TW576894B - Pulse generator with an integrated rotor angle sensor - Google Patents

Pulse generator with an integrated rotor angle sensor Download PDF

Info

Publication number
TW576894B
TW576894B TW092108459A TW92108459A TW576894B TW 576894 B TW576894 B TW 576894B TW 092108459 A TW092108459 A TW 092108459A TW 92108459 A TW92108459 A TW 92108459A TW 576894 B TW576894 B TW 576894B
Authority
TW
Taiwan
Prior art keywords
magnet
rotor
pole
pulse
magnetic
Prior art date
Application number
TW092108459A
Other languages
Chinese (zh)
Other versions
TW200305684A (en
Inventor
Tomokazu Sakamoto
Kuniaki Ikui
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of TW200305684A publication Critical patent/TW200305684A/en
Application granted granted Critical
Publication of TW576894B publication Critical patent/TW576894B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/067Electromagnetic pick-up devices, e.g. providing induced current in a coil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Abstract

To provide a pulse generator with an integrated rotor angle sensor which is less likely to be influenced by magnetic noise and less likely to suffer from a malfunction. A pulse generator 10 with an integrated rotor angle sensor which includes a rotational angle detecting multipole ring magnet 15, a pulse generating magnet 16, a rotational angle detecting magnetoelectric conversion element 17 and a pulse generating magnetoelectric conversion element 18 is configured such that the pulse generating magnet 16 is secured in a spaced relationship by a predetermined distance from the rotational angle detecting multipole ring magnet 15 secured to an outer periphery of a rotor 14 in a direction of an axis of rotation of the rotor such that one of the magnetic poles of the pulse generating magnet l6 is positioned on the near side to the axis of rotation of the rotor 14 and the other one of the magnetic poles of the pulse generating magnet 16 is positioned on the remote side from the axis of rotation of the rotor, and the magnetic bias magnet 13 is mounted on the opposite side of the pulse generating magnetoelectric conversion element 18 to the pulse generating magnet 16.

Description

576894 (1) 玖、發明說明 【發明所屬之技術領域】 本發明是關於轉子角度感應器一體型脈衝發生器 別是關於不易受到來自馬達的磁氣雜訊的影響的轉子 感應器一體型脈衝發生器。 【先前技術】 第5圖是習知的轉子角度感應器一體型脈衝發生 模式圖。轉子角度感應器一體型脈衝發生器100是由 量發生部101與磁電變換部102構成。磁通量發生部 是由安裝於轉子103外周的旋轉角度檢測用多極環形 104,與固定於轉子1〇3的與旋轉角度檢測用多極環 石104 —體的脈衝發生用磁石1〇5構成。上述脈衝發 1〇〇係作爲在例如附設於雙輪車引擎的啓動裝置馬達 火裝置中,給予點火定時(timing)訊號用的訊號發 使用。 磁電變換部102是由將藉由固定於面對旋轉角度 用多極環形磁石104,設置預定的間隔的位置的旋轉 檢測用多極環形磁石104所產生的磁通量變換成電氣 的霍爾(Hall)元件或霍爾1C等構成的旋轉角度檢 磁電變換元件106,與將藉由固定於面對脈衝發生用 105,設置預定的間隔的位置的脈衝發生用磁石105 生的磁通量變換成電氣訊號的霍爾元件或霍爾1C等 的脈衝發生用磁電變換元件1〇7構成。 ,特 角度 器的 磁通 101 磁石 形磁 生器 的點 生器 檢測 角度 訊號 測用 磁石 所產 構成 -6 - (2) 第6圖爲磁通量發生部101所使用的旋轉角度檢測用 多極環形磁石104與脈衝發生用磁石105的部分的斜視圖 。旋轉角度檢測用多極環形磁石1〇4係沿著圓周方向,N 極與S極以預定的間隔交互地磁化,脈衝發生用磁石105 係在外側以顯現S極、N極、S極的方式來排列。 上述構成的習知的轉子角度感應器一體型脈衝發生器 100藉由轉子1 03的旋轉,使由旋轉角度檢測用多極環形 磁石 1 04產生的磁通量被旋轉角度檢測用磁電變換元件 106檢測,變換成依照該磁通量密度的電氣訊號。藉由計 測該電氣訊號可計測轉子103的旋轉角度。 另一方面轉子103旋轉,脈衝發生用磁石105與脈衝 發生用磁電變換元件1 07位於相反側時,由脈衝發生用磁 石產生的磁通量不被檢測出。若轉子103旋轉,脈衝發生 用磁石105接近脈衝發生用磁電變換元件107的話,由脈 衝發生用磁石1 05產生的磁通量被檢測出,依照其磁通量 密度變換成電氣訊號。 第7圖是顯示依照轉子103的旋轉角度的在旋轉角度 檢測用磁電變換元件106與脈衝發生用磁電變換元件107 的位置的磁通量密度的變化(a ),與旋轉角度檢測用磁 電變換元件106與脈衝發生用磁電變換元件107使用霍爾 1C時的輸出電壓的變化(b )。曲線C1爲在旋轉角度檢 測用磁電變換元件106的位置的磁通量密度的變化,曲線 C2爲在脈衝發生用磁電變換元件107的位置的磁通量密 度的變化。而且,曲線C3是顯示來自馬達的漏磁通量所 (3) 造成的磁氣雜訊。直線C4a、C4b是顯示旋轉角度檢測用 磁電變換元件106與脈衝發生用磁電變換元件107使用包 含霍爾元件以及放大器與施密特觸發電路(Schmidt trigger circuit)的霍爾1C時的兩個檢測位準ThH、ThL, 在旋轉角度檢測用磁電變換元件106的位置與脈衝發生用 磁電變換元件107的位置的磁通量密度爲檢測位準ThH以 上時,旋轉角度檢測用磁電變換元件106與脈衝發生用磁 電變換元件107輸出電壓VL的電氣訊號。而且,在旋轉 角度檢測用磁電變換元件106的位置與脈衝發生用磁電變 換元件107的位置的磁通量密度爲檢測位準ThL以下時, 旋轉角度檢測用磁電變換元件106與脈衝發生用磁電變換 兀件107輸出電壓Vh的電氣訊號。·曲線C5是顯不來自 旋轉角度檢測用磁電變換元件106的輸出訊號,曲線C6 是顯示來自脈衝發生用磁電變換元件107的輸出訊號。如 此,霍爾1C在以直線C4a、C4b顯示的兩個檢測位準ThH 、ThL中,將輸出訊號切換成電壓VL與電壓VH。如第7 圖在脈衝發生用磁石105與脈衝發生用磁電變換元件107 分離的位置(0°〜約60 ° ),磁通量密度在0的附近,當 脈衝發生用磁石105爲靠近脈衝發生用磁電變換元件107 的位置(約60° )時,顯示磁通量密度大到負一次成爲最 小値P1,然後,磁通量密度大到正成爲最大値P 2,再度 大到負成爲最小値P3的變化。依照此磁通量密度的變化 旋轉角度檢測用磁電變換元件106與脈衝發生用磁電變換 元件107在磁通量密度爲檢測位準ThH以上時輸出電壓 -8 - (4) (4)576894 VL的電氣訊號。如第7圖所示,因脈衝發生用磁電變換 元件107在轉子旋轉角度P4與P5之間的範圍磁通量密度 爲檢測位準ThH以上,故在此範圍輸出電壓Vl的電氣訊 號。藉由此電氣訊號,脈衝發生器的脈衝訊號產生。 【發明內容】 但是,在脈衝發生用磁石105與脈衝發生用磁電變換 元件1 〇 7分離的位置,因磁通量密度在0的附近,脈衝發 生用磁電變換元件107接受來自在第7圖的曲線C3所示 的馬達的漏磁通量所造成的磁氣雜訊的影響,由於此磁氣 雜訊,在角度P4與P5之間的範圍外也存在成爲脈衝發生 用磁電變換元件107的檢測位準ThH以上的轉子旋轉角度 ,有引起誤動作的可能性的問題點。因被雙輪車引擎用點 火裝置利用的轉子角度感測器感應器一體型脈衝發生器 100配置於啓動裝置馬達的附近,故上述情況不佳爲性能 上大的問題。 本發明的目的是用以解決上述問題,提供不易受到磁 氣雜訊的影響,很難引起誤動作的轉子角度感應器一體型 脈衝發生器。 與本發明有關的轉子角度感應器一體型脈衝發生器爲 了達成上述目的如以下而構成。 第一轉子角度感應器一體型脈衝發生器(對應申請專 利範圍第1項),包含: 安裝於轉子的以預定的間隔N極與S極交互地被磁 -9 - (5) 化的旋轉角度檢測用多極環形磁石; 固定於轉子的脈衝發生用磁石; 將藉由固定於面對旋轉角度檢測用多極環形磁石的磁 極面,設置預定的間隔的位置的旋轉角度檢測用多極環形 磁石所產生的磁通量變換成電氣訊號的旋轉角度檢測用磁 電變換元件;以及 將藉由固定於面對脈衝發生用磁石的磁極面,設置預 定的間隔的位置的脈衝發生用磁石所產生的磁通量變換成 電氣訊號的脈衝發生用磁電變換元件,其特徵爲: 在與脈衝發生用磁電變換元件的脈衝發生用磁石相反 側,以與脈衝發生用磁石的磁化方向相同方向配置磁偏用 的磁石。 如果依照第一轉子角度感應器一體型脈衝發生器,因 在與脈衝發生用磁電變換元件的脈衝發生用磁石相反側, 以與脈衝發生用磁石的磁化方向相同方向配置磁偏用的磁 石,預先使藉由偏磁石施加於磁電變換元件的磁通量偏移 (offset ),故當脈衝發生用磁石不在最接近面對脈衝發 生用磁電變換元件的位置時,因磁通量密度經常爲負,故 不易受到來自啓動裝置馬達的磁氣雜訊的影響。而且,檢 測位準的臨界値低的脈衝發生用磁電變換元件可選擇,也 能提高脈衝發生時期的檢測精度。 再者,因配設偏磁石,在來自脈衝發生用磁石的磁場 超過偏磁石的磁場時,使磁通量的流動反轉,故比僅給予 脈衝發生用磁石的磁場還陡峭可引起大的磁通量變化。 -10- (6) (6)576894 第二轉子角度感應器一體型脈衝發生器(對應申請專 利範圍第2項)其特徵爲:在上述構成中最好磁偏用的磁 石的磁極的方向是以與脈衝發生用磁石的磁極的方向同極 面對而配置。 第三轉子角度感應器一體型脈衝發生器(對應申請專 利範圍第3項)其特徵爲:在上述構成中最好令脈衝發生 用磁石的一方的磁極位於轉子的旋轉軸側,脈衝發生用磁 石的另一方的磁極位於與轉子的旋轉軸相反側而配置安裝 脈衝發生用磁石於轉子的外周的旋轉角度檢測用多極環形 磁石,以及排列於旋轉軸方向而接近以固定或隔著預定的 距離固定,在與脈衝發生用磁電變換元件的脈衝發生用磁 石相反側,磁石的一方的磁極位於轉子的旋轉的中心方向 ,另一方的磁極位於與轉子的中心方向相反側而安裝的磁 偏用的磁石。 如果依照第三轉子角度感應器一體型脈衝發生器,因 脈衝發生用磁石的一方的磁極位於轉子的旋轉軸側,另一 方的磁極位於與轉子的旋轉軸相反側而安裝於轉子的外周 的旋轉角度檢測用多極環形磁石,與在旋轉軸方向隔著預 定的距離而固定,預先使藉由偏磁石施加於磁電變換元件 的磁通量偏移,故當脈衝發生用磁石不在最接近面對脈衝 發生用磁電變換元件的位置時,因磁通量密度經常爲負’ 故不易受到來自啓動裝置馬達的磁氣雜訊的影響。而且’ 檢測位準的臨界値低的脈衝發生用磁電變換元件可選擇, 也能提高脈衝發生時期的檢測精度。 -11 - (7) (7)576894 再者,因配設偏磁石,在來自脈衝發生用磁石的磁場 超過偏磁石的磁場時,使磁通量的流動反轉,故比僅給予 脈衝發生用磁石的磁場還陡峭可引起大的磁通量變化。 第四轉子角度感應器一體型脈衝發生器(對應申請專 利範圍第5項),包含: 在安裝於轉子的圓周面以預定的間隔N極與S極交 互地被磁化的旋轉角度檢測用多極環形磁石; 固定於轉子,在圓周面被磁化的脈衝發生用環形磁石 j 將藉由固定於面對旋轉角度檢測用多極環形磁石的磁 極面,設置預定的間隔的位置的旋轉角度檢測用多極環形 磁石所產生的磁通量變換成電氣訊號的旋轉角度檢測用磁 電變換元件;以及 將藉由固定於面對脈衝發生用磁石的磁極面,設置預 定的間隔的位置的脈衝發生用環形磁石所產生的磁通量變 換成電氣訊號的脈衝發生用磁電變換元件,其特徵爲: 脈衝發生用環形磁石的磁極面係僅一部分爲N極或S 極,其他區域爲另一方的磁極的方式而磁化的磁石。 如果依照第四轉子角度感應器一體型脈衝發生器,因 脈衝發生用環形磁石的磁極面係僅一部分爲N極或S極 ,其他區域爲另一方的磁極的方式而磁化的磁石,故脈衝 發生用環形磁石的脈衝發生極以外的極即使面對脈衝發生 用磁電變換元件時因磁通量密度爲負(或正),故對外部 的磁氣雜訊不易受到影響。而且,檢測位準的臨界値低的 -12- (8) (8)576894 脈衝發生用磁電變換元件可選擇,也能提高脈衝發生時期 的檢測精度。 第五轉子角度感應器一體型脈衝發生器(對應申請專 利範圍第6項)其特徵爲:在上述構成中最好以一體的磁 石構成旋轉角度檢測用多極環形磁石與脈衝發生用磁石或 脈衝發生用環形磁石。 第六轉子角度感應器一體型脈衝發生器(對應申請專 利範圍第7項)其特徵爲:在上述構成中最好旋轉角度檢 測用磁電變換元件與脈衝發生用磁電變換元件爲霍爾元件 或霍爾1C。 如果依照第六轉子角度感應器一體型脈衝發生器,因 旋轉角度檢測用磁電變換元件與脈衝發生用磁電變換元件 爲霍爾元件或霍爾1C,故可確實地將磁通量密度變換成 電氣訊號,可精度佳地檢測脈衝發生時期。 【實施方式】 以下根據添附圖面說明本發明的較佳實施形態。 針對在實施形態說明的構成、形狀、大小以及配置關 係,只不過是槪略地顯示本發明可理解、實施的程度,而 且,對於數値以及各構成的組成(材質)只不過是舉例說 明。因此,本發明並非限定於以下說明的實施形態,只要 不脫離申請專利範圍所示的技術思想的範圍就能變更爲種 種的形態。 第1圖是顯示與本發明的第一實施形態有關的轉子角 -13- (9) (9)576894 度感應器一體型脈衝發生器的構成圖。轉子角度感應器一 體型脈衝發生器1 0是由磁通量發生部11與磁電變換部 12與偏(bias)磁石13構成。磁通量發生部11是由安裝 於轉子14外周的旋轉角度檢測用多極環形磁石15,以及 與該旋轉角度檢測用多極環形磁石15設置預定的間隔固 ‘ 定於轉子1 4的脈衝發生用磁石1 6構成。 · 磁電變換部1 2是由將藉由固定於面對旋轉角度檢測 用多極環形磁石15,設置預定的間隔的位置的旋轉角度 φ 檢測用多極環形磁石1 5所產生的磁通量變換成電氣訊號 的霍爾元件或霍爾1C等構成的旋轉角度檢測用磁電變換 元件 17,與將藉由固定於面對脈衝發生用磁石16,設置 預定的間隔的位置的脈衝發生用磁石1 6所產生的磁通量 變換成電氣訊號的霍爾元件或霍爾1C等構成的脈衝發生 用磁電變換元件1 8構成。而且,在與脈衝發生用磁電變 換元件.1 8的脈衝發生用磁石1 6相反側配置磁偏用的磁石 13。 鲁 第2圖是磁通量發生部1 1所使用的旋轉角度檢測用 多極環形磁石1 5與脈衝發生用磁石1 6的部分的斜視圖。 旋轉角度檢測用多極環形磁石15係由環狀的多極磁石構 成,脈衝發生用磁石16係一方的磁極19 (在圖2爲S極 )位於轉子14的旋轉軸側,另一方的磁極20 (在圖2爲 N極)位於與轉子14的旋轉軸相反側而安裝有一個磁石 〇 上述構成的轉子角度感應器一體型脈衝發生器10藉 -14· (10) 由轉子1 4的旋轉,使由旋轉角度檢測用多極環形磁石i 5 產生的磁通量被旋轉角度檢測用磁電變換元件1 7檢測, 變換成依照該磁通量密度的電氣訊號。藉由計測該電氣訊 號可計測轉子14的旋轉角度。 另一方面轉子1 4旋轉,脈衝發生用磁石1 6與脈衝發 生用磁電變換元件1 8位於相反側時,由脈衝發生用磁石 1 6產生的磁通量不被檢測出。若轉子14旋轉,脈衝發生 用磁石1 6接近脈衝發生用磁電變換元件1 8的話,由脈衝 發生用磁石1 6產生的磁通量被檢測出,依照其磁通量密 度變換成電氣訊號。 第3圖是顯示依照轉子14的旋轉角度的在旋轉角度 檢測用磁電變換元件 1 7的位置與脈衝發生用磁電變換元 件1 8的位置的磁通量密度的變化(a ),與旋轉角度檢測 用磁電變換元件1 7與脈衝發生用磁電變換元件1 8使用霍 爾1C時的輸出電壓的變化(b )。曲線C11爲在旋轉角度 檢測用磁電變換元件17的位置的磁通量密度的變化,曲 線C 1 2爲在脈衝發生用磁電變換元件1 8的位置的磁通量 密度的變化。而且,曲線C 1 3是來自馬達的漏磁通量所造 成的磁氣雜訊的變化。直線Cl4a、C14b是顯示旋轉角度 檢測用磁電變換元件1 7與脈衝發生用磁電變換元件1 8使 用包含霍爾元件以及放大器與施密特觸發電路的霍爾1C 時的兩個檢測位準ThH、ThL,在旋轉角度檢測用磁電變 換元件1 7的位置與脈衝發生用磁電變換元件1 8的位置的 磁通量密度爲檢測位準ThH以上時’旋轉角度檢測用磁電 -15- (11) 變換元件17與脈衝發生用磁電變換元件18輸出電壓 的電氣訊號。而且,在旋轉角度檢測用磁電變換元件17 的位置與脈衝發生用磁電變換元件1 8的位置的磁通量密 度爲檢測位準ThL以下時,旋轉角度檢測用磁電變換元件 17與脈衝發生用磁電變換元件18輸出電壓VH的電氣訊 號。曲線C 1 5是顯示來自旋轉角度檢測用磁電變換元件 1 7的輸出訊號,曲線C 1 6是顯示來自脈衝發生用磁電變 換元件1 8的輸出訊號。如此,霍爾IC在以直線C 14 a、 C14b顯示的兩個檢測位準ThH、ThL中,將輸出訊號切換 成電壓VL與電壓VH。如第3圖在脈衝發生用磁石16與 脈衝發生用磁電變換元件 1 8分離的位置(〇 °〜9 0 ° ), 由於偏磁石使磁通量密度爲負値,當脈衝發生用磁石1 6 爲靠近脈衝發生用磁電變換元件18的位置時(90 °以上 ),顯示磁通量密度由負朝正的方向變大,然後磁通量密 度大到正,再度在脈衝發生用磁石1 6與脈/衝發生用磁電 變換元件18分離的位置(130° ~ 180 ° )成爲負的變化。 依照此磁通量密度的變化在脈衝發生用磁電變換元件1 8 的位置的磁通量密度爲檢測位準ThH以上時,脈衝發生用 磁電變換元件18輸出電壓VL的電氣訊號。即在第3圖的 轉子旋轉角度p 1 〇與p 11之間的範圍,脈衝發生用磁電變 換元件1 8輸出電壓VL的電氣訊號,脈衝藉由此電壓VL 的電氣訊號產生。 如此,使脈衝發生用磁石16的一方的磁極19位於轉 子14的旋轉的中心方向,另一方的磁極20位於與轉子 -16· (12) (12)576894 1 4的旋轉的中心方向相反側,在轉子14藉由安裝於轉子 1 4的外周的旋轉角度檢測用多極環形磁石1 5,與在旋轉 軸方向隔著預定的距離固定,磁石的一方的磁極位於轉子 的旋轉的中心方向,另一方的磁極位於與轉子的旋轉的中 心方向相反側而安裝的偏磁石1 3,預先使施加於脈衝發 生用磁電變換元件1 8的磁通量偏移,故當脈衝發生用磁 石16不在最接近面對脈衝發生用磁電變換元件18的位置 時,因即使磁氣雜訊加入磁通量密度也經常爲負,爲脈衝 發生用磁電變換元件18的檢測位準ThH以下,故不易受 到來自馬達的磁氣雜訊的影響。而且,檢測位準的臨界値 低的脈衝發生用磁電變換元件可選擇,也能提高脈衝發生 時期的檢測精度。 再者,因配設偏磁石1 3,在來自脈衝發生用磁石1 6 的磁場超過偏磁石1 3的磁場時,使磁通量的流動反轉, 故比僅給予脈衝發生甩磁石1 6的磁場還陡峭可引起大的 磁通量變化。 此外’旋轉角度檢測用多極環形磁石1 5與脈衝發生 用磁石1 6藉由使用稀土類磁石,可得到大的磁通量密度 ’即使藉由偏磁石13使磁通量密度偏移到負的方向,因 脈衝發生用磁石1 6接近脈衝發生用磁電變換元件1 8時, 可得到正的大的磁通量密度,故可確實地精度佳地進行脈 衝發生時期的檢測。而且,稀土類磁石之中藉由使用釤鈷 系磁石’也能以不受周圍溫度的影響的穩定的精度檢測脈 衝發生時期。 -17 - (13) 此外,在本實施形態中雖然以使脈衝發生用磁石1 6 的N極顯現於外側的方式而固定於轉子14,惟使S極顯 現於外側的方式而固定於轉子1 4也可以。 其次,針對與本發明的第二實施形態有關的轉子角度 感應器一體型脈衝發生器來說明。在此實施形態除了磁通 量發生部11外因與第一實施形態一樣,故針對磁通量發 生部11來說明。 第4圖爲磁通量發生部1 1所使用的旋轉角度檢測用 多極環形磁石2 1與脈衝發生用環形磁石22的斜視圖。此 磁石爲旋轉角度檢測用多極環形磁石2 1與脈衝發生用環 形磁石22分別由環狀磁石23a、23b構成。 環狀磁石23a (旋轉角度檢測用多極環形磁石21 )是 由多極磁石構成,環狀磁石23b (脈衝發生用環形磁石22 )係僅一部分N極或S極的一方的磁極位於環的外側, 其他區域係其他的一方的磁極位於環的外側而磁化的磁石 〇 旋轉角度檢測用多極環形磁石2 1與脈衝發生用環形 磁石22分別由環狀磁石23a、23b構成,環狀磁石23a ( 旋轉角度檢測用多極環形磁石2 1 )是由多極磁石構成, 環狀磁石23b (脈衝發生用環形磁石22)係僅一部分爲N 極,其他區域爲由S極構成的磁石,故脈衝發生用環形磁 石的脈衝發生極以外的極即使面對脈衝發生用磁電變換元 件時因磁通量密度爲負(或正),故對外部的磁氣雜訊不 易受到影響。而且,檢測位準的臨界値低的脈衝發生用磁 •18- (14) (14)576894 電變換元件可選擇,也能提高脈衝發生時期的檢測精度。 此外,旋轉角度檢測用多極環形磁石2 1與脈衝發生 用環形磁石22藉由使用稀土類磁石,可得到大的磁通量 密度,而且,稀土類磁石之中藉由使用釤鈷系磁石,也能 以不受周圍溫度的影響的穩定的精度檢測脈衝發生時期。 【發明的功效】 如以上的說明所明瞭的,如果依照本發明可完成以下 的功效。 使脈衝發生用磁石的一方的磁極位於轉子的旋轉軸側 ’另一方的磁極位於與轉子的旋轉軸相反側,藉由安裝於 轉子的外周的旋轉角度檢測用多極環形磁石,,與在旋轉軸 方向隔著預定的距離固定,預先使藉由偏磁石施加於脈衝 發生用磁電變換元件的磁通量偏移,故當脈衝發生用磁石 不在最接近面對脈衝發生用磁電變換元件的位置時,因磁 通量密度經常爲負,故不易受到來自馬達的磁氣雜訊的影 響。而且,可降低脈衝發生用磁電變換元件的臨界値,也 能提高脈衝發生時期的檢測精度。再者,因配設偏磁石, 在來自脈衝發生用磁石的磁場超過偏磁石的磁場時,使磁 通量的流動反轉,故比僅給予脈衝發生用磁石的磁場還陡 峭可引起大的磁通量變化。據此,可不易受到磁氣雜訊的 影響’不易引起誤動作。 【圖式簡單說明】 -19- (15) (15)576894 第1圖是與本發明的第一實施形態有關的轉子角度感 應器一體型脈衝發生器的構成圖。 第2圖是在本發明的第一實施形態的磁通量發生部所 使用的旋轉角度檢測用多極環形磁石與脈衝發生用磁石的 部分的斜視圖。 第3圖是顯示依照在本發明的第一實施形態的轉子的 # 旋轉角度的(a )、磁通量密度的變化與(b )、霍爾1C 的輸出電壓的變化圖。 φ 第4圖是在本發明的第二實施形態的磁通量發生部所 使用的旋轉角度檢測用多極環形磁石與脈衝發生用環形磁 石的部分的斜視圖。 第5圖是習知的轉子角度感應器一體型脈衝發生器的 模式圖。 第6圖是在習知的轉子角度感應器一體型脈衝發生器 的磁通量發生部所使用的旋轉角度檢測用多極環形磁石與 脈衝發生用磁石的部分的斜視圖。 鲁 第7圖是顯示依照在習知的轉子角度感應器一體型脈 衝發生器的轉子的旋轉角度的(a )、磁通量密度的變化 與(b)、霍爾1C的輸出電壓的變化的圖。 【符號說明】 10、100: 轉子角度感應器一體型脈衝發生器 11: 磁通量發生部 12: 磁電變換部 -20- (16)576894 13 : 偏 14 、 103 15 、 21 、 16 、 105 17 、 106 18 、 107 19 、 20 : 22 : 脈 磁石 轉子 104 : 旋轉角度檢測用多極環形磁石 脈衝發生用磁石 旋轉角度檢測用磁電變換元件 脈衝發生用磁電變換元件 磁極 衝發生用環形磁石 23a、23b: 環狀磁石576894 (1) Description of the invention [Technical field to which the invention belongs] The present invention relates to a rotor angle sensor integrated pulse generator, and more particularly to a rotor sensor integrated pulse generator that is not easily affected by magnetic noise from a motor. Device. [Prior Art] Fig. 5 is a conventional pulse angle generator integrated pulse generator pattern diagram. The rotor angle sensor-integrated pulse generator 100 is composed of a quantity generating section 101 and a magnetoelectric conversion section 102. The magnetic flux generating unit is composed of a multi-pole ring 104 for rotation angle detection mounted on the outer periphery of the rotor 103, and a magnet 105 for pulse generation which is fixed to the rotor 103 and a multi-pole ring 104 for rotation angle detection. The above-mentioned pulse transmission 100 is used as a signal for giving an ignition timing signal to, for example, a motor ignition device of a starter device attached to a two-wheeled vehicle engine. The magneto-electric conversion unit 102 converts the magnetic flux generated by the multi-pole ring magnet 104 for rotation detection, which is fixed to the multi-pole ring magnet 104 for rotation angles at a predetermined interval, into an electrical Hall. The rotation angle detection magnetoelectric conversion element 106 composed of an element, a Hall 1C, or the like, converts the magnetic flux generated by the pulse generation magnet 105 fixed to a position facing the pulse generation 105 at a predetermined interval into an electrical signal. A pulse generating device such as a Hall element or Hall 1C is configured with a magnetoelectric conversion element 107. The magnetic flux of the special angle device 101 The structure of the point generator detection angle signal detection of the magnet-shaped magnetizer-6-(2) Figure 6 shows the multi-pole ring for the rotation angle detection used by the magnetic flux generator 101 A perspective view of a portion of the magnet 104 and the magnet 105 for pulse generation. A multi-pole ring magnet 104 for rotation angle detection is along the circumferential direction, and the N and S poles are alternately magnetized at a predetermined interval. The pulse generating magnet 105 is on the outside to show the S, N, and S poles. To arrange. The conventional rotor angle sensor integrated pulse generator 100 configured as described above causes the magnetic flux generated by the rotation angle detection multi-pole ring magnet 104 to be detected by the rotation angle detection magnetoelectric conversion element 106 by the rotation of the rotor 103. It is converted into an electrical signal according to the magnetic flux density. The rotation angle of the rotor 103 can be measured by measuring the electrical signal. On the other hand, when the rotor 103 rotates and the pulse-generating magnet 105 and the pulse-generating magnetoelectric conversion element 107 are located on opposite sides, the magnetic flux generated by the pulse-generating magnet is not detected. When the rotor 103 rotates and the pulse generating magnet 105 approaches the pulse generating magnetoelectric conversion element 107, the magnetic flux generated by the pulse generating magnet 105 is detected and converted into an electric signal according to the magnetic flux density. FIG. 7 shows the change in magnetic flux density (a) at the positions of the rotation angle detection magnetoelectric conversion element 106 and the pulse generation magnetoelectric conversion element 107 according to the rotation angle of the rotor 103, and the rotation angle detection magnetoelectric conversion element 106 and Change (b) of the output voltage when the Hall 1C is used as the pulse generation magneto-electric conversion element 107. A curve C1 shows a change in the magnetic flux density at the position of the rotation angle detection magnetoelectric conversion element 106, and a curve C2 shows a change in the magnetic flux density at the position of the pulse generation magnetoelectric conversion element 107. The curve C3 shows the magnetic noise caused by the leakage magnetic flux (3) from the motor. The straight lines C4a and C4b show the two detection bits when the rotation angle detection magnetoelectric conversion element 106 and the pulse generation magnetoelectric conversion element 107 use Hall 1C including a Hall element and an amplifier and a Schmidt trigger circuit. For quasi-ThH and ThL, when the magnetic flux density at the position of the rotation angle detection magnetoelectric conversion element 106 and the position of the pulse generation magnetoelectric conversion element 107 is greater than the detection level ThH, the rotation angle detection magnetoelectric conversion element 106 and the pulse generation magnetoelectricity The conversion element 107 outputs an electrical signal of a voltage VL. Further, when the magnetic flux density of the position of the rotation angle detection magnetoelectric conversion element 106 and the position of the pulse generation magnetoelectric conversion element 107 is equal to or less than the detection level ThL, the rotation angle detection magnetoelectric conversion element 106 and the pulse generation magnetoelectric conversion element 107 Electrical signal for output voltage Vh. Curve C5 shows the output signal from the magnetoelectric conversion element 106 for rotation angle detection, and curve C6 shows the output signal from the magnetoelectric conversion element 107 for pulse generation. In this way, the Hall 1C switches the output signal to the voltage VL and the voltage VH in the two detection levels ThH and ThL displayed by the straight lines C4a and C4b. As shown in Fig. 7, at the position where the magnet 105 for pulse generation is separated from the magneto-electric conversion element 107 for pulse generation (0 ° ~ about 60 °), the magnetic flux density is near 0. When the magnet 105 for pulse generation is close to the magneto-electric conversion for pulse generation When the position of the element 107 (approximately 60 °), the displayed magnetic flux density becomes as large as negative once and becomes the minimum 値 P1, and then, the magnetic flux density becomes as large as positive becomes the maximum 値 P2, and then changes as large as negative becomes the minimum 値 P3. In accordance with this change in magnetic flux density, the rotation angle detection magnetoelectric conversion element 106 and the pulse generation magnetoelectric conversion element 107 output electrical signals when the magnetic flux density is equal to or higher than the detection level ThH -8-(4) (4) 576894 VL. As shown in Fig. 7, since the magnetic flux density of the pulse generating magnetoelectric conversion element 107 in the range between the rotor rotation angles P4 and P5 is equal to or higher than the detection level ThH, an electrical signal of the voltage V1 is output in this range. With this electrical signal, a pulse signal from the pulse generator is generated. [Summary of the Invention] However, at a position where the pulse generating magnet 105 is separated from the pulse generating magnetoelectric conversion element 107, since the magnetic flux density is near 0, the pulse generating magnetoelectric conversion element 107 receives the curve C3 from FIG. 7 The magnetic noise caused by the magnetic flux leakage of the motor shown, due to this magnetic noise, also exists outside the range between the angles P4 and P5 and becomes the detection level ThH or higher of the pulse generation magnetoelectric conversion element 107 There is a problem that the rotation angle of the rotor may cause malfunction. Since the rotor angle sensor integrated pulse generator 100 used by the ignition device for a two-wheeled vehicle engine is disposed near the motor of the starter, the above-mentioned situation is not good because of a large performance problem. An object of the present invention is to solve the above-mentioned problems and provide a rotor angle sensor integrated pulse generator which is not easily affected by magnetic noise and hardly causes malfunction. The rotor angle sensor-integrated pulse generator according to the present invention is constructed as follows to achieve the above-mentioned object. First rotor angle sensor integrated pulse generator (corresponding to item 1 of the scope of patent application), which includes: a rotation angle of -9-(5) magnetized by N pole and S pole alternately mounted on the rotor at a predetermined interval Multi-pole ring magnets for detection; Magnets for pulse generation fixed to the rotor; Multi-pole ring magnets for rotation angle detection with fixed intervals on the pole face of the multi-pole ring magnet for rotation angle detection The generated magnetic flux is converted into a magnetoelectric conversion element for detecting a rotation angle of an electric signal; and the magnetic flux generated by the pulse generating magnet fixed to a magnetic pole surface facing the pulse generating magnet at a predetermined interval is converted into The magnetoelectric conversion element for pulse generation of electric signals is characterized in that a magnet for magnetic deflection is arranged on the opposite side of the magnetism for pulse generation of the magnetron for pulse generation, in the same direction as the magnetization direction of the magnet for pulse generation. According to the first rotor angle sensor-integrated pulse generator, a magnet for magnetic deflection is arranged in the same direction as the magnetization direction of the pulse generating magnet on the side opposite to the pulse generating magnet of the pulse generating magnetoelectric conversion element. The magnetic flux applied to the magnetoelectric conversion element by the bias magnet is offset. Therefore, when the magnet for pulse generation is not closest to the position facing the magnetoelectric conversion element for pulse generation, the magnetic flux density is often negative, so it is not easily affected by Effects of magnetic noise from the starter motor. In addition, when the critical level of the detection level is low, a magnetoelectric conversion element for pulse generation can be selected, which can also improve the detection accuracy during the pulse generation period. Furthermore, the presence of a bias magnet reverses the flow of the magnetic flux when the magnetic field from the magnet for pulse generation exceeds the magnetic field of the magnet, so that the magnetic field is steeper than that provided only to the magnet for pulse generation, which can cause a large change in magnetic flux. -10- (6) (6) 576894 The second rotor angle sensor integrated pulse generator (corresponding to item 2 of the scope of patent application) is characterized in that the direction of the magnetic pole of the magnet that is best for magnetic deflection in the above structure is They are arranged so as to face the same polarity as the direction of the magnetic pole of the pulse generating magnet. The third rotor angle sensor-integrated pulse generator (corresponding to item 3 of the scope of patent application) is characterized in that in the above-mentioned configuration, it is preferable that one of the magnetic poles of the pulse generating magnet is located on the rotation axis side of the rotor and the pulse generating magnet The other magnetic pole is located on the opposite side of the rotor's rotation axis, and a multi-pole ring magnet for detecting the rotation angle of the pulse generating magnet is arranged on the outer periphery of the rotor, and is arranged near the rotation axis to be fixed or separated by a predetermined distance. Fixed: On the opposite side to the pulse generating magnet of the pulse generating magnetoelectric conversion element, one of the magnets has a magnetic pole located in the center of rotation of the rotor, and the other has a magnetic pole located on the side opposite to the center of the rotor. magnet. According to the third rotor angle sensor-integrated pulse generator, one of the magnetic poles of the pulse generating magnet is located on the rotation axis side of the rotor, and the other magnetic pole is located on the side opposite to the rotation axis of the rotor, and the rotation is mounted on the outer periphery of the rotor. The multi-pole ring magnet for angle detection is fixed at a predetermined distance from the rotation axis direction. The magnetic flux applied to the magnetoelectric conversion element by the bias magnet is shifted in advance. Therefore, when the pulse generating magnet is not closest to the pulse, When the position of the magnetoelectric conversion element is used, since the magnetic flux density is often negative, it is not easily affected by the magnetic noise from the motor of the starting device. In addition, the critical level of the detection level is low, and a magnetoelectric conversion element for pulse generation can be selected, which can also improve the detection accuracy during the pulse generation period. -11-(7) (7) 576894 Furthermore, because a bias magnet is provided, when the magnetic field from the magnet for pulse generation exceeds the magnetic field of the magnet, the flow of magnetic flux is reversed. The magnetic field is also steep and can cause large changes in magnetic flux. The fourth rotor angle sensor-integrated pulse generator (corresponding to item 5 of the scope of patent application) includes: a multi-pole for rotation angle detection that is magnetized on the circumferential surface of the rotor at intervals of N poles and S poles at predetermined intervals. Toroidal magnet; The torsional magnet for pulse generation fixed to the rotor and magnetized on the circumferential surface will be fixed to the pole surface of the multi-pole toroidal magnet for rotation angle detection, and the rotation angle detection will be performed at a predetermined interval. A magnetic-electricity conversion element for detecting a rotation angle by converting magnetic flux generated by a polar ring magnet into an electrical signal; and generated by a ring magnet for pulse generation that is fixed to a magnetic pole surface facing the magnet for pulse generation at a predetermined interval. A pulse generation magnetoelectric conversion element that converts a magnetic flux into an electrical signal is characterized in that the magnetic pole surface of the ring magnet for pulse generation is only a part of the N pole or S pole, and the other regions are magnetized by the other magnetic pole. According to the fourth rotor angle sensor integrated pulse generator, the pulse is generated because the magnetic pole surface of the ring magnet for pulse generation is only a part of the N or S pole, and the other area is the other pole. Even if a pole other than the pulse generating pole of the ring magnet is facing a pulse generating magnetoelectric conversion element, the magnetic flux density is negative (or positive), so it is not easily affected by external magnetic noise. In addition, the critical level of the detection level is -12- (8) (8) 576894. The magneto-electric conversion element for pulse generation can be selected, which can also improve the detection accuracy during the pulse generation period. The fifth rotor angle sensor integrated pulse generator (corresponding to item 6 of the scope of patent application) is characterized in that: in the above structure, it is preferable to form a multi-polar ring magnet for rotation angle detection and a magnet or pulse for pulse generation with an integrated magnet. Happened with a ring magnet. The sixth rotor angle sensor integrated pulse generator (corresponding to item 7 of the scope of patent application) is characterized in that in the above-mentioned configuration, it is preferable that the magnetoelectric conversion element for rotation angle detection and the magnetoelectric conversion element for pulse generation are Hall elements or Huo. Seoul 1C. According to the sixth rotor angle sensor integrated pulse generator, since the magnetoelectric conversion element for rotation angle detection and the magnetoelectric conversion element for pulse generation are Hall elements or Hall 1C, the magnetic flux density can be reliably converted into electrical signals. It is possible to detect the pulse generation period with high accuracy. [Embodiment] A preferred embodiment of the present invention will be described below with reference to the drawings. The structure, shape, size, and arrangement relationship described in the embodiments merely show the degree to which the present invention can be understood and implemented, and the numbers and the composition (material) of each structure are merely examples. Therefore, the present invention is not limited to the embodiments described below, and can be changed to various forms without departing from the scope of the technical idea shown in the scope of the patent application. Fig. 1 is a diagram showing the configuration of a rotor angle -13- (9) (9) 576894 degree sensor-integrated pulse generator according to a first embodiment of the present invention. Rotor angle sensor 1 The body-type pulse generator 10 is composed of a magnetic flux generator 11, a magnetoelectric converter 12, and a bias magnet 13. The magnetic flux generator 11 is a multi-pole ring magnet 15 for rotation angle detection mounted on the outer periphery of the rotor 14 and a predetermined interval is fixed to the multi-pole ring magnet 15 for rotation angle detection. 1 6 composition. The magneto-electric conversion unit 12 converts the magnetic flux generated by the rotation angle φ detection multi-pole ring magnet 15 fixed at a predetermined interval by being fixed to the multi-pole ring magnet 15 for rotation angle detection to electrical The rotation angle detection magnetoelectric conversion element 17 composed of a signal Hall element, Hall 1C, or the like is generated by a pulse generation magnet 16 which is fixed to the facing pulse generation magnet 16 at a predetermined interval. A pulse generating magnetoelectric conversion element 18 including a Hall element or a Hall 1C which converts a magnetic flux into an electrical signal is configured. A magnet 13 for magnetic deflection is arranged on the side opposite to the pulse generating magnet 16 of the pulse generating element 18. Fig. 2 is a perspective view of a part of the multi-pole ring magnet 15 for rotation angle detection and the magnet 16 for pulse generation used by the magnetic flux generator 11. The multi-pole toroidal magnet 15 for rotation angle detection is composed of a ring-shaped multi-pole magnet. One magnet 19 (the S pole in FIG. 2) of the magnet 16 for pulse generation is located on the rotation axis side of the rotor 14, and the other magnet 20 (N pole in FIG. 2) A magnet is installed on the side opposite to the rotation axis of the rotor 14. The rotor angle sensor integrated pulse generator 10 constructed as described above is borrowed by -14 · (10) by the rotation of the rotor 14, The magnetic flux generated by the rotation angle detection multi-pole ring magnet i 5 is detected by the rotation angle detection magnetoelectric conversion element 17 and converted into an electrical signal according to the magnetic flux density. The rotation angle of the rotor 14 can be measured by measuring this electrical signal. On the other hand, when the rotor 14 is rotated and the pulse generating magnet 16 and the pulse generating magnetoelectric conversion element 18 are located on opposite sides, the magnetic flux generated by the pulse generating magnet 16 is not detected. When the rotor 14 rotates and the pulse generating magnet 16 approaches the pulse generating magnetoelectric conversion element 18, the magnetic flux generated by the pulse generating magnet 16 is detected and converted into an electrical signal according to the magnetic flux density. FIG. 3 shows the change in magnetic flux density (a) between the position of the magnetoelectric conversion element 17 for rotation angle detection and the position of the magnetoelectric conversion element 18 for pulse generation according to the rotation angle of the rotor 14, and the magnetoelectricity for rotation angle detection. Change in output voltage (b) when the conversion element 17 and the pulse generation magnetoelectric conversion element 18 use Hall 1C. A curve C11 shows a change in magnetic flux density at the position of the rotation angle detection magnetoelectric conversion element 17, and a curve C12 shows a change in magnetic flux density at the position of the pulse generation magnetoelectric conversion element 18. Further, the curve C 1 3 is a change in magnetic noise caused by the leakage magnetic flux from the motor. The straight lines Cl4a and C14b are the two detection levels ThH when the magnetoelectric conversion element 17 for rotation angle detection and the magnetoelectric conversion element 18 for pulse generation are used when Hall 1C including a Hall element and an amplifier and a Schmitt trigger circuit is used. ThL, when the magnetic flux density at the position of the rotation angle detection magnetoelectric conversion element 17 and the position of the pulse generation magnetoelectric conversion element 18 is greater than the detection level ThH ', the rotation angle detection magnetoelectricity -15- (11) conversion element 17 An electrical signal that outputs a voltage to the pulse generating magnetoelectric conversion element 18. When the magnetic flux density of the position of the rotation angle detection magnetoelectric conversion element 17 and the position of the pulse generation magnetoelectric conversion element 18 is equal to or less than the detection level ThL, the rotation angle detection magnetoelectric conversion element 17 and the pulse generation magnetoelectric conversion element 18 Electrical signal with output voltage VH. Curve C 1 5 shows the output signal from the magnetoelectric conversion element 17 for rotation angle detection, and curve C 1 6 shows the output signal from the magnetoelectric conversion element 18 for pulse generation. In this way, the Hall IC switches the output signal to the voltage VL and the voltage VH in the two detection levels ThH and ThL displayed by the straight lines C 14 a and C14b. As shown in Fig. 3, at the position (0 ° ~ 90 °) where the magnet 16 for pulse generation is separated from the magnetoelectric conversion element 18 for pulse generation, the magnetic flux density is negative due to the bias magnet. When the magnet 16 for pulse generation is close to When the position of the pulse generating magnetoelectric conversion element 18 (above 90 °), the displayed magnetic flux density increases from negative to positive, and then the magnetic flux density increases to positive. Once again, the magnet 16 for pulse generation and the magnetoelectricity for pulse / rush generation are displayed again. The position (130 ° to 180 °) where the conversion element 18 is separated becomes a negative change. In accordance with this change in magnetic flux density, when the magnetic flux density at the position of the pulse generating magnetoelectric conversion element 18 is equal to or higher than the detection level ThH, the pulse generating magnetoelectric conversion element 18 outputs an electrical signal of voltage VL. That is, in the range between the rotor rotation angles p 1 0 and p 11 in Fig. 3, the pulse generating magneto-electric conversion element 18 outputs an electric signal of voltage VL, and the pulse is generated by the electric signal of this voltage VL. In this way, one of the magnetic poles 19 of the pulse generating magnet 16 is located on the center of rotation of the rotor 14 and the other of the magnetic poles 20 is on the side opposite to the center of rotation of the rotor-16. (12) (12) 576894 1 4 The rotor 14 is fixed at a predetermined distance from the rotation axis by a multi-pole ring magnet 15 for rotation angle detection mounted on the outer periphery of the rotor 14. One of the magnets is located at the center of the rotation of the rotor. One of the magnetic poles 1 3 is installed on the side opposite to the center of rotation of the rotor, and the magnetic flux applied to the pulse-generating magneto-electric conversion element 18 is shifted in advance. Therefore, when the pulse-generating magnet 16 is not closest to the surface, When the position of the magnetoelectric conversion element 18 for pulse generation is always negative even if magnetic noise is added to the magnetic noise, it is below the detection level ThH of the magnetoelectric conversion element 18 for pulse generation, so it is not susceptible to magnetic noise from the motor. Impact. In addition, the critical level of the detection level 値 a low-frequency magnetoelectric conversion element for pulse generation can be selected, which can also improve the detection accuracy at the time of pulse generation. Furthermore, because the bias magnet 13 is provided, when the magnetic field from the pulse generating magnet 16 exceeds the magnetic field of the bias magnet 13, the flow of the magnetic flux is reversed. Steepness can cause large changes in magnetic flux. In addition, 'multi-pole ring magnets 15 for rotation angle detection and magnets 16 for pulse generation can obtain large magnetic flux densities by using rare-earth magnets' even if the magnetic flux density is shifted to a negative direction by the bias magnet 13, When the magnet 16 for pulse generation approaches the magnetoelectric conversion element 18 for pulse generation, a positive large magnetic flux density can be obtained, so that the pulse generation period can be detected with high accuracy. In addition, the use of samarium-cobalt-based magnets among rare earth magnets can detect the pulse generation period with stable accuracy without being affected by the ambient temperature. -17-(13) In this embodiment, the N pole of the pulse generating magnet 16 is fixed to the rotor 14 so that the S pole appears to the outside. 4 is also OK. Next, a rotor angle sensor integrated pulse generator according to a second embodiment of the present invention will be described. This embodiment is the same as the first embodiment except for the magnetic flux generating portion 11, so the magnetic flux generating portion 11 will be described. Fig. 4 is a perspective view of the multi-pole ring magnet 21 for rotation angle detection and the ring magnet 22 for pulse generation used by the magnetic flux generator 11. The magnets are multi-pole ring magnets 21 for rotation angle detection and ring magnets 22 for pulse generation, and are each composed of ring magnets 23a and 23b. The ring magnet 23a (multi-pole ring magnet 21 for rotation angle detection) is composed of a multi-pole magnet, and the ring magnet 23b (ring magnet 22 for pulse generation) is only a part of the N or S poles located outside the ring The other regions are magnets magnetized by the other magnetic pole located outside the ring. The multi-pole ring magnet 21 for rotation angle detection 21 and the ring magnet 22 for pulse generation are each composed of ring magnets 23a and 23b, and the ring magnet 23a ( The multi-pole ring magnet 21 for detecting the rotation angle is composed of multi-pole magnets. The ring magnet 23b (ring magnet 22 for pulse generation) is only a part of N poles, and the other regions are magnets made of S poles, so the pulses are generated. Even if a pole other than the pulse generating pole of the ring magnet is facing a pulse generating magnetoelectric conversion element, the magnetic flux density is negative (or positive), so it is not easily affected by external magnetic noise. In addition, the critical low-level pulse generation magnetism for detection level • 18- (14) (14) 576894 The electrical conversion element can be selected, which can also improve the detection accuracy during the pulse generation period. In addition, the use of a rare-earth magnet allows a large magnetic flux density to be obtained by using a multi-pole toroidal magnet 21 for rotation angle detection and a toroidal magnet 22 for pulse generation, and the use of a samarium-cobalt-based magnet among the rare-earth magnets can also be used. The pulse generation period is detected with stable accuracy without being affected by the ambient temperature. [Effects of the Invention] As is clear from the above description, the following effects can be achieved according to the present invention. One of the magnetic poles of the pulse generating magnet is located on the side of the rotor's rotating shaft. The other magnetic pole is located on the side opposite to the rotor's rotating shaft. The multi-pole ring magnet for detecting the rotation angle attached to the outer periphery of the rotor The axial direction is fixed at a predetermined distance, and the magnetic flux applied to the magnetoelectric conversion element for pulse generation by a bias magnet is shifted in advance. Therefore, when the magnet for pulse generation is not closest to the position facing the magnetoelectric conversion element for pulse generation, The magnetic flux density is often negative, so it is not easily affected by magnetic noise from the motor. In addition, the critical chirp of the magnetoelectric conversion element for pulse generation can be reduced, and the detection accuracy at the time of pulse generation can be improved. Furthermore, the presence of a bias magnet reverses the flow of magnetic flux when the magnetic field from the magnet for pulse generation exceeds the magnetic field of the bias magnet. Therefore, the magnetic field is steeper than that provided only to the magnet for pulse generation, which can cause a large change in magnetic flux. This makes it less susceptible to magnetic noise 'and less likely to cause malfunction. [Brief description of the drawings] -19- (15) (15) 576894 Fig. 1 is a configuration diagram of a rotor angle sensor-integrated pulse generator according to the first embodiment of the present invention. Fig. 2 is a perspective view of parts of a multi-pole ring magnet for detecting rotation angle and a magnet for pulse generation used in a magnetic flux generating unit according to a first embodiment of the present invention. Fig. 3 is a graph showing (a) the change in magnetic flux density and (b) the change in the output voltage of Hall 1C according to the # rotation angle of the rotor according to the first embodiment of the present invention. Fig. 4 is a perspective view of a part of a multi-pole ring magnet for rotation angle detection and a ring magnet for pulse generation used in a magnetic flux generator of a second embodiment of the present invention. Fig. 5 is a schematic diagram of a conventional rotor angle sensor-integrated pulse generator. Fig. 6 is a perspective view of parts of a multi-pole ring magnet for detecting rotation angle and a magnet for pulse generation used in a magnetic flux generating portion of a conventional rotor angle sensor-integrated pulse generator. Fig. 7 is a graph showing (a) the change in the magnetic flux density and (b) the change in the output voltage of the Hall 1C according to the rotation angle of the rotor of the conventional rotor angle sensor integrated pulse generator. [Description of symbols] 10, 100: Rotor angle sensor integrated pulse generator 11: Magnetic flux generator 12: Magnetoelectric conversion unit -20- (16) 576 894 13: Bias 14, 103 15, 21, 16, 105 17, 106 18, 107, 19, 20: 22: Pulse magnet rotor 104: Multi-pole ring magnet for rotation angle detection, magnet rotation element for rotation angle detection, magneto conversion element for pulse generation, magneto conversion element for pulse generation, ring magnet 23a, 23b: ring Magnetite

Claims (1)

⑴ 拾、申請專利範圍 1· 一種轉子角度感應器一體型脈衝發生器,包含: 安裝於轉子的以預定的間隔N極與S極交互地被磁 化的旋轉角度檢測用多極環形磁石; 固定於該轉子的脈衝發生用磁石; 將藉由固定於面對該旋轉角度檢測用多極環形磁石的 磁極面,設置預定的間隔的位置的該旋轉角度檢測用多極 環形磁石所產生的磁通量變換成電氣訊號的旋轉角度檢測 用磁電變換元件;以及 將藉由固定於面對該脈衝發生用磁石的磁極面,設置 預定的間隔的位置的該脈衝發生用磁石所產生的磁通量變 換成電氣訊號的脈衝發生用磁電變換元件,其特徵爲: 在與該脈衝發生用磁電變換元件的該脈衝發生用磁石 相反側,以與該脈衝發生用磁石的磁化方向相同方向配置 磁偏用的磁石。 2. 如申請專利範圍第1項所述之轉子角度感應器一 體型脈衝發生器,其中該磁偏用的磁石的磁極的方向是以 與該脈衝發生用磁石的磁極的方向同極面對而配置。 3. 如申請專利範圍第1項所述之轉子角度感應器一 體型脈衝發生器,其中令該脈衝發生用磁石的一方的磁極 位於該轉子的旋轉軸側,該脈衝發生用磁石的另一方的磁 極位於與該轉子的旋轉軸相反側而配置安裝該脈衝發生用 磁石於該轉子的外周的旋轉角度檢測用多極環形磁石’以 及排列於旋轉軸方向而接近以固定或隔著預定的距離固定 -22- (2) (2)576894 ,在與該脈衝發生用磁電變換元件的該脈衝發生用磁石相 反側,磁石的一方的磁極位於該轉子的旋轉的中心方向, 另一方的磁極位於與該轉子的中心方向相反側而安裝的磁 偏用的磁石。 4 .如申請專利範圍第2項所述之轉子角度感應器一 體型脈衝發生器,其中令該脈衝發生用磁石的一方的磁極 位於該轉子的旋轉軸側,該脈衝發生用磁石的另一方的磁 極位於與該轉子的旋轉軸側相反側而配置安裝該脈衝發生 用磁石於該轉子的外周的旋轉角度檢測用多極環形磁石, 以及排列於旋轉軸方向而接近以固定或隔著預定的磁固定 ,在與該脈衝發生用磁電變換元件的該脈衝發生用磁石相 反側,磁石的一方的磁極位於該轉子的旋轉的中心方向, 另一方的磁極係該轉子的中心法後圖位於相反側而安裝的 磁偏用的磁石。 5. —種轉子角度感應器一體型脈衝發生器,包含: 在安裝於轉子的圓周面以預定的間隔N極與S極交 互地被磁化的旋轉角度檢測用多極環形磁石; 固定於該轉子,在圓周面被磁化的脈衝發生用環形磁 石; 將藉由固定於面對該旋轉角度檢測用多極環形磁石的 磁極面,設置預定的間隔的位置的該旋轉角度檢測用多極 環形磁石所產生的磁通量變換成電氣訊號的旋轉角度檢測 用磁電變換元件;以及 將藉由固定於面對該脈衝發生用磁石的磁極面,設置 -23- 576894 通爲 磁徵 的特 生其 產 , 所件 石元 磁換 形變 環電 用磁 生用 發生 衝發 脈衝 該脈 的的 置號 位訊 的氣 隔電 丨間成 ⑶的換 定變 預量 · 該脈衝發生用環形磁石的磁極面係僅一部分爲N極 或S極,其他區域爲另一方的磁極的方式而磁化的磁石。 6.如申請專利範圍第1項至第5項中任一項所述之 轉子角度感應器一體型脈衝發生器,其中以一體的磁石構 成該旋轉角度檢測用多極環形磁石與該脈衝發生用磁石或 該脈衝發生用環形磁石。 7 ·如申請專利範圍第1項至第5項中任一項所述之轉 子角度感應器一體型脈衝發生器,其中該旋轉角度檢測用 磁電變換元件與該脈衝發生用磁電變換元件爲霍爾元件或 霍爾1C。 -24 -范围 Patent application scope 1. A rotor angle sensor integrated pulse generator, comprising: a multi-pole ring magnet for rotation angle detection mounted on a rotor that is magnetized with N poles and S poles at a predetermined interval; The rotor pulse generating magnet converts the magnetic flux generated by the rotation angle detection multi-pole ring magnet, which is fixed to the magnetic pole surface of the rotation angle detection multi-pole ring magnet, at a predetermined interval. A magnetoelectric conversion element for detecting the rotation angle of an electrical signal; and a magnetic flux generated by the pulse generating magnet fixed to a magnetic pole surface facing the pulse generating magnet at a predetermined interval is converted into a pulse of the electrical signal The generating magnetoelectric conversion element is characterized in that a magnet for magnetic deflection is arranged on the opposite side of the pulse generating magnet of the pulse generating magnetoelectric element in the same direction as the magnetizing direction of the pulse generating magnet. 2. The rotor angle sensor-integrated pulse generator according to item 1 of the scope of the patent application, wherein the magnetic poles of the magnet for magnetic deflection are oriented in the same polarity as the directions of the magnetic poles of the magnet for pulse generation Configuration. 3. The rotor angle sensor integrated pulse generator according to item 1 of the scope of the patent application, wherein one pole of the pulse generating magnet is located on the rotation axis side of the rotor, and the other of the pulse generating magnet is The magnetic pole is located on the opposite side to the rotation axis of the rotor, and the multi-pole ring magnet for detecting the rotation angle of the pulse-generating magnet on the outer periphery of the rotor is disposed, and is arranged near the rotation axis to be fixed or fixed at a predetermined distance. -22- (2) (2) 576894, on the opposite side to the pulse generating magnet of the pulse generating magnetoelectric conversion element, one of the magnet's magnetic poles is located in the direction of the center of rotation of the rotor, and the other magnetic pole is located opposite to the A magnet for magnetic deflection mounted on the side opposite to the center of the rotor. 4. The rotor angle sensor integrated pulse generator according to item 2 of the scope of the patent application, wherein one pole of the pulse generating magnet is positioned on the rotation axis side of the rotor, and the other of the pulse generating magnet is The magnetic pole is located on the opposite side of the rotor's rotation axis side, and the multi-pole annular magnet for detecting the rotation angle of the pulse generating magnet on the outer periphery of the rotor is disposed, and is arranged near the rotation axis to be fixed or separated by a predetermined magnetic field. Fixed: On the opposite side to the pulse generating magnet of the pulse generating magnetoelectric conversion element, one of the magnets is located on the center of rotation of the rotor, and the other magnetic pole is on the opposite side of the center method of the rotor. Mounted magnets. 5. —A rotor angle sensor-integrated pulse generator comprising: a multi-pole ring magnet for detecting a rotation angle that is magnetized alternately with N pole and S pole at a predetermined interval on a circumferential surface of the rotor; fixed to the rotor; The ring magnet for pulse generation that is magnetized on the circumferential surface; The multi-pole ring magnet for rotation angle detection will be fixed to the magnetic pole surface of the multi-pole ring magnet for rotation angle detection at a predetermined interval. The generated magnetic flux is converted into a magnetic-electrical conversion element for detecting the rotation angle of an electrical signal; and a -23-576894 flux is a special product of the magnetic sign by being fixed on the magnetic pole surface facing the pulse generating magnet. Ishimoto's magnetic deformation deformation ring-generating magnetism uses a pulsed pulsed gas signal to generate a gas-separated signal. This is a predetermined amount of change in change of the CD. Only a part of the magnetic pole surface of the ring magnet for pulse generation is used. A magnet that is magnetized in such a manner that it is an N pole or an S pole, and the other regions are magnets of the other pole. 6. The rotor angle sensor integrated pulse generator according to any one of claims 1 to 5 in the scope of the patent application, wherein the multi-pole ring magnet for detecting rotation angle and the pulse generating unit are formed by an integrated magnet. Magnets or ring magnets for this pulse generation. 7 · The rotor angle sensor integrated pulse generator according to any one of claims 1 to 5 in the scope of patent application, wherein the magnetoelectric conversion element for detecting rotation angle and the magnetoelectric conversion element for generating pulse are Hall Component or Hall 1C. -twenty four -
TW092108459A 2002-04-15 2003-04-11 Pulse generator with an integrated rotor angle sensor TW576894B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111742A JP2003307433A (en) 2002-04-15 2002-04-15 Pulse generator integrated with rotor angle sensor

Publications (2)

Publication Number Publication Date
TW200305684A TW200305684A (en) 2003-11-01
TW576894B true TW576894B (en) 2004-02-21

Family

ID=29394450

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092108459A TW576894B (en) 2002-04-15 2003-04-11 Pulse generator with an integrated rotor angle sensor

Country Status (5)

Country Link
JP (1) JP2003307433A (en)
CN (2) CN100387928C (en)
ES (1) ES2208132B1 (en)
IT (1) ITTO20030291A1 (en)
TW (1) TW576894B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005022596A1 (en) * 2005-05-17 2006-11-23 Continental Teves Ag & Co. Ohg Arrangement for intrinsically safe wheel speed detection
JP2006322811A (en) * 2005-05-19 2006-11-30 Uchiyama Mfg Corp Magnetic encoder and member to be detected
JP5073183B2 (en) * 2005-07-08 2012-11-14 日本電産サンキョー株式会社 Magnetic encoder
WO2007121192A2 (en) * 2006-04-10 2007-10-25 Timken Us Corporation Turning device position sensing system and method
CN100451554C (en) * 2007-01-17 2009-01-14 北京航空航天大学 Device for discriminating rotar position of magnet suspension flywheel
JP5287635B2 (en) * 2009-09-24 2013-09-11 株式会社ジェイテクト Rotation angle sensor, motor, rotation angle detection device, and electric power steering device
CN107270976A (en) * 2017-07-25 2017-10-20 上海小寻科技有限公司 A kind of intelligent flow meter
CN108554332B (en) * 2018-05-15 2024-03-08 中亚民生科技发展有限公司 N-S vector true quantum traction energy wave implantation equipment
DE102019135494B4 (en) 2019-12-20 2023-11-02 Baumer Germany Gmbh & Co. Kg Device and method for detecting movement and/or position of an object

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576316A (en) * 1980-06-14 1982-01-13 Toyota Motor Corp Crank angle detector for internal combustion engine
JPS62235522A (en) * 1986-03-19 1987-10-15 Honda Motor Co Ltd Rotational angle sensor
JP2526882B2 (en) * 1987-01-31 1996-08-21 ソニー株式会社 Face-to-face power generation type pulse generator
JP2532469B2 (en) * 1987-05-28 1996-09-11 松下電器産業株式会社 Steering shaft rotation angle detector
JPH07110336A (en) * 1993-10-08 1995-04-25 Stanley Electric Co Ltd Pulse generator and rotation detector
EP0668486A3 (en) * 1994-02-22 1997-07-30 Heidenhain Gmbh Dr Johannes Device for measuring lengths or angles.
JP2000180113A (en) * 1998-12-14 2000-06-30 Yazaki Corp Steering wheel angle detecting device
JP2000329581A (en) * 1999-05-18 2000-11-30 Yazaki Corp Magnet ring for steering angle sensor and its manufacture
JP3996351B2 (en) * 2000-04-03 2007-10-24 本田技研工業株式会社 Starter combined generator

Also Published As

Publication number Publication date
TW200305684A (en) 2003-11-01
CN1460861A (en) 2003-12-10
JP2003307433A (en) 2003-10-31
ES2208132A1 (en) 2004-06-01
CN1789903A (en) 2006-06-21
ITTO20030291A1 (en) 2003-10-16
ES2208132B1 (en) 2005-09-01
CN1268932C (en) 2006-08-09
CN100387928C (en) 2008-05-14

Similar Documents

Publication Publication Date Title
EP0611952B1 (en) Position detector
JPS5924970Y2 (en) Rotational position detection device
TW576894B (en) Pulse generator with an integrated rotor angle sensor
CA2488967A1 (en) Eddy current sensors
JP2004028809A (en) Actuator
JPH1082795A (en) Speed sensor for rotating element
US20080143323A1 (en) Method of detecting rotational position by using hall element and hall element resolver
JPH10206447A (en) Magnetic detected body of rotary detecting mechanism
EP0903856B1 (en) Pulse signal generation method and apparatus
US20230204692A1 (en) Magnetic sensor using spin orbit torque and sensing method using same
US5153513A (en) Apparatus for processing output signal of sensor with magnetic rotary member
CN100394188C (en) Bearing with rotation sensor and electric motor using the same
JPH11118517A (en) Sensor for body of rotation
JPS5842412B2 (en) position detection device
JP4003526B2 (en) Rotation angle sensor and torque sensor
JPS57166871A (en) Dc brushless motor
RU2136003C1 (en) Transducer of rotational speed
RU2004102306A (en) NON-CONTACT CAR SPEED SENSOR
JPH112506A (en) Structure for detecting rotating position of rotor of motor
JP2002340513A (en) Rotational angle sensor
JPS58218652A (en) Rotation detecting device
JPH0712832A (en) Car speed detector
JPS59615A (en) Rotation position detector
JPS58172512A (en) Detecting device for position of rotation
KR900003440Y1 (en) Generator of rotation signal

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees