TW578406B - Method for measuring and compensating gain and phase imbalances in quadrature modulators - Google Patents

Method for measuring and compensating gain and phase imbalances in quadrature modulators Download PDF

Info

Publication number
TW578406B
TW578406B TW091120347A TW91120347A TW578406B TW 578406 B TW578406 B TW 578406B TW 091120347 A TW091120347 A TW 091120347A TW 91120347 A TW91120347 A TW 91120347A TW 578406 B TW578406 B TW 578406B
Authority
TW
Taiwan
Prior art keywords
input
frequency
signal
phase
gain
Prior art date
Application number
TW091120347A
Other languages
Chinese (zh)
Inventor
Zivi Nadiri
Original Assignee
Envara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Envara Inc filed Critical Envara Inc
Application granted granted Critical
Publication of TW578406B publication Critical patent/TW578406B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • H04L27/364Arrangements for overcoming imperfections in the modulator, e.g. quadrature error or unbalanced I and Q levels
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/165Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature
    • H03D7/166Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature using two or more quadrature frequency translation stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0084Lowering the supply voltage and saving power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0016Stabilisation of local oscillators

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

A simple and efficient method to measure base-band gain and phase imbalance as well as orthogonality phase imbalance in a quadrature (IQ) modulator. The method comprises estimating values of modulator gain and phase imbalances while the modulator is operational, by inputting at least one test signal at a base-band frequency fi to the modulator to generate detected output signals having a term at frequency 2fi and computing the imbalances based on the 2fi term the computed imbalances then used in normal transmit operation to generate a pre-distortion transformation on the transmit signal to generate an imbalance compensation. The method can be easily expanded to cope with frequency dependent base-band amplitude and phase imbalance. This feature has an advantage when the transmitted signal is a multi-carrier signal, as the compensation can be adapted for each individual carrier.

Description

578406 經濟部智恶財產局g(H^費合作社印製 A7 _____B7_ 五、發明説明(1 ) 發明領域及背景: 本發明係有關數位通訊發射機所用的正交調變器之測 量及校準。正交調變器(有時被稱爲IQ調變器)(特別 是用於在 GHz範圍的高頻下工作的射頻積體電路(Radio Frequency Integrated Circuit;簡稱 RFIC)中之那些正交調 變器)可能在基頻帶路徑中引發顯著的增益及相位不平衡 ,也可能在本機振盪器路徑中引發正交相位不平衡。通常 稱爲增益及相位不平衡(或"IQ”不平衡)的這些劣化之 效應即是所傳輸信號的失真,因而又轉化成較差的甚至是 無法接受的性能。 在許多情形中,設計並製作具有足夠低的增益及相位 不平衡値之正交調變器往往是不切實際的,有時甚至是不 可行的。然而,如果可估計正交調變器的增益及相位不平 衡,則有現有習知的方法可補償所傳輸的輸入信號,或以 等效之方式預先使所傳輸的輸入信號失真,因而抵消此種 增益及相位不平衡的效應。增益及相位不平衡値通常是不 固定的,且可隨著工作條件及組件老化等的因素而變,因 而在安裝或操作正交調變器時,需要一種簡單且有效率的 內建方法,以便及時地執行這些測量並評估補償項。 發明槪述: 本發明之方法在正交調變器的輸入端上施加一序列的 測試信號,而所得到的輸出係耦合到一檢測器,且被處理 ,以便評估調變器增益及相位不平衡之估計値。在正常的 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐〉 _ 4 _ (請先閱讀背面之注意事項再填寫本頁) 裝. 訂 ,線.丨 578406 A7 _B7________ 五、發明説明(2 ) (請先閲讀背面之注意事項再填寫本頁) 傳輸作業中,係將這些估計値用來對所傳輸的信號進行補 償或等效的預先失真,以便抵消增益及相位不平衡對所傳 輸信號的效應。 本發明所提出的方法使用一序列的測試輸入信號,該 等測試輸入信號與該檢測器電路的作業結合,而可對調變 器不平衡項進行一簡單且精確的評估。在一較佳實施例中 ,該等測試信號是具有特定振幅及相位之正弦波形,因而 在該正交調變器的輸出端上產生一特定的信號。與理想的 正交調變器比較時,該正交調變器的增益及相位不平衡會 使該信號失真。該失真等同於產生了額外的頻譜成分,而 該額外的頻譜成分之頻率、振幅、及相位是該調變器不平 衡値之一函數。耦合到該調變器輸出端的一檢測器執行一 非線性作業,因而在各種頻譜成分之間產生了若干互調生 成物。從下文中可得知,2fi (其中是輸入正弦波形的 頻率)成分的振幅係與該等調變器增益及相位不平衡項成 正比,且藉由控制該等測試信號的振幅及相位,即可自該 2fi成分的頻率推導出這些項。 經濟部智慈財產局員工消費合作社印^ 根據本發明,提供了一種用來校準一正交調變器之方 法,該正交調變器具有一 I輸入端及一 Q輸入端,用以 輸入基頻帶I(t)及Q(t)信號,該調變器係用來傳輸經正 交調變後的信號,該方法包含下列步驟:(a )當該調變器 在作業時,循序地估計調變器增益不平衡的値、及調變器 相位不平衡的値,該估計步驟包括將至少一個在一基頻帶 頻率fi下的測試信號輸入到該調變器,以便首先在該增 -5- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 578406 A7 B7 五、發明説明(3 ) (請先閱讀背面之注意事項再填寫本頁) 益不平衡估計中,然後在相位不平衡估計中,產生具有在 頻率2f,下的一項之所檢測輸出信號,並根據該等所檢測 輸出信號之2fi項而計算該等增益及相位不平衡値;以及 (b)在正常傳輸作業中,首先針對增益不平衡,然後針對 相位不平衡,而進行補償,以便得到一在本質上是理想的 經正交調變後的信號,該補償步驟包括將一傳輸信號輸入 到該檢測器,並根據所計算出的該等增益及相位不平衡値 ,而對該輸入傳輸信號施加一預先失真變換。 根據本發明的該方法中之一特徵,該增益不平衡的計 算係基於一反覆作業,該反覆作業包括:修改該等測試信 咸,以及重複對在頻率2fi下的所檢測輸出信號項之測量 ,直到到達所檢測輸出信號的一基準値爲止。 經濟部智慈財產局g(工消費合作社印製 根據本發明的該方法中之另一特徵,該方法進一步包 含下列步驟:針對該增益不平衡,而在一第一步驟中,在 該Ϊ輸入端上輸入一餘弦波形,並在該Q輸入端上輸入 一零波形,並在一第二步驟中,在該I輸入端上輸入一零 波形,並在該 Q輸入端上輸入相同的餘弦波形;以及針 對相位不平衡,而在一第一步驟中,在該I及Q輸入端 上輸入兩個正弦波形,這兩個正弦波形具有相同的振幅及 頻率,但這兩個正弦波形之間有如方程式17所示的40。 + 0 ϊ之相移,且或可在一第二步驟中,輸入兩個正弦波形 ,這兩個正弦波形具有相同的振幅及頻率,但這兩個正弦 波形之間有如方程式 21所示的 +90° + 0 2之相移。 根據本發明的該方法中之又一特徵,該相位不平衡的 -6 - 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 578406 A7 B7 五、發明説明(4 ) 該計算步驟包含下列步驟:利用測試信號的輸入、及一反 覆作業,而分別計算一基頻帶相位不平衡 △ 0 及一本機 振盪器正交相位不平衡 △ 0,其中該反覆作業包括藉由改 變相位 Θ '及 β 2而修改該等測試信號、以及重複該等 檢測器輸出信號之測量直到有效地抵消在頻率 2fi下的信 號項爲止。 根據本發明的該方法中之又一特徵,上述的該基準値 是在一第一測試信號產生的頻率2fi下的所檢測輸出振幅 的第一測量之結果。 根據本發明的該方法中之又一特徵,輸入至少一個在 一基頻帶頻率fi下的測試信號之該步驟包含下列步驟: 輸入複數 N個測試信號,而每一測試信號係在一不同的 基頻帶頻率fi(N)下;且對輸入傳輸信號施加一預先失真 變換之該步驟包含下列步驟:施加一與頻率有關的預先失 真變換。 圖式簡述: 係參照各附圖,而以只供舉例之方式在本文中說明本 發明,這些附圖有: 圖1是其中包括應用本發明方法的一正交調變器的 系統之一高階方塊圖; 圖2是該方法的主要步驟之一般性方塊圖; 圖3示出通過該正交調變器的信號流; 圖4是一增益不平衡之測量流程圖; 本纸張尺度適用中國國家標準(CNS ) A4規格(210X 297公嫠) (請先閲讀背面之注意事項再填寫本頁) 裝· 訂 經濟部智慈財產局員工消費合作社印製 578406 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(5 ) 圖5是一相位不平衡之測量流程圖。 符號說明 12 正交 調 變 器 14 測試 信 號 產 生 器 16 輸出 信 號 22 射頻 親 合 器 18 檢測 器 20 檢測 器 輸 出 24 跟蹤 帶 通 濾 波 器 30 濾波 器 輸 出 3 2 處理 器 34 估計 値 40 輸入 信 號 42 預先 失 真 裝 置 5 0 同相 埠 60 正交 ί阜 52,54 方塊 70 第一 混 頻 器 72 第一 本 機 振 盪 器 信 號 74 第二 混 頻 器 76 第二 本 機 振 盪 器 信 號 80 分相 器 裝 置 82 相位 誤 差 方 塊 (請先閱讀背面之注意事項再填寫本頁) 本纸張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) _ 8 - 578406 A7 ——____B7_ 五、發明説明(6 ) 90 結合網路 78 共同輸入信號 (請先閲讀背面之注意事項再填寫本頁) 210 單邊帶載波 212,220 小邊帶成分 222 主邊帶載波 較佳實施例之說明: 方U旣觀 經濟部智慈財產局3(工消費合作社印製 在圖1中,一正交調變器(12 )自一測試信號產生 器(1 4 )接收一輸入測試信號(尤其是具有特定振幅及相 位的正弦波形),而在該正交調變器的輸出端產生一特定 的輸出信號(1 6 )。與一理想的正交調變器比較時,該正 交調變器的振幅及相位不平衡使該信號失真。該失真等同 於產生了額外的頻譜成分,而該額外的頻譜成分之頻率、 振幅、及相位是該調變器不平衡値之函數。該輸出信號的 --樣本係經由一射頻耦I合器(2 2 )而親合到一檢測器(1 8 ),該檢測器(1 8 )執行一非線性作業,用以在該輸出信 號的各種頻譜成分之間產生了若干互調生成物,其中包括 在 2f,下的一成分,其中fi是輸入正弦波形的頻率。在 一跟蹤帶通濾波器(24 )中處理一檢測器輸出(20),該 跟蹤帶通濾波器(24 )提取下的成分,同時拒斥不需 要的成分。一濾波器輸出(30 )然後被輸入到最好是一數 位處理器的一處理器(32 ),該處理器(32 )計算增益及 相位不平衡値之估計値(34 )。在一實施例中,可將濾、波 本纸張尺度適用中國國家標準(CMS ) A4規格(210X297公釐) -9 - 578406 A7 —— ____B7 五、發明説明(7 ) 器(24 )實施爲處理器(32 )的一部分。 (請先閱讀背面之注意事項再填寫本頁) 在正常傳輸作業中,一輸入信號(40 )通過一預先失 真裝置(42 ),該預先失真裝置(42 )對該信號執行一預 先失真變換,而補償了該正交調變器的不平衡效應。利用 計算出的估計値(34 )來設定預先失真裝置(42 )。設計 及設定諸如裝置(42 )等的補償裝置之方法是此項技藝中 習知的。 圖2是本發明的方法之一般性方塊圖。該測量及校 準階段包含下文所述的步驟,且係循序執行該等步驟,以 便先評估增益不平衡項,然後重複執行該等步驟,以便評 估相位不平衡項。 經濟部智慈財產局8工消費合作社印製 在一產生步驟(102 )中,圖1中之信號產生器(14 .)提供一測試輸入信號。然後在一測試信號傳輸步驟(104 )中,經由正交調變器(1 2 )而傳輸該等測試信號,以便 產生一輸出信號(1 6 ),該輸出信號(1 6 )包含增益及相 位失真。然後在一檢測步驟(106 )中,檢測器(1 8 )檢測 信號(1 6 ),且在該檢測步驟(1 06 )中也測量檢測器輸出 。處理器(3 2 )然後利用檢測器測量値而執行一增益及相 位不平衡計算步驟(1 0 8 )。首先,以一種箭頭(11 2 )所 示之反覆方式計算增益不平衡的一估計値,其方式爲修改 測試輸入,並重複步驟(102 )、 ( 104 )、及(106 ),直 到所測量的輸出到一預定(基準)値爲止。最後,在處理 器(32)中執行一設定步驟(110),用以將該預先失真裝 置設定成補償增益不平衡效應。且執行一類似的步驟序列 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ~j〇T ~ 578406 A7 — __B7 五、發明説明(8 ) ,以便補償相位不平衡效應。 (請先閲讀背面之注意事項再填寫本頁) 在該測量及校準階段之後,該發射機被切換到_ "正 常”傳輸作業模式。如圖2所示,然後執行下列的步驟: 預先失真裝置(42)對一傳輸信號(150)施加—預先失真 變換(1 5 2 )。然後在一傳輸步驟(15 4 )中,經由正交調 變器(1 2 )而傳輸經預先失真的信號。該經預先失真的信 號引發已存在的增益及相位不平衡,然而,由於該預先失 真,淨效應幾乎是一"理想的”經正交調變後的信號。 正交調變器 爲了更易於了解本方法,下文中將對正交調變器的作 業及增益及相位不平衡的效應提出簡短的說明。 一個理想的正交調變器對一對輸入信號I(t)及 Q(t) 執行下列的數學運算: Y⑴=I(t)sin(coL〇t0 Q(t)cos(coLOt) ( 1) 其中I(t)及 Q(t)是基頻帶輸入信號,且 2;γ“。 經濟部智慈財產局員工消費合作社印製 是本機振盪器(L〇)徑向頻率(rad/sec )。會有增益及相 位不平衡的一"實際”正交調變器之作業係示於圖3。該 檢測器具有兩個輸入埠,其中一個輸入埠標示爲I,或" 同相”埠(50 ),而另一個輸入埠標示爲 Q或"正交” 埠(60 )。對應的基頻帶輸入信號引發增益及相位不平衡 。在不喪失普遍性的情形下,我們可將所有的不平衡效應 表示爲在I信號的路徑中發生。一方塊(52 )代表I與 -11 - 本紙張尺度適用中國國家標準(CNS ) A4規格(21 Οχ 297公釐) 578406 A7 B7 五、發明説明(9 ) (請先閲讀背面之注意事項再填寫本頁) Q路徑間之相對相移 △ 0,而一方塊(54 )則代表I與 Q路徑間之振幅增益不平衡比率 1 + ε 。該等値 ε 及 Δ Θ 可以是與輸入信號頻率fi有頻率相關性,或是輸入 信號頻率fi的函數。 I信號(由於增益及相位不平衡而產生失真)被輸入 到一第一混頻器(70)的基頻帶輸入端,而在頻率h。下 的一第一本機振盪器信號(72 )被輸入到第一混頻器 LO 埠。如此項技藝中所習知的,諸如混頻器(70 )等的一混 頻器有效地執行兩個輸入信號間之乘法,因而將輸入基頻 帶信號向上變頻。Q信號被輸入到一第二混頻器(74 ), 而亦在頻率 下的一第二本機振盪器信號(76)被輸入 經濟部智慈財產局員工消費合作社印製 到第二混頻器 L◦埠,因而將 Q輸入基頻帶信號向上變 頻。這兩個向上變頻的信號間之相位關係取決於該等兩個 本機振盪器信號間之相對相位。使一共同輸入信號(7 8 ) 通過一分相器裝置(8 0 ),而該分相器裝置(8 〇 )之特性 爲其兩個輸出之間有 90°的相移(亦即正交),因而可自 該共同輸入信號(7 8 )產生本機振盪器信號(7 2 )及(7 6 )。一相位誤差方塊(8 2 )代表該相移的一相位誤差 △ 0 ,或等同地代表這兩個本機振盪器信號間之正交相位不平 衡 △ 0。此處,也在不喪失普遍性的情形下,我們可假定 正交相位誤差是在I路徑。一結合網路(9 〇 )將這兩個混 頻器的輸出相加,而成爲正交調變器輸出(1 6 )。在下文 中,將使用下列的記法: 其中包括增益及相位(基頻帶及正交)不平衡的正交 -12- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 578406 A7 B7 五、發明説明(10 ) 調變器輸出爲: Y(t) = (]+ε )Γ(1; A0)sin(toL〇H Δφ) + Q(t)cos(©i〇t) ( 2 ) (請先閲讀背面之注意事項再填寫本頁) 且I’(t, △ 0 )代表輸入I(t)的相移(△ 0 )變換。當我 們處理正弦/餘弦波形時,則對於〗⑴=Acos(^t + 0) 而言,我們有 I’(t, △0) = Acos(0it+ 0 + A0)。因 而: l(t) = Acos((〇jt + Θ) Q(t) = Bcos(c〇it) 以及 Ύ⑴=(】+ε )Acos(c〇it + Θ+ ^0)5^1((01^+ Δφ) + Bcos(c〇it)cos(c〇L〇t) (3) 大家都知道可將該調變後的波形以下式表示: Y(t) = SLC〇s[((〇L〇-i^i)t+ Ψι) + Sucos[((〇LO+i〇i)t+ ψυ) ( 4 ) 因而可看出,I及 Q正弦波形輸入的正交調變器輸出包 含兩個邊帶載波,其中一個邊帶載波低於 L0頻率而在 fL〇-f,,且另一個邊帶載波則高於 L〇頻率而在 + 。這 經濟部智慈財產局8工消費合作社印製 些邊帶的振幅及相位係與輸入振幅及相位、以及調變器不 平衡的値有關。如下文中的詳細方法推導所示,我們最好 是選擇I及 Q輸入振幅及相位的特定値,以便推導出對 該等不平衡項之一簡單相依性。同時,讓我們檢視一個有 意思的例子: 例子:.具有相同的振幅及頻率帶彼此有 90度相移的i(t) 、Q(t)正弦/餘弦波形,例如: -13- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 578406 經濟部智慈財產局W工消費合作社印製 A7 __ B7_五、發明説明(11 ) ](t) =Acos(c〇it-900) = Asin(ci)it) Q(t) = Acos(cojt) 若不理會調變器不平衡,則可得到: 丫(t) = Asin(i〇it)sin(c〇u>t) + Α(:〇5(ω4)<:〇5(ωΐΌ〇 - Acos[(c〇l〇_ ( 5 ) 亦即,該輸出包含在頻率 fu)-fi = ( ω LQ - ω i)/2 7Γ 下的一 單一邊帶載波。現在,我們針對相同的正弦輸入波形,而 計算增益及相位不平衡之效應: Y(t) = A(l+s)sin(c〇it + △ehirKcoLot + Δφ) + Acos(〇it)cos(c〇L〇t) 藉由標準三角函數運算,我們可得到: Υ⑴=SLcos[(coLCr^t+ \|〇 + Sucos[((i)Lc)+c〇i;)t+ ψιΟ 其中: 5, = ^(1 + 〇cos2(A^)^2 M - ^(1 ^/2) S.d :令 — Α[ε/2^(Αφ + Αθ)/2) 且其中該等近似表示式在該等不平衡項的足夠小的値時都 是有效的。從該表示式可看出,當增益及相位不平衡時, 將得到在假像頻率 ho + fi下的一微小成分,且該成分的振 幅係與該等不平衡項成正比(另外還有在ho-fi下的主項 ,而該主項的振幅將因增益不平衡而只有稍微的改變)。 本纸張尺度適用中.國國家標準(CNS ) A4規格(210X 297公釐) -14- (6) (請先閲讀背面之注意事項再填寫本頁) (7) (8) (9) 578406578406 Bureau of Intellectual Property, Ministry of Economic Affairs (printed by A ^ _Cooperative Cooperative A7 _____B7_ V. Description of the Invention (1) Field and Background of the Invention: The present invention relates to the measurement and calibration of quadrature modulators used in digital communication transmitters. AC modulators (sometimes referred to as IQ modulators) (especially those used in radio frequency integrated circuits (RFICs) operating at high frequencies in the GHz range) ) May cause significant gain and phase imbalances in the baseband path, or quadrature phase imbalances in the local oscillator path. Often referred to as gain and phase imbalance (or " IQ "imbalance) The effects of these degradations are the distortion of the transmitted signal, which translates into poor or even unacceptable performance. In many cases, designing and making a quadrature modulator with sufficiently low gain and phase imbalance often results. It is impractical and sometimes not feasible. However, if the gain and phase imbalance of the quadrature modulator can be estimated, there are known methods to compensate the transmitted Input signal, or equivalently distorting the transmitted input signal in advance, thereby cancelling the effects of this gain and phase imbalance. The gain and phase imbalance 値 is usually not fixed and can vary with operating conditions and components. Factors such as aging, etc. When installing or operating a quadrature modulator, a simple and efficient built-in method is needed in order to perform these measurements and evaluate compensation terms in a timely manner. Summary of the Invention: The method of the present invention A sequence of test signals is applied to the input of the quadrature modulator, and the resulting output is coupled to a detector and processed to evaluate the estimates of modulator gain and phase imbalance. The paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) _ 4 _ (Please read the precautions on the back before filling out this page). Binding, order, line. 578406 A7 _B7________ 5. Description of the invention (2) ( (Please read the notes on the back before filling out this page) In transmission operations, these estimates are used to compensate or equivalent predistortion of the transmitted signal in order to offset The effect of gain and phase imbalance on the transmitted signal. The method proposed by the present invention uses a sequence of test input signals, which are combined with the operation of the detector circuit to perform a Simple and accurate evaluation. In a preferred embodiment, the test signals are sinusoidal waveforms with a specific amplitude and phase, so a specific signal is generated at the output of the quadrature modulator. When the AC modulator is compared, the gain and phase imbalance of the quadrature modulator will distort the signal. The distortion is equivalent to generating additional spectral components, and the frequency, amplitude, and phase of the additional spectral components are The modulator is unbalanced as a function of 値. A detector coupled to the output of the modulator performs a non-linear operation, thus generating several intermodulation products between various spectral components. As can be seen from the following, the amplitude of the 2fi (where is the frequency of the input sinusoidal waveform) component is proportional to the gain and phase imbalance terms of these modulators, and by controlling the amplitude and phase of the test signals, These terms can be derived from the frequency of this 2fi component. According to the present invention, a method for calibrating a quadrature modulator is provided by the Intellectual Property Cooperative Employees ’Cooperative Bureau of the Intellectual Property Bureau of the Ministry of Economic Affairs. Band I (t) and Q (t) signals. The modulator is used to transmit the signal after quadrature modulation. The method includes the following steps: (a) when the modulator is in operation, sequentially estimate The gain of the modulator is unbalanced, and the phase of the modulator is unbalanced. The estimation step includes inputting at least one test signal at a base band frequency fi to the modulator so as to first -This paper size applies Chinese National Standard (CNS) A4 specification (210X 297 mm) 578406 A7 B7 V. Invention Description (3) (Please read the precautions on the back before filling this page). In the phase imbalance estimation, a detected output signal having a term below the frequency 2f, is generated, and the gains and phase imbalances are calculated based on the 2fi terms of the detected output signals; and (b) at normal In the transmission operation, first aim at the gain The unbalance is then compensated for the phase imbalance in order to obtain a substantially quadrature modulated signal that is essentially ideal. The compensation step includes inputting a transmission signal to the detector and calculating the These gains and phases are not balanced, and a pre-distortion transform is applied to the input transmission signal. According to a feature of the method of the present invention, the calculation of the gain imbalance is based on an iterative operation, the iterative operation includes: modifying the test signals, and repeating the measurement of the detected output signal items at a frequency of 2fi Until it reaches a reference level of the detected output signal. The Intellectual Property Bureau of the Ministry of Economic Affairs (industrial and consumer cooperatives prints another feature of the method according to the present invention, the method further includes the following steps: for the gain imbalance, and in a first step, the A cosine waveform is input to the terminal, and a zero waveform is input to the Q input. In a second step, a zero waveform is input to the I input, and the same cosine waveform is input to the Q input. And for phase imbalance, in a first step, two sinusoidal waveforms are input to the I and Q inputs, the two sinusoidal waveforms have the same amplitude and frequency, but the two sinusoidal waveforms are as follows Equation 40 shown in Equation 17. + 0 ϊ phase shift, or two sine waveforms can be input in a second step, these two sine waveforms have the same amplitude and frequency, but between these two sine waveforms There is a phase shift of + 90 ° + 0 2 as shown in Equation 21. According to another feature in the method of the present invention, the phase is unbalanced -6-This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 5784 06 A7 B7 V. Description of the invention (4) The calculation step includes the following steps: using the test signal input and an iterative operation to calculate a base band phase imbalance △ 0 and a local oscillator quadrature phase imbalance, respectively. △ 0, wherein the iterative operation includes modifying the test signals by changing the phases Θ ′ and β 2 and repeating the measurement of the detector output signals until the signal term at the frequency 2fi is effectively cancelled. According to the present invention In another feature of the method, the reference frame is a result of a first measurement of a detected output amplitude at a frequency 2fi generated by a first test signal. According to yet another feature of the method of the present invention, input at least one of The step of the test signal at a base band frequency fi includes the following steps: inputting a plurality of N test signals, and each test signal is at a different base band frequency fi (N); and applying a prior to the input transmission signal This step of the distortion transformation includes the following steps: applying a frequency-dependent predistortion transformation. Brief description of the drawings: The invention is illustrated herein by way of example only. These drawings are: Figure 1 is a high-order block diagram of a system including a quadrature modulator to which the method of the invention is applied; Figure 2 is a diagram of the method The general block diagram of the main steps; Figure 3 shows the signal flow through the quadrature modulator; Figure 4 is a flow chart for measuring the gain imbalance; This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 gong) (Please read the notes on the back before filling out this page) Binding · Order printed by the Employees 'Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 578406 Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economics A7 B7 ) FIG. 5 is a measurement flow chart of phase imbalance. DESCRIPTION OF SYMBOLS 12 Quadrature modulator 14 Test signal generator 16 Output signal 22 RF coupler 18 Detector 20 Detector output 24 Tracking bandpass filter 30 Filter output 3 2 Processor 34 Estimation 値 40 Input signal 42 Advance Distortion device 5 0 In-phase port 60 Quadrature 52,54 Block 70 First mixer 72 First local oscillator signal 74 Second mixer 76 Second local oscillator signal 80 Phaser device 82 Phase Error box (please read the notes on the back before filling this page) This paper size is applicable to Chinese National Standard (CNS) A4 specification (210X 297 mm) _ 8-578406 A7 ——____ B7_ V. Description of the invention (6) 90 Combined with network 78 common input signal (please read the precautions on the back before filling out this page) 210 Single-sideband carrier 212,220 Small-sideband component 222 Main sideband carrier Description of the preferred embodiment: Property Bureau 3 (industrial consumption Printed in Figure 1, a quadrature modulator (12) receives an input test signal (especially a sine waveform with a specific amplitude and phase) from a test signal generator (1 4). The output of the AC modulator generates a specific output signal (16). When compared with an ideal quadrature modulator, the amplitude and phase imbalance of the quadrature modulator distort the signal. The distortion is equivalent An additional spectral component is generated, and the frequency, amplitude, and phase of the additional spectral component are a function of the imbalance of the modulator. The sample of the output signal is passed through a radio frequency coupler (2 2 ) And a detector (1 8), which performs a non-linear operation to generate a number of intermodulation products between various spectral components of the output signal, including 2f The next component, where fi is the frequency of the input sinusoidal waveform. A detector output (20) is processed in a tracking band-pass filter (24), which is extracted by the tracking band-pass filter (24), while Reject unwanted components.-Filter output 30) preferably is then input to a digital processor, a processor (32), the processor (32) calculates an estimated value (34) Zhi of gain and phase imbalance. In an embodiment, the paper size of the filter and the wave book can be adapted to the Chinese National Standard (CMS) A4 specification (210X297 mm) -9-578406 A7 —— ____B7 V. Description of the invention (7) The device (24) is implemented as Part of the processor (32). (Please read the precautions on the back before filling this page) In normal transmission operation, an input signal (40) passes through a predistortion device (42), which performs a predistortion transformation on the signal, And the unbalance effect of the quadrature modulator is compensated. A predistortion device (42) is set using the calculated estimate 的 (34). The method of designing and setting a compensation device such as a device (42) is known in the art. Figure 2 is a general block diagram of the method of the present invention. This measurement and calibration phase includes the steps described below and is performed sequentially in order to evaluate the gain imbalance first and then to repeat these steps to evaluate the phase imbalance. Printed by the 8th Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs In a generation step (102), the signal generator (14.) in FIG. 1 provides a test input signal. Then, in a test signal transmission step (104), the test signals are transmitted through a quadrature modulator (1 2), so as to generate an output signal (1 6), the output signal (1 6) includes gain and phase distortion. Then in a detection step (106), the detector (1 8) detects the signal (16), and the detector output is also measured in the detection step (1 06). The processor (3 2) then uses the detector to measure chirp to perform a gain and phase imbalance calculation step (108). First, calculate an estimate of the gain imbalance in an iterative manner as shown by the arrow (11 2). The method is to modify the test input and repeat steps (102), (104), and (106) until the measured Output until a predetermined (reference) 値. Finally, a setting step (110) is performed in the processor (32) to set the pre-distortion device to compensate the gain imbalance effect. And execute a similar sequence of steps. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297mm) ~ j〇T ~ 578406 A7 — __B7 V. Description of the invention (8) in order to compensate the phase imbalance effect. (Please read the precautions on the back before filling this page.) After the measurement and calibration phase, the transmitter is switched to the "normal" transmission operation mode. As shown in Figure 2, then perform the following steps: Predistortion The device (42) applies a pre-distortion transform (1 5 2) to a transmission signal (150). Then in a transmission step (15 4), the pre-distorted signal is transmitted via a quadrature modulator (1 2). The pre-distorted signal causes an existing gain and phase imbalance. However, due to the pre-distortion, the net effect is almost " ideal " the signal after quadrature modulation. Quadrature Modulator To make this method easier to understand, a brief description of the operation of the quadrature modulator and the effects of gain and phase imbalance are provided below. An ideal quadrature modulator performs the following mathematical operations on a pair of input signals I (t) and Q (t): Y⑴ = I (t) sin (coL〇t0 Q (t) cos (coLOt) (1) Where I (t) and Q (t) are the baseband input signals, and 2; γ ". Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs is the local oscillator (L0) radial frequency (rad / sec) The operation of a " actual " quadrature modulator with gain and phase imbalance is shown in Figure 3. The detector has two input ports, one of which is labeled I, or " in-phase " (50), and the other input port is marked as Q or " orthogonal " port (60). The corresponding baseband input signal causes gain and phase imbalance. Without losing the universality, we can change all The imbalance effect is expressed as occurring in the path of the I signal. A square (52) represents I and -11-This paper size applies the Chinese National Standard (CNS) A4 specification (21 Οχ 297 mm) 578406 A7 B7 V. Description of the invention (9) (Please read the notes on the back before filling in this page) The relative phase shift between Q paths is △ 0, and a square (54) is Table 1 shows the amplitude gain imbalance ratio 1 + ε between the Q path. The 値 ε and Δ Θ can be frequency dependent on the input signal frequency fi or a function of the input signal frequency fi. I signal (due to the gain and Distortion due to phase imbalance) is input to the baseband input of a first mixer (70), and a first local oscillator signal (72) at frequency h. Is input to the first mixer LO port. As is known in the art, a mixer such as the mixer (70) effectively performs multiplication between two input signals, thereby up-converting the input baseband signal. The Q signal is input To a second mixer (74), and a second local oscillator signal (76) also at the frequency is printed into the second mixer L◦ port by the employee consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Therefore, the Q input baseband signal is up-converted. The phase relationship between the two up-converted signals depends on the relative phase between the two local oscillator signals. A common input signal (7 8) is passed by one minute Phaser device (80), and the phase splitter The characteristic of the device (80) is that it has a 90 ° phase shift (that is, quadrature) between the two outputs, so the local oscillator signal (7 2) and ( 7 6). A phase error square (8 2) represents a phase error Δ 0 of the phase shift, or equivalently represents a quadrature phase imbalance △ 0 between the two local oscillator signals. Here, also Without loss of universality, we can assume that the quadrature phase error is in the I path. A combined network (90) adds the outputs of these two mixers into a quadrature modulator output (1 6). In the following, the following notation will be used: This includes gain and phase (baseband and quadrature) unbalanced quadrature -12- This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) 578406 A7 B7 V. Description of the invention (10) The output of the modulator is: Y (t) = (] + ε) Γ (1; A0) sin (toL〇H Δφ) + Q (t) cos (© i〇t) (2 ) (Please read the notes on the back before filling this page) and I '(t, △ 0) represents the phase shift (△ 0) transformation of input I (t). When we deal with sine / cosine waveforms, for ⑴ = Acos (^ t + 0), we have I ’(t, △ 0) = Acos (0it + 0 + A0). Thus: l (t) = Acos ((〇jt + Θ) Q (t) = Bcos (c〇it) and Ύ⑴ = (] + ε) Acos (c〇it + Θ + ^ 0) 5 ^ 1 (( 01 ^ + Δφ) + Bcos (c〇it) cos (c〇L〇t) (3) Everyone knows that the modulated waveform can be expressed by the following formula: Y (t) = SLC〇s [((〇〇 L〇-i ^ i) t + Ψι) + Sucos [((〇LO + i〇i) t + ψυ) (4) Therefore, it can be seen that the quadrature modulator output of the I and Q sine waveform inputs includes two edges Band carrier, where one sideband carrier is lower than L0 frequency and is at fL0-f, and the other sideband carrier is higher than L0 frequency and is at +. This is printed by the 8th Industrial Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. The amplitude and phase of the sideband are related to the input amplitude and phase, and the chirp of the modulator imbalance. As shown in the detailed method derivation below, we better choose the specific chirp of the I and Q input amplitude and phase in order to derive Give a simple dependency of one of these imbalances. At the same time, let's examine an interesting example: Example: i (t), Q (t) sine with the same amplitude and frequency band shifted 90 degrees from each other / Cosine waveform, for example: -13- This paper size is applicable National Standard (CNS) A4 specification (210X297 mm) 578406 Printed by the Industrial and Commercial Bureau of the Ministry of Economic Affairs, W. Consumer Cooperatives A7 __ B7_ V. Description of the invention (11)] (t) = Acos (c〇it-900) = Asin (ci) it) Q (t) = Acos (cojt) If you ignore the modulator imbalance, you can get: λ (t) = Asin (i〇it) sin (c〇u > t) + Α (: 〇5 (ω4) <: 〇5 (ωΐΌ〇- Acos [(c〇l〇_ (5) That is, the output is included in the frequency fu) -fi = (ω LQ-ω i) / 2 7Γ A single sideband carrier. Now, for the same sinusoidal input waveform, we calculate the effects of gain and phase imbalance: Y (t) = A (l + s) sin (c〇it + △ ehirKcoLot + Δφ) + Acos (〇it) cos (c〇L〇t) By the standard trigonometric function operation, we can get: Υ⑴ = SLcos [(coLCr ^ t + \ | 〇 + Sucos [((i) Lc) + c〇i; ) t + ψιΟ where: 5, = ^ (1 + 〇cos2 (A ^) ^ 2 M-^ (1 ^ / 2) Sd: Let — Α [ε / 2 ^ (Αφ + Αθ) / 2) and where Equivalent approximations are valid when the imbalance terms are sufficiently small. It can be seen from this expression that when the gain and phase are unbalanced, a tiny component at the artifact frequency ho + fi will be obtained, and the amplitude of the component is proportional to these unbalanced terms (also The main term under ho-fi, and the amplitude of the main term will only change slightly due to the gain imbalance). The size of this paper is applicable. National Standard (CNS) A4 (210X 297mm) -14- (6) (Please read the precautions on the back before filling this page) (7) (8) (9) 578406

檢測器 該正交調變器的輸出信號(圖1中之(16 ))係經 由一輔合器(圖丨中之(22 ))而耦合到一檢測器(圖 1中之(18 ))。該檢測器對其輸入(信號(16 ))執行 一非線性變換,可以下式來近似(平方律檢測器)該非線 性變換: V〇ut = Kl Vin2 其中Vin是輸入,Voiu是輸出,且Kl是比例因數。大家 都知道,當 Vin包含一個以上的載波時,該輸出將包含若 干互調變項。適當的濾波(圖1之濾波器(24 ))可選擇 --所需的項。針對I及Q正弦輸入,我們得到: (10) (請先閲讀背面之注意事項再填寫本頁) vin = K2Y(t) = K2lSLc〇s[(ci>Lcr-CD〇t+ + δυε〇3[(ωιο+ω〇ι 經濟部智慈財產局8工消費合作社印製 該濾波器提取 2fi的項,且同時拒斥不需要的項。亦即, 當調變器輸出具有f^-fi及fuD + fi的成分時,所檢測的輸 出因一非線性效應而具有 2fi的若干成分。然後,唯一相 關的項(在濾波之後)Z是在一頻率等於兩個副載波間之 頻率差(或等同於基頻帶輸入頻率)的該等兩個副載波間 之一差頻成分,且 Z具有一與該等副載波的振幅生成物 成正比的一振幅 S D,亦即: Z = SDccs(20jt π- ψ) = k SuSLcos(20it + ψ) ( 11 ) 其中k是一比例因數,且 γ是一(不相關的)相位項。 在上述方程式中以上述例子的値(方程式 8及 9 )取代 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) _ 15 - 578406 A7 —一 ___B7 五、發明説明(13 ) 時,SD係與不平衡項成正比,亦即: SD -= kA2(l+ ε/2 )[ε/2 + (ΔΘ+Δφ)/2]— Κ[ε/2 + (ΔΘ+Δφ^)/2] ( 12) (請先閱讀背面之注意事項再填寫本頁) 且其中該等近似式在足夠小的不平衡項時是有效的。一 “ 實際”檢測器的非線性變換函數可能偏離上述簡單的函數 (平方律)。在對增益及相位不平衡測量的詳細推導中將 可看出,本發明所提出的方法對檢測器變換函數的精確描 述之知識是不敏感的。 方法實施例 本發明之方法包含兩個主要階段: 階段I :評估增益不平衡項 ε,並施加所得到的補償 〇 階段II :評估相位不平衡項 △ 0 及 △ 0,並施加 所得到的補償。 經濟部智慧財產局g(工消費合作社印製 階段I -增益不平衡:圖4示出增益不平衡測量的信號 流。爲了評估I與 Q基頻帶路徑間之增益不平衡,我們 在步驟1 (將於下文中詳細示出)於I輸入埠(後文將其 稱爲"I輸入端”50 )上傳輸一測試信號,並於一 Q 輸入埠(後文將其稱爲"Q輸入端”)(50)上傳輸一零信 號,並在濾波後的檢測器(18)輸出端上量測所產生的( 第一)信號振幅(該第一振幅將在次一步驟中被用來作爲 一基準値)。在互換該等輸入的情形下重複該實驗(“步驟 -16- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 578406 A7 ____ B7 五、發明説明(14 ) 2”,請參閱下文),亦即,在 Q輸入端(60)上傳輸一測 試信號,並在I輸入端(50)上傳輸一零信號,並在檢測 器輸出端上測量所產生的(第二)信號振幅。改變 Q輸 入端測試信號之振幅(以小的遞增級距向上及向下改變) ,直到檢測器輸出端上所產生的信號振幅等於步驟1之基 準値爲止。該方法可在與相位不平衡的量無關之情形下測 量增益不平衡。 階段I -詳細程序 步驟 1 : 傳輸下列信號: (13) η 】】(t) =Acos((〇it)Detector The output signal of the quadrature modulator ((16) in Fig. 1) is coupled to a detector ((18) in Fig. 1) via a multiplexer ((22) in Fig. 丨). . The detector performs a non-linear transformation on its input (signal (16)), which can be approximated by the following formula (square-law detector): V〇ut = Kl Vin2 where Vin is the input, Voiu is the output, and Kl Is the scale factor. As we all know, when Vin contains more than one carrier, the output will include several intermodulation terms. Appropriate filtering (filter (24) in Figure 1) can be selected-the desired item. For I and Q sine inputs, we get: (10) (Please read the notes on the back before filling this page) vin = K2Y (t) = K2lSLc〇s [(ci > Lcr-CD〇t + + δυε〇3 [ (ωιο + ω〇ι The 8th Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economy printed the filter to extract the 2fi terms, and at the same time rejected the unwanted terms. That is, when the modulator output has f ^ -fi and fuD + fi component, the detected output has 2 fi components due to a non-linear effect. Then, the only relevant term (after filtering) Z is a frequency equal to the frequency difference between the two subcarriers (or equivalent One of the difference frequency components between the two subcarriers in the baseband input frequency), and Z has an amplitude SD proportional to the amplitude products of the subcarriers, that is: Z = SDccs (20jt π- ψ) = k SuSLcos (20it + ψ) (11) where k is a scale factor and γ is a (irrelevant) phase term. In the above equation, 値 (Equations 8 and 9) of the above example is used to replace the paper Standards are applicable to China National Standard (CNS) A4 specifications (210X 297 mm) _ 15-578406 A7 — one ___B 7 V. In the description of the invention (13), SD is proportional to the imbalance term, that is: SD-= kA2 (l + ε / 2) [ε / 2 + (ΔΘ + Δφ) / 2] — κ [ε / 2 + (ΔΘ + Δφ ^) / 2] (12) (Please read the precautions on the back before filling out this page), and the approximations are valid when the imbalance term is small enough. A "actual" test The nonlinear transformation function of the detector may deviate from the simple function (square law) described above. In the detailed derivation of the measurement of gain and phase imbalance, it will be seen that the method proposed by the present invention has the knowledge of the accurate description of the detector transformation function Method embodiments The method of the present invention includes two main phases: Phase I: Evaluate the gain imbalance term ε and apply the resulting compensation. Phase II: Evaluate the phase imbalance terms Δ 0 and Δ 0, and The compensation obtained is applied. The Intellectual Property Bureau of the Ministry of Economic Affairs, g (industrial and consumer cooperatives, printing phase I-gain imbalance: Figure 4 shows the signal flow of the gain imbalance measurement. To evaluate the gain imbalance between the I and Q baseband paths , In step 1 (will be shown in detail below) on the I input port (Hereinafter referred to as " I input terminal "50) and transmits a test signal on a Q input port (hereinafter referred to as " Q input terminal") (50), The generated (first) signal amplitude is measured at the output of the filtered detector (18) (the first amplitude will be used as a reference in the next step). Repeat the experiment with these inputs interchanged ("Step-16- This paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) 578406 A7 ____ B7 V. Description of the invention (14) 2", please refer to Below), that is, a test signal is transmitted on the Q input (60), a zero signal is transmitted on the I input (50), and the (second) signal amplitude generated is measured at the detector output . Change the amplitude of the test signal at the Q input (up and down in small increments) until the amplitude of the signal generated at the output of the detector is equal to the reference 値 in step 1. This method can measure gain imbalance regardless of the amount of phase imbalance. Phase I-Detailed procedure Step 1: The following signals are transmitted: (13) η]] (t) = Acos ((〇it)

QiO) = 〇 則 Y I(t) = A(]+€)cos((〇it + Ae)sin(coL〇t + Δφ) 經濟部智姑財產局8工消費合作社印製QiO) = 〇 Then Y I (t) = A () + €) cos ((〇it + Ae) sin (coL〇t + Δφ)

Yi(t)的信號頻譜包含在fL〇-fi ( 1 10 )及fLo + fi ( 112 )下 的兩個副載波,這兩個副載波具有幾乎相同的振幅(當增 益平衡時,振幅相同)。濾波後的檢測器輸出(亦即在頻 率 2fi下的項)等於: (14) I-----r--裝-- (請先閲讀背面之注意事項再填寫本頁)The signal spectrum of Yi (t) includes two subcarriers under fL0-fi (1 10) and fLo + fi (112). The two subcarriers have almost the same amplitude (when the gain is balanced, the amplitude is the same) . The filtered detector output (that is, the term under frequency 2fi) is equal to: (14) I ----- r--install-- (Please read the precautions on the back before filling this page)

Zj(t) = kA2(K e)2cos(20it+\i/i) 其中k是一比例因數,且 P是一不相關的相位項。下 標"Γ意指步驟1之參數。 步驟 本纸張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) _ _ 578406 A7 ___B7_ 五、發明説明(15 ) 重複該實驗,並同時交換所傳輸的I及Q測試信號: 12(0=0 (15) Q2(t) = A(】+A)COS(C〇it) (請先閲讀背面之注意事項再填寫本頁} 其中△是Q輸入振幅的一控制變數。則: Y2(t) = A(]+2)COS(C〇it)C〇S(0)L〇t) 易於得知該濾波後的檢測器輸出(亦即在頻率 2fi下的項 )等於: z2(t) = kA2 (1 +Δ)2〇〇5(2ωίΗψ2) ( 16 ) 其中 k是一比例因數,且 是一·不相關的相位項。下 標“2”意指步驟 2之參數。在一平方律檢測器及 △ =0 的假設下,可易於自 Z1及 Z 2 (方程式14及 16 )的 經濟部智魅財產局員工消費合作社印製 振幅間之比率,將增益不平衡推導成 amp.(Z〇/amp(Z2)== (1 + ε )2。我們並不計算該比率,而是利用(步驟1的)Zl 的測量振幅作爲一基準値,並在步驟2中反覆地修改輸入 振幅(經由該控制變數 △ 而以小遞增級距向上及向下修 改),直到所得到的 Z2振幅等於該基準値爲止。假設 Δ 是該相等發生時之 △ 値,則: ε = △ 經由該反覆程序而等化該等振幅時,可在無須假設一"實 際”檢測器的非線性變換函數的精確形式之情形下,解出 該增益不平衡項。在該增益不平衡項的測量及評估之後, 即適當地縮放該I及Q埠上傳輸的信號,以便補償該增 本紙尺度適用中.國國家標準(CNS ) Α4規格(2丨〇、乂 297公釐) 8 ~ * 578406 A7 B7 五、發明説明(16 ) 益不平衡之效應。 (請先閲讀背面之注意事項再填寫本頁) 階段II -相位不平衡:圖5示出相位不平衡測量之信號 流。爲了評估I與Q基頻帶路徑間之相位不平衡、以及 LO路徑中之正交相位不平衡,在步驟1中,我們在I 輸入端(50 )上傳輸一正弦測試信號,並在Q輸入端(60 )上傳輸一餘弦(亦即,有-90°的相位關係)信號,且在 濾波後的檢測器(1 8 )輸出端上測量所產生的(第一)信 號振幅。該輸入輸入信號係設定成:在理想情況(亦即無 相位不平衡)下,我們應該得到一單邊帶載波(2 1 0 )。由 於相位不平衡,所以我們也得到在假像頻率下的一小邊帶 成分(2 1 2 )。在檢測器(1 8 )之後,我們得到在頻率 2fi .下的一成分,該成分的振幅係與該相位不平衡成正比。在 步驟 2中,以新的測試輸入値(50 )及(60 )來重複該程 序,該等新的測試輸入値(50 )及(60 )係經過選擇,使 輸入I與 Q間之相位關係(在標稱下)是 +90° 。在此 經濟部智慈財產局員工消費合作社印製 種情形中,我們得到一主邊帶載波(222 )、及在假像頻率 下的一小邊帶成分( 220 ),然而,該等頻率位置係與步驟 1中得到的頻率位置顛倒。我們在檢測器輸出端上測量所 產生的(第二)信號振幅。根據這兩個測量値,我們可解 出基頻帶相位不平衡 △ β、以及正交(本機振盪器)相位 不平衡 △ ^。然而,此種方式將需要該檢測器的先天性校 準(a-priori calibration )、及該檢測器的變換函數之知識 。在下文的詳細說明中,我們寧願選擇上述程序的一變形 本紙浪尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ~' 經濟部智慧財產局員工消費合作社印製 (18) (19) 578406 Α7 Β7 五、發明説明(17 ) (適用於"實際”檢測器),以取代在檢測器輸出端上測 量該2 f i信號振幅(需要經過校準的測量),因而我們相 對於I輸入而將 Q輸入移動一(已知的)控制相位 θ ,直到抵消該2fi項爲止。將發生抵消的該θ値用來解 出 △ 0 及 △ 0 。 我們假設··已執行了增益不平衡的測量,且適當地縮 放了在I及Q埠上傳輸的信號。然而,亦可在還有小的 殘餘增益不平衡時,執行相位不平衡的測量。 階段I -詳細程序 步驟1 : 傳輸兩個具有相同的振幅及頻率但彼此之間有 90。· θ' 的相移之正弦波形,其中 Θ !是一控制(調諧)相位變數 1丨(〇 = Acos(c〇it -900+ Θ丨)=Asin(c〇it +θι) ( 17 )Zj (t) = kA2 (K e) 2cos (20it + \ i / i) where k is a scale factor and P is an uncorrelated phase term. The subscript " Γ means the parameter of step 1. Steps This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) _ 578406 A7 ___B7_ V. Description of the invention (15) Repeat the experiment and exchange the I and Q test signals transmitted at the same time: 12 ( 0 = 0 (15) Q2 (t) = A () + A) COS (C〇it) (Please read the notes on the back before filling this page} where △ is a control variable of Q input amplitude. Then: Y2 (t) = A () + 2) COS (C〇it) C〇S (0) L〇t) It is easy to know that the filtered detector output (that is, the term at frequency 2fi) is equal to: z2 ( t) = kA2 (1 + Δ) 2〇〇5 (2ωίΗψ2) (16) where k is a scale factor and is an unrelated phase term. The subscript "2" means the parameter of step 2. Under the assumption of the square-law detector and △ = 0, it is easy to print the ratio between the amplitudes from the employees' cooperatives of the Intellectual Property Office of the Ministry of Economic Affairs of Z1 and Z 2 (Equations 14 and 16), and derive the gain imbalance into amp. (Z〇 / amp (Z2) == (1 + ε) 2. We do not calculate the ratio, but use the measured amplitude of Z1 (step 1) as a reference 値, and repeatedly modify the input in step 2 Amplitude (via Control the variable △ and modify it in small increments up and down) until the resulting Z2 amplitude is equal to the reference 値. Assuming Δ is △ 时 when the equality occurs, then: ε = △ etc. via the iterative procedure When reducing these amplitudes, the gain imbalance term can be solved without assuming the exact form of a "actual" detector's non-linear transform function. After the gain imbalance term is measured and evaluated, The signals transmitted on the I and Q ports are appropriately scaled so as to compensate for the application of the paper size. National Standards (CNS) A4 specifications (2 丨 〇, 乂 297 mm) 8 ~ * 578406 A7 B7 V. Description of the invention (16) The effect of unbalance. (Please read the notes on the back before filling out this page.) Phase II-Phase Imbalance: Figure 5 shows the signal flow of the phase imbalance measurement. To evaluate the path between the I and Q baseband paths Phase imbalance and quadrature phase imbalance in the LO path, in step 1, we transmit a sine test signal on the I input (50) and a cosine (also on the Q input (60)) That is, there is -90 ° phase relationship) signal, and the resulting (first) signal amplitude is measured at the output of the filtered detector (18). The input signal is set to: in the ideal case (that is, without phase imbalance) ), We should get a single sideband carrier (2 1 0). Due to the phase imbalance, we also get a small sideband component (2 1 2) at the artifact frequency. After the detector (18), we get a component at frequency 2fi. The amplitude of this component is proportional to the phase imbalance. In step 2, the procedure is repeated with new test inputs 値 (50) and (60). The new test inputs 値 (50) and (60) are selected so that the phase relationship between inputs I and Q (Under nominal) is + 90 °. In this case printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, we obtain a main sideband carrier (222) and a small sideband component (220) at the artifact frequency. However, these frequency positions This is the reverse of the frequency position obtained in step 1. We measure the resulting (second) signal amplitude at the detector output. Based on these two measurements, we can solve the phase imbalance △ β in the baseband and the phase imbalance △ ^ in the quadrature (local oscillator). However, this approach will require a priori calibration of the detector (a-priori calibration) and knowledge of the detector's transform function. In the detailed description below, we would rather choose a variant of the above procedure to apply the Chinese paper standard (CNS) A4 specification (210X297 mm) ~ 'Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs (18) (19) 578406 Α7 Β7 V. Description of the invention (17) (applicable to " actual " detector), instead of measuring the 2 fi signal amplitude at the detector output (requires calibrated measurement), so we are relative to the I input Move the Q input by a (known) control phase θ until the 2fi term is canceled. The θ 抵消 that is used to cancel out is used to solve Δ 0 and Δ 0. We assume that the measurement of gain imbalance has been performed The signals transmitted on the I and Q ports are appropriately scaled. However, it is also possible to perform a phase imbalance measurement when there is still a small residual gain imbalance. Phase I-Detailed Procedure Step 1: Transmission of two The same amplitude and frequency but 90 ° between each other. · Θ 'phase shifted sine waveform, where Θ! Is a control (tuned) phase variable 1 丨 (〇 = Acos (c〇it -900+ Θ 丨) = Asin (c〇it + θ ) (17)

Qi(t) = Acos(tojt) 假設增益平衡(等同的說法,已預先補償了增益不平衡) 時,我們得到: Y 丨(t) = Asin(c〇it + Θ! + + Δφ) + Acos(c〇it)cos(coLOt) 藉由標準三角函數運算,我們可得到:Qi (t) = Acos (tojt) Assuming gain balance (equivalently, the gain imbalance has been compensated in advance), we get: Y 丨 (t) = Asin (c〇it + Θ! + + Δφ) + Acos (c〇it) cos (coLOt) By the standard trigonometric function operation, we can get:

Yl(t) = SL]C〇s[(wL^i)t+ \|/Li) + Suicos[(toL〇+0i)H ψυι) 其中: 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -20- ---------L--------"裝------訂------V--It (請先閲讀背面之注意事項再填寫本頁) 578406 Α7 Β7 五、發明説明(18 )Yl (t) = SL] C〇s [(wL ^ i) t + \ | / Li) + Suicos [(toL〇 + 0i) H ψυι) Where: This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 Mm) -20- --------- L -------- " equipment ------ order ------ V--It (please read the first Note for this page, please fill in this page) 578406 Α7 Β7 V. Description of the invention (18)

Sli = 〜ASli = ~ A

Sui= Ajsin [(θι+ΔΘ+Δφ)/2]| Α|(θ]+Δθ+Δφ)/2| 且濾波後的檢測器輸出(亦即在頻率2fi下的項)等於: Z,j(t) = kA2 |sin [(θι+ΔΘ+Δφ)/2]|ο〇5(2ωίΗψ)) ( 20 ) 其中k疋比例因數,且V1是一不相關的相位項。假 設瓦是抵消差頻成分Z!的 ^之彳直。 Θλ - -(Δθ + Αφ) I---I I 裝-- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慈財產局員工消費合作社印製 以小級距改變0 1 (在一範圍內),而評估 Λ,直到抵消 差頻成分Ζ !爲止。請注意,在該步驟中,我們發現了結 合的基頻帶 △ Θ 及本機振盪器 △ 0 相位不平衡。對於 某些正交調變器而言,△ 0 是可以忽略的,在此種情形中 ,△ 0 =〜(-1 ) Λ。然而,當該假設並非有效時,需要有 一額外的步驟來個別地解出 △ Θ 及 △ 0,將於下文的 步驟 2中說明其中之情形。當測量是在有雜訊的環境下, 或有一殘餘的增益不平衡時,Λ是使 Ζ !最小的値。 步驟 2 : 我們重複該實驗,但使用下列的輸入 】2(t) = Acos(c〇jt +90〇 + ⑸=_Asin(c〇it +02) Q:(t) = Acos(c〇it) (21) 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(2】〇X 297公楚) -21 - 578406 A7 B7 五、發明説明〇9 ) 其中.Θ 2是一控制(調諧)相位變數Sui = Ajsin [(θι + ΔΘ + Δφ) / 2] | Α | (θ] + Δθ + Δφ) / 2 | and the filtered detector output (that is, the term at frequency 2fi) is equal to: Z, j (t) = kA2 | sin [(θι + ΔΘ + Δφ) / 2] | ο〇5 (2ωίΗψ)) (20) where k 疋 is a scale factor and V1 is an uncorrelated phase term. Suppose that watts are straight lines that cancel the difference frequency component Z !. Θλ--(Δθ + Αφ) I --- II Pack-(Please read the precautions on the back before filling this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs with small steps to change 0 1 (in Range), and evaluate Λ until the difference frequency component Z! Note that in this step, we found that the combined base band Δ Θ and the local oscillator Δ 0 are out of phase. For some quadrature modulators, Δ 0 is negligible. In this case, Δ 0 = ~ (-1) Λ. However, when this assumption is not valid, an additional step is required to solve Δ Θ and Δ 0 individually, and the situation will be explained in step 2 below. When the measurement is in a noisy environment, or there is a residual gain imbalance, Λ is the minimum to minimize Z !. Step 2: We repeat the experiment, but use the following inputs: 2 (t) = Acos (c〇jt + 90〇 + ⑸ = _Asin (c〇it +02) Q: (t) = Acos (c〇it) (21) The paper size of the edition applies to the Chinese National Standard (CNS) A4 specification (2) 0X 297 Gongchu -21-578406 A7 B7 V. Description of the invention 0 9) where .Θ 2 is a control (tuned) phase variable

Y2({) = -Asin(0;t -+-02+ A6)sin(c〇L〇^+ ^φ) + Acos(〇jt)cos(0L〇O (22) 藉由標準三角函數運算.,我們得到: Y2(t) = SL2C〇S[(C〇LCT(〇i)t+ \|/L2) + Su2C〇S[(C〇L〇+C〇i)t+ ψυ2) (23)Y2 (() = -Asin (0; t-+-02+ A6) sin (c〇L〇 ^ + ^ φ) + Acos (〇jt) cos (0L〇O (22) is calculated by standard trigonometric functions. , We get: Y2 (t) = SL2C〇S [(C〇LCT (〇i) t + \ | / L2) + Su2C〇S [(C〇L〇 + C〇i) t + ψυ2) (23)

其中:; SL2 = A|sin [(θ2+ΔΘ-Δφ)/2]| =~ Α|(θ2+Δθ-Δφ)/2| Suf Acos[(02+A0+Aip)/2〕=〜A 1 · —u— I jl - !i I l·» !·ϋ —1 I I (請先閲讀背面之注意事項再填寫本頁) (24) V/u及V/w是不相關的相位項。如我們所預期的’該信號 具有在頻率 hcH-fi下的其較大成分,而在步驟1中,我 們在fu-fi下得到該較大成分。與步驟1類似,濾波後 的檢測器輸出(亦即在頻率2fi下的項)等於: Z2⑴=kA2 |sin [(02+A0-A(p)/2]|cos(2〇)it+ ψ2) 其中 k是一比例因數,且 是一不相關的相位項。假 設孓是抵消差頻成分 Z2的 0 2之値。 = -Δ0 + △炉 解出這兩個方程式後,可得到: = -(5, +0,)/2 △史=Θ丨 + 6*2 ) / 2 經由該反覆程序而抵消差頻成分 Z!及 z2時,可在無須 對該檢測器的非線性變換函數的精確形式的知識有任何假 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X 297公釐) _ 22 - 、-=t> 經濟部智慧財產局8工消費合作社印製 578406 A7 __ _ B7 五、發明説明(20 ) (請先閱讀背面之注意事項再填寫本頁) 設之情形下,解出該等相位不平衡項。所得到的該等相位 不平衡項係用來對該等輸入信號產生一變換,因而補償了 該正交調變器的基頻帶及正交相位不平衡。等同於預先失 真法的補償係習知的,且本文中將不重複說明。 經濟部智葸財產局員工消費合作社印製 總結而言,本發明所提出的方法用於其較佳實施例的 具有受控制的振幅及相位之測試輸入信號。大家都知道, 增益及相位不平衡反映在輸出的頻譜成分,因而需要複雜 的窄頻帶接收機來提取該資訊。然而,本發明所提出的方 法以一種創新的方式及與先前技藝的技術不同之方式,使 用了在在一基頻帶頻率 fi下的一序列之測試信號,並配 合使用一檢測器來分析在頻率 2 fi下的檢測器輸出之振幅 。該輸出項係與增益及相位不平衡成正比,且藉由控制該 等測試信號,即可計算該等增益及相位不平衡之估計値。 係將該等測試輸入選擇成使在頻率2fi下的該項之値足以免 除測量及檢測器產生的雜訊,因而產生精確的結果。此外 ,可在輸入頻率f i的數個値N下執行該等增益及相位不 平衡測量,因而表示出該等測量的頻率相關性。對於單一 的載波調變而言,我們通常利用增益及相位不平衡的一平 均(或中間頻率)値,而執行補償,然而,對於諸如正交 分頻多工(Orthogonal Frequency Division Multiplexing;簡 稱〇FDM )等的多載波調變而言,可個別地針對每一載波 而施加基於2fi成分(N )的與頻率相關之補償。爲了顧 及說明的淸晰,係以前文所述之方式執行每一頻率 ^下 的測量及補償序列。 -23- 本纸張尺度適用中國國家樣準(CNS ) A4規格(21 Οχ 297公楚) 578406 A7 _ B7 五、發明説明(21 ) 本說明書所提及的所有出版物、專利、及專利申請案 係以其全文作爲本說明書之參考資料,且其參照的程度就 好比明確地且個別地指示每一個別的出版物、專利、及專 利申請案係爲本發明所引用的參考資料。此外,在本申請 案中對任何參考資料的引用或識別不應被詮釋爲承認該參 考資料係爲本發明的先前技藝。 雖然已參照有限數目的實施例而說明了本發明,但是 我們當了解,尙可作出本發明的許多變化、修改、及其他 應用。 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慈財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) _ 24 -Where: SL2 = A | sin [(θ2 + ΔΘ-Δφ) / 2] | == Α | (θ2 + Δθ-Δφ) / 2 | Suf Acos [(02 + A0 + Aip) / 2] = ~ A 1 · —u— I jl-! I I l · »! · Ϋ —1 II (Please read the notes on the back before filling this page) (24) V / u and V / w are unrelated phase terms. As we expected, the signal has its larger component at the frequency hcH-fi, and in step 1, we get the larger component at fu-fi. Similar to step 1, the filtered detector output (that is, the term at frequency 2fi) is equal to: Z2⑴ = kA2 | sin [(02 + A0-A (p) / 2] | cos (2〇) it + ψ2) Where k is a scale factor and is an uncorrelated phase term. Suppose that 孓 is the 0 2 of the offset frequency component Z2. = -Δ0 + △ After solving these two equations, you can get: =-(5, +0,) / 2 △ 史 = Θ 丨 + 6 * 2) / 2 Cancel the difference frequency component Z through this iterative procedure ! And z2, there is no need to know the exact form of the non-linear transformation function of the detector. Any fake paper size applies the Chinese National Standard (CNS) Λ4 specification (210X 297 mm) _ 22-,-= t & gt Printed by 8th Industrial Cooperative Cooperative of the Ministry of Economic Affairs and Intellectual Property Co., Ltd. 578406 A7 __ _ B7 V. Description of Invention (20) (Please read the precautions on the back before filling this page) Under the circumstance, solve these phase imbalance items . The obtained phase imbalance terms are used to generate a transformation to the input signals, thereby compensating the baseband and quadrature phase imbalance of the quadrature modulator. The compensation equivalent to the pre-distortion method is conventional and will not be repeated in this article. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. In summary, the method proposed by the present invention is used in its preferred embodiment for a test input signal with controlled amplitude and phase. As we all know, the gain and phase imbalance are reflected in the output spectral components, so a complex narrow-band receiver is needed to extract this information. However, the method proposed by the present invention uses a sequence of test signals at a base band frequency fi in an innovative way and a way different from the prior art technology, and uses a detector to analyze the frequency The amplitude of the detector output at 2 fi. The output term is proportional to the gain and phase imbalance, and by controlling these test signals, the estimates of the gain and phase imbalance can be calculated. These test inputs are selected so that the magnitude of this term at a frequency of 2fi is sufficient to avoid noise from the measurement and detector, and thus produce accurate results. In addition, such gain and phase imbalance measurements can be performed at several 値 N of the input frequency f i, thus showing the frequency dependence of these measurements. For a single carrier modulation, we usually use an average (or intermediate frequency) 增益 of gain and phase imbalance to perform compensation. However, for such as Orthogonal Frequency Division Multiplexing (FDM for short) For multi-carrier modulation such as), frequency-dependent compensation based on the 2fi component (N) can be applied individually for each carrier. To take account of the clarity of the description, the measurement and compensation sequence at each frequency is performed in the manner previously described. -23- The size of this paper applies to China National Standard (CNS) A4 (21 〇χ 297 公 楚) 578406 A7 _ B7 V. Description of Invention (21) All publications, patents, and patent applications mentioned in this specification The case is to use the full text as the reference material of this specification, and the degree of reference is like clearly and individually indicating that each individual publication, patent, and patent application is the reference material cited in the present invention. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is prior art to the present invention. Although the invention has been described with reference to a limited number of embodiments, it should be understood that many variations, modifications, and other applications of the invention can be made. (Please read the notes on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Office of the Ministry of Economic Affairs This paper applies the Chinese National Standard (CNS) A4 specification (210X297 mm) _ 24-

Claims (1)

578406 A8 B8 C8 D8 々、申請專利範圍 1 1. 一種用來校準一正交調變器之方法,該正交調變器 具有一 I輸入端及一 Q輸入端,用以輸入基頻帶I(t) 及 Q(t)信號,該調變器係用來傳輸經正交調變後的信號 ,該方法包含下列步驟: a. 當該調變器在作業時,循序地估計調變器增益不平 衡的値、及調變器相位不平衡的値,該估計步驟包含下列 步驟: i. 將至少一個在一基頻帶頻率fi下的測試信號 輸入到該調變器,以便首先在該增益不平衡估計中,然後 在相位不平衡估計中,產生具有在頻率 2fi下的一項之所 檢測輸出信號;以及 ii. 根據該等所檢測輸出信號之2fi項而計算該 等增益及相位不平衡値;以及 b. 在正常傳輸作業中,首先針對增益不平衡,然後針 對相位不平衡,而進行補償,以便得到一在本質上是理想 的經正交調變後的信號,該補償步驟包含下列步驟: iii. 將一傳輸信號輸入到該檢測器;以及 iv·根據所計算出的該等增益及相位不平衡値, 而對該輸入傳輸信號施加一預先失真變換。 2. 如申請專利範圍第1項之方法,其中該輸入步驟包 含下列步驟: a.針對該增益不平衡,而在一第一步驟中,如方程式 13所示,在該I輸入端上輸入一餘弦波形,並在該 Q 輸入端上輸入一零波形,並在一第二步驟中,如方程式15 本紙i尺度適用中國國家標準(CNS ) A4· ( 21GX297公釐)7^1" " " (請先閲讀背面之注意事項再填寫本頁) 裝· 訂 經濟部智慧財產局員工消費合作社印製 578406 A8 B8 C8 D8 經濟部智慧財產局員工消費合作社印製 六、申請專利範圍 2 所示,在該I輸入端上輸入一零波形,並在該Q輸入端 上輸入一餘弦波形;以及 b.針對該相位不平衡,而在一*桌一*步驟中,如方程式 17所示,在該I及 Q輸入端上輸入兩個正弦波形,這 兩個正.弦波形具有相同的振幅及頻率,但這兩個正弦波形 之間有-90° + 之相移.,且或可在一第二步驟中,如方 程式21所示,輸入兩個正弦波形,這兩個正弦波形具有 相同的振幅及頻率,但這兩個正弦波形之間有 +90° + Θ 2 之相移。 3. 如申請專利範圍第1項之方法,其中該增益不平衡 的該計算步驟係基於一反覆作業,該反覆作業包含下列步 驟:修改該等測試信號;以及重複對在頻率2fi下的該所 檢測輸出信號項之測量,直到到達該輸出信號的一基準値 爲止。 4. 如申請專利範圍第1項之方法,其中該相位不平衡 的該計算步驟包含下列步驟:利用輸入步驟、及一反覆作 業,而分別計算一基頻帶相位不平衡 △ Θ 及一本機振盪 器正交相位不平衡 △ ^,其中該反覆作業包括修改該等測 試信號、以及重複該等檢測器輸出信號之測量直到有效地 抵消在頻率2fi下的該檢測之信號項爲止。 5 .如申請專利範圍第3項之方法,其中該基準値是在 一第一測試信號產生的頻率2fi下的所檢測輸出振幅的第 一測量之結果。 6 ·如申請專利範圍第1項之方法,其中輸入至少一個 ------U--裝-- (請先聞讀背面之注意事項再填寫本頁) 、1T 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) - 26 - 578406 A8 B8 C8 D8 々、申請專利範圍 3 在一基頻帶頻率fi下的測試信號之該步驟包含下列步驟 :輸入複數 N個測試信號,而每一測試信號係在一不同 的基頻帶頻率fKN)下;以及其中對該輸入傳輸信號施力D 一預先失真變換之該步驟包含下列步驟:施加一與頻率有 關的預先失真變換。 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -27 -578406 A8 B8 C8 D8 々, patent application scope 1 1. A method for calibrating a quadrature modulator, the quadrature modulator has an I input terminal and a Q input terminal for inputting the base band I (t ) And Q (t) signals, the modulator is used to transmit the signal after quadrature modulation. The method includes the following steps: a. When the modulator is in operation, sequentially estimate the gain of the modulator. A balanced chirp and a modulator with unbalanced chirp, the estimation step includes the following steps: i. Inputting at least one test signal at a baseband frequency fi to the modulator so as to first unbalance the gain In the estimation, then in the phase imbalance estimation, a detected output signal having a term at a frequency of 2fi is generated; and ii. Calculating the gain and phase imbalance based on the 2fi term of the detected output signals; And b. In normal transmission operation, compensation is firstly performed for gain imbalance and then phase imbalance, so as to obtain a substantially orthogonally modulated signal that is essentially ideal. The compensation step includes the following steps: : Iii. Inputting a transmission signal to the detector; and iv · applying a pre-distortion transform to the input transmission signal based on the calculated gain and phase imbalances 値. 2. The method of claim 1 in the patent application range, wherein the input step includes the following steps: a. For the gain imbalance, and in a first step, as shown in Equation 13, enter a Cosine waveform, and input a zero waveform on the Q input, and in a second step, such as Equation 15 This paper i scale applies the Chinese National Standard (CNS) A4 · (21GX297 mm) 7 ^ 1 " " " (Please read the notes on the back before filling out this page) Binding and printing Printed by the Intellectual Property Bureau Employee Consumer Cooperatives of the Ministry of Economic Affairs 578406 A8 B8 C8 D8 Printed by the Intellectual Property Bureau Employee Consumer Cooperatives of the Ministry of Economic Affairs , Input a zero waveform on the I input and a cosine waveform on the Q input; and b. For the phase imbalance, in a * table one * step, as shown in Equation 17, in Two sine waveforms are input to the I and Q inputs. The two sine waveforms have the same amplitude and frequency, but the two sine waveforms have a phase shift of -90 ° +, and may be In the second step, like the equation Shown in FIG. 21, two sine wave input, two sinusoidal waveforms have the same amplitude and frequency, but with a phase + 90 ° + Θ 2 of the shift between the two sinusoidal waveforms. 3. The method of item 1 in the patent application range, wherein the calculation step of the gain imbalance is based on an iterative operation, the iterative operation includes the following steps: modifying the test signals; and repeating the test at the frequency of 2fi The measurement of the output signal item is detected until a reference frame of the output signal is reached. 4. The method of item 1 in the patent application range, wherein the calculation step of the phase imbalance includes the following steps: using the input step and an iterative operation to calculate a base band phase imbalance △ Θ and a local oscillation, respectively The quadrature phase imbalance of the detector Δ ^, where the iterative operation includes modifying the test signals and repeating the measurement of the detector output signals until the signal term of the detection at the frequency 2fi is effectively cancelled. 5. The method of claim 3, wherein the reference chirp is the result of a first measurement of the detected output amplitude at a frequency 2fi generated by a first test signal. 6 · If you want to apply for the method of item 1 of the patent scope, enter at least one ------ U--install-(please read the precautions on the back before filling this page), 1T This paper size applies to China Standard (CNS) A4 specification (210X297 mm)-26-578406 A8 B8 C8 D8 々, patent application scope 3 This step of the test signal at a base band frequency fi includes the following steps: input a plurality of N test signals, and Each test signal is at a different baseband frequency (fKN); and the step of applying a pre-distortion transform to the input transmission signal includes the following steps: applying a frequency-dependent pre-distortion transform. (Please read the precautions on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs This paper applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -27-
TW091120347A 2001-09-05 2002-09-05 Method for measuring and compensating gain and phase imbalances in quadrature modulators TW578406B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US31696201P 2001-09-05 2001-09-05

Publications (1)

Publication Number Publication Date
TW578406B true TW578406B (en) 2004-03-01

Family

ID=23231477

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091120347A TW578406B (en) 2001-09-05 2002-09-05 Method for measuring and compensating gain and phase imbalances in quadrature modulators

Country Status (2)

Country Link
TW (1) TW578406B (en)
WO (2) WO2003021826A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169736A (en) * 2016-12-07 2018-06-15 德克萨斯仪器股份有限公司 Same phase in radar system(I)With it is orthogonal(Q)Imbalance estimation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2949631A1 (en) 2009-08-28 2011-03-04 Thomson Licensing BROADBAND RECEIVING TRANSMITTING DEVICE FOR TRANSMITTING AND RECEIVING SIGNALS FROM A SELECTED CHANNEL IN A DYNAMICALLY EXTENDED BANDWIDTH
KR101258193B1 (en) * 2011-11-22 2013-04-25 주식회사 이노와이어리스 I/q imbalance compensation apparatus and method for direct ub-conversion system
US8805313B2 (en) * 2012-10-26 2014-08-12 Tektronix, Inc. Magnitude and phase response calibration of receivers
US10693687B1 (en) * 2019-03-28 2020-06-23 Intel Corporation Intermediate frequency on chip (IFoC) system
US11329375B1 (en) 2020-02-13 2022-05-10 Rockwell Collins, Inc. Differential quadrature radiating elements and feeds

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944747A (en) * 1972-08-24 1976-03-16 Zenith Radio Corporation Multiple channel FM stereo system
US4631496A (en) * 1981-04-06 1986-12-23 Motorola, Inc. Battery saving system for a frequency synthesizer
US5396656A (en) * 1993-09-02 1995-03-07 Motorola, Inc. Method for determining desired components of quadrature modulated signals
US5416449A (en) * 1994-05-23 1995-05-16 Synergy Microwave Corporation Modulator with harmonic mixers
US5694433A (en) * 1994-09-14 1997-12-02 Ericsson Inc. Efficient linear power amplification
US5930286A (en) * 1995-12-06 1999-07-27 Conexant Systems, Inc. Gain imbalance compensation for a quadrature receiver in a cordless direct sequence spread spectrum telephone
US6009317A (en) * 1997-01-17 1999-12-28 Ericsson Inc. Method and apparatus for compensating for imbalances between quadrature signals
US6118810A (en) * 1997-05-08 2000-09-12 Ericsson, Inc. Multi-channel base station/terminal design covering complete system frequency range
US6034573A (en) * 1997-10-30 2000-03-07 Uniden San Diego Research & Development Center, Inc. Method and apparatus for calibrating modulation sensitivity
US6288618B1 (en) * 1999-12-20 2001-09-11 Agere Systems Guardian Corp. Logic-based architecture for FSK modulation and demodulation
US6348830B1 (en) * 2000-05-08 2002-02-19 The Regents Of The University Of Michigan Subharmonic double-balanced mixer
US6373422B1 (en) * 2000-10-26 2002-04-16 Texas Instruments Incorporated Method and apparatus employing decimation filter for down conversion in a receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169736A (en) * 2016-12-07 2018-06-15 德克萨斯仪器股份有限公司 Same phase in radar system(I)With it is orthogonal(Q)Imbalance estimation
CN108169736B (en) * 2016-12-07 2023-08-08 德克萨斯仪器股份有限公司 In-phase (I) and quadrature (Q) imbalance estimation in radar systems

Also Published As

Publication number Publication date
WO2003021804A1 (en) 2003-03-13
WO2003021826A1 (en) 2003-03-13

Similar Documents

Publication Publication Date Title
US20040165678A1 (en) Method for measuring and compensating gain and phase imbalances in quadrature modulators
US9621337B2 (en) Adaptive I/O mismatch calibration
EP1860770B1 (en) Distortion compensating apparatus and method
JP3175580B2 (en) Adjustment device for quadrature modulator
US8224269B2 (en) Vector modulator calibration system
KR100710125B1 (en) Tranceiver circuit for compensating iq mismatch and carrier leakage and control method of the same
TW494613B (en) Local oscillator leak cancellation circuit
TWI536779B (en) Calibration method and calibration apparatus for calibrating mismatch between first signal path and second signal path of transmitter/receiver
EP1829314B1 (en) Calibrating amplitude and phase imbalance and DC offset of an analog I/Q modulator in a high-frequency transmitter
TWI416899B (en) Method and apparatus of calibrating i/q mismatch in communication circuit
US7813444B2 (en) Measurement method and arrangement for amplitude and phase synchronization in a polar transmitter
JP2010283589A (en) Communication apparatus
CN101610090A (en) The method that a kind of zero intermediate frequency transmitter and calibration zero intermediate frequency transmit
CN1698263B (en) Method and apparatus of compensating imbalance of a modulator
US9867155B1 (en) Amplitude-modulation signal and phase-modulation signal delay adjustment for polar transmitter
Rampa I/Q compensation of broadband direct-conversion transmitters
TW578406B (en) Method for measuring and compensating gain and phase imbalances in quadrature modulators
JP4141973B2 (en) Error compensator for quadrature modulator and demodulator
CN102647373A (en) Method and device for correcting unmatching of same phase/orthogonal signals in communication circuit
CN101518014A (en) Calibrating DC offset and I/Q imbalance of analogue I/Q-modulator of transmitter
Mirra et al. A multi-step phase calibration procedure for closely spaced multi-tone signals
JP2010504678A (en) Method and system for calibrating a transmitter analog I / Q modulator
CN115882970A (en) Method and system for correcting received IQ imbalance
JP6774848B2 (en) Impedance measuring device
KR101290531B1 (en) I/Q imbalance measurnng apparatus and method for direct ub-conversion system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees