TW584984B - A multi-band electronic circuit - Google Patents
A multi-band electronic circuit Download PDFInfo
- Publication number
- TW584984B TW584984B TW91136641A TW91136641A TW584984B TW 584984 B TW584984 B TW 584984B TW 91136641 A TW91136641 A TW 91136641A TW 91136641 A TW91136641 A TW 91136641A TW 584984 B TW584984 B TW 584984B
- Authority
- TW
- Taiwan
- Prior art keywords
- transistor
- terminal
- electronic circuit
- item
- band
- Prior art date
Links
Landscapes
- Amplifiers (AREA)
Abstract
Description
584984 玖Y發明說明 齡 (發明說明應敘明··發明所屬之技術領域、先前技術、內容、實施方式及圖式簡單說明) 【發明所屬之技術領域】 本發明係有關於一種新的多頻段電子電路(a mu丨ti-band electronic circuit )及其 設計方法。特別是一種利用電晶體輸出端與輸入端間回授電容之改變而達成頻段切換乂 放大器及其設計方法。 ' 【先前技術】 無線通訊產業已演進至多種標準/多種服務之境地,例如無線區域網路(Wireless584984 玖 Y description age of invention (the description of the invention should be stated ... the technical field to which the invention belongs, the prior art, the content, the embodiments, and the drawings are briefly explained) [Technical field to which the invention belongs] The present invention relates to a new multi-band Electronic circuit (a muti-band electronic circuit) and design method thereof. In particular, a change in feedback capacitance between the output end and the input end of a transistor is used to achieve a frequency band switching amplifier and a design method thereof. '' [Previous technology] The wireless communication industry has evolved to a state of multiple standards / multiple services, such as wireless local area networks (Wireless
Local Area Network,WLAN)使用 2.4 GHz,5.2 GHz,5·7 GHz 頻段、GSM 行動電 話使用 0·9 GHz,1·8 GHz,1.9 GHz 頻段、而全球定位系統(G丨obal P〇siti〇n System GPS)使用1·5 GHz頻段。因此最好能將多種標準整合在同一收發機晶片中,亦即 要能設計製作出多頻段收發機。設計多頻段收發機最主要的挑戰,在於增進通訊收 發機的功能之同時,能使用最少額外之電路。 S知0又&十多頻段收發機中的低雜訊放大器之策略是,針對某一頻段就設計符合該頻 段的低雜訊放大器。換言之,要設計能使用〇·9 GHz,1.8 GHz,1.9 GHz頻段之三頻收發 機,就須ό又广二組低雜訊放大器以因應三種不同頻率。因此在設計低雜訊放大器時,與 其相關的增益、雜訊指數(Noise Figure)、輸入阻抗及輸出阻抗,都是對某一特定頻段 來做設計。如此一來,多頻段收發機之整個電路的面積及功率消耗,都要比單頻段收發 機大許多。以第一圖所示習知整合多頻段應用之超外差式(superheter〇dyne)接收機 為例:從天線100、頻段選擇濾波器101、低雜訊放大器1〇3、鏡像消除濾波器1〇4到頻 道選擇濾波器107,為應用頻段一之獨立接收路徑。從天線1〇9、頻段選擇濾波器11〇、 低雜訊放大器112、鏡像消除濾波器113到頻道選擇濾波器116,為應用頻^二之獨立 接收路徑。從天線118、頻段選擇濾波器119、低雜訊放大器121、鏡像消除濾波器122 到頻道選擇濾波器125,為應用頻段三之獨立接收路徑。 ^應用頻段一之獨立接收路徑來做說明,訊號由天線1〇〇接收進來之後,先經 過頻及選擇濾波器101來濾除應用頻段一以外之頻段,然後再經由下一級之低雜訊 放大器103來放大訊號且減低雜訊的增加。再接下來由鏡像消除濾波器1〇4來消除 鏡像頻率處的雜訊,經降頻後,由頻道選擇濾波器1〇卞挑選應用頻段一中的某一頻 道。接下來是應用頻段一、應用頻段二及應用頻段三共用之電路部份,訊號在確認 為某一應用頻段之後,再降頻並利用類比-數位轉換器128來將訊號數位化,最後由 數位訊號處理129來處理已數位化之訊號。 由以上之敘述可知,在整合多頻段應用之接收機時,傳統的做法是將各頻段應 用電路分別設計’再全部放在一起。而接收機中的關鍵電路低雜訊放大器,也須要 針對不同頻段而設計。這樣一來整個電路的面積及功率消耗勢必大大增加 。在以往 所發表的論文中,對於整合多頻段應用的電路,都是採用這樣子的做法(亦即,使 用不同低雜訊放大器來處理不同頻段),可參照·· 士 一、T· Antes 氏和 C. Conkling 氏在 1996 年十二月於 Microwave RF 上發表 之論文· “RF chip set fits multimode cellular/PCS handsets,,,。 “ 二、S· Wu氏和Β· Razavi氏在1998年十二月於IEEE JSSC上發表之論文: A 900_MHz/1.8-GHz CMOS receiver for dual-band applications,,,。 [J續次頁(發明說明頁不敷使用時,請註記並使用續頁 7 發明說明_頁 三、R· Magoon 氏,I· Koullias 氏,L· Steigerwald 氏,W· Domino 氏,Ν· Vakillian 氏,Ε· Ngompe 氏,Μ· Damgaard 氏,Κ· Lewis,和 A· Molna 氏在 2001 年二月於 ISSCC Digest of Technical papers 上發表之論文:“A triple-band 900/1800/1900 MHz low-power image-reject front-end for GSM,’’ 。 四、Κ· L· Fong 氏在 1999 年二月於 ISSCC Digest of Technical papers 上發 表之論文· Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications,” 〇 最近 H· Hashemi 氏和 A· Hajimiri 氏在 2002 年一月於 IEEE Transactions on Microwave Theory and Techniques 上發表之論文:“Concurrent Miiltiband Low-Noise Amplifiers-Theory,Design,and Applications,’’ 乃使用同一低雜訊放大器 來處理多頻段之訊號。此種多頻段的低雜訊放大器由於可以使用同一低雜訊放大器 滿足不同頻段的要求,所以在多頻段應用的整合上,可以簡化收發機的設計(不須 要設計多個不同的低雜訊放大器)。這樣一來也可以縮小整個系統電路的面積並減少 消耗功率,而面積的縮小及消耗功率的減少,對於電路的商品化是非常有利的。 H· Hashemi氏和A· Hajimiri氏所提出之低雜訊放大器的設計方法不同於傳統 低雜訊放大器之設計方法。關於習知低雜訊放大器的設計方法,請參照第二圖。其 乃利用源極電感207產生輸入阻抗匹配所需之電阻(通常為5〇歐姆),再利用電感 201,使其與看入閘極端之總輸入電容達成共振於所欲頻段。輸出端處則使用電感 204和電容208所構成的共振腔,選擇出所欲之頻段。 而關於上$H· Hashemi氏和A· Hajimiri氏所提出的多頻段低雜訊放大器的設計方 法,請參照第三圖。在輸入端處,除了使用習知可產生輸入阻抗匹配所需之電阻(通常 為50歐姆)的電感310及可達成共振於所欲頻段之電感304外,其又增設了並聯組合 之電感307及電容306。目的在於增加另一共振頻率,達成多頻段輸入匹配之功能。在 輸出端處’除了使用習知由電感312及電容313所組成之並聯共振腔外,亦增設了串聯 組合之電感301及電谷302。目的也在於增加另一共振頻率,達成選擇所欲多頻段之功 能。簡言之H· Hashemi氏和A· Hajimiri氏乃以增加電感及電容之數量來達成多頻段應 用之功能。這樣子的設計方法有不少缺點。 ^ 首先’此d又计一共用了五個電感(即電感3〇1、電感304、電感307、電感310 和電感312,其中電感301和電感304為晶片外的電感)和三個電容(包括電容3〇2、 電容306和電容313,其中電容302為晶片外的電容),比起傳統低雜訊放大器的設 計(請參考第二圖,具三個晶片上的電感:201、204、207和一個晶片上的電容: 208)要多了兩個電感和兩個電容。由於電感、電容數目的增加,甚至使用到晶片外 的電感、電容(比在晶片上的電感、電容面積要大很多)。整個電路的面積變得很大, 而且沒有辦法將整個設計整合於同一晶片上。晶片外之電感及電容須額外之打線及 配線,增加成本且降低可靠度,這對於積體電路的量產和商品化是相當不利的二在 設計低雜訊放大器的時候,通常會儘量減少電感的使用,一來是因為電感所佔面積 很大’一來是在晶片上的電感其品質因子(Qualify Factor)不高,會造成雜訊浐數 的劣化。所以在設計低雜訊放大器時,一般是要儘量避免使用電感。而H H^ 氏和A· Hajimiri氏所提出的方法卻是增加電感的使用。 因此非常需要有-種不增加電感使用數量且不需額外打線,但仍能處s多頻段的放 大器。 8 續次頁(發明說明頁不敷使用時,請註記並使用續頁 584984Local Area Network (WLAN) uses 2.4 GHz, 5.2 GHz, 5.7 GHz frequency bands, GSM mobile phones use 0.9 GHz, 1.8 GHz, 1.9 GHz frequency bands, and Global Positioning System (G 丨 ob System GPS) uses the 1.5 GHz band. Therefore, it is better to integrate multiple standards in the same transceiver chip, that is, to design and manufacture a multi-band transceiver. The main challenge in designing a multi-band transceiver is to improve the capabilities of the communications transceiver while using a minimum of extra circuitry. The strategy of low noise amplifiers in more than ten band transceivers is to design a low noise amplifier that meets that frequency band for a certain frequency band. In other words, to design a tri-band transceiver that can use the 0.9 GHz, 1.8 GHz, and 1.9 GHz bands, two more low-noise amplifiers are needed to respond to three different frequencies. Therefore, when designing a low-noise amplifier, the related gain, noise figure, input impedance, and output impedance are all designed for a specific frequency band. As a result, the area and power consumption of the entire circuit of the multi-band transceiver is much larger than that of the single-band transceiver. Take the conventional superheterodyne receiver with integrated multi-band applications shown in the first figure as an example: antenna 100, frequency band selection filter 101, low noise amplifier 103, and image cancellation filter 1 〇4 to the channel selection filter 107 is an independent receiving path of the application frequency band 1. From the antenna 10, the band selection filter 11, the low noise amplifier 112, the image removal filter 113 to the channel selection filter 116, it is an independent receiving path for the application frequency. From the antenna 118, the band selection filter 119, the low noise amplifier 121, the image removal filter 122 to the channel selection filter 125, it is an independent receiving path for the application frequency band three. ^ The independent receiving path of frequency band 1 is used for explanation. After the signal is received by antenna 100, it first passes the frequency and selection filter 101 to filter out the frequency band other than the application frequency band 1, and then passes through the low noise amplifier of the next stage. 103 to amplify the signal and reduce the increase in noise. Next, the image noise filter 104 removes noise at the image frequency. After the frequency is reduced, the channel selection filter 10 卞 selects one of the application frequency bands. The next part is the circuit shared by the application frequency band 1, the application frequency band 2, and the application frequency band 3. After confirming the signal as an application frequency band, the frequency is reduced and the analog-to-digital converter 128 is used to digitize the signal. The signal processing 129 processes a digitized signal. As can be seen from the above description, when integrating receivers for multi-band applications, the traditional approach is to design the application circuits of each band separately and then put them all together. The low-noise amplifier for the key circuits in the receiver must also be designed for different frequency bands. In this way, the area and power consumption of the entire circuit will inevitably increase. In the previously published papers, for integrated circuits of multi-band applications, this method is adopted (that is, different low-noise amplifiers are used to handle different frequency bands). You can refer to Shi Yi, T. Antes And C. Conkling's paper published on Microwave RF in December 1996 · "RF chip set fits multimode cellular / PCS handsets,". II. S. Wu's and Β Razavi's in December 1998 Paper published on IEEE JSSC: A 900_MHz / 1.8-GHz CMOS receiver for dual-band applications. [J Continuation Page (Inventive Description Page is insufficient, please note and use Continued Page 7 Invention Description_Page 3, R. Magoon, I. Koullias, L. Steigerwald, W. Domino, N. Vakillian , E. Ngompe, M. Damgaard, K. Lewis, and A. Molna, published in the February 2001 issue of ISSCC Digest of Technical papers: "A triple-band 900/1800/1900 MHz low- power image-reject front-end for GSM, ". 4. The paper published by KK L. Fong on ISSCC Digest of Technical papers in February 1999. Dual-band high-linearity variable-gain low-noise amplifiers. for wireless applications, "〇 A recent paper by H. Hashemi and A. Hajimiri on IEEE Transactions on Microwave Theory and Techniques in January 2002:" Concurrent Miiltiband Low-Noise Amplifiers-Theory, Design, and Applications, ' '' The same low-noise amplifier is used to process multi-band signals. This kind of multi-band low-noise amplifier can be satisfied by using the same low-noise amplifier. The requirements of the same frequency band, so in the integration of multi-band applications, the design of the transceiver can be simplified (no need to design multiple different low-noise amplifiers). This can also reduce the area of the entire system circuit and reduce power consumption, The reduction in area and reduction in power consumption is very advantageous for the commercialization of circuits. The design method of low noise amplifiers proposed by H. Hashemi and A. Hajimiri is different from that of traditional low noise amplifiers. For the design method of the conventional low-noise amplifier, please refer to the second figure. It uses the source inductor 207 to generate the resistance (usually 50 ohms) required for input impedance matching, and then uses the inductor 201 to make it look like The total input capacitance of the gate terminal achieves resonance at the desired frequency band. At the output end, a resonant cavity formed by the inductor 204 and the capacitor 208 is used to select the desired frequency band. About $ H · Hashemi's and A · Hajimiri's For the design method of multi-band low noise amplifier, please refer to the third figure. At the input end, in addition to the conventional inductor 310 which can generate the resistance (usually 50 ohms) required for input impedance matching and the inductor 304 which can reach the desired frequency band, it also adds a parallel combination inductor 307 and Capacitance 306. The purpose is to add another resonance frequency to achieve the function of multi-band input matching. At the output terminal, in addition to the conventional parallel resonant cavity composed of an inductor 312 and a capacitor 313, a series combination inductor 301 and a valley 302 are also added. The purpose is also to increase another resonance frequency to achieve the function of selecting the desired multiple frequency bands. In short, H. Hashemi's and A. Hajimiri's use multi-band applications by increasing the number of inductors and capacitors. There are many disadvantages to this design approach. ^ First, 'd' counts another five inductors (ie, inductor 301, inductor 304, inductor 307, inductor 310, and inductor 312, where inductor 301 and inductor 304 are off-chip inductors) and three capacitors (including Capacitor 302, capacitor 306, and capacitor 313, of which capacitor 302 is an off-chip capacitor. Compared with the design of a traditional low-noise amplifier (please refer to the second figure, it has the inductance on three chips: 201, 204, 207). And capacitors on one chip: 208) Two more inductors and two capacitors are required. Due to the increase in the number of inductors and capacitors, even inductors and capacitors outside the chip are used (much larger than the area of the inductors and capacitors on the chip). The area of the entire circuit becomes large, and there is no way to integrate the entire design on the same chip. The inductors and capacitors outside the chip must be wired and wired extraly, which increases costs and reduces reliability. This is very detrimental to the mass production and commercialization of integrated circuits. When designing low-noise amplifiers, the inductance is usually minimized. One reason is that the inductor occupies a large area. One is that the inductor on the chip has a low Qualify Factor, which will cause the noise to deteriorate. Therefore, when designing a low noise amplifier, it is generally necessary to avoid the use of inductors as much as possible. The method proposed by H H ^ and A · Hajimiri is to increase the use of inductance. Therefore, there is a great need for an amplifier that does not increase the number of inductors and does not require additional wiring, but can still handle s multi-band amplifiers. 8 Continued pages (When the invention description page is insufficient, please note and use the continuation page 584984
【內容】 本發明之目的在提供一種多頻段放大器及其設計方法,僅蚀田留 達成頻段之輸人阻抗匹配’而且不增加電感使用數量,也不需額外打’可 曰私ΐ 加電感使用數量,也不要額外打線1己線,本發明提中雙接雷 曰曰體或異質接面雙極電晶體(Bip〇lar juncti〇n 丁⑺如对 、[Content] The purpose of the present invention is to provide a multi-band amplifier and a design method thereof, which can only match the impedance of the input impedance of the field to the field, and does not increase the number of inductors used, and does not need to be added. Quantity, do n’t wire 1 extra line, the invention refers to the double-connected body or hetero-junction bipolar transistor (Bip〇lar juncti〇n Ding Yiru,
TransistGr)的基極與集極間再電性連接電容可變之 = = 連接電容可變之元件,以改變電晶體輪 雙極電基閘極)所相的電容,而達職率之改變。以 雙極電B0體為例,看人基極端之總輸人電容,含有基極 ,其乃由基極-集極電容所造成)。於此基極端電性 輸感可共振於所欲之頻率。當改變基極與集極_外電性連接i ίίΐ變兀件的電谷值時,就可以改變看入基極端之總輸入電容。這樣子一來,由看入 與敵賊顺紅輸人料碰,料振鮮亦會ϊ之 = 於本發明乃於基極與集極間(或閘極與汲極間)電性連接電容 電晶體基極(或閘極)端會看到此電容被放大,因此基極與集 極間(或閘極與汲極間)所電性連接的電容性元件之電容值 。所以相對於習知技藝’本創作不需增加電感,2“2成以§= 小即故續增面積亦小。又本創作不要額物線,整個電路乃製作於單一晶片上。 徵,和優點能更明顯易僅,下文特舉較佳實 【實施方式】 兹 參閱第四圖,其乃本創作具2.4/ 5.2/ 5.7 GHz多頻段處理功能之實施例的電路 圖。,此電路中我們雖使用雙極電晶體,但使用場效電晶體也可以。第一電阻4〇7 與第一電阻412均為300歐姆;第三電阻410為6〇〇歐姆;直流阻隔/交流麵合電容 409為3pF ;該第一電晶體408與第二電晶體413射極面積均為12.18平方微米。製 程採iSMC 0. 35um SiGe BiCMOS製程。在此多頻段低雜訊放大器中,我們將一串聯 組合之一切換開關403及一電容器415電性連接於放大器中第一級電晶體408基極 端與集極端之間。藉由此切換開關之導通與否,來改變看入第一級電晶體基極端之 總輸入電容CIN。CIN和接在基極上的電感404,構成了達成輸入阻抗匹配的共振腔。 當切換開關403不導通,即切換開關403為斷路時,此時在本實施例中接在基極上 的電感404與看入第一級電晶體基極端之總輸入電容qn組成之共振腔可達成在5.2/ 5.7 GHz (WLAN無線區域網路IEEE 802.11a)的輸入阻抗匹配。當切換開關403 導通,即切換開關403接近短路時,第一級電晶體基極端與集極端之間因多並聯了 一個電容器415,故看入第一級電晶體基極端之總輸入電容cIN增大,從而接在基極 上的電感404與看入第一級電晶體基極端之總輸入電容c1N組成之共振腔可達成在 2·4 GHz (WLAN無線區域網路IEEE 802.11b)的輸入阻抗匹配。在輸出端414部 份,我們使用了回授電阻410達成輸出阻抗匹配。在不需輸出阻抗匹配的情況下(例 如zero-IF或low-IF接收機情況下),可不用回授電阻410達成輸出阻抗匹配。電 阻407及電阻412為分別為第一級電晶體及第二級電晶體之負載。本實施例雖用電 阻為負載,視需要使用電感或電容負載亦是可以的。重點是輸入端能達成多頻段阻 續次頁(發明說明頁不敷使用時,請註記並使用續頁 發明說明_胃 抗匹配。由於我們只使用了一個電感404,而且是製作在晶片上的電感,因此不但 整個電路可以完全在單一晶片上實現,而且電路的面積非常小。這對於商品化非常 有利。 有關此多頻段低雜訊放大器在增益及輸入阻抗匹配程度上的表現,請參照第五 及第七圖。在操作條件一下(即切換開關斷路的情況下),此多頻段低雜訊放大器在 5.2/5.7GHZ的增益(散射參數Su)達到了 22dB和20dB (參照第五圖),而在操 作條件二下(即切換開關導通的情況下),此多頻段低雜訊放大器在2·4 GHz的增益 (散射參數S^)達到了 23dB (參照第七圖)。在操作條件一下(即切換開關斷路 的情況下),此多頻段低雜訊放大器對於輸入阻抗的匹配程度(通常以散射參數中輸TransistGr) The electric capacity between the base and the collector is electrically variable. = = The component with variable capacitance is connected to change the capacitance of the transistor wheel (bipolar electric base gate), and the duty ratio changes. Take the bipolar electric B0 body as an example, look at the total input capacitance of the human base terminal, which contains the base electrode, which is caused by the base-collector capacitor). At this base, the electrical transmission inductance can resonate at the desired frequency. When changing the base value of the base and collector _ external electrical connection i ΐ ΐ 兀 ΐ, the total input capacitance seen into the base terminal can be changed. In this way, by looking into the enemy ’s favor, you will lose the chance to see it. In the present invention, the capacitor is electrically connected between the base and the collector (or between the gate and the drain). The capacitor's base (or gate) end will see this capacitance being amplified, so the capacitance value of the capacitive element that is electrically connected between the base and the collector (or between the gate and the drain). Therefore, compared to the conventional art, this creation does not need to increase the inductance, and 2 "20% is smaller than § = which means that the area is also increased. Also, this creation does not require an object line. The entire circuit is made on a single chip. The advantages can be more obvious and easy to implement. [Embodiment] Please refer to the fourth figure, which is a circuit diagram of this embodiment of the 2.4 / 5.2 / 5.7 GHz multi-band processing function. A bipolar transistor is used, but a field-effect transistor is also possible. The first resistor 407 and the first resistor 412 are both 300 ohms; the third resistor 410 is 600 ohms; the DC blocking / AC planar capacitor 409 is 3pF; the emitter area of the first transistor 408 and the second transistor 413 are 12.18 square micrometers. The manufacturing process is iSMC 0.35um SiGe BiCMOS process. In this multi-band low noise amplifier, we will combine one of them in series. The switch 403 and a capacitor 415 are electrically connected between the base terminal and the collector terminal of the first-stage transistor 408 in the amplifier. By turning on or off the switch, the total of the first-stage transistor base terminal can be changed. Input capacitor CIN. CIN and The inductor 404 on the pole constitutes a resonant cavity to achieve input impedance matching. When the switch 403 is not conductive, that is, the switch 403 is open, at this time, the inductor 404 connected to the base in this embodiment and the first stage are seen. The resonant cavity composed of the total input capacitance qn at the base of the transistor can achieve input impedance matching at 5.2 / 5.7 GHz (WLAN wireless local area network IEEE 802.11a). When the switch 403 is turned on, that is, when the switch 403 is close to a short circuit, the first Since one capacitor 415 is connected in parallel between the base terminal and the collector terminal of the first-stage transistor, the total input capacitance cIN seen from the base terminal of the first-stage transistor is increased, so that the inductance 404 connected to the base terminal and the first The resonant cavity composed of the total input capacitance c1N of the base of the transistor is able to achieve input impedance matching at 2.4 GHz (WLAN wireless area network IEEE 802.11b). At the output 414 part, we use a feedback resistor 410 Achieve output impedance matching. Without output impedance matching (such as zero-IF or low-IF receiver), output impedance matching can be achieved without feedback resistor 410. Resistor 407 and resistor 412 are divided It is the load of the first-level transistor and the second-level transistor. Although the resistor is used as the load in this embodiment, it is also possible to use an inductive or capacitive load as needed. The point is that the input can achieve multi-band resistance. When the instruction sheet is not enough, please note and use the continuation invention description_gastric impedance matching. Since we only use one inductor 404, and the inductor is made on a chip, not only the entire circuit can be completely implemented on a single chip, And the circuit area is very small. This is very advantageous for commercialization. For the performance of this multi-band low-noise amplifier in terms of gain and input impedance matching, please refer to the fifth and seventh figures. Under the operating conditions (that is, when the switch is disconnected), the gain (scattering parameter Su) of this multi-band low-noise amplifier reaches 22dB and 20dB at 5.2 / 5.7GHZ (refer to the fifth figure). Under the condition that the switch is turned on, the gain (scattering parameter S ^) of this multi-band low-noise amplifier reaches 23dB at 2.4 GHz (refer to the seventh figure). Under the operating conditions (that is, when the switch is open), the degree of matching of this multi-band low-noise amplifier to the input impedance (usually based on the scattering parameters).
入折返損耗input return loss Sn來表示),5.15 GHz和5.35GHz之間皆低於—20 dB 以下(愈低愈好)’在5.725 GHz和5.825 GHz之間皆低於-16 dB以下(愈低愈好)。 在操作條件二下(即切換開關導通的情況下),此多頻段低雜訊放大器對^輸^阻抗 的匹配程度(Su),在2.4GHz和2.5GHz之間皆低於-22 dB以下(愈低愈好)。 ^有關此多頻段低雜訊放大器在雜訊指數上的表現,請參照第六圖及第八圖。在 操作條件一下(即切換開關斷路的情況下),此多頻段低雜訊放大器在5.2/5.7GHz 雜訊指數分別為2.75dB和3.0dB (愈低愈好),而在操作條件二下(即切換開關導 通的情況下),在2.4〇112的雜訊指數為2.6118(愈低愈好)。一般對於802.113及 802.11b無線區域網路(WLAN)之應用而言,低雜訊放大器之雜訊指數只要低於5 dB即可,輸入(輸出)折返損耗小於一 10dB即可,增益大於1〇dB即可。因此我 們可以說,根據本創作之實施例:2.4/5.2/5.7GHz多頻段低雜訊放大器,其有關於 ,益、雜訊指數、輸入阻抗匹配程度上的表現,在2.4 GHz、5.2 GHz和5.7 GHz 二個頻段下都有相當好的實施結果。又,如要使輸入折返損耗inputreturnl〇ssSii 更低’可使第一級雙極電晶艘之射極不直接接地,而是射極接上一個電感之一端, 電感另一端再接地。 相較於習知的多頻段低雜訊放大器,本創作僅使用單一放大器即可達成多種頻 段之輸入阻抗匹配,既不增加電感數量,也不會大幅增大所佔面積,更不需額外打 ,。本實施例雖然是於電晶體輸出及輸入端間電性連接一串聯組合之切換開關與電 容,但是使用一可變電容器也是可以的。事實上本發明之主要技術内容,將於2〇〇3 年二月之International Solid State Circuit Conference中發表。此會議乃電路會議中 最頂級的會議。 綜上所述,當知本案所創作之多頻段電子電路已具有產業利用性、新穎性與進步 =,符合發明專利要件。惟以上所述者,僅為本創作之一較佳實施例而已,並非用來限 定本創作實施之範圍。即凡依本創作申請專利範圍所做的均等變化與修飾,皆為本創作 專利範圍所涵蓋。 【圖式簡單說明】 各圖意義如下: 第一圖為習知為了多頻段應用所採之多頻段收發機整合方法 第二圖為習知低雜訊放大器之電路圖 第三圖為H.Hashemi氏和A.Hajimiri氏所發表之多頻段低雜訊放大器的電路圖 二]續次頁(發明說明頁不敷使用時,請註記並使用續頁 584984 發明說明續頁 第四圖為本創作實施例(2.4/5.2/5.7GHz多頻段低雜訊放大器)的電路圖 第五圖為本創作實施例(2·4/ 5·2/ 5.7 GHz多頻段低雜訊放大器)在操作條件一 下功率增益及輸入折返損耗對頻率的特性 第六圖本創作實施例(2.4/ 5.2/ 5.7 GHz多頻段低雜訊放大器)在操作條件一下 雜訊指數對頻率的特性 第七圖為本創作實施例(2.4/ 5.2/5.7 GHz多頻段低雜訊放大器)在操作條件二 下功率增益及輸入折返損耗對頻率的特性 第八圖為本創作實施例(2.4/5.2/5.7GHz多頻段低雜訊放大器)在操作條件二 下雜訊指數對頻率的特性 m mInput return loss Sn), between 5.15 GHz and 5.35 GHz are below -20 dB (lower is better) 'Between 5.725 GHz and 5.825 GHz are below -16 dB (lower The better). Under operating condition two (that is, when the switch is turned on), the matching degree (Su) of this multi-band low-noise amplifier to the input impedance is below -22 dB between 2.4GHz and 2.5GHz ( The lower the better). ^ For the performance of this multi-band low noise amplifier on the noise index, please refer to Figures 6 and 8. Under the operating conditions (ie, when the switch is disconnected), the noise index of this multi-band low-noise amplifier is 2.75dB and 3.0dB (the lower the better) at 5.2 / 5.7GHz, and under the second operating condition ( That is, when the switch is turned on), the noise index at 2.40.112 is 2.6118 (the lower the better). Generally for 802.113 and 802.11b wireless local area network (WLAN) applications, the noise index of the low-noise amplifier is only required to be less than 5 dB, and the input (output) foldback loss is less than 10 dB, and the gain is greater than 10. dB is enough. Therefore, we can say that according to the embodiment of this creation: 2.4 / 5.2 / 5.7GHz multi-band low-noise amplifier, its performance in terms of gain, noise index, and input impedance matching is 2.4 GHz, 5.2 GHz, and Both 5.7 GHz have fairly good implementation results in both bands. Moreover, if the input return loss inputreturn10ssSii is to be lowered ', the emitter of the first-stage bipolar transistor is not directly grounded, but the emitter is connected to one end of an inductor, and the other end of the inductor is then grounded. Compared with the conventional multi-band low-noise amplifier, this creation uses only a single amplifier to achieve input impedance matching in multiple frequency bands. It does not increase the number of inductors, nor does it increase the occupied area significantly. . Although a series-connected switch and capacitor are electrically connected between the transistor output and input terminals in this embodiment, a variable capacitor is also possible. In fact, the main technical content of the present invention will be published in the International Solid State Circuit Conference in February 2003. This conference is the top conference of circuit conferences. In summary, it is known that the multi-band electronic circuit created in this case has industrial applicability, novelty, and progress, which meets the requirements of invention patents. However, the above is only a preferred embodiment of this creation, and is not intended to limit the scope of implementation of this creation. That is to say, all equal changes and modifications made in accordance with the scope of the patent application for this creation are covered by the scope of this creation patent. [Schematic description] The meanings of the diagrams are as follows: The first diagram is a conventional multi-band transceiver integration method used for multi-band applications. The second diagram is a circuit diagram of a conventional low-noise amplifier. The third diagram is H.Hashemi's. And A. Hajimiri ’s multi-band low-noise amplifier circuit diagram 2] Continued page (When the invention description page is not enough, please note and use the continuation page 584984 Invention description Continued The fourth figure is the creative embodiment ( 2.4 / 5.2 / 5.7GHz multi-band low-noise amplifier) circuit diagram The fifth figure is the creative example (2 · 4/5 · 2 / 5.7 GHz multi-band low-noise amplifier) under operating conditions. Power gain and input foldback Characteristics of loss vs. frequency Figure 6 This creative example (2.4 / 5.2 / 5.7 GHz multi-band low-noise amplifier) shows the characteristics of noise index vs. frequency under operating conditions. Figure 7 shows this creative example (2.4 / 5.2 / 5.7 GHz multi-band low noise amplifier) under operating condition two Power gain and input foldback loss vs. frequency characteristics The eighth figure is the creative example (2.4 / 5.2 / 5.7GHz multi-band low noise amplifier) under operating condition two Noise index frequency Characteristic m m
圖式中之參照號數 100天線 103低雜訊放大器 106本地振盪訊號 109天線 112低雜訊放大器 115本地振盪訊號 118天線 121低雜訊放大器 124本地振盪訊號 127中頻訊號 200輸入端 203電壓源 206電晶體 209輸出端 302電容 305襯墊 308場效電晶體 312電感 101頻段選擇濾波器 104鏡像消除濾波器 107頻道選擇濾波器 110頻段選擇濾波器 113鏡像消除濾波器 116頻道選擇濾波器 119頻段選擇濾波器 122鏡像消除濾波器 125頻道選擇濾波器 128類比-數位轉換器 201電感 204電感 207電感 300輸入端 303偏壓 306電容 309場效電晶體 313電容 102帶通濾波器 105帶通濾波器 108帶通濾波器 111帶通濾波器 114帶通濾波器 117帶通濾波器 120帶通濾波器 123帶通濾波器 126帶通濾波器 129數位訊號處理 202偏壓 205電晶體 208電容 301電感 304打線電感 307電感 310電感 314輸出端Reference number in the drawing 100 antenna 103 low noise amplifier 106 local oscillation signal 109 antenna 112 low noise amplifier 115 local oscillation signal 118 antenna 121 low noise amplifier 124 local oscillation signal 127 intermediate frequency signal 200 input 203 voltage source 206 transistor 209 output 302 capacitor 305 pad 308 field effect transistor 312 inductor 101 band selection filter 104 mirror elimination filter 107 channel selection filter 110 band selection filter 113 mirror elimination filter 116 channel selection filter 119 frequency band Selection filter 122 Mirror elimination filter 125 Channel selection filter 128 Analog-to-digital converter 201 inductor 204 inductor 207 inductor 300 input 303 bias 306 capacitor 309 field effect transistor 313 capacitor 102 band-pass filter 105 band-pass filter 108 band-pass filter 111 band-pass filter 114 band-pass filter 117 band-pass filter 120 band-pass filter 123 band-pass filter 126 band-pass filter 129 digital signal processing 202 bias voltage 205 transistor 208 capacitor 301 inductor 304 Wiring inductance 307 inductance 310 inductance 314 output terminal
續次頁(發明說明頁不敷使用時,請註記並使用續頁Continued pages (If the invention description page is insufficient, please note and use the continuation page
584984 發明說明_頁 400輸入端 401電流源 403電子式切換開關 404電感 406電壓源 409電容 412電阻 415電容 407電阻 410電阻 413電晶體 402電容 405集極電流 408電晶體 411電源 414輸出端584984 Description of the invention_page 400 input 401 current source 403 electronic switch 404 inductor 406 voltage source 409 capacitor 412 resistor 415 capacitor 407 resistor 410 resistor 413 transistor 402 capacitor 405 collector current 408 transistor 411 power supply 414 output
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91136641A TW584984B (en) | 2002-12-19 | 2002-12-19 | A multi-band electronic circuit |
US10/723,130 US6949979B2 (en) | 2002-12-05 | 2003-11-26 | Designing methods and circuits for multi-band electronic circuits |
JP2003405913A JP2004187304A (en) | 2002-12-05 | 2003-12-04 | Method of design and electric circuit for multi-band electronic circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91136641A TW584984B (en) | 2002-12-19 | 2002-12-19 | A multi-band electronic circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
TW584984B true TW584984B (en) | 2004-04-21 |
TW200412023A TW200412023A (en) | 2004-07-01 |
Family
ID=34058063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91136641A TW584984B (en) | 2002-12-05 | 2002-12-19 | A multi-band electronic circuit |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW584984B (en) |
-
2002
- 2002-12-19 TW TW91136641A patent/TW584984B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200412023A (en) | 2004-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6949979B2 (en) | Designing methods and circuits for multi-band electronic circuits | |
US6917815B2 (en) | Concurrent dual-band receiver architecture | |
US6674337B2 (en) | Concurrent multi-band low noise amplifier architecture | |
TWI224418B (en) | Multi-band low-noise amplifier | |
JP4896996B2 (en) | RF amplifier | |
Tsang et al. | Dual-band sub-1 V CMOS LNA for 802.11 a/b WLAN applications | |
Li et al. | CMOS low noise amplifier design for microwave and mmWave applications | |
TWI252632B (en) | Multi-band RF receiver | |
Kunihiro et al. | A diplexer-matching dual-band power amplifier LTCC module for IEEE 802.11 a/b/g wireless LANs | |
Sugawara et al. | Reconfigurable CMOS LNA for software defined radio using variable inductor | |
Lee et al. | A SiGe low noise amplifier for 2.4/5.2/5.7 GHz WLAN applications | |
TW584984B (en) | A multi-band electronic circuit | |
TW578368B (en) | A concurrent multi-band electronic circuit | |
Dao et al. | A dual-band CMOS RF front-end for 2.4/5.2 GHz applications | |
TW588512B (en) | An impedance matching method and circuits designed by this method | |
Lai | RF Transceiver with Antenna Design for Ultra-wide Band Applications | |
CN100495939C (en) | Method for designing electronic circuit in multiple frequency ranges, and circuits | |
TW578365B (en) | A multi-band electronic circuit | |
Vázquez et al. | A wideband active feedback LNA with a modified 3D inductor | |
Kim et al. | Dual-band CMOS down-conversion mixer adopting band-switchable transformer | |
Xing et al. | A 0.9/1.8/2.4 GHz-reconfigurable LNA with Inductor and Capacitor Tuning for IoT Application in 65nm CMOS | |
Ujiie et al. | A dual band RFCMOS amplifier using inductive reactance switching | |
Inagaki et al. | A 5GHz/60GHz receiver front-end IC in 90nm CMOS technology | |
Lai et al. | RF Front-end with Antenna for Bluetooh Wireless of Medical Biosensing | |
Datta et al. | Pso optimized concurrent dual-band lna with rf switch for better inter-band isolation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |