TW578365B - A multi-band electronic circuit - Google Patents

A multi-band electronic circuit Download PDF

Info

Publication number
TW578365B
TW578365B TW91135334A TW91135334A TW578365B TW 578365 B TW578365 B TW 578365B TW 91135334 A TW91135334 A TW 91135334A TW 91135334 A TW91135334 A TW 91135334A TW 578365 B TW578365 B TW 578365B
Authority
TW
Taiwan
Prior art keywords
claimant
transistor
band
bias
resistor
Prior art date
Application number
TW91135334A
Other languages
Chinese (zh)
Other versions
TW200410482A (en
Inventor
Shey-Shi Lu
Hung-Wei Chiu
Po-Wei Lee
Original Assignee
Memetics Technology Co Ltd
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Memetics Technology Co Ltd, Univ Nat Taiwan filed Critical Memetics Technology Co Ltd
Priority to TW91135334A priority Critical patent/TW578365B/en
Priority to US10/723,130 priority patent/US6949979B2/en
Priority to JP2003405913A priority patent/JP2004187304A/en
Application granted granted Critical
Publication of TW578365B publication Critical patent/TW578365B/en
Publication of TW200410482A publication Critical patent/TW200410482A/en

Links

Landscapes

  • Amplifiers (AREA)

Abstract

This invention is related to a multi-band electronic circuit and its design methodology. The application frequency band is switched from one band to another by changing the bias current or bias voltage of a transistor. Compared with the prior art, our invention does not need off-chip inductor/capacitor and additional wire bonding, which is helpful to the enhancement of the yield and throughput and the reduction of cost.

Description

578365 五、發明說明(i) 【發明所屬之技術領域】 本發明係有關於一種新的多頻段放大器(Multi_band Low N〇ise Amplifier )電子電路及其設計方法,尤指一 $利用偏壓電流或偏壓電壓之改變而達成頻段切換之放大 态電子電路及其設計方法’藉以有效簡化低雜訊放大器電 子電路設計之複雜度者。 【先前技術】 無線通Λ產業已演進至多種標準/多種服務之境地, 例如無線區域網路(Wireless Local Area Network, 9 W/AN )使用 2· 4 GHz,5· 2 GHz,5· 7 GHz 頻段、GSM 行動電 話使用0· 9GHz,1· 8 GHz,1· 9 GHz頻段、而全球定位系統 (Global Position System,GPS )使用 1· 5 GHz 頻段。因 此最好能將多種標準整合在同一收發機晶片中,亦即要能 設計製作出多頻段收發機。設計多頻段收發機最主要的挑 戰,在於增進通訊機的功能之同時,能使用最少額外之電 路’譬如像是低雜訊放大器。 習知設計多頻段收發機的策略是,針對某一頻段就設 計符合該頻段的低雜訊放大器。換言之,要設計能使用〇· 9GHz ’ 1· 8 GHz ’ 1. 9 GHz頻段之三頻收發機,就須設計三_ 組低雜訊放大器以因應三種不同頻率。因此 放大器時’與其相關的增益、雜訊指數(NolteFi= )、輸入阻抗及輸出阻抗,都是對某一特定頻段來做設計 -。如此一來,多頻段收發機之整個電路的面積及功率消耗 578365 發明說明(2) ,都要比單頻段收發機大許多。以第一圖所示傳統整合多 頻段應用之接收機為例:從天線〗〇 〇、頻段選擇濾波器丨〇 J 三低雜訊放大器1 0 3、鏡像消除濾波器丨〇 4到頻道選擇濾波 器1 07,為應用頻段一之獨立接收路徑。從天線丨〇9、頻段 選擇濾波器11 0、低雜訊放大器丨丨2、鏡像消除濾波器丨j 3 到頻道選擇濾波器11 6,為應用頻段二之獨立接收路徑。 從天線11 8、頻段選擇濾波器丨丨9、低雜訊放大器丨2丨、鏡 像消除濾波器1 2 2到頻道選擇濾波器丨2 5,為應用頻段三之 獨立接收路徑。 ' 以應用頻段一之獨立接收路徑來做說明,訊號由天線 100接收進來之後,先經過頻段選擇濾波器1〇1來濾除應用 頻段一外之頻段,然後再經由下一級之低雜訊放大器 來放大訊號且減低雜訊的增加。再接下來由鏡像消除濾 器1 04來消除鏡像頻率處的雜訊,經降頻後,由頻道 濾波器107挑選應用頻段一中的某一頻道。接下來是應 頻段一、應用頻段二及應用頻段三共用之電路部份,% 在確認為某一應用頻段之後,再降頻並利用類比—數位〜 換器128來將訊號數位化,最後由數位訊號處理129 已數位化之訊號。 ♦~理 由以^ ^敘述可知,在整合多頻段應用之接收 傳統的做法是將各頻段應用電路分別設計,再全二寻, 起。而接收機中的關鍵電路低雜訊放大器,也須 同頻段而設計。這樣一來整個電路的面積及功率叛不 大大增加。在以往所發表的論文中,對於整合 $必 /項仅應用578365 V. Description of the invention (i) [Technical field to which the invention belongs] The present invention relates to a new type of multi-band amplifier (Multi_band Low Noise Amplifier) electronic circuit and a design method thereof, especially a $ 1 bias current or Amplified state electronic circuits and design methods for achieving frequency band switching by changes in bias voltages are used to effectively simplify the complexity of low noise amplifier electronic circuit design. [Previous Technology] The wireless communication industry has evolved to a variety of standards / multiple services, such as Wireless Local Area Network (9 W / AN) using 2.4 GHz, 5. 2 GHz, 5. 7 GHz Frequency bands, GSM mobile phones use 0.9 GHz, 1.8 GHz, and 1.9 GHz frequency bands, while Global Position System (GPS) uses 1.5 GHz frequency bands. Therefore, it is better to integrate multiple standards in the same transceiver chip, that is, to be able to design and make multi-band transceivers. The main challenge in designing a multi-band transceiver is to improve the capabilities of the communicator while using a minimum of extra circuitry, such as a low-noise amplifier. The strategy for designing multi-band transceivers is to design a low-noise amplifier for a certain frequency band. In other words, to design a tri-band transceiver that can use 0.9 GHz '1.8 GHz' 1. 9 GHz band, three low-noise amplifiers must be designed to respond to three different frequencies. Therefore, the amplifier ’s associated gain, noise index (NolteFi =), input impedance, and output impedance are all designed for a specific frequency band. In this way, the area and power consumption of the entire circuit of the multi-band transceiver 578365 Invention Description (2) is much larger than the single-band transceiver. Take the traditional integrated multi-band receiver as shown in the first figure as an example: from antenna 〇〇〇, band selection filter 丨 〇J three low noise amplifier 1 0 3, image removal filter 丨 〇4 to channel selection filter Device 1 07 is an independent receiving path of the application frequency band 1. From the antenna 丨 〇9, the band selection filter 110, the low noise amplifier 丨 2, and the image cancellation filter 丨 j 3 to the channel selection filter 116, it is an independent receiving path for the application frequency band 2. From the antenna 11 8, the band selection filter 丨 9, the low-noise amplifier 丨 2 丨, the image cancellation filter 1 2 2 to the channel selection filter 丨 2 5 are independent receiving paths for the application frequency band 3. '' Take the independent receiving path of the application frequency band one for illustration. After the signal is received by the antenna 100, it first passes the frequency band selection filter 1101 to filter out the frequency band other than the application frequency band 1, and then passes through the low-noise amplifier of the next stage. To amplify the signal and reduce the increase in noise. Next, the image cancellation filter 104 removes noise at the image frequency. After the frequency is reduced, the channel filter 107 selects a channel in the application frequency band 1. The next part is the circuit common to frequency band 1, application frequency band 2, and application frequency band 3. After confirming that it is a certain application frequency band, the frequency is down-converted and the analog-digital ~ converter 128 is used to digitize the signal. Digital Signal Processing 129 Digitized signals. ♦ ~ Reason It can be seen from the description of ^ ^ that the integration of reception in multi-band applications The traditional approach is to design the application circuits of each frequency band separately, and then search for it all. The low-noise amplifier for the key circuit in the receiver must also be designed in the same frequency band. In this way, the area and power of the entire circuit will not increase significantly. In previously published papers, only the application

第8頁 578365Page 8 578365

的電路’都是採用這樣子的做法(亦即,使用不同低雜訊 放大器來處理不同頻段),可參照: 一、 Γ· Antes氏和C· Conkling氏在1 996年十二月於 Microwave RF 上發表之論文·· ”rf chip set fits 、 multimode cel lular/PCS handsets,n 。 二、 8.111氏和匕8823¥1氏在1998年十二月於1£££ jssc 上發表之論文:”A 900—ΜΗζ/1·8—GHz CM0S receiver for dual-band applications,"。 三、 R· Magoon 氏,I· Koullias 氏,L·The circuits are all used in this way (that is, different low-noise amplifiers are used to handle different frequency bands), you can refer to: 1. Γ Antes and C. Conkling in Microwave RF in December 1996 Papers published on the "..." rf chip set fits, multimode cel lular / PCS handsets, n. 2. Papers published on 8.111 and 8823 ¥ 1 in December 1998 on 1 £££ jssc: "A 900—ΜΗζ / 1 · 8—GHz CM0S receiver for dual-band applications, ". 3. R. Magoon, I. Koullias, L.

Steigerwald 氏,W· Domino 氏,N· Vakillian 氏,E· Ngompe 氏,M· Damgaard 氏,K· Lewis,和A· Molna 氏在 2001 年二月於ISSCC Digest of Technical papers 上發 表之論文:nA triple-band 90 0/ 1 80 0/ 1 900 MHz low-power image-reject front-end for GSM, M 〇 四、 K· L· Fong 氏在 1 999 年二月於ISSCC Digest of Technical papers 上發表之論文:nDual-band high-linearity variable-gain low-noise amplifiers for wireless applications,” 。 最近H· Hashemi氏和A. Hajimiri氏在2002年一月於 IEEE Transactions on Microwave Theory and Techniques 上發表之論文:’’ConcurrentMulti band Low-Noise Amplifiers-Theory, Design, and App 1 i ca t i ons,n乃使用同一低雜訊放大器來處理多頻段之 訊號。此種多頻段的低雜訊放大器由於可以使用同一低雜Papers by Steigerwald, W. Domino, N. Vakillian, E. Ngompe, M. Damgaard, K. Lewis, and A. Molna, February 2001, ISSCC Digest of Technical papers: nA triple -band 90 0/1 80 0/1 900 MHz low-power image-reject front-end for GSM, M 04. K. L. Fong's paper published in ISSCC Digest of Technical papers in February 1999 : NDual-band high-linearity variable-gain low-noise amplifiers for wireless applications, ". Recently H. Hashemi and A. Hajimiri published a paper on IEEE Transactions on Microwave Theory and Techniques in January 2002: '' ConcurrentMulti band Low-Noise Amplifiers-Theory, Design, and App 1 i ca ti ons, n use the same low-noise amplifier to process multi-band signals. This multi-band low-noise amplifier can use the same low-noise amplifier

第9頁 578365 五、發明說明(4) 訊放大器滿足不同頻段的要求,所以在多頻段應用的整合 ^ ’可以簡化收發機的設計(不須要設計多個不同的低雜 Λ放大器)。這樣一來也可以縮小整個系統電路的面積並 減少消耗功率,而面積的縮小及消耗功率的減少,對於帝 路的商品化是非常有利的。Page 9 578365 V. Description of the invention (4) The communication amplifier meets the requirements of different frequency bands, so the integration in multi-band applications can simplify the design of the transceiver (there is no need to design multiple different low-noise Λ amplifiers). In this way, the area of the entire system circuit can be reduced and the power consumption is reduced. The reduction in area and power consumption is very advantageous for the commercialization of Dilu.

H· Hashemi氏和a, Hajimiri氏所提出之低雜訊放大 器的設計方法不同於傳統低雜訊放大器之設計方法。請參 照第二圖,傳統低雜訊放大器的設計方法為利用源極電感 20 7產生輸入阻抗匹配所需之電阻(通常為5〇?),再利用 電感2 0 1 ’使其與看入閘極端之總輸入電容達成共振於所 欲頻段。輸出端處則使用電感2〇4和電容2〇8所構成的共掘 腔,選擇出所欲之頻段。The design method of low noise amplifier proposed by H. Hashemi and a, Hajimiri is different from that of traditional low noise amplifier. Please refer to the second figure. The design method of the traditional low-noise amplifier is to use the source inductor 20 7 to generate the required resistance for input impedance matching (usually 50?), And then use the inductor 2 0 1 'to make it and the gate into the gate. The extreme total input capacitance is resonant at the desired frequency band. At the output end, a common cavity formed by an inductor 204 and a capacitor 208 is used to select a desired frequency band.

關於上述H· Hashemi氏和A· Ha j imiri氏所提出的多 頻段低雜訊放大器的設計方法,請參照第三圖。在輸入端 處’除了使用習知可產生輸入阻抗匹配所需之電阻(通常 為50W)的電感31〇及可達成共振於所欲頻段之電感3〇 4外 ’其又增設了並聯組合之電感3〇1及電容3〇2。目的在於增 加另一共振頻率,達成多頻段輸入匹配之功能。在輪出端 處,除了使用習知由電感3 1 2及電容3 1 3所組成之並聯共2 腔外,亦增設了串聯組合之電感3 〇 7及電容3 0 6。目的也在 於增加另一共振頻率,達成選擇所欲多頻段之功能。簡言 之H. Hashemi氏和A· Ha j imiri氏乃以增加電感及電容之 數量來達成多頻段應用之功能。這樣子的設計方法有不少 缺點。For the design method of the multi-band low noise amplifier proposed by H. Hashemi and A. Ha Jimir, please refer to the third figure. At the input terminal 'in addition to the conventional inductor 31 which can generate the resistance (usually 50W) required for input impedance matching and the inductor 30 which can achieve resonance in the desired frequency band', it also adds a parallel combination of inductors 〇1 and capacitor 302. The purpose is to add another resonance frequency to achieve the function of multi-band input matching. At the wheel output, in addition to the conventional two-cavity cavity consisting of an inductor 3 1 2 and a capacitor 3 1 3, a series combined inductor 3 07 and a capacitor 3 06 are also added. The purpose is also to add another resonance frequency to achieve the function of selecting the desired multiple frequency bands. In short, H. Hashemi and A. Hajimiri achieved the function of multi-band applications by increasing the number of inductors and capacitors. There are many disadvantages to this design approach.

578365 五、發明說明(5) 、 ----- 首先,此設計一共用了五個電感f 、 、 3〇4、電感307、電感310和電感312,复二帝感3〇:t、電感 3 〇 4為晶片外的電感)和三個電容(包、^感3 0 1和電感 306和電容313,其中電容302為晶片外的電^302、電容 統低雜訊放大器的設計(請參考第二s’比起傳 電感:201、204、20 7和一個晶片上1二一個晶片上的 人的電容:208、亜客 了兩個電感和兩個電容。由於電感、♦ a & ’普夕 苞谷數目的辦力σ,其 至使用到晶片外的電感、電容(比在曰μ ^ ^ 曰 &曰曰片上的電咸、雷窳 面積要大很多)。整個電路的面積變γ / 〜 又件很大,而日%右撫 法將整個設計整合於同一晶片上。晶Μ/又’辦 曰曰月外之電感 額外之打線及配線,增加成本且降低可音* " 乂、 罪度,這對於積體 電路的量產和商品化是相當不利的。在Μ 4 、 仕彡又汁低雜訊放大器 的時候,通常會儘量減少電感的使用,一爽9 术疋因為電感所 佔面積很大,二來是在晶片上的電感其品質因子 (Quality Factor )不高’會造成雜訊指數的劣化。所以 在a又δ十低雜訊放大器時’ 一般是要儘量避免使用電感。而 Η· Hashemi氏和A· Hajimiri氏所提出的方法卻是增加電 感的使用。 因此非常需要有一種不增加面積及元件數量且不需額 外打線、配線,但仍能處理多頻段的放大器。 【發明内容】 本發明之目的在提供一種多頻段放大器電子電路及其 設計方法,僅使用單一放大器即可達成多種頻段之輸入阻578365 V. Description of the invention (5), ----- First of all, this design shares five inductors f, 30, inductor 307, inductor 310, and inductor 312, and the second imperial inductor 30: t. 3 0 4 is the inductance outside the chip) and three capacitors (package, inductor 3 0 1 and inductor 306 and capacitor 313, where capacitor 302 is the design of the capacitor 302 outside the chip and the capacitor low noise amplifier (please refer to The second s' is compared to the inductance: 201, 204, 20 7 and the capacitance of a person on a chip: 208, the customer has two inductors and two capacitors. Because of the inductance, a & 'The power of the number of Puxi bud valleys is σ, and it uses inductors and capacitors outside the chip (much larger than the area of the electric salt and thunder on the chip). The area of the entire circuit becomes larger. γ / ~ is very large, and the %% right stroke method integrates the entire design on the same chip. Crystal M / You'll say that the extra wiring and wiring of the inductor outside the moon increases the cost and reduces the audible sound * " 乂, The degree of crime, which is very detrimental to the mass production and commercialization of integrated circuits. When noise amplifiers are used, the use of inductors is usually minimized. This is because the inductance occupies a large area, and the second reason is that the quality factor of the inductor on the chip is not high, which will cause the noise index. In the case of a and δ ten low noise amplifiers, it is generally necessary to avoid the use of inductors as much as possible. However, the methods proposed by emi · Hashemi's and A · Hajimiri's increase the use of inductors. Therefore, there is a great need for Increase the area and the number of components without additional wiring and wiring, but can still handle multi-band amplifiers. [Abstract] The object of the present invention is to provide a multi-band amplifier electronic circuit and its design method, which can be achieved by using only a single amplifier. Input resistance of multiple frequency bands

第11頁 578365 五、發明說明(6) 抗匹配,而且不增加面積、元件數量,也不需額外打線、 配線。 為不增加面積、元件數量,也不要額外打線、配線, 本發明提出改變放大器中電晶體的偏壓操作條件(操作電 壓或操作電流),來改變放大器中電晶體的基極-射極或 基極-集極間的電容(如果使用的電晶體為雙極電晶體, bipolar junction transistors or heterojunctionPage 11 578365 V. Description of the invention (6) Anti-matching, and does not increase the area, the number of components, or additional wiring or wiring. In order not to increase the area, the number of components, or to make additional wiring or wiring, the present invention proposes to change the bias operating conditions (operating voltage or operating current) of the transistor in the amplifier to change the base-emitter or base of the transistor in the amplifier. Capacitance between collector and collector (if the transistor used is bipolar transistor, bipolar junction transistors or heterojunction

bipolar transistors );或者放大器中電晶體的閘極—; 極或閘極-汲極間的電容(如果使用的電晶體為埸效電晶 體,field effect transistors )。以雙極電晶體為例 看入基極端之總輸入電容,含基極-射極電容與米勒電容 (Miller capacitance,其乃由基極—集極電容所造成) ,二者均會為偏壓操作電流(或偏壓操作電壓)之函數 改變此雙極電晶體的基極操作電壓(或基極操作電流) 便會改變集極電流,或者直接改變雙極電晶體之集極 ,就會改變看入基極端之總輸入電容。這樣子一來,由 =基極端之總輸入電容與連接基極端之電感所組成之/ 2益共振頻率便會隨著放大器電晶體操作條件 偏I#作電壓或偏壓操作電流)的不同而改變。bipolar transistors); or the gate of the transistor in the amplifier; the capacitance between the electrode or the gate and the drain (if the transistor used is a field effect transistor). Take the bipolar transistor as an example to see the total input capacitance of the base, including base-emitter capacitance and Miller capacitance (which is caused by the base-collector capacitance), both of which will be biased. As a function of the voltage operating current (or bias operating voltage) changes the base operating voltage (or base operating current) of this bipolar transistor, it will change the collector current, or directly change the collector of the bipolar transistor. Change the total input capacitance seen into the base terminal. In this way, the 2/2 resonant frequency composed of the total input capacitance of the base terminal and the inductor connected to the base terminal will vary with the operating conditions of the amplifier transistor (i.e., I # voltage or bias operating current). change.

輸入端對有關增益、雜/ 吏+ 不同的頻段均能達成 輸阻抗的匹配,在各4 配。由於本發:月乃X使用訊指數及輸出阻抗的0 用電路上原本就一定會有的偏壓操七The input end can match the input impedance to different gain, miscellaneous, and different frequency bands, and the impedance can be matched in 4 pairs. Because of this issue: Month X uses the signal index and the output impedance of 0. There must be a bias operation on the circuit.

在輸出端方面,可ί用電路架構1 振腔來達成在J£捃糖3〜 ^谷、電感所產生的寺 第12頁 五、發明說明(7) 電壓或偏壓操作雷& 對於習知技蓺 饥采達成多頻段阻抗匹配功能,所以相 打線、配線Γ 既不需增加面積、元件數量,也不要額外 為讓本發明$ μ 顯易懂,下文牲輿ΐ述和其他目的,特徵,和優點能更明 明如下· 、4較佳實施例,並配合所附圖,作詳細說 【實施方式】 理功能t創作具2·4/ 5·2/ 5·7 GHZ多頻段處 &例^ i 電路圖。在此多頻段低雜訊放大器中, 作雷、二:換開關改變放大器第一級電晶體4〇8的基極操 + L = J放大器第一級電晶體4 0 8的集極操作電流亦 二:來改變看入第一級電晶體基極端之總輸入電 ^ IN/CIN和接在基極上的電感4〇4,構成了達成增益、 雜訊指數及輸人阻抗匹g己的共振腔。#在操作電流條件一 下,即切換開關連通至電流源4〇3,此時在本實施例中第 二級電晶體之集極電流405會是3· 8mA,接在基極上的電 感4 0 4與看入第一級電晶體基極端之總輸入電容c I n組成之 共振腔可達成在2· 4 GHz ( WLAN無線區域網路IEEE 802· 1 l b )的輸入阻抗匹配。而在操作條件二下,即切換 開關連通至電流源401,此時在本實施例中第一級電晶體 之集極電流405會是3 mA,接在基極上的電感4〇4與看入 第一級電晶體基極端之總輸入電容c丨N組成之共振腔可達 成在5.2/ 5.7 GHz (WLAN無線區域網路IEEE ^211a)的 輸入阻抗匹配。在輸出端4 1 4部份,我們使用了回授電阻 578365 五、發明說明(8) =〇達成輸出阻抗匹配。在不需輸出阻抗匹配的情況下, 了不用回授電阻410達成輸出阻抗匹配。電阻4〇7及電阻 2為为別為第一級電晶體及第二級電晶體之負載。本實 ::雖用電T為負貞,視需要使用電感或電容負載亦是可 1i 1重點是輸入端能達成多頻段阻抗匹配。第五圖為所 叙乍出來之晶片照片。由於我們只使用了一個電感(404) 丄,^是製作在晶片上的電感,因此不但整個電路可以完 全在早一晶片上實現,而且電路的面積非常小,只有355 _ X 1 55 nun。這對於商品化非常有利。 ^有關此多頻段低雜訊放大器在增益上的表現,請參照 第六A圖及第六B圖。在操作條件一下(第一級電晶體之集 極電二405為3· 8 mA),此多頻段低雜訊放大器在2· 4 GHz 的增益(S21 )達到了14」dB (愈高愈好),而在操作條 件二下(第一級電晶體之集極電流405為3· 0 mA ),此多 頻段低雜訊放大器在5·2/5·7 GHz的增益(S21 )分別達到 了 1 4· 3 dB和1 3· 5 dB (愈高愈好)。有關此多頻段低雜訊 放大器在輸入輸出阻抗匹配程度上的表現,請參照第七A 及第七B圖。在操作條件一下(第一級電晶體之集極電流 405為3· 8 mA),此多頻段低雜訊放大器對於輸入阻抗的 匹配私度(通常以輸入折返損耗丨叩以return loss S11 來表不)’從1· 5 GHz到3 GHz皆低於-15 dB以下(愈低 愈好)°對於輸出阻抗的匹配程度(通常以輸出折返損耗 output ire turn l〇ss S22來表示),也是相當不錯(約 10 dB )。在超外差式接收機(super —heter〇dyneOn the output side, the circuit structure 1 vibrating cavity can be used to reach the temple generated by J 捃 捃 3 ~ ^ Valley, inductance. Page 12, V. Description of the invention (7) Voltage or bias operation Thunder & For Xi The know-how can achieve the multi-band impedance matching function, so the phase wire and wiring Γ do not need to increase the area and the number of components, nor do they need to make the present invention μ μ easy to understand. The following description and other purposes, features And the advantages can be more clearly as follows: [4] The preferred embodiment, and in conjunction with the attached drawings, will be described in detail [Embodiment] The physical function t creation tool 2 · 4/5 · 2/5 · 7 GHZ multi-band office & Example ^ i circuit diagram. In this multi-band low-noise amplifier, as mine, two: change the switch to change the base operation of the first transistor 408 of the amplifier + L = the collector operation current of the first transistor 408 of the amplifier is also Two: Let's change the total input voltage of the base of the first-stage transistor ^ IN / CIN and the inductor 404 connected to the base, forming a resonance cavity to achieve gain, noise index, and input impedance. . #Under the operating current condition, that is, the switch is connected to the current source 403. At this time, the collector current 405 of the second-stage transistor in this embodiment will be 3.8 mA, and the inductance connected to the base 4 0 4 The resonant cavity composed of the total input capacitance c I n seen at the base of the first-level transistor can achieve input impedance matching at 2.4 GHz (WLAN wireless area network IEEE 802 · 1 lb). Under operating condition two, that is, the switch is connected to the current source 401. At this time, in this embodiment, the collector current 405 of the first-stage transistor will be 3 mA, and the inductor 40 connected to the base and the The resonant cavity composed of the total input capacitance c 丨 N at the base of the first-stage transistor can achieve input impedance matching at 5.2 / 5.7 GHz (WLAN wireless local area network IEEE ^ 211a). In the output part 4 1 4 we used the feedback resistor 578365 V. Description of the invention (8) = 0 to achieve output impedance matching. When no output impedance matching is required, the output impedance matching is achieved without using the feedback resistor 410. The resistors 407 and 2 are loads for the first-stage transistor and the second-stage transistor, respectively. Reality :: Although the electricity T is negative, it is also possible to use an inductive or capacitive load if necessary. 1i 1 The main point is that the input can achieve multi-band impedance matching. The fifth picture shows the photo of the wafer from the beginning. Since we only use one inductor (404) 丄, ^ is the inductor made on the chip, so not only the entire circuit can be completely implemented on the earlier chip, but the circuit area is very small, only 355 _ X 1 55 nun. This is very beneficial for commercialization. ^ For the performance of this multi-band low noise amplifier in gain, please refer to Figures 6A and 6B. Under the operating conditions (the collector of the first-stage transistor is 3.8 mA at 405), the gain of this multi-band low-noise amplifier at 2 · 4 GHz (S21) has reached 14 ″ dB (the higher the better ), And under operating condition two (collector current 405 of the first-stage transistor is 3.0 mA), the gain (S21) of this multi-band low-noise amplifier at 5 · 2/5 · 7 GHz has reached respectively 1 4 · 3 dB and 1 3 · 5 dB (the higher the better). For the performance of this multi-band low noise amplifier in terms of input and output impedance matching, please refer to Figures 7A and 7B. Under operating conditions (collector current 405 of the first-stage transistor is 3 · 8 mA), the matching privacy of this multi-band low-noise amplifier for input impedance (usually expressed as input return loss 丨 叩 return loss S11 No) 'from 1.5 GHz to 3 GHz are all below -15 dB (the lower the better) ° The degree of matching to the output impedance (usually expressed as output ire turn l0ss S22) is also quite equivalent Not bad (about 10 dB). Super-heterodyne receiver

第14頁 578365 五、發明說明(9) receiver )輸出阻抗的匹配程度(S22)才重要。若於直接 降頻式(direct conversi〇n 〇r zer〇—IF )或低中頻接收 · 機(Low IF )之應用,則輸出阻抗匹配與否,並不重要。 在操作條件二下(第一級電晶體之集極電流4 〇 5為3 · 〇 ^ A , ),此多頻段低雜訊放大器對於輸入阻抗的匹配程度 (S11 )’在5· 15 GHz和5· 3 5 GHz之間皆低於-22 dB以下 (愈低愈好),在5· 725 GHz和5· 8 25 GHz之間皆低於-π· 5 d B以下(愈低愈好)。輸出阻抗的匹配程度,也是相當 不錯。 田Page 14 578365 V. Description of the invention (9) The matching degree of the output impedance (S22) is important. If it is used in direct frequency reduction (direct conversio 〇r zer〇—IF) or low intermediate frequency receiver (Low IF), it is not important whether the output impedance is matched or not. Under operating condition two (the collector current of the first-stage transistor is 4 〇5 is 3 · 〇 ^ A,), the degree of matching (S11) of this multi-band low-noise amplifier to the input impedance is between 5.15 GHz and Below 5 · 3 5 GHz are below -22 dB (lower is better), between 5 · 725 GHz and 5. 8 25 GHz are lower than -π · 5 d B (lower is better) . The matching degree of the output impedance is also quite good. field

有關此多頻段低雜訊放大器在雜訊指數上的表現,請 參照第八圖。在操作條件一下(第一級電晶體之集極電流 405為3.8 111八),在2.4 0112的雜訊指數為3.18(16(愈低 愈好),而在操作條件二下(第一級電晶體之集極電流4〇5 為3.0 mA),此多頻段低雜訊放大器在5· 2厂5· 7 GHz雜訊 指數分別為3 · 4 2 d B和3 · 2 1 d B (愈低愈好)。一般對於 802· 1 la及802· 1 lb無線區域網路(WLAN )之應用而言,低 雜訊放大器之雜訊指數只要低於5 dB即可,輸入(輸出) 折返損耗小於-1 0 dB即可。因此我們可以說,根據本創作 之實施例:2· 4/ 5· 2/ 5· 7 GHz多頻段低雜訊放大器,其 有關於增益、雜訊指數、輸入阻抗及輸出阻抗匹配程度上 的表現,在2·4 GHz、5·2 GHz和5·7 GHz三個頻段下都有 相當好的貝施結果。事實上本發明之主要技術内容,將於 2003 年二月之International Solid State Circuit Conference中發表。此會議乃電路會議中最頂級的會議。For the performance of this multi-band low noise amplifier on the noise index, please refer to Figure 8. Under operating conditions (collector current 405 of the first-stage transistor is 3.8 111 eight), the noise index at 2.4 0112 is 3.18 (16 (lower is better), and under operating condition two (first-stage transistor) The collector current of the crystal is 3.0 mA (3.0 mA). The noise index of this multi-band low-noise amplifier at the 5 · 2 GHz and 5 · 7 GHz is 3 · 4 2 d B and 3 · 2 1 d B (the lower the The better). Generally for 802.11 · and 802.11 · 1 lb wireless local area network (WLAN) applications, the noise index of the low-noise amplifier is only less than 5 dB, and the input (output) foldback loss is less than -1 0 dB is enough. So we can say that according to the embodiment of this creation: 2 · 4/5 · 2/5 · 7 GHz multi-band low noise amplifier, which has about gain, noise index, input impedance and The performance of the output impedance matching degree has quite good results in three frequency bands of 2.4 GHz, 5. 2 GHz, and 5. 7 GHz. In fact, the main technical content of the present invention will be Presented at the International Solid State Circuit Conference in May. This conference is the highest level of circuit conferences.

第15頁 獨65Page 15 Sudoku 65

五、發明說明 (10) 相較於習知的多頻段低雜訊放大器,本創作僅使用單 一放大器即可達成多種頻段之輸入阻抗匹配,既不增加面 積、元件數量,也不需額外打線、配線。 雖然本發明已以較佳實 限定本發明。任何熟習此技 和範圍内,當可作各種之更 範圍當視後附之申請專利範 施例揭露如上,然其並非用以 藝者’在不脫離本發明之精神 動與潤飾,因此本發明之保護 圍所界定者為準。V. Description of the invention (10) Compared with the conventional multi-band low-noise amplifier, this creation uses only a single amplifier to achieve input impedance matching in multiple frequency bands, without increasing the area, the number of components, or the need for additional wiring, Wiring. Although the present invention has been defined in terms of the preferred embodiments. Anyone who is familiar with this technique and scope can make a variety of more scopes as the attached patent application examples are disclosed above, but it is not intended for artists' to move and retouch without departing from the spirit of the present invention, so the present invention The protection scope shall prevail.

第16頁 578365 圖式簡單說明 第-圖:習知為了多頻段應用所採之多頻段晶片整合方 第二圖為習知低雜訊放大器之電路圖。 第三圖=Hash—氏和A. HajimiriA所發表 低雜訊放大器的電路圖。 貝*^ 7 GHz多頻段低雜 GHz多頻段 GHz多頻 第四圖為本創作實施例(2.4/ 5.2/ 5 訊放大器)的電路圖。 第五圖為本創作實施例(2. 4/ 5.2/ 5 : ^ 低雜訊放大器)的晶片照片圖。 第六圖A為本創作實施例(2· 4/ 5. 2/ 5 段低雜訊放大器)在操作條件一下的=二 表現。 曰1 第六圖B為本創作實施例(2. 4/ 5.2/ 57 鍾大H)在操作條件^的增益表現。貞長低一 A:放本:=ΓΚ2·4/ 5.2/ 5·7 GHz多頻段低雜 特性ii表^作條件一下輸入折返損耗對頻率的 第七圖B訊為放本大創哭^施例(2.4/ 5.2/ 5.7 GHz多頻段低雜 特性。m在知作條件二下輸出折返損耗對頻率的 第八圖作在實2.4/ 5.2/ 5.7 GHz多頻段低雜訊 盡^主μ乍條件一下及條件二下雜訊指數對頻 578365 參照件號> 波器 除濾波器 盪訊號 波器 擇濾波器 放大器 波器 擇濾波器 波器 除濾波器 盪訊號 波器 圖式簡單說明 <圖式中之 1 0 0 天線 1 0 2帶通濾 1 0 4 鏡像消 I 0 6 本地振 108 帶通濾 II 0 頻段選 11 2 低雜訊 11 4 帶通濾 11 6 頻道選 1 1 8 天線 1 2 0 帶通濾 1 2 2 鏡像消 1 2 4 本地振 1 2 6 帶通濾 1 2 8 類比-數位轉換器 2 0 0 輸入端 2 0 2偏壓 204 電感 206電晶體 208 電容 3 0 0 輸入端 302 電容 3 0 4 打線電感 1 0 1頻段選擇濾波器 1 0 3 低雜訊放大器 1 0 5 帶通濾波器 1 0 7頻道選擇濾波器 I 0 9 天線 111 帶通濾波器 II 3鏡像消除濾波器 11 5 本地振盪訊號 11 7 帶通濾波器 11 9 頻段選擇濾波器 1 2 1 低雜訊放大器 123 帶通濾波器 125頻道選擇濾波器 1 2 7中頻訊號 1 2 9 數位訊號處理 2 0 1電感 2 0 3 電壓源 2 0 5電晶體 20 7電感 2 0 9 輸出端 3 0 1電感 3 0 3偏壓 3 0 5襯墊 «Page 16 578365 Brief description of the diagram. Figure-Figure: Known multi-band chip integration method for multi-band applications. The second figure is the circuit diagram of the conventional low-noise amplifier. Third figure = Hash-A and HajimiriA's low-noise amplifier circuit. * * 7 GHz multi-band low-noise GHz multi-band GHz multi-band The fourth figure is the circuit diagram of the creative embodiment (2.4 / 5.2 / 5 signal amplifier). The fifth figure is a photo of the chip of the creative example (2.4 / 5.2 / 5: ^ low noise amplifier). The sixth figure A is the performance of the creative embodiment (2 · 4 / 5. 2/5 segment low noise amplifier) under the operating conditions. The sixth figure B is the gain performance of the creative embodiment (2.4 / 5.2 / 57 Zhongda H) under operating conditions ^. Zhenchang low first A: put the cost: = ΓΚ2 · 4 / 5.2 / 5 · 7 GHz multi-band low noise characteristics ii table ^ conditions, the seventh figure of the input return fold loss vs. frequency Example (2.4 / 5.2 / 5.7 GHz multi-band low-noise characteristics. The eighth plot of output foldback loss vs. frequency under known operating conditions is implemented in 2.4 / 5.2 / 5.7 GHz multi-band low-noise. Noise index frequency 578365 under the second and second conditions. Reference part number> Wave filter filter filter signal filter filter amplifier filter filter filter filter filter signal diagram simple explanation < Figure 1 0 0 Antenna 1 0 2 Bandpass filter 1 0 4 Mirror cancellation I 0 6 Local vibration 108 Bandpass filter II 0 Band selection 11 2 Low noise 11 4 Bandpass filter 11 6 Channel selection 1 1 8 Antenna 1 2 0 Bandpass filter 1 2 2 Mirror cancellation 1 2 4 Local oscillator 1 2 6 Bandpass filter 1 2 8 Analog-to-digital converter 2 0 0 Input 2 0 2 Bias 204 Inductor 206 Transistor 208 Capacitor 3 0 0 Input Terminal 302 capacitor 3 0 4 wire inductance 1 0 1 band selection filter 1 0 3 low noise amplifier 1 0 5 band pass filter 1 0 7 channel selection filter I 0 9 Antenna 111 Bandpass filter II 3 Image cancellation filter 11 5 Local oscillation signal 11 7 Bandpass filter 11 9 Band selection filter 1 2 1 Low noise amplifier 123 Bandpass filter 125 Channel selection filter 1 2 7 Frequency signal 1 2 9 Digital signal processing 2 0 1 Inductor 2 0 3 Voltage source 2 0 5 Transistor 20 7 Inductor 2 0 9 Output 3 0 1 Inductor 3 0 3 Bias 3 0 5 Pad «

第18頁 578365 圖式簡單說明 306 電容 307 電感 308 場效電晶體 309 場效電晶體 - 310 電感 312 電感 1 313 電容 314 輸出端 400 輸入端 401 電流源 402 電容 403 電流源 404 電感 405 集極電流 406 電壓源 407 電阻 408 電晶體 409 電容 410 電阻 411 電源 i 412 電阻(R2 ) 413 電晶體 414 輸出端Page 18 578365 Brief description of the diagram 306 capacitor 307 inductor 308 field effect transistor 309 field effect transistor-310 inductor 312 inductor 1 313 capacitor 314 output 400 input 401 current source 402 capacitor 403 current source 404 inductor 405 collector current 406 Voltage source 407 Resistor 408 Transistor 409 Capacitor 410 Resistor 411 Power supply i 412 Resistor (R2) 413 Transistor 414 Output

第19頁Page 19

Claims (1)

578365 申請專利範圍 2345678 10 11 電路 阻抗 某一 換。 如申 計方 如申 計方 如申 計方 如申 計方 如申 計方 如申 設計 如申 計方 如申 計方 如申 計方 如申 種多頻段放大器電子 少一電晶體偏 中至 與電 共振 請專 法, 請專 法, 請專 法, 請專 法, 請專 法, 請專 方法 請專 法, 請專 法, 請專 法, 請專 性連接於該電 頻段切換至另 電路的設計方法, 壓之改變,使該電 晶體輸入端之至少 ~頻段,而達成多 其乃藉由該 晶體之輸入 一電感,從 頻段之切 利範圍 其中該 利範圍 其中該 利範圍 其中電 利範圍 其中電 利範圍 其中該 利範圍 ’其中 利範圍 其中電 利範圍 其中電 利範圍 其中該 利範圍 第1項 電晶體 第1項 電晶體 第2項 晶體偏 第2項 晶體偏 第4項 電晶體 第6項 電晶體 第6項 晶體偏 第7項 晶體偏 第5項 電晶體 第10項 之多頻段放 為雙極電晶 之多頻段放 為場效電晶 之多頻段放 壓為電流。 之多頻段放 壓為電壓。 之多頻段放 之輪入端為 之多頻段放 偏壓為基極 之多頻段放 壓為集極電 之多頻段放 壓為射極電 之多頻段放 之輪入端為 之多頻段放 大器電子電路的設 體。 大器電 體。 大器電 大器電 大器電 基極端 大器電 電流。 大器電 流。 大器電 流。 大器電 基極端 大器電 子電路的設 子電路的設 子電路的設 子電路的設 〇 子電路的其 子電路的設 子電路的設 子電路的設 〇 子電路的設578365 Patent application range 2345678 10 11 Circuit impedance change. If the claimant, the claimant, the claimant, the claimant, the claimant, the claimant, the designee, the claimant, the claimant, the claimant, the claimant, the claimant, the claimant, the claimant, the claimant, the claimant, the claimant, the claimant, the claimant, the claimant, the claimant, the claimant, the claimant, the claimant, the claimant. Method, please special method, please special method, please special method, please special method, please special method, please specifically connect to the electrical frequency band to switch to another circuit design method, the pressure changes, so that the transistor input at least ~ The frequency range is reached through the inductor of the crystal. The range of interest is the range of the range of interest, the range of interest, the range of electricity, the range of electricity, the range of profit, and the range of profit. Among them, the electric power range includes the electric power range of the first term, the first term, the second term, the second term, the second term, the fourth term, the sixth term, the sixth term, the sixth term, the seventh term, and the fifth term. The multi-band discharge of the tenth item of the transistor is a multi-band discharge of a bipolar transistor and the multi-band discharge of a field effect transistor is a current. Many frequency bands are depressurized to voltage. The multi-band amplifier's wheel-in end is the multi-band amplifier bias. The base is the multi-band amplifier. The multi-band amplifier is the collector. The multi-band amplifier is the multi-band amplifier. The multi-band amplifier is the multi-band amplifier. The body of the circuit. Large electrical body. Large-scale electric current Large-scale electric current base. Amplifier current. Amplifier current. Large-scale electrical base, large-scale electrical circuit design, sub-circuit design, sub-circuit design, sub-circuit design, sub-circuit design, sub-circuit design, sub-circuit design, sub-circuit design, etc. 第20頁 578365 六、申請專利範圍 計方法,其中電晶體偏壓為基極電壓。 1 2、如申請專利範圍第3項之多頻段放大器電子電路的設 計方法,其中電晶體偏壓為電流。 1 3、如申請專利範圍第3項之多頻段放大器電子電路的設 計方法,其中電晶體偏壓為電壓。 1 4、如申請專利範圍第1 2項之多頻段放大器電子電路的設 計方法,其中該電晶體之輸入端為閘極端。 1 5、如申請專利範圍第1 4項之多頻段放大器電子電路的設 計方法,其中電晶體偏壓為汲-源極電流。 1 6、如申請專利範圍第1 3項之多頻段放大器電子電路的設 計方法,其中電晶體偏壓為閘極電壓。 1 7、一種多頻段放大器電子電路,由第一雙極電晶體、第 二雙極電晶體、第一電阻、第二電阻、第三電阻、一 電感與一電容所組成;第一雙極電晶體與第二雙極電 晶體之射極均接地;該電感舆該第一雙極電晶體之基 極端相連接;該第一電阻之一端與該第一雙極電晶體 之集極端相連接;該第一電阻之另一端與電源相連接 ;該第一雙極電晶體之集極端亦與該電容之一端相連 接;該電容之另一端與該第二雙極電晶體之基極相連 接;該第二電阻之一端與該第二雙極電晶體之集極端 _ 相連接;該第二電阻之另一端與電源相連接;該第三 電阻之一端該第二雙極電晶體之基極相連接;該第三 電阻之另一端該第二雙極電晶體之集極相連接;藉由 該第一雙極電晶體偏壓之改變,使該第一雙極電晶體Page 20 578365 6. Method of patent application calculation, in which the transistor bias is the base voltage. 1 2. The design method of the electronic circuit of the multi-band amplifier according to item 3 of the patent application, wherein the transistor bias is a current. 1 3. The design method of the electronic circuit of the multi-band amplifier according to item 3 of the patent application, in which the transistor bias is a voltage. 14. The design method of the electronic circuit of the multi-band amplifier according to item 12 of the patent application scope, wherein the input terminal of the transistor is a gate terminal. 15. The design method of the electronic circuit of the multi-band amplifier as described in item 14 of the patent application scope, wherein the transistor bias is a sink-source current. 16. The design method of the electronic circuit of the multi-band amplifier according to item 13 of the patent application, wherein the transistor bias is the gate voltage. 17. A multi-band amplifier electronic circuit composed of a first bipolar transistor, a second bipolar transistor, a first resistor, a second resistor, a third resistor, an inductor and a capacitor; a first bipolar transistor The emitter of the crystal and the second bipolar transistor are grounded; the inductor is connected to the base terminal of the first bipolar transistor; one end of the first resistor is connected to the collector terminal of the first bipolar transistor; The other end of the first resistor is connected to a power source; the collector terminal of the first bipolar transistor is also connected to one end of the capacitor; the other end of the capacitor is connected to the base of the second bipolar transistor; One end of the second resistor is connected to the collector terminal of the second bipolar transistor; the other end of the second resistor is connected to the power source; one end of the third resistor is the base phase of the second bipolar transistor Connected; the other end of the third resistor is connected to the collector of the second bipolar transistor; and the first bipolar transistor is changed by the bias of the first bipolar transistor 第21頁 578365 六、申請專利範圍 之汲極端相連接;該第一電阻之另一端與電源相連接 ;該第一場效電晶體之汲極端亦與該電容之一端相連 接;該電容之另一端與該第二場效電晶體之基極相連 接;該第二電阻之一端與該第二場效電晶體之汲極端 ‘ 相連接;該第二電阻之另一端與電源相連接;該第三 電阻之一端該第二場效電晶體之閘極相連接;該第三 電阻之另一端該第二場效電晶體之集極相連接;藉由 該第一場效體偏壓之改變,使該第一場效電晶體輸入 阻抗與該電感,從某一共振頻段切換至另一共振頻段 ,而達成多頻段之切換。 > 2 6、如申請專利範圍第2 5項之多頻段放大器電子電路,其 中該第一場效電晶體偏壓之改變為電流偏壓之改變。 2 7、如申請專利範圍第2 5項之多頻段放大器電子電路,其 中該第一場電晶體偏壓之改變為電壓偏壓之改變。 2 8、如申請專利範圍第2 6項之多頻段放大器電子電路,其 中電流偏壓之改變為汲-源極電流偏壓之改變。 2 9、如申請專利範圍第2 7項之多頻段放大器電子電路,其 中電壓偏壓之改變為閘極電壓偏壓之改變。Page 21 578365 6. The drain terminal of the scope of the patent application is connected; the other end of the first resistor is connected to the power source; the drain terminal of the first field effect transistor is also connected to one end of the capacitor; One end is connected to the base of the second field effect transistor; one end of the second resistor is connected to the drain terminal of the second field effect transistor; the other end of the second resistor is connected to a power source; the first One end of the three resistors is connected to the gate of the second field effect transistor; the other end of the third resistor is connected to the collector of the second field effect transistor; by the bias of the first field effect transistor, The input impedance of the first field effect transistor and the inductance are switched from a certain resonance frequency band to another resonance frequency band, so as to achieve switching of multiple frequency bands. > 2 6. The electronic circuit of the multi-band amplifier according to item 25 of the patent application range, wherein the change of the first field effect transistor bias is the change of the current bias. 27. The electronic circuit of the multi-band amplifier according to item 25 of the patent application range, wherein the change of the first field transistor bias is a change of the voltage bias. 28. The electronic circuit of the multi-band amplifier according to item 26 of the patent application, wherein the change of the current bias is the change of the drain-source current bias. 29. The electronic circuit of the multi-band amplifier according to item 27 of the patent application, wherein the change of the voltage bias is the change of the gate voltage bias. 第23頁Page 23
TW91135334A 2002-12-05 2002-12-05 A multi-band electronic circuit TW578365B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW91135334A TW578365B (en) 2002-12-05 2002-12-05 A multi-band electronic circuit
US10/723,130 US6949979B2 (en) 2002-12-05 2003-11-26 Designing methods and circuits for multi-band electronic circuits
JP2003405913A JP2004187304A (en) 2002-12-05 2003-12-04 Method of design and electric circuit for multi-band electronic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91135334A TW578365B (en) 2002-12-05 2002-12-05 A multi-band electronic circuit

Publications (2)

Publication Number Publication Date
TW578365B true TW578365B (en) 2004-03-01
TW200410482A TW200410482A (en) 2004-06-16

Family

ID=32847441

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91135334A TW578365B (en) 2002-12-05 2002-12-05 A multi-band electronic circuit

Country Status (1)

Country Link
TW (1) TW578365B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416586A (en) * 2020-04-03 2020-07-14 杭州易百德微电子有限公司 Load structure and radio frequency amplifier formed by same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416586A (en) * 2020-04-03 2020-07-14 杭州易百德微电子有限公司 Load structure and radio frequency amplifier formed by same

Also Published As

Publication number Publication date
TW200410482A (en) 2004-06-16

Similar Documents

Publication Publication Date Title
US8422981B2 (en) Multi-band low noise amplifier and multi-band radio frequency receiver including the same
US6674337B2 (en) Concurrent multi-band low noise amplifier architecture
TWI320994B (en) Low noise amplifier, method for amplifying a radio frequency signal and radio frequency receiver system
TWI225332B (en) Multi-band low noise amplifier
CN101951230B (en) Broadband low noise amplifier
TWI224418B (en) Multi-band low-noise amplifier
US6949979B2 (en) Designing methods and circuits for multi-band electronic circuits
CN115913142B (en) Radio frequency push-pull power amplifier chip and radio frequency front-end module
WO2019233217A1 (en) Reconfigurable, low-power consumption and low-cost receiver front-end supporting multi-band and multi-mode
Slimane et al. A 0.9-V, 7-mW UWB LNA for 3.1–10.6-GHz wireless applications in 0.18-μm CMOS technology
Kargaran et al. Design of a novel dual-band concurrent CMOS LNA with current reuse topology
Chen et al. A wideband LNA based on current-reused CS-CS topology and gm-boosting technique for 5G application
Tran et al. A 2.4 GHz ultra low-power high gain LNA utilizing π-match and capacitive feedback input network
Tsang et al. Dual-band sub-1 V CMOS LNA for 802.11 a/b WLAN applications
TWI252632B (en) Multi-band RF receiver
Slimane et al. A reconfigurable inductor-less CMOS low noise amplifier for multi-standard applications
TW578365B (en) A multi-band electronic circuit
Kumar et al. Design of current reuse based differential merged lna-mixer (dmlnam) and two-stage dual band lna with two gain modes in 65nm technology
Tiebout et al. LNA design for a fully integrated CMOS single chip UMTS transceiver
Wei et al. A low-power ultra-compact CMOS LNA with shunt-resonating current-reused topology
TW588512B (en) An impedance matching method and circuits designed by this method
TW578368B (en) A concurrent multi-band electronic circuit
Hung et al. A 2–6GHz broadband CMOS low-noise amplifier with current reuse topology utilizing a noise-shaping technique
TW584984B (en) A multi-band electronic circuit
Xing et al. A 0.9/1.8/2.4 GHz-reconfigurable LNA with Inductor and Capacitor Tuning for IoT Application in 65nm CMOS

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees