磁性間隙所 形成之磁性鐵心不同溫度而經過熱處理的情況下,顯示該 直流重疊性(透磁率//)之測定資料。 第15圖所示係於第8實施例中,將被覆有環氧樹脂之 結合磁鐵(試料S - 1 )以與插入作爲偏磁用磁鐵之磁性間 隙所形成之磁性鐵心不同溫度而經過熱處理的情況下,顯 示該直流重疊性(透磁率A )之測定資料。 第16圖所示係於第9實施例中,將未被覆樹脂之結合 磁鐵(試料S - 2)與以含氟樹脂被覆表面之結合磁鐵(試 料S - 1 )經過熱處理的情況下,顯示相對於其熱處理時間 之熔化量變化之測定資料。 第17圖所示係於第9實施例中,將未被覆樹脂之結合 磁鐵(試料S - 2 )以與插入作爲偏磁用磁鐵之磁性間隙所 形成之磁性鐵心在已經過熱處理的情況下,顯示於不同熱 處理時間中之直流重疊特性(透磁率//)之測定資料。 第18圖所示係於第9實施例中,將被覆有含氟樹脂之 結合磁鐵(試料S - 1 )以與插入作爲偏磁用磁鐵之磁性間 隙所形成之磁性鐵心在已經過熱處理的情況下,顯示於不 同熱處理時間中之直流重疊特性(透磁率//)之測定資料 第19圖所示係於第11實施例中,由Sm2Fe17N3磁鐵粉 末與聚丙稀樹脂所形成之磁鐵(試料S - 1 )插入至磁性間-79- Fifth, the invention description (78) changes (direct current overlap characteristics) measurement data overlapping schematic ° ° Figure 8 shows the Sm-Co magnets (samples will be used as the bias magnets of the third embodiment) S — 3) Schematic diagram of superimposing the measurement data on the change in magnetic permeability (DC overlapping characteristics) with respect to the DC overlapping magnetic field Hm of its magnetic core when it is inserted into a magnetic gap. Fig. 9 shows the sixth embodiment. In the case of using the sample magnets S-1 to S-4 with various amounts of resin, the DC core superimposing characteristics (permeability) of the magnetic core // Measurement data. Fig. 10 shows the seventh embodiment. In the case where a bias magnet (sample S-1) with a titanium coupling agent is used, the DC superposition characteristics (permeability) of the magnetic core at different temperatures are used. // Schematic diagram of measurement data of frequency characteristics at different temperatures. Fig. 11 shows the seventh embodiment. In the case where a bias magnetic magnet (sample S-2) with an organic silane coupling agent is used, the DC superposition characteristics (frequency of magnetic permeability at different temperatures) of the magnetic core are used. Measurement data of characteristics. Figure 12 shows the seventh example. In the case of using a bias magnet (sample S-3) without a coupling agent, the DC superposition characteristics of the magnetic core (different permeability) The measurement data of the frequency characteristics at temperature. Fig. 13 shows the eighth embodiment. The resin-bonded bonded magnet (sample S-2) and the epoxy-coated surface bonded magnet (sample S-) 2) After the heat treatment, the measurement data showing the change of its melting amount is displayed. -80- 584873 V. Description of the Invention (79) The 14th figure shown in the eighth embodiment is a combination of uncoated magnets ( Sample S-2) The measurement data of the DC superimposition (permeability //) is shown in the case of a heat treatment at a temperature different from that of a magnetic core formed by inserting a magnetic gap as a magnet for bias magnetization, as shown in Fig. 15 Tied to the 8th implementation In the case where a bonded magnet (sample S-1) covered with epoxy resin is heat-treated at a temperature different from that of a magnetic core formed by inserting a magnetic gap as a bias magnet, the DC superimposition (permeability) is shown. A) Measurement data. In the ninth embodiment shown in Figure 16, the unbonded bonded magnet (sample S-2) and the bonded magnet (sample S-1) coated with a fluorine-containing resin on the surface are heat treated. In the case of the case, the measurement data of the melting amount change with respect to the heat treatment time is shown. Fig. 17 shows the ninth embodiment in which the resin-coated bonded magnet (sample S-2) is biased with the insertion. When the magnetic core formed by the magnetic gap of the magnet has been heat-treated, it shows the measurement data of the DC overlap characteristics (permeability //) in different heat-treatment time. Figure 18 is shown in the ninth embodiment. The magnetic core formed by bonding a bonded magnet (sample S-1) coated with a fluororesin to a magnetic gap inserted as a magnet for bias magnets has been shown to be different when it has been heat-treated. Measurement data of DC overlap characteristics (permeability //) during processing time. As shown in FIG. 19, in the eleventh embodiment, a magnet (sample S-1) formed by Sm2Fe17N3 magnet powder and polypropylene resin is inserted into the magnetic field. between

-81 - 584873 五、發明說明(so) 隙的情況下’其磁性鐵心之直流重疊性(透磁率//)有關 每次測定次數之測定資料。 第20圖所示係於第n實施例中,由Sm2Fe17N3磁鐵粉 末與1 2 —尼龍所形成之磁鐵(試料S 一 1 )插入至磁性間 隙的情況下’其磁性鐵心之直流重疊性(透磁率//)有關 每次測定次數之測定資料。 第21圖所示係於第π實施例中,由Ba肥粒鐵與12 -尼龍樹脂所形成之結合磁鐵插入至磁性間隙的情況下, 其磁性鐵心之直流重疊性(透磁率#)有關每次測定次數 之測定資料。 第22圖所示係於第1 1實施例中,於間隙中未使用薄板 磁鐵之其磁性鐵心之直流重疊性(透磁率V )有關每次測 定次數之測定資料。 第23圖所示係將於第1 7實施例中之各磁鐵試料(S - 1 至S — 3 )插入至磁性間隙的情況下,在其磁性鐵心之直流 重疊特性(透磁率//)之回焊(reflow )前後之測定資料 第24圖所示係於第1 8實施例中,將膠粘劑不同之磁鐵 試料(S - 1至S — 3 )插入至磁性間隙的情況下,在其磁 性鐵心之直流重疊特性(透磁率//)之回焊前後之測定資 料。 第25圖所示係將於第1 9實施例中之各磁鐵試料(S — 1 至S — 3 )插入至磁性間隙的情況下,在其磁性鐵心之直流 -82- 584873 五、發明說明(81 ) 重疊特性(透磁率//)之回焊前後之測定資料。 第26圖所示係將於第20實施例中之各磁鐵試料(S - 1 至S — 3 )插入至磁性間隙的情況下,在其磁性鐵心之直流 重疊特性(透磁率//)之回焊前後之測定資料。 第27圖所示係於第2 1實施例中,將使用平均粒徑不同 磁鐵粉末之磁鐵試料(S - 1至S - 8 )插入至磁性間隙的 情況下’在其磁性鐵心之直流重疊特性(透磁率//)之回 焊前後之測定資料。 第28圖所示係於第23實施例中,將使用不同Sm— Co 磁鐵粉末之磁鐵試料(S - 1以及S — 2 )插入至磁性間隙 的情況下,在其磁性鐵心之直流重疊特性(透磁率μ )之 回焊前後之測定資料。 第29圖所示係於第24實施例中,將使用膠粘劑不同之 磁鐵試料(S - 1至S — 3 )插入至磁性間隙的情況下,在 其磁性鐵心之直流重疊特性(透磁率/Ζ )之回焊前後之測 定資料。 第30圖所示係於第26實施例中,於製造磁鐵時,將使 用配向磁場之磁鐵試料與未使用之磁鐵試料(S - 1以及S - 2 )插入至磁性間隙的情況下,於其磁性鐵心之直流重 疊特性(透磁率//)之回焊前後之測定資料。 第3 1圖所示係於第27實施例中,將著磁磁場相異之磁 鐵試料(S - 1至S — 5 )插入至磁性間隙的情況下,在其 磁性鐵心之直流重疊特性(透磁率//)之回焊前後之測定-81-584873 V. INTRODUCTION OF THE INVENTION In the case of (so) gap, the DC superimposition (permeability //) of the magnetic core is related to the measurement data of each measurement. Fig. 20 shows the case where the magnet (sample S-1) formed by Sm2Fe17N3 magnet powder and 1 2 -nylon is inserted into the magnetic gap in the n-th embodiment, "the DC superposition of the magnetic core (permeability) //) Measurement data about the number of each measurement. Fig. 21 shows that in the π embodiment, when a combined magnet formed of Ba ferrous iron and 12-nylon resin is inserted into a magnetic gap, the DC superimposition (permeability #) of the magnetic core is related to each Measurement data of the number of measurements. Fig. 22 shows the measurement data of the number of measurements per time for the DC overlap (permeability V) of the magnetic core of the magnetic core without using a thin plate magnet in the gap in the 11th embodiment. Figure 23 shows the DC superimposition characteristics (permeability //) of the magnetic core in the case where each magnet sample (S-1 to S-3) in the 17th embodiment is inserted into the magnetic gap. Measurement data before and after reflow (reflow). Fig. 24 shows the eighteenth embodiment. In the case where a magnetic sample (S-1 to S-3) with a different adhesive is inserted into the magnetic gap, the magnetic core DC overlap characteristics (permeability //) measurement data before and after reflow. Figure 25 shows the case where the magnet samples (S-1 to S-3) of the 19th embodiment are inserted into the magnetic gap, and the DC of the magnetic core is -82-584873. V. Description of the invention ( 81) Measurement data of overlap characteristics (permeability //) before and after reflow. FIG. 26 shows the return of the DC superimposing characteristics (permeability //) of the magnetic core when each magnet sample (S-1 to S-3) in the 20th embodiment is inserted into the magnetic gap. Measurement data before and after welding. Fig. 27 shows a 21st embodiment in which a magnetic sample (S-1 to S-8) using magnet powders having different average particle diameters is inserted into a magnetic gap, and the DC superposition characteristic of the magnetic core is shown in Fig. 27. (Permeability //) Measurement data before and after reflow. Fig. 28 shows the 23rd embodiment. When magnetic samples (S-1 and S-2) using different Sm-Co magnet powders are inserted into the magnetic gap, the DC superposition characteristics of the magnetic core ( Permeability (μ) measurement data before and after reflow. Fig. 29 shows the 24th embodiment. In the case where magnet samples (S-1 to S-3) using different adhesives are inserted into the magnetic gap, the DC superposition characteristics (permeability / Z of magnetic permeability) of the magnetic core are inserted. ) Before and after reflow. Fig. 30 shows the 26th embodiment. In the manufacture of a magnet, when a magnet sample using an alignment magnetic field and an unused magnet sample (S-1 and S-2) are inserted into a magnetic gap, Measurement data of DC core overlap characteristics (permeability //) of magnetic core before and after reflow. Figure 31 shows the 27th embodiment. When a magnetic sample (S-1 to S-5) with a different magnetic field is inserted into the magnetic gap, the DC superposition characteristics of the magnetic core (transparent) Measurement of magnetic susceptibility //) before and after reflow

-83- 五、發明說明(82) 資料。 第32圖所示係於第28實施例中,將未被覆有樹脂之結 合磁鐵(試料S - 2 )與以環氧樹脂被覆表面之結合磁鐵( S - 1 )經過熱處理的情況下,顯示相對於熱處理溫度之熔 化量變化之測定資料。 第33圖所示係於第28實施例中,將未被覆有樹脂之結 合磁鐵(試料S - 2 ),插入作爲偏磁用磁鐵之磁性間隙所 形成之磁性鐵心在不同的熱處理溫度中之直流重疊特性( 透磁率//)之測定資料。 第34圖所示係於第28實施例中,將被覆有環氧系樹脂 之結合磁鐵(試料S — 1 ),插入作爲偏磁用磁鐵之磁性間 隙所形成之磁性鐵心在不同的熱處理溫度中之直流重疊特 性(透磁率// )之測定資料。 第35圖所示係於第29實施例中,將未被覆有樹脂之結 合磁鐵(試料S - 2)與以含氟樹脂被覆於表面之結合磁鐵 (試料S - 1 )經過熱處理的情況下,顯示其熔化量之變化 的測定資料。 第36圖所示係於第29實施例中,將未被覆有樹脂之結 合磁鐵(試料S - 2 ),插入至作爲偏磁用磁鐵之磁性間隙 所形成之磁性鐵心在不同熱處理溫度中之直流重疊特性( 透磁率//)之測定資料。 第37圖所示係於第29實施例中,將被覆有含氟樹脂之 結合磁鐵(試料S - 1 ),插入至作爲偏磁用磁鐵之磁性間 -84- 五、發明說明(83) 隙所形成之磁性鐵心在不同的熱處理溫度下,直流重疊特 性(透磁率// )之測定資料。 第38圖所示係於第31實施例中,將由Sm2C〇17磁鐵與 聚醯胺樹脂所形成之結合磁鐵(試料S - 1 ),插入至作爲 偏磁用磁鐵之磁性間隙,將其所形成之磁性鐵心暴露於反 覆的熱處理時之直流重疊特性(透磁率//)之測定資料。 第39圖所示係於第31實施例中,將由Sm2Co17磁鐵與 環氧樹脂所形成之結合磁鐵(試料S - 2 ),插入至作爲偏 磁用磁鐵之磁性間隙,將其所形成之磁性鐵心暴露於反覆 的熱處理時之直流重疊特性(透磁率// )之測定資料。 第4〇圖所示係於第31實施例中,將由Sm2Fe17N3磁鐵 與聚醯胺樹脂所形成之結合磁鐵(試料S - 3 ),插入至作 爲偏磁用磁鐵之磁性間隙,將其所形成之磁性鐵心暴露於 反覆的熱處理時之直流重疊特性(透磁率//)之測定資料 〇 第41圖所示係於第31實施例中,將由Ba肥粒鐵磁鐵 與聚醯胺樹脂所形成之結合磁鐵(試料S - 4 ),插入至作 爲偏磁用磁鐵之磁性間隙,將其所形成之磁性鐵心暴露於 反覆的熱處理時之直流重疊特性(透磁率V )之測定資料。 弟4 2圖所不係於弟3 1實施例中’將由S m 2 C 〇! 7磁鐵與 聚丙稀樹脂所形成之結合磁鐵(試料S - 5),插入至作爲 偏磁用磁鐵之磁性間隙,將其所形成之磁性鐵心暴露於反 覆的熱處理時之直流重疊特性(透磁率//)之測定資料。 -85- 584873 五、發明說明(84 ) 第4 3圖所示係於第3 7實施例中,將試料s — 2之結合 磁鐵插入至作爲偏磁用磁鐵之磁性間隙,將其所形成之磁 性鐵心暴露於反覆的熱處理時之直流重疊特性(透磁率# )之測定資料。 第44圖所示係於第37實施例中,將比較例(試料s 一 6 )之結合鐵插入至作爲偏磁用磁鐵之磁性間隙,將磁性 鐵心暴露於反覆的熱處理時之直流重疊特性(透磁率# ) 之測定資料。 第45圖所示係於第39實施例中,將試料S - 2與試料 S - 4之結合磁鐵插入磁性間隙與未插入磁性間隙,將其所 形成之磁性鐵心之直流重疊特性(透磁率//)於回焊前後 之測定資料。 【圖式符號說明】 1,4 : 永久磁鐵 2 ·· 鐵心 3 ·· 捲線 5 : 鐵粉心 -86--83- V. Description of Invention (82) Materials. FIG. 32 shows the case where the bonded magnet (sample S-2) not covered with resin and the bonded magnet (S-1) whose surface is covered with epoxy resin are subjected to heat treatment in the 28th embodiment. Measurement data of melting amount change at heat treatment temperature. Figure 33 shows the direct current at different heat treatment temperatures of the magnetic core formed by the magnetic gap formed as the magnetic gap of the magnet for bias magnets in the 28th embodiment by inserting a bonding magnet (sample S-2) not covered with resin. Measurement data of overlap characteristics (permeability //). As shown in FIG. 34, in the 28th embodiment, a bonded magnet (sample S-1) coated with an epoxy resin is inserted into a magnetic core formed by a magnetic gap serving as a magnet for bias magnets at different heat treatment temperatures. Measurement data of DC superimposition characteristics (permeability //). Fig. 35 shows the case where the bonded magnet (sample S-2) not coated with resin and the bonded magnet (sample S-1) coated with a fluorine-containing resin are heat-treated in the 29th embodiment. Measurement data showing changes in its melting amount. Figure 36 shows the direct current at different heat treatment temperatures of the magnetic core formed by the magnetic gap formed as the magnetic gap of the magnet for bias magnets in the 29th embodiment by inserting a bonded magnet (sample S-2) not covered with resin. Measurement data of overlap characteristics (permeability //). Figure 37 shows the 29th embodiment. The bonded magnet (sample S-1) coated with a fluororesin is inserted into the magnetic space as a magnet for bias magnets. -84- V. Explanation of the invention (83) Measurement data of DC overlap characteristics (permeability //) of the formed magnetic core at different heat treatment temperatures. Fig. 38 shows that in the 31st embodiment, a bonded magnet (sample S-1) formed by a Sm2C17 magnet and a polyamide resin is inserted into a magnetic gap serving as a magnet for bias magnetization, and the formed magnet is formed. Measurement data of DC overlap characteristics (permeability //) of a magnetic core exposed to repeated heat treatment. Figure 39 shows the combination of a Sm2Co17 magnet and an epoxy resin (sample S-2) in the 31st embodiment, and the magnetic core formed by the magnet is used as a magnetic gap for the bias magnet. Measurement data of DC overlap characteristics (permeability //) when exposed to repeated heat treatment. Figure 40 shows the combination of a Sm2Fe17N3 magnet and a polyamide resin (sample S-3) in the 31st embodiment, and inserts it into a magnetic gap as a magnet for bias magnetization. Measurement data of DC superimposition characteristics (permeability //) when the magnetic core is exposed to repeated heat treatment. Figure 41 shows the combination of a ferrite magnet made of Ba fertilizer and a polyamide resin, as shown in Figure 31. The magnet (sample S-4) was inserted into the magnetic gap of the magnet for bias magnetization, and the DC core overlap characteristics (permeability V) when the formed magnetic core was exposed to repeated heat treatment were measured. Brother 4 2 is not related to Brother 3 1 in the example. 'The combined magnet (sample S-5) formed by the S m 2 C 〇! 7 magnet and polypropylene resin is inserted into the magnetic gap as the magnet for bias magnetism. , Measurement data of DC overlap characteristics (permeability //) of the formed magnetic core when exposed to repeated heat treatment. -85- 584873 V. Description of the invention (84) Figure 4 3 shows in the 37th embodiment. The combined magnet of sample s-2 is inserted into the magnetic gap as the magnet for bias magnetization, and formed by Measurement data of DC overlap characteristics (permeability #) of magnetic cores exposed to repeated heat treatment. Fig. 44 shows the DC superimposition characteristics when the bonded iron of the comparative example (sample s-6) was inserted into the magnetic gap as a bias magnet in the 37th embodiment, and the magnetic core was exposed to repeated heat treatment ( Permeability #). Figure 45 shows the 39th embodiment. The DC-overlap characteristics of the magnetic core formed by inserting the combined magnets of sample S-2 and sample S-4 into the magnetic gap and not inserting the magnetic gap (permeability / /) Measurement data before and after reflow. [Illustration of Symbols] 1-4: Permanent magnet 2 ·· Iron core 3 ·· Coil 5: Iron powder core -86-

Claims (1)

584873 六、申請專利範圍 第901 2221 9號「永久磁鐵、以其作爲磁性偏移用磁鐵之 磁性鐵心及使用其之電感構件」專利案 (92年11月7日修正本) 六申請專利範圍: 1 · 一種永久磁鐵,其特徵在於:使磁鐵粉末分散於樹脂中 而形成之結合磁鐵,具有0.1Ω · cm以上之比電阻,該 磁鐵粉末係爲,固有保磁力達5KOe以上、居里點Tc達 300°C以上、粉末粒徑爲150/zm以下。 2 ·如申請專利範圍第1項之永久磁鐵,其中前述磁鐵粉末 之平均粒徑爲2.0〜50/im。 3 ·如申請專利範圍第1項之永久磁鐵,其中前述樹脂含 有量之體積比爲具有20%以上者。 4 .如申請專利範圍第1項之永久磁鐵,其中前述磁鐵粉末 係具有稀土類磁鐵粉末。 5 ·如申請專利範圍第1項之永久磁鐡,其中成形壓縮率係 達20%以上。 6 ·如申請專利範圍第1或4項之永久磁鐵,其中使用於其 前述結合磁鐵之前述稀土類磁鐵粉末中,係以添加有有 機矽烷偶合劑、鈦偶合劑。 7 ·如申請專利範圍第1項之永久磁鐵,其中前述結合磁鐵 係於製作時係藉由使磁場配向而造成異向性。 8 ·如申請專利範圍第1項之永久磁鐵,其中前述磁鐵粉末 係以表面活性劑所包覆。 9 ·如申請專利範圍第1項之永久磁鐵,其中中心線平均粗 584873 六、申請專利範圍 度係爲10//m以下。 I 0 ·如申gf專利範_ $ i項之永久磁鐵,其中全體的厚度係 爲 50 〜10000// II ·如申請專利範圍第1 〇項之永久磁鐵,其中係具有1 Ω • c m以上之比電阻。 1 2 ·如申請專利範圍第丨丨項之永久磁鐵,其中係爲以模具 成形所製造。 1 3 ·如申請專利範圍第π項之永久磁鐵,其中係爲以熱衝 壓所製造。 1 4 ·如申請專利範圍第丨項之永久磁鐵,其中全體厚度係爲 500 // m 以下。 1 5 ·如申請專利範圍第丨4項之永久磁鐵,其中係由樹脂與 磁鐵粉末之混合塗料藉由刮片法、印刷法等成膜法來製 造。 1 6 ·如申請專利範圍第1 4項或第1 5項之永久磁鐵,其中表 面之粗糙度(光澤度)係達25%以上。 1 7 .如申請專利範圍第1項之永久磁鐵,其中前述樹脂係由 自聚丙稀樹脂、6_尼龍樹脂、12—尼龍樹脂、聚醯胺 樹脂、聚乙烯樹脂、環氧樹脂中至少選擇一種。 1 8 .如申請專利範圍第1項之永久磁鐵’其中在磁鐵的表面 上係爲被覆上有耐熱溫度達120°C以上之樹脂、抑或是 耐熱塗料。 1 9 .如申請專利範圍第1項之永久磁鐵’其中前述磁鐵粉末 584873 六、 申請專利範圍 係 爲 具 有 白 SmCo 、NdFeB、SmFeN中選擇之稀土類粉 末 20 •如 甲 請 專 利 範 圍第 1項之永久磁鐵,其中前述磁鐵粉 末 之 固 有保 磁 力 達lOKOe以上,居里點達500°C以上, 粉 末 直 徑 爲 2 5 〜50 U m ° 21 如 串 請 專 利 範 圍第 20項之永久磁鐵,其中前述磁鐵 粉 末係 爲 具 有 SmCo稀土類磁鐵粉末。 22 如 串 請 專 利 範 圍第 21項之永久磁鐵,其中前述SmCo 稀 土 類 磁 鐵 粉末係爲具有 SmCCObdFeo.ihQ.^Cuuh 0 . 0 6z r 0 . 0 2 〜0 .03 )7.0 〇 〜8 . 5 23 •如 串 Ξ主 5円 專 利 範 圍第 21項或第22項之永久磁鐵,其中 刖 述 樹 脂 含有 旦 里 係具 有於體積比達30%以上。 2 4 .如 串 請 專 利 範 圍第 23項之永久磁鐵,其中前述樹脂 係 爲 具 有 軟 化 點 達250°C以上之熱可塑性樹脂。 25 , .如 串 請 專 利 範 圍第 23項之永久磁鐡,其中前述樹脂 係 爲 具 有 碳 化 點 達250°C以上之熱硬化性塑膠。 26 .如 甲 請 專 利 範 圍第 23項之永久磁鐡,其中前述樹脂 係 由 聚 醯 胺 樹 脂 、聚 亞醯胺樹脂、環氧樹脂、聚苯醚硫 化 物 樹 脂 Λ 矽 樹 脂、 聚酯樹脂、芳香族聚醯胺樹脂、液 晶 聚 合 物 中 至 少 選擇 一種。 27 .— 種 磁 性 鐵 心 ,於 至少有1個以上磁路的磁氣間隙之 磁 性 鐵 心 中 , 爲 了自 該間隙兩端供給偏磁,而具有於該 磁 性 間 隙 附 近所 配置 之偏磁用磁鐵之磁性鐵心裡,其特 -3 - 徵584873 VI. Patent application scope No. 901 2221 9 "Permanent magnet, magnetic core using it as magnetic offset magnet and inductive member using it" (revised on November 7, 1992) Six patent application scope: 1. A permanent magnet, characterized in that the combined magnet formed by dispersing magnet powder in a resin has a specific resistance of 0.1 Ω · cm or more. The magnet powder has an inherent coercive force of 5KOe or more and a Curie point Tc. It can reach 300 ° C or more and the powder particle size is 150 / zm or less. 2. The permanent magnet of item 1 in the scope of patent application, wherein the average particle diameter of the aforementioned magnetic powder is 2.0 to 50 / im. 3. If the permanent magnet of item 1 of the patent application scope, wherein the volume ratio of the aforementioned resin content is 20% or more. 4. The permanent magnet according to item 1 of the patent application range, wherein the aforementioned magnet powder is a rare earth magnet powder. 5 · If the permanent magnet of item 1 of the patent application scope, the forming compression rate is more than 20%. 6) The permanent magnets according to item 1 or 4 of the scope of patent application, wherein the rare earth magnet powders used in the aforementioned combined magnets are added with an organic silane coupling agent and a titanium coupling agent. 7 · The permanent magnet of item 1 in the scope of the patent application, wherein the aforementioned bonded magnet is anisotropic by aligning the magnetic field at the time of production. 8. The permanent magnet according to item 1 of the patent application, wherein the aforementioned magnetic powder is coated with a surfactant. 9 · If the permanent magnet in item 1 of the scope of patent application, the average thickness of the center line is 584873 6. The scope of patent application is 10 // m or less. I 0 · If applied for gf patent range _ $ i permanent magnet, the thickness of the whole is 50 ~ 10000 / / II · If the permanent magnet of the patent application No. 10 range, which has 1 Ω • cm or more Specific resistance. 1 2 · The permanent magnet according to item 丨 丨 of the patent application scope, which is manufactured by mold forming. 1 3 · The permanent magnet of item π in the scope of patent application, which is manufactured by hot stamping. 1 4 · If the permanent magnet of item 丨 in the scope of patent application, the overall thickness is 500 // m or less. 1 5 · The permanent magnets according to item 4 of the patent application range, which are made of a mixed coating of resin and magnet powder by a film-forming method such as a doctor blade method and a printing method. 16 · If the permanent magnets in the scope of item 14 or item 15 of the patent application scope, the surface roughness (gloss) is more than 25%. 17. The permanent magnet according to item 1 of the scope of patent application, wherein the aforementioned resin is selected from at least one of polypropylene resin, 6-nylon resin, 12-nylon resin, polyamide resin, polyethylene resin, and epoxy resin. . 18. The permanent magnet according to item 1 of the scope of the patent application, wherein the surface of the magnet is coated with a resin having a heat-resistant temperature of 120 ° C or higher, or a heat-resistant paint. 1 9. As for the permanent magnet of item 1 in the scope of patent application, of which the aforementioned magnetic powder is 584873 6. The scope of patent application is the rare earth powder with white SmCo, NdFeB, SmFeN 20 Permanent magnets, in which the inherent coercive force of the aforementioned magnet powder is above lOKOe, the Curie point is above 500 ° C, and the diameter of the powder is 2 5 to 50 U m ° 21 The powder is a rare earth magnet powder having SmCo. 22 If the permanent magnet of item 21 of the patent scope is requested, the aforementioned SmCo rare earth magnet powder is SmCCObdFeo.ihQ. ^ Cuuh 0. 0 6z r 0. 0 2 to 0.03) 7.0 〇 ~ 8. 5 23 • For example, the permanent magnet of the 21st or 22nd patent scope of the main 5 patents, in which the resin described above contains more than 30% by volume. 2 4. If the permanent magnet of the patent No. 23 is stringed, the aforementioned resin is a thermoplastic resin having a softening point of 250 ° C or more. 25. If you apply for a permanent magnet in the range of item 23, the aforementioned resin is a thermosetting plastic with a carbonization point of 250 ° C or more. 26. The permanent magnet according to item 23 of the patent, wherein the aforementioned resin is made of polyamide resin, polyimide resin, epoxy resin, polyphenylene ether sulfide resin, silicone resin, polyester resin, and aromatic resin. At least one selected from the group of polyamine resins and liquid crystal polymers. 27. — A magnetic core having magnetic properties of a bias magnet disposed near the magnetic gap in order to supply a bias magnet from both ends of the gap in a magnetic core having a magnetic gap of at least one magnetic circuit Iron Heart, Chit-3-Sign 584873 六、申請專利範圍 在於,該偏磁用磁鐵係擁有申請專利範圍第丨〜26項中 任一項之永久磁鐵。 28 . —種磁性鐵心’於具有申請專利範圍第27項之磁性鐵 心中’其特徵在於:前述磁性間隙係具有約5 〇〜1 〇 〇 〇 〇 // m之間隙長。 2 9 . —種fe性鐵心’於具有申請專利範圍第2 8項之磁性鐵 心中’其特徵在於:前述磁性間隙係具有較約5〇〇从m 爲大之間隙長。 3 0 · —種磁性鐵心,於具有申請專利範圍第2 9項之磁性鐵 心中’其特徵在於:前述磁性間隙係具有約500 μ m以 下之間隙長。 31.—種電感構件,於具有申請專利範圍第27〜30項中任 一項之磁性鐵心中,其特徵在於:具有至少施加有1個 1轉(t u r η )以上之捲線。584873 6. The scope of patent application lies in the fact that the magnet for bias magnets has permanent magnets in any of the scope of application patent No. 丨 ~ 26. 28. —A kind of magnetic core 'is used in the magnetic core having the scope of patent application No. 27. It is characterized in that the aforementioned magnetic gap has a gap length of about 50 m to 1 m. 2 9. A type of fe core in a magnetic core having the scope of patent application No. 28 is characterized in that the aforementioned magnetic gap has a gap length larger than about 500 to m. A magnetic core of 3 0 · in a magnetic core having item 29 of the patent application 'is characterized in that the aforementioned magnetic gap has a gap length of about 500 μm or less. 31. An inductance member in a magnetic core having any one of claims 27 to 30 in the scope of patent application, characterized in that it has at least one coil of 1 turn (t u r η) or more applied.
TW90122219A 2000-09-08 2001-09-07 Permanent magnet, the magnetic core using it as the magnetic-biased magnet, and the inductance member using the same TW584873B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000272656 2000-09-08
JP2000325858 2000-10-25
JP2000352722 2000-11-20
JP2000356669 2000-11-22
JP2000356705 2000-11-22

Publications (1)

Publication Number Publication Date
TW584873B true TW584873B (en) 2004-04-21

Family

ID=34069383

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90122219A TW584873B (en) 2000-09-08 2001-09-07 Permanent magnet, the magnetic core using it as the magnetic-biased magnet, and the inductance member using the same

Country Status (1)

Country Link
TW (1) TW584873B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8054149B2 (en) 2006-12-28 2011-11-08 Industrial Technology Research Institute Monolithic inductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8054149B2 (en) 2006-12-28 2011-11-08 Industrial Technology Research Institute Monolithic inductor

Similar Documents

Publication Publication Date Title
KR100851459B1 (en) Permanent magnet, magnetic core having the magnet as bias magnet, and inductance parts using the core
TW563139B (en) Magnetic core including magnet for magnetic bias and inductor component using the same
KR100851450B1 (en) Magnetic core with magnet for bias and inductance parts using the same
US6710693B2 (en) Inductor component containing permanent magnet for magnetic bias and method of manufacturing the same
TW540071B (en) Magnetic core having magnetically biasing bond magnet and inductance part using the same
KR20020041773A (en) Magnetic core comprising a bond magnet including magnetic powder whose particle's surface is coated with oxidation-resistant metal and inductance part comprising the magnetic core
US20090191421A1 (en) Composite soft magnetic powdery material and magnetically biasing permanent magnetic core containing same
JP4358743B2 (en) Method for manufacturing bonded magnet and method for manufacturing magnetic device including bonded magnet
JP3860456B2 (en) Magnetic core and inductance component using the same
TW584873B (en) Permanent magnet, the magnetic core using it as the magnetic-biased magnet, and the inductance member using the same
JPH11354344A (en) Inductance element
JP2002231540A (en) Magnetic core having magnet for magnetic bias and inductance part using it
KR20210072186A (en) Molding Materials Using Amorphous Powder and Toroidal Inductor Using the Same
JP3974773B2 (en) Magnetic core having magnet for magnetic bias and inductance component using the same
JP2002222714A (en) Inductor
JP2006032466A (en) Magnetic core and coil component using it
JP4226817B2 (en) Magnetic core having magnetic bias magnet and inductance component using the same
JP3973968B2 (en) Magnetic core and inductance component using the same
JP2002175918A (en) Inductor
JP2003007519A (en) Magnetic core equipped with magnetic bias magnet and inductance part using the same
JP2003257753A (en) Magnetic core and inductance component
JP2002222721A (en) Inductor
JP2004247409A (en) Magnetic core and inductance component using the same
JP2003059727A (en) Magnetic core and inductance component using it
JP2004356152A (en) Magnetic core and inductance component using it

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees