JPH11354344A - Inductance element - Google Patents

Inductance element

Info

Publication number
JPH11354344A
JPH11354344A JP11098196A JP9819699A JPH11354344A JP H11354344 A JPH11354344 A JP H11354344A JP 11098196 A JP11098196 A JP 11098196A JP 9819699 A JP9819699 A JP 9819699A JP H11354344 A JPH11354344 A JP H11354344A
Authority
JP
Japan
Prior art keywords
magnet
inductance element
rare earth
magnetic
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11098196A
Other languages
Japanese (ja)
Inventor
Katsutoshi Yamamoto
勝敏 山本
Kazunori Tawara
一憲 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ferrite Electronics Ltd
Hitachi Metals Magtech Co Ltd
Original Assignee
Hitachi Ferrite Electronics Ltd
Hitachi Metals Magtech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ferrite Electronics Ltd, Hitachi Metals Magtech Co Ltd filed Critical Hitachi Ferrite Electronics Ltd
Priority to JP11098196A priority Critical patent/JPH11354344A/en
Publication of JPH11354344A publication Critical patent/JPH11354344A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/103Magnetic circuits with permanent magnets

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce inserting loss, to stabilize the electric characteristic for a long period and to facilitate assembling by using a heat resistant bond magnet, which specifies electric resistance or specifies the change of the irreversible demagnetization factor at the specified temperature with a permanent magnet. SOLUTION: An inductor element is constituted of magnetic cores 2 and 3 comprising EI soft magnetic material, a heat resistant bond magnet 1, which is arranged at the gap part of the magnetic cores, and a coil which is wound around the magnetic core. The heat resistant bond magnet 1 is manufactured by binding R-T-M-B-N based (R is one or more kinds of any of rare-earth elements including Y, and T is Fe or Fe, wherein a part is displaced into Co and/or Ni) magnetic powder with binder. Furthermore, the electric resistance of the heat resistant bond magnet 1 is set at 0.01-0.05 Ωcm, or the irreversible demagnetization-rate change from 0 deg.C to 120 deg.C is set within 2%. Furthermore, the 50 atom.% or more of the R component of the bond magnet is set to Sm, and the high coercive force is obtained. Furthermore, the average particle diameter of the magnetic power is set in the range of 10-120 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁心空隙に永久磁石
を配置して該磁石により直流重畳特性を向上させるイン
ダクタンス素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inductance element in which a permanent magnet is arranged in a magnetic core space and the DC bias characteristics are improved by the magnet.

【0002】[0002]

【従来の技術】一般に変成器やチョークコイル等のイン
ダクタンス素子では直流に交流が重畳されるので、直流
磁界による磁気飽和を避けるため磁心に空隙を設けてい
る。しかしながら更に大きな直流重畳へ対応するには、
磁心形状の大型化、空隙寸法の拡張、コイル巻回数増と
なり、その結果、インダクタンス素子も大型化してしま
う。そこで、磁心の空隙に永久磁石を配置し、直流磁界
を打ち消すように予め磁気バイアスを与えて磁心の特性
を有効に利用しようとするインダクタンス素子(第1の
従来例)が提案されている。前記永久磁石は必要とする
磁気バイアスの大きさ、及びインダクタンス素子のコイ
ルによる減磁界の大きさによって適宜選択されるが、ス
イッチング電源などで使用するインダクタンス素子に
は、大きな磁気バイアスが要求されるので、通常は残留
磁束密度と保磁力がともに大きな希土類コバルト磁石が
使用される。
2. Description of the Related Art In general, an alternating current is superimposed on a direct current in an inductance element such as a transformer or a choke coil. Therefore, an air gap is provided in a magnetic core to avoid magnetic saturation due to a direct current magnetic field. However, to cope with even larger DC superposition,
The size of the magnetic core increases, the gap size increases, and the number of coil turns increases. As a result, the inductance element also increases in size. Therefore, there has been proposed an inductance element (first conventional example) in which a permanent magnet is disposed in a gap of a magnetic core, and a magnetic bias is applied in advance so as to cancel a DC magnetic field to effectively utilize the characteristics of the magnetic core. The permanent magnet is appropriately selected depending on the magnitude of the required magnetic bias and the magnitude of the demagnetizing field due to the coil of the inductance element. However, the inductance element used in a switching power supply or the like requires a large magnetic bias. Usually, a rare earth cobalt magnet having a large residual magnetic flux density and a large coercive force is used.

【0003】また特開昭50−4570号公報には、磁
心の空隙に配置する希土類コバルト磁石を複数個に分割
したインダクタンス素子(第2の従来例)が記載されて
いる。
Japanese Patent Laid-Open Publication No. Sho 50-4570 describes an inductance element (second conventional example) in which a rare earth cobalt magnet arranged in a gap of a magnetic core is divided into a plurality.

【0004】また特開昭50−133453号公報に
は、磁心の空隙に配置する永久磁石として、粉砕した希
土類コバルト磁石片を絶縁物と混合し、圧縮成形してな
るボンド磁石を使用したインダクタンス素子(第3の従
来例)が記載されている。
Japanese Patent Application Laid-Open No. 50-133453 discloses an inductance element using a bonded magnet obtained by mixing a crushed rare earth cobalt magnet piece with an insulator and compressing and molding the same as a permanent magnet disposed in a gap of a magnetic core. (Third conventional example) is described.

【0005】[0005]

【発明が解決しようとする課題】第1の従来例では磁心
の空隙に永久磁石(希土類コバルト磁石)を配置してい
るが希土類コバルト磁石は、電気抵抗が10-5Ωcm程
度と極めて小さいため渦電流損失が大きくなり、発熱を
起こした。この発熱に伴い磁心の温度が上昇するので磁
心の磁気特性が変化し、インダクタンスが減少するなど
インダクタンス素子としての特性が著しく低下させた。
In the first prior art, a permanent magnet (rare earth cobalt magnet) is disposed in the gap of the magnetic core. However, since the rare earth cobalt magnet has an extremely small electric resistance of about 10 -5 Ωcm, the vortex is small. The current loss became large and generated heat. Since the temperature of the magnetic core rises with this heat generation, the magnetic characteristics of the magnetic core change, and the characteristics as an inductance element, such as a decrease in inductance, are significantly reduced.

【0006】第2の従来例では、磁心の空隙に配置する
永久磁石を複数個に分割することにより、各部分の交流
磁界を永久磁石が一体である場合よりも減少させ渦電流
損失を減少させることが可能である。しかしながら複数
個の永久磁石を各永久磁石の磁化方向をそろえて磁心の
空隙に配置しようとするには、永久磁石の同極どうしが
反発しあうので、所定のスペースにおさめられなかった
り、あるいは永久磁石どうしが重なりあったりして、イ
ンダクタンス素子の組立に多大な工数を要する。
In the second conventional example, the permanent magnet disposed in the air gap of the magnetic core is divided into a plurality of parts, so that the AC magnetic field of each part is reduced as compared with the case where the permanent magnet is integrated, thereby reducing eddy current loss. It is possible. However, in order to arrange a plurality of permanent magnets in the gap of the magnetic core while aligning the magnetization directions of the permanent magnets, the same poles of the permanent magnets repel each other, so that the permanent magnets cannot be kept in a predetermined space, or the permanent magnets cannot be fixed. A large number of man-hours are required for assembling the inductance element because magnets overlap.

【0007】第3の従来例では、磁心の空隙に粉砕した
永久磁石片と絶縁物とを混合し圧縮成形してなるボンド
磁石を配置することにより、渦電流損失を小さくすると
ともに永久磁石の磁心空隙への配置を容易化できるとし
ている。しかしながら従来のボンド磁石は、各磁石粉末
の粒径が略3〜5μmと小さく、また成形時に生じる割
れによって磁石表面が露出し、これに起因する磁石粉末
の酸化や、前記磁石粉末と絶縁物との反応により磁気特
性が低下し、特に高温環境下では磁気特性の劣化が著し
かった。インダクタンス素子の使用環境によっても異な
るが、前記ボンド磁石は環境温度が50℃前後であれ
ば、インダクタンス素子の自己温度上昇により100℃
前後にもなる。このような温度では、前記ボンド磁石の
磁気特性は数百時間で劣化する。このため該ボンド磁石
を用いた従来のインダクタンス素子は長期信頼性を欠
き、実用に供し得ないものであった。
In the third conventional example, the eddy current loss is reduced and the core of the permanent magnet is reduced by disposing a bonded magnet formed by mixing and compressing and molding a permanent magnet piece and an insulator in the gap of the magnetic core. It is stated that the arrangement in the gap can be facilitated. However, in the conventional bonded magnet, the particle diameter of each magnet powder is as small as about 3 to 5 μm, and the surface of the magnet is exposed due to cracks generated during molding. The magnetic properties deteriorated due to the reaction, and the magnetic properties were remarkably deteriorated particularly in a high temperature environment. Depending on the environment in which the inductance element is used, the bond magnet has a temperature of about 50 ° C., and if the ambient temperature is about 50 ° C., the self-temperature rise of the inductance element results in 100 ° C.
Before and after. At such temperatures, the magnetic properties of the bonded magnet degrade in hundreds of hours. For this reason, the conventional inductance element using the bonded magnet lacks long-term reliability and cannot be put to practical use.

【0008】本発明は上述の問題点を解決するためにな
されたもので、挿入損失が小さく、長期的に電気的特性
が安定し、組立が容易なインダクタンス素子を提供する
ことを目的とする。
The present invention has been made to solve the above-mentioned problems, and has as its object to provide an inductance element which has a small insertion loss, stable electric characteristics for a long period of time, and is easy to assemble.

【0009】[0009]

【課題を解決するための手段】本発明は、磁心空隙に磁
気バイアスを与える永久磁石を配置するインダクタンス
素子であって、前記永久磁石は電気抵抗が0.01〜
0.05Ωcm、また、0℃から120℃の不可逆減磁
率変化が2%以内の耐熱ボンド磁石を用いたインダクタ
ンス素子である。
According to the present invention, there is provided an inductance element having a permanent magnet for applying a magnetic bias to a magnetic core gap, wherein the permanent magnet has an electric resistance of 0.01 to 0.01.
It is an inductance element using a heat-resistant bonded magnet having an irreversible demagnetization rate change of 0.05 Ωcm and 0 ° C. to 120 ° C. within 2%.

【0010】また本発明は、ボンド磁石はR−T−B−
Nb系(RはYを含めた希土類元素のいずれか1種又は
2種以上、TはFe又は一部をCo及び/又はNiに置
換したFe)磁石粉末を高分子重合体、純金属、合金の
いずれかのバインダーで結合した希土類ボンド磁石を用
いたインダクタンス素子である。
Further, according to the present invention, the bonded magnet is formed of RTB-
Nb-based (R is any one or more of rare earth elements including Y, T is Fe or Fe in which a part thereof is substituted with Co and / or Ni) magnet powder as a polymer, pure metal, alloy An inductance element using a rare earth bonded magnet combined with any one of the binders described above.

【0011】前記ボンド磁石の組成成分がRα
100-(α+β+γ)βNbγであり、RはYを含めた希土
類元素のいずれか1種又は2種以上、TはFe又は一部
をCo及び/又はNiに置換したFeからなり、前記
α、β、γは原子百分率で下記の範囲にある希土類磁性
粉末を高分子重合体、純金属、合金のいずれかのバイン
ダーで結合した希土類ボンド磁石を用いたインダクタン
ス素子である。 8≦α≦15 4≦β≦8 0.1≦γ≦2
The composition component of the bonded magnet is R α T
A 100- (α + β + γ) B β Nb γ, R is any one or more rare earth elements including Y, T is obtained by substituting Fe or partly Co and / or Ni Fe Wherein α, β, and γ are an atomic element using a rare-earth bonded magnet in which a rare-earth magnetic powder having an atomic percentage in the following range is bound with a binder of a polymer, a pure metal, or an alloy. 8 ≦ α ≦ 15 4 ≦ β ≦ 8 0.1 ≦ γ ≦ 2

【0012】また本発明は、ボンド磁石はR−T−M−
B−N系(RはYを含めた希土類元素のいずれか1種又
は2種以上、TはFe又は一部をCo及び/又はNiに
置換したFe、MはAl、Ti、V、Cr、Mn、C
u、Ga、Zr、Nb、Mo、Hf、Ta、Wのいずれ
か1種又は2種以上)磁石粉末を高分子重合体、純金
属、合金のいずれかのバインダーで結合した希土類ボン
ド磁石を用いたインダクタンス素子である。
Further, according to the present invention, the bonded magnet is made of R-T-M-
BN type (R is any one or more of rare earth elements including Y, T is Fe or Fe in which a part thereof is substituted by Co and / or Ni, M is Al, Ti, V, Cr, Mn, C
u, Ga, Zr, Nb, Mo, Hf, Ta, or any one or more of W) a rare earth bonded magnet in which a magnet powder is bonded with a binder of a polymer, a pure metal, or an alloy. This is the inductance element.

【0013】上記ボンド磁石は成分組成がRα
100−(α+β+γ+δ)βγδであり、前記R
はYを含めた希土類元素のいずれか1種又は2種以上で
あり、TはFe又は一部をCo及び/又はNiに置換し
たFe、前記MはAl、Ti、V、Cr、Mn、Cu、
Ga、Zr、Nb、Mo、Hf、Ta、Wのいずれか1
種又は2種以上からなり、前記α、β、γ、δは原子百
分率で下記の範囲にある希土類磁石材料の粉末を、高分
子重合体、純金属、合金のいずれかのバインダーで結合
した希土類ボンド磁石を用いたインダクタンス素子であ
る。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30
The above bonded magnet has a component composition of R α T
100- (α + β + γ + δ) M β B γ N δ ,
Is one or more kinds of rare earth elements including Y, T is Fe or Fe partially substituted by Co and / or Ni, and M is Al, Ti, V, Cr, Mn, Cu ,
Any one of Ga, Zr, Nb, Mo, Hf, Ta, and W
Or a mixture of two or more species, wherein α, β, γ, and δ are atomic percentages of a rare earth magnet material powder in the following range, and a high molecular weight polymer, a pure metal, or a rare earth element which is bound with an alloy binder. This is an inductance element using a bonded magnet. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 5 4 ≦ δ ≦ 30

【0014】本発明に用いる希土類ボンド磁石のR成分
の50原子%以上好ましくは70%以上をSmとするイ
ンダクタンス素子である。
This is an inductance element in which 50% or more, preferably 70% or more, of the R component of the rare earth bonded magnet used in the present invention is Sm.

【0015】また本発明は、希土類磁性粉末の平均粒径
が10〜120μmの範囲の希土類ボンド磁石を用いた
インダクタンス素子である。更に好ましい希土類磁性粉
末の平均粒径は、50〜60μmである。
Further, the present invention is an inductance element using a rare earth bonded magnet in which the average particle size of the rare earth magnetic powder is in the range of 10 to 120 μm. The more preferable average particle diameter of the rare earth magnetic powder is 50 to 60 μm.

【0016】[0016]

【発明の実施の形態】本発明に係るインダクタンス素子
を図1を用いて説明する。図1は本発明の一実施例に係
るインダクタンス素子の斜視図である。本発明に係るイ
ンダクタンス素子は磁気回路の一部に空隙を有し、例え
ばEI形状の軟磁性材料からなる磁心2、3と前記磁心
の空隙部に配置した耐熱ボンド磁石1と前記磁心に巻回
したコイル(図示せず)からなり、前記コイルによる直
流磁界と反対方向に前記耐熱性ボンド磁石1による磁気
バイアスが印加されるように構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An inductance element according to the present invention will be described with reference to FIG. FIG. 1 is a perspective view of an inductance element according to one embodiment of the present invention. The inductance element according to the present invention has a gap in a part of a magnetic circuit. For example, the magnetic cores 2 and 3 made of an EI-shaped soft magnetic material, the heat-resistant bonded magnet 1 disposed in the gap of the core, and a coil wound around the core. And a magnetic bias from the heat-resistant bonded magnet 1 is applied in a direction opposite to a DC magnetic field generated by the coil.

【0017】前記磁心はインダクタンス素子の特性の点
から、例えばMn−Znフェライトのような、飽和磁束
密度Bsが450mT以上の軟磁性材料で形成すること
が望ましい。
The magnetic core is preferably formed of a soft magnetic material having a saturation magnetic flux density Bs of 450 mT or more, such as Mn-Zn ferrite, in view of the characteristics of the inductance element.

【0018】耐熱ボンド磁石は、電気抵抗、不可逆減磁
率を向上させたR−T−B−Nb系(RはYを含めた希
土類元素の内の少なくとも1種、TはFe又は一部をC
oで置換したFe)磁石粉末、R−T−M−B−N系
(RはYを含めた希土類元素のいずれか1種又は2種以
上、TはFe又は一部をCo及び/又はNiに置換した
Fe、MはAl、Ti、V、Cr、Mn、Cu、Ga、
Zr、Nb、Mo、Hf、Ta、Wのいずれか1種又は
2種以上)磁石粉末をバインダーで結着して作製する。
The heat-resistant bonded magnet is an RTB-Nb system (R is at least one of rare earth elements including Y, T is Fe or a part thereof is C or C) having improved electric resistance and irreversible demagnetization rate.
o) Fe-magnet powder, R-T-M-B-N type (R is any one or more of rare earth elements including Y, T is Fe or a part of Co and / or Ni Fe, M substituted for Al, Ti, V, Cr, Mn, Cu, Ga,
Zr, Nb, Mo, Hf, Ta, or any one or more of W) is prepared by binding a magnet powder with a binder.

【0019】前記により第1の従来例と比べ前記耐熱ボ
ンド磁石の電気抵抗は著しく大きくなり、第2の従来例
のような永久磁石の分割といった手段を用いなくても渦
電流損失を小さくでき、インダクタンス素子の挿入損失
を減少させることができるとともに、耐熱性ボンド磁石
の磁心空隙への配置を容易化する。また不可逆減磁率の
減少により、高温環境下での信頼性に優れたインダクタ
ンス素子を得ることができる。
As described above, the electric resistance of the heat-resistant bonded magnet is remarkably increased as compared with the first conventional example, and the eddy current loss can be reduced without using a means for dividing the permanent magnet as in the second conventional example. The insertion loss of the inductance element can be reduced, and the heat-resistant bonded magnet can be easily arranged in the magnetic core space. Also, due to the decrease in the irreversible demagnetization rate, an inductance element having excellent reliability in a high-temperature environment can be obtained.

【0020】なお、磁石粉末を結着するバインダーとし
ては、高分子重合体としてはエポキシ樹脂やフェノール
樹脂に等に代表される熱硬化樹脂又はポリアミド樹脂、
EEA樹脂等の熱可塑樹脂又は合成ゴム、天然ゴムなど
を用いればよいが、インダクタンス素子環境温度、更に
は、フロー、リフローといったはんだ付けによる軟化又
は劣化が発生しないバインダーを用いるのが好ましい。
As the binder for binding the magnet powder, a thermosetting resin represented by an epoxy resin or a phenol resin or a polyamide resin as a high molecular polymer;
A thermoplastic resin such as an EEA resin or a synthetic rubber, a natural rubber, or the like may be used. However, it is preferable to use a binder that does not cause softening or deterioration due to soldering such as an environmental temperature of the inductance element and flow or reflow.

【0021】またボンド磁石のR成分の50原子%以上
好ましくは70%以上をSmとして高い保磁力を得て、
インダクタンス素子のコア磁路に発生する磁束による減
磁を抑制でき、インダクタンス素子の電気特性を向上さ
せ、更なる高電流化に対応することができる。
A high coercive force is obtained by setting Sm to 50 atomic% or more, preferably 70% or more of the R component of the bonded magnet,
It is possible to suppress the demagnetization due to the magnetic flux generated in the core magnetic path of the inductance element, improve the electrical characteristics of the inductance element, and cope with a higher current.

【0022】磁気特性は磁性粉末粒径に起因する特性が
多く、小さ過ぎると酸化による品質劣化及び成形性劣化
となり、大き過ぎると窒化処理が不十分となるので、磁
性粉末の平均粒径が10〜120μmの希土類ボンド磁
石を用いて安定した特性の得られるインダクタンス素子
となる。また、更なる安定特性を得るためには磁性粉末
の平均粒径が40〜50μmとするがよい。
The magnetic properties are mostly caused by the particle diameter of the magnetic powder. If the magnetic properties are too small, the quality and the formability deteriorate due to oxidation. If the magnetic properties are too large, the nitriding treatment becomes insufficient. An inductance element having stable characteristics can be obtained using a rare-earth bonded magnet of about 120 μm. In order to obtain further stable characteristics, the average particle size of the magnetic powder is preferably set to 40 to 50 μm.

【0023】[0023]

【実施例】(実施例1)初めに耐熱ボンド磁石の作製方
法について説明する。まず磁石粉末として原子%表示で
Nd11.5Fe80.76Nb1.8の組成を有するMQI(マ
グネクエンチインターナショナル)社製のMQP−O材
を用い、バンタムミルにて平均粒度110μmに粉砕し
た。この粉砕粉に対して日本ユニカー社製シランカップ
リング材を0.25重量%添加し表面処理を施した。次
いで、油化シェル社製ビスフェノール型エポキシ樹脂
(エピコート807)と芳香族アミン硬化剤であるDD
S(ジアミノジフェニルスルフォン)とのバインダー混
合物を総量で前記表面処理粉末対比2.6wt%(E8
07:DDS=100:43.2)になるよう秤量し、
その樹脂部混合物を2回にわけて前記磁石粉末又は混練
物に添加混合し二軸混練機で混練する。まず、1回目の
混練で樹脂部総量2.6wt%の内の80%を前記磁石
粉末と混練し、この混練物を150℃×1時間で1次加
熱硬化処理を行った。続いて、2回目の混練時に樹脂部
の残り20%を添加し混練後、120℃×1時間で2次
加熱硬化処理を行い、次いで所定の成形金型に充てんし
無磁場で圧縮成形した。得られた等方性のボンド磁石成
形体に本加熱硬化処理(大気中180℃×1時間後、1
90℃×4時間)を施し5.8mm×5.8mm×0.
48mmの耐熱ボンド磁石1を得た。
EXAMPLES (Example 1) First, a method for manufacturing a heat-resistant bonded magnet will be described. First, an MQP-O material manufactured by MQI (Magnequench International) having a composition of Nd 11.5 Fe 80.7 B 6 Nb 1.8 in atomic% as a magnet powder was used and crushed to an average particle size of 110 μm by a bantam mill. The crushed powder was subjected to a surface treatment by adding 0.25% by weight of a silane coupling material manufactured by Nippon Unicar Co., Ltd. Next, a bisphenol type epoxy resin (Epicoat 807) manufactured by Yuka Shell Co. and DD which is an aromatic amine curing agent
S (diaminodiphenylsulfone) in a total amount of 2.6 wt% (E8
07: DDS = 100: 43.2)
The resin mixture is added to and mixed with the magnet powder or the kneaded material twice, and kneaded by a twin-screw kneader. First, in the first kneading, 80% of the total 2.6 wt% of the resin part was kneaded with the magnet powder, and the kneaded material was subjected to primary heat curing at 150 ° C. for 1 hour. Subsequently, at the time of the second kneading, the remaining 20% of the resin part was added and kneaded, followed by a secondary heat-curing treatment at 120 ° C. × 1 hour, followed by filling in a predetermined molding die and compression molding without a magnetic field. The obtained isotropic bonded magnet molded body is subjected to a main heat curing treatment (at 180 ° C. for 1 hour in air,
(90 ° C. × 4 hours) and 5.8 mm × 5.8 mm × 0.
A 48 mm heat-resistant bonded magnet 1 was obtained.

【0024】Mn−ZnフェライトからなるEI22コ
ア(日立金属社製 材質SB−5材ギャップ0.6m
m)のE型コア2の中央脚に測定用コイルを組み込み、
前記耐熱性ボンド磁石1を磁化の方向が磁心を流れる直
流電流の磁界方向とは逆方向となるように接着し、I型
コア3と組み合わせてインダクタンス素子を作製し、そ
の損失を測定した。なお前記測定用コイルには、1次巻
線として線径φ0.4の線材を36回巻回し、2次巻線
として線径φ0.4の線材を36回巻回している。
EI22 core made of Mn-Zn ferrite (manufactured by Hitachi Metals, material SB-5, material gap: 0.6 m)
m) incorporating a measuring coil into the center leg of the E-shaped core 2 of
The heat-resistant bonded magnet 1 was bonded so that the direction of magnetization was opposite to the direction of the magnetic field of the DC current flowing through the magnetic core, and an inductance element was fabricated in combination with the I-type core 3, and the loss was measured. The measuring coil is wound 36 times with a wire having a diameter of 0.4 as a primary winding and 36 times with a wire having a diameter of 0.4 as a secondary winding.

【0025】(比較例1)外形寸法が2mm×2mm×
0.3mmの角板状に形成した希土類コバルト磁石(日
立金属社製H18B)を6個使用し、実施例1と同様の
条件でインダクタンス素子を作製した。なお希土類コバ
ルト磁石の磁力は外形寸法によって実施例1の耐熱ボン
ド磁石と略等しくしている。以下実施例1と同様なので
その説明を省く。
(Comparative Example 1) External dimensions are 2 mm × 2 mm ×
Using six rare earth cobalt magnets (H18B manufactured by Hitachi Metals, Ltd.) formed in a 0.3 mm square plate shape, an inductance element was manufactured under the same conditions as in Example 1. The magnetic force of the rare-earth cobalt magnet is made substantially equal to that of the heat-resistant bonded magnet of Example 1 depending on the outer dimensions. Hereinafter, since it is the same as the first embodiment, the description thereof is omitted.

【0026】(比較例2)永久磁石を有しない構成であ
る以外は実施例1と同様の条件でインダクタンス素子を
作製した。以下実施例1と同様なのでその説明を省く。
(Comparative Example 2) An inductance element was manufactured under the same conditions as in Example 1 except that the structure did not include a permanent magnet. Hereinafter, since it is the same as the first embodiment, the description thereof is omitted.

【0027】上記実施例及び比較例のインダクタンス素
子の挿入損失をBHアナライザ(岩崎通信機社製 型
番:SY8232)を用いて室温で挿入損失を測定し
た。測定は測定周波数が20kHzから200kHz
で、磁束密度Bmを20mTとし、次式で得られる電圧
を設定電圧(Vrms)とした条件で行った。 Vrms=4.44×Bm×S×N×f ここで、Bm:磁束密度(T)、S:コア断面積
(m2)、N:コイルの巻数(ターン)、f:周波数
(Hz)である。以上によって得た結果を表1に示す。
The insertion loss of the inductance elements of the above Examples and Comparative Examples was measured at room temperature using a BH analyzer (model number: SY8232, manufactured by Iwasaki Communication Equipment Co., Ltd.). The measurement frequency is 20kHz to 200kHz
The magnetic flux density Bm was set to 20 mT, and the voltage obtained by the following equation was set as a set voltage (Vrms). Vrms = 4.44 × Bm × S × N × f where, Bm: magnetic flux density (T), S: core cross-sectional area (m 2 ), N: number of coil turns (turn), f: frequency (Hz) is there. Table 1 shows the results obtained as described above.

【0028】[0028]

【表1】 [Table 1]

【0029】ここで比較例2の試料の挿入損失は磁心の
損失を表している。表1から磁気バイアスを与える永久
磁石を耐熱性ボンド磁石とした実施例1の試料は、前記
永久磁石を小片化した希土類コバルト磁石とした比較例
1の試料と比べ著しく低損失であり、比較例2に示す磁
心の損失と同程度の挿入損失であることがわかる。
Here, the insertion loss of the sample of Comparative Example 2 represents the loss of the magnetic core. Table 1 shows that the sample of Example 1 in which the permanent magnet giving the magnetic bias is a heat-resistant bonded magnet has a significantly lower loss than the sample of Comparative Example 1 in which the permanent magnet is a rare-earth cobalt magnet in which a small piece is used. It can be seen that the insertion loss is almost the same as the loss of the magnetic core shown in FIG.

【0030】(比較例3)5.8mm×5.8mm×
0.48mmの角板状に形成したネオジウムボンド磁石
(日立金属社製HB−08I)を用いた以外は実施例1
と同様にインダクタンス素子を形成した。以下実施例1
と同様なので説明を省く。
Comparative Example 3 5.8 mm × 5.8 mm ×
Example 1 except that a neodymium bond magnet (HB-08I manufactured by Hitachi Metals, Ltd.) formed in a 0.48 mm square plate shape was used.
Similarly, an inductance element was formed. Example 1 below
The description is omitted because it is the same as.

【0031】このようにして得られた比較例3のインダ
クタンス素子を実施例1のインダクタンス素子とともに
温度100℃、恒温槽中に2000時間放置し高温試験
を実施した。試験前と試験開始後500時間、1000
時間、2000時間経過後恒温槽からインダクタンス素
子を取り出し、該インダクタンス素子を室温中に24時
間放置した後、直流重畳インダクタンスを室温状態で測
定し評価した。その結果を図2に示す。図2は高温試験
500時間後のインダクタンス素子の直流重畳特性であ
る。測定条件はJIS C2514の直流重畳インダク
タンスの測定条件に従い、測定回路は供試コイルに直流
重畳した場合とした。なお実施例1及び比較例3のイン
ダクタンス素子は室温状態で直流電流3Aで直流重畳イ
ンダクタンスが150μHとなるように設計されてい
る。
The inductance element of Comparative Example 3 thus obtained was left in a constant temperature bath at a temperature of 100 ° C. for 2000 hours together with the inductance element of Example 1, and a high temperature test was performed. Before and 500 hours after the start of the test, 1000
After an elapse of 2,000 hours, the inductance element was taken out of the thermostat, and the inductance element was left at room temperature for 24 hours. Then, the DC superposed inductance was measured and evaluated at room temperature. The result is shown in FIG. FIG. 2 shows the DC superposition characteristics of the inductance element after 500 hours of the high-temperature test. The measurement conditions were in accordance with the measurement conditions of the dc superimposed inductance of JIS C2514, and the measurement circuit was a case where the dc was superimposed on the test coil. Note that the inductance elements of Example 1 and Comparative Example 3 are designed so that the DC superimposed inductance becomes 150 μH at a DC current of 3 A at room temperature.

【0032】図2から実施例1のインダクタンスは高温
試験前後でインダクタンスの劣化は生じず、図2に示し
た直流重畳特性と変化なかった。一方比較例3のインダ
クタンス素子は、試験前は実施例1とほぼ同等の直流重
畳特性を有していたが、高温試験500時間後では、直
流電流3Aで直流重畳インダクタンスが約135μHに
減少し、更に1000時間では著しくインダクタンスが
劣化し、実用に耐え得ないものであった。
FIG. 2 shows that the inductance of Example 1 did not deteriorate before and after the high temperature test, and did not change from the DC superposition characteristic shown in FIG. On the other hand, the inductance element of Comparative Example 3 had a DC superimposition characteristic almost equal to that of Example 1 before the test, but after 500 hours of the high-temperature test, the DC superposition inductance was reduced to about 135 μH at a DC current of 3 A, Further, after 1000 hours, the inductance was significantly deteriorated and was not practically usable.

【0033】(実施例2)純度99.9%のSm、F
e、Ti、Bを用いてSm8.3Febal2.0Ti3.0
12.1の窒化物磁石粉末に対応した母合金組成に配合し、
アルゴンガス雰囲気の高周波溶解炉で溶解し、その後、
アルゴンガス雰囲気中で1150℃、20時間の均質化
処理を行い、続いてこの母合金塊をジョークラッシャー
とディスクミルを用いて粉砕した。次に母合金粉末を雰
囲気加熱炉に仕込み450℃において窒素ガス1atm
気流中で5時間加熱保持し窒化処理を行い、続いてアル
ゴン気流中で420℃で1時間アニールした。この磁性
粉末の平均粒径は10μmとした。前記磁性粉末をエポ
キシ樹脂と混練した後、10kOeの磁場中でプレス圧
10ton/cm2で圧縮成形し、硬化のため140
℃、1時間の熱処理を施して耐熱ボンド磁石を得た。こ
のボンド磁石は6.2kOeと高い保磁力を得ることが
できた。
(Example 2) Sm, F having a purity of 99.9%
e, Ti, B using Sm 8.3 Fe bal B 2.0 Ti 3.0 N
Formulated in a mother alloy composition corresponding to the nitride magnet powder in 12.1 ,
Melted in a high-frequency melting furnace in an argon gas atmosphere, and then
Homogenization treatment was performed at 1150 ° C. for 20 hours in an argon gas atmosphere, and then this mother alloy block was pulverized using a jaw crusher and a disc mill. Next, the mother alloy powder was charged into an atmosphere heating furnace, and at 450 ° C. nitrogen gas 1 atm.
The substrate was heated and held in an air stream for 5 hours to perform a nitriding treatment, and then annealed at 420 ° C. for 1 hour in an argon stream. The average particle size of the magnetic powder was 10 μm. After kneading the magnetic powder with an epoxy resin, the mixture is compression-molded in a magnetic field of 10 kOe under a pressure of 10 ton / cm 2 , and cured for 140 minutes.
Heat treatment was performed at 1 ° C. for 1 hour to obtain a heat-resistant bonded magnet. This bond magnet was able to obtain a high coercive force of 6.2 kOe.

【0034】(実施例3)実施例2と同様の製造方法に
て、Sm6.2Pr2.0Febal2.0Ti4.012.3の成分
組成からなるボンド磁石を得た。磁性粉末の平均粒径は
120μmとした。このボンド磁石は6.8kOeと上
記ボンド磁石より高い保磁力を得ることができた。
Example 3 A bonded magnet having a component composition of Sm 6.2 Pr 2.0 Fe bal B 2.0 Ti 4.0 N 12.3 was obtained in the same manner as in Example 2. The average particle size of the magnetic powder was 120 μm. This bonded magnet was able to obtain a coercive force of 6.8 kOe higher than that of the above bonded magnet.

【0035】実施例2及び実施例3で得た耐熱ボンド磁
石を実施例1のインダクタンス素子に用いて、温度10
0℃の恒温槽中に2000時間放置し高温試験を実施し
た。本試験においても実施例2及び実施例3は試験前後
の直流重畳特性値の差異が大変小さく、実施例1と同様
に信頼性の高いインダクタンス素子を得ることができ
た。
The heat-resistant bonded magnets obtained in Examples 2 and 3 were used for the inductance element of Example 1 and were heated at a temperature of 10%.
It was left in a thermostat at 0 ° C. for 2000 hours to perform a high temperature test. Also in this test, in Example 2 and Example 3, the difference between the DC superimposition characteristic values before and after the test was very small, and a highly reliable inductance element was obtained as in Example 1.

【0036】[0036]

【発明の効果】本発明は上述した構成を有するので、挿
入損失が低く、かつ長期的に電気的特性が安定し、組立
が簡易なインダクタンス素子を得ることができる。
Since the present invention has the above-described structure, it is possible to obtain an inductance element having low insertion loss, stable electric characteristics for a long period of time, and simple assembly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係るインダクタンス素子の
斜視図
FIG. 1 is a perspective view of an inductance element according to an embodiment of the present invention.

【図2】本発明の実施例1と比較例3の高温試験500
時間後の直流重畳特性図
FIG. 2 is a high temperature test 500 of Example 1 of the present invention and Comparative Example 3.
DC superimposition characteristics after time

【符号の説明】[Explanation of symbols]

1 耐熱ボンド磁石 2 E型コア 3 I型コア DESCRIPTION OF SYMBOLS 1 Heat-resistant bonded magnet 2 E type core 3 I type core

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 磁心空隙に磁気バイアスを与える永久磁
石を配置するインダクタンス素子であって、前記永久磁
石は電気抵抗が0.01〜0.05Ωcm、また、0℃
から120℃の不可逆減磁率変化が2%以内の耐熱ボン
ド磁石であることを特徴とするインダクタンス素子。
1. An inductance element in which a permanent magnet for applying a magnetic bias to a magnetic core gap is disposed, wherein said permanent magnet has an electric resistance of 0.01 to 0.05 Ωcm and 0 ° C.
An inductance element characterized by being a heat-resistant bonded magnet having an irreversible demagnetization rate change of from 2 to 120 ° C within 2%.
【請求項2】 ボンド磁石はR−T−B−Nb系(Rは
Yを含めた希土類元素のいずれか1種又は2種以上、T
はFe又は一部をCo及び/又はNiに置換したFe)
磁石粉末を高分子重合体、純金属、合金のいずれかのバ
インダーで結合した希土類ボンド磁石であることを特徴
とする請求項1記載のインダクタンス素子。
2. The bonded magnet is of the RTB-Nb type (where R is at least one kind of rare earth element including Y,
Is Fe or Fe partially substituted with Co and / or Ni)
2. The inductance element according to claim 1, wherein the magnet element is a rare-earth bonded magnet in which a magnet powder is bonded with a binder of a polymer, a pure metal, or an alloy.
【請求項3】 ボンド磁石は組成成分がRα
100-(α+β+γ)βNbγであり、RはYを含めた希土
類元素のいずれか1種又は2種以上、TはFe又は一部
をCo及び/又はNiに置換したFeからなり、前記
α、β、γは原子百分率で下記の範囲にある希土類磁性
粉末を高分子重合体、純金属、合金のいずれかのバイン
ダーで結合した希土類ボンド磁石であることを特徴とす
る請求項1、請求項2記載のインダクタンス素子。 8≦α≦15 4≦β≦8 0.1≦γ≦2
3. The bonded magnet has a composition component of R α T
A 100- (α + β + γ) B β Nb γ, R is any one or more rare earth elements including Y, T is obtained by substituting Fe or partly Co and / or Ni Fe Wherein the α, β, and γ are rare earth bonded magnets in which a rare earth magnetic powder having an atomic percentage in the following range is bound with a polymer, a pure metal, or a binder of any of alloys. Item 3. An inductance element according to claim 1. 8 ≦ α ≦ 15 4 ≦ β ≦ 8 0.1 ≦ γ ≦ 2
【請求項4】 ボンド磁石はR−T−M−B−N系(R
はYを含めた希土類元素のいずれか1種又は2種以上、
TはFe又は一部をCo及び/又はNiに置換したF
e、MはAl、Ti、V、Cr、Mn、Cu、Ga、Z
r、Nb、Mo、Hf、Ta、Wのいずれか1種又は2
種以上)磁石粉末を高分子重合体、純金属、合金のいず
れかのバインダーで結合した希土類ボンド磁石であるこ
とを特徴とする請求項1記載のインダクタンス素子。
4. The bonded magnet is an RTMBN system (R
Is any one or more of rare earth elements including Y,
T is Fe or F partially substituted with Co and / or Ni.
e and M are Al, Ti, V, Cr, Mn, Cu, Ga, Z
any one of r, Nb, Mo, Hf, Ta, W or 2
2. The inductance element according to claim 1, wherein the magnet element is a rare earth bonded magnet in which a magnet powder is bonded with a binder of a polymer, a pure metal, or an alloy.
【請求項5】 ボンド磁石は成分組成がRα
100−(α+β+γ+δ) βγδであり、前記R
はYを含めた希土類元素のいずれか1種または2種以上
であり、TはFeまたは一部をCo及び/又はNiに置
換したFe、前記MはAl、Ti、V、Cr、Mn、C
u、Ga、Zr、Nb、Mo、Hf、Ta、Wのいずれ
か1種または2種以上からなり、前記α、β、γ、δは
原子百分率で下記の範囲にある希土類磁石材料の粉末
を、高分子重合体、純金属、合金のいずれかのバインダ
ーで結合した希土類ボンド磁石からなることを特徴とす
る請求項1、請求項4記載のインダクタンス素子。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30
5. The bonded magnet has a component composition of RαT
100- (α + β + γ + δ)M βBγNδAnd the R
Is one or more of the rare earth elements including Y
And T represents Fe or a part thereof on Co and / or Ni.
Replaced Fe, M is Al, Ti, V, Cr, Mn, C
u, Ga, Zr, Nb, Mo, Hf, Ta, W
Or one or more kinds thereof, wherein the α, β, γ, and δ are
Powder of rare earth magnet material in the following range in atomic percentage
A polymer, pure metal or alloy binder
Characterized in that they consist of rare-earth bonded magnets
5. The inductance element according to claim 1, wherein 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 5 4 ≦ δ ≦ 30
【請求項6】 希土類ボンド磁石のR成分の50原子%
以上がSmであることを特徴とする請求項1から請求項
5のいずれかに記載のインダクタンス素子。
6. Atomic% of R component of rare earth bonded magnet
The inductance element according to any one of claims 1 to 5, wherein the above is Sm.
【請求項7】 希土類磁性粉末の平均粒径が10〜12
0μmの範囲にあることを特徴とする請求項1から請求
項6のいずれかに記載のインダクタンス素子。
7. The rare earth magnetic powder has an average particle size of 10 to 12.
The inductance element according to any one of claims 1 to 6, wherein the inductance element is within a range of 0 µm.
JP11098196A 1998-04-06 1999-04-05 Inductance element Pending JPH11354344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11098196A JPH11354344A (en) 1998-04-06 1999-04-05 Inductance element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-111547 1998-04-06
JP11154798 1998-04-06
JP11098196A JPH11354344A (en) 1998-04-06 1999-04-05 Inductance element

Publications (1)

Publication Number Publication Date
JPH11354344A true JPH11354344A (en) 1999-12-24

Family

ID=26439394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11098196A Pending JPH11354344A (en) 1998-04-06 1999-04-05 Inductance element

Country Status (1)

Country Link
JP (1) JPH11354344A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021543A1 (en) * 2000-09-08 2002-03-14 Nec Tokin Corporation Permanent magnet, magnetic core having the magnet as bias magnet, and inductance parts using the core
EP1202295A2 (en) * 2000-10-25 2002-05-02 Tokin Corporation Magnetic core including bias magnet and inductor component using the same
EP1209703A2 (en) * 2000-11-28 2002-05-29 Tokin Corporation Magnetic core comprising a bond magnet including magnetic powder whose particle's surface is coated with oxidation-resistant metal
EP1211700A2 (en) * 2000-11-30 2002-06-05 Tokin Corporation Magnetic core including magnet for magnetic bias and inductor component using the same
JP2002222714A (en) * 2001-01-26 2002-08-09 Nec Tokin Corp Inductor
JP2003007552A (en) * 2000-11-29 2003-01-10 Nec Tokin Corp Magnetic core including magnet for magnetic bias and inductance component using the same
JP2003100509A (en) * 2001-09-27 2003-04-04 Nec Tokin Corp Magnetic core and inductance part using the same
EP1330015A1 (en) * 2000-10-25 2003-07-23 Nec Tokin Corporation Magnetic core, coil component comprising it, and power source circuit
US6853285B2 (en) * 2001-01-22 2005-02-08 Nec Tokin Corporation Inductor component
CN108701531A (en) * 2018-04-19 2018-10-23 深圳顺络电子股份有限公司 A kind of assembly type inductance and its manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021543A1 (en) * 2000-09-08 2002-03-14 Nec Tokin Corporation Permanent magnet, magnetic core having the magnet as bias magnet, and inductance parts using the core
US6995643B2 (en) 2000-09-08 2006-02-07 Nec Tokin Corporation Magnetically biasing bond magnet for improving DC superposition characteristics of magnetic coil
EP1321950A1 (en) * 2000-09-08 2003-06-25 Nec Tokin Corporation Permanent magnet, magnetic core having the magnet as bias magnet, and inductance parts using the core
US6856231B2 (en) 2000-09-08 2005-02-15 Nec Tokin Corporaton Magnetically biasing bond magnet for improving DC superposition characteristics of magnetic coil
EP1321950A4 (en) * 2000-09-08 2007-05-02 Nec Tokin Corp Permanent magnet, magnetic core having the magnet as bias magnet, and inductance parts using the core
KR100851450B1 (en) * 2000-10-25 2008-08-08 엔이씨 도낀 가부시끼가이샤 Magnetic core with magnet for bias and inductance parts using the same
EP1330015A1 (en) * 2000-10-25 2003-07-23 Nec Tokin Corporation Magnetic core, coil component comprising it, and power source circuit
EP1202295A3 (en) * 2000-10-25 2003-10-15 NEC TOKIN Corporation Magnetic core including bias magnet and inductor component using the same
EP1330015A4 (en) * 2000-10-25 2007-03-21 Nec Tokin Corp Magnetic core, coil component comprising it, and power source circuit
EP1202295A2 (en) * 2000-10-25 2002-05-02 Tokin Corporation Magnetic core including bias magnet and inductor component using the same
KR100844613B1 (en) * 2000-11-28 2008-07-07 엔이씨 도낀 가부시끼가이샤 Magnetic core comprising a bond magnet including magnetic powder whose particle's surface is coated with oxidation-resistant metal and inductance part comprising the magnetic core
EP1209703A2 (en) * 2000-11-28 2002-05-29 Tokin Corporation Magnetic core comprising a bond magnet including magnetic powder whose particle's surface is coated with oxidation-resistant metal
EP1209703A3 (en) * 2000-11-28 2003-10-15 NEC TOKIN Corporation Magnetic core comprising a bond magnet including magnetic powder whose particle's surface is coated with oxidation-resistant metal
JP2003007552A (en) * 2000-11-29 2003-01-10 Nec Tokin Corp Magnetic core including magnet for magnetic bias and inductance component using the same
US6906608B2 (en) 2000-11-30 2005-06-14 Nec Tokin Corporation Magnetic core including magnet for magnetic bias and inductor component using the same
EP1211700A3 (en) * 2000-11-30 2003-10-15 NEC TOKIN Corporation Magnetic core including magnet for magnetic bias and inductor component using the same
EP1211700A2 (en) * 2000-11-30 2002-06-05 Tokin Corporation Magnetic core including magnet for magnetic bias and inductor component using the same
KR100924037B1 (en) * 2000-11-30 2009-10-27 엔이씨 도낀 가부시끼가이샤 Magnetic core including magnet for magnetic bias and inductor component using the same
US6853285B2 (en) * 2001-01-22 2005-02-08 Nec Tokin Corporation Inductor component
JP2002222714A (en) * 2001-01-26 2002-08-09 Nec Tokin Corp Inductor
JP2003100509A (en) * 2001-09-27 2003-04-04 Nec Tokin Corp Magnetic core and inductance part using the same
CN108701531A (en) * 2018-04-19 2018-10-23 深圳顺络电子股份有限公司 A kind of assembly type inductance and its manufacturing method

Similar Documents

Publication Publication Date Title
US6906608B2 (en) Magnetic core including magnet for magnetic bias and inductor component using the same
US7442263B2 (en) Magnetic amplifier choke (magamp choke) with a magnetic core, use of magnetic amplifiers and method for producing softmagnetic cores for magnetic amplifiers
JPWO2002021543A1 (en) Permanent magnet, magnetic core using it as a magnet for magnetic bias, and inductance component using the same
KR100844613B1 (en) Magnetic core comprising a bond magnet including magnetic powder whose particle's surface is coated with oxidation-resistant metal and inductance part comprising the magnetic core
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
US20090191421A1 (en) Composite soft magnetic powdery material and magnetically biasing permanent magnetic core containing same
EP1211699A2 (en) Magnetic core having magnetically biasing bond magnet and inductance part using the same
JPH11354344A (en) Inductance element
JP2002313632A (en) Magnetic element and its manufacturing method
JP2004197218A (en) Composite magnetic material, core using the same, and magnetic element
JPS6010605A (en) Permanent magnet for inductance element
JP2006294733A (en) Inductor and its manufacturing method
US20210249176A1 (en) Magnetic composition and magnetic component including the same
WO2011121947A1 (en) Complex magnetic material, coil-embedded type magnetic element using the same, and manufacturing method thereof
JP3860456B2 (en) Magnetic core and inductance component using the same
JPS6219041B2 (en)
KR20210072186A (en) Molding Materials Using Amorphous Powder and Toroidal Inductor Using the Same
JP2002231540A (en) Magnetic core having magnet for magnetic bias and inductance part using it
JP2002175918A (en) Inductor
JP2003257753A (en) Magnetic core and inductance component
JP2003007519A (en) Magnetic core equipped with magnetic bias magnet and inductance part using the same
JP3973968B2 (en) Magnetic core and inductance component using the same
JP4226817B2 (en) Magnetic core having magnetic bias magnet and inductance component using the same
TW584873B (en) Permanent magnet, the magnetic core using it as the magnetic-biased magnet, and the inductance member using the same
JP2002158116A (en) Inductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees