TW573367B - Method for manufacturing self-aligned rear electrode of photodiode - Google Patents

Method for manufacturing self-aligned rear electrode of photodiode Download PDF

Info

Publication number
TW573367B
TW573367B TW91136020A TW91136020A TW573367B TW 573367 B TW573367 B TW 573367B TW 91136020 A TW91136020 A TW 91136020A TW 91136020 A TW91136020 A TW 91136020A TW 573367 B TW573367 B TW 573367B
Authority
TW
Taiwan
Prior art keywords
layer
photodiode
self
amorphous silicon
manufacturing
Prior art date
Application number
TW91136020A
Other languages
Chinese (zh)
Other versions
TW200410419A (en
Inventor
Dun-Nian Yaung
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW91136020A priority Critical patent/TW573367B/en
Application granted granted Critical
Publication of TW573367B publication Critical patent/TW573367B/en
Publication of TW200410419A publication Critical patent/TW200410419A/en

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

A method for manufacturing a self-aligned rear electrode of a P+ amorphous silicon (P+ a-Si)/Intrinsic a-Si/N+ a-Si (PIN) thin film photodiode is disclosed. The method defines a first N+ a-Si layer and a top metal layer under the first N+ a-Si layer after the first N+ a-Si layer being formed on the top metal layer, and then forms a second N+ a-Si layer to cover the defined first N+ a-Si layer and the top metal layer, and performs an etching back step to make the top metal layer be covered by the first N+ a-Si layer and the second N+ a-Si layer, thereby forming the self-aligned rear electrode.

Description

573367 五、發明說明(1) 發明所屬之技術領域: 本發明係有關於一種薄膜感光二極體(Thin-fi lm Photodiode)之自我對準背面電極(self —aligned Rear Elect rode)的製造方法,特別是有關於一種升高 (Elevated)P+型非晶矽(P+ Amorphous SiliCQn; p+ a-Si) /本徵(Intrinsic )非晶矽/N+型非晶矽(pIN)薄膜感光二極 體之自我對準背面電極的製造方法。 、〜 先前技術: 一般傳統之影像感測器(I m a g e S e n s 〇 r)或像素(p i X e 1)元 件’例如感光^一^極體’係直接在碎基材上製作。然而,隨 著像素元件尺寸的微縮化,而採用多層内連線 (Interconnection)結構來增加電路密度。如此一來,光敏 度(Photosensitivity)將會因光散射、低u型透鏡增益、以 及低填充係數(Fi 1 1 Fact or)而下降,進而影響像素元件所 能捕捉之光線強度。 曰 為了解決像素元件尺寸微縮化所引發的問題,目前,已發 展出一種升高型Ρ I Ν薄膜像素元件來提升填充係數,進而增 加光敏度。在此所謂之升高型像素元件係指像素元件將其 光探測器(Photodetector)從矽基材提升到内連線結構上方 之上層導體層。如此一來,光探測器所感測之光線不需通 過内連線結構,而避免光散射產生來影響光線強度,且亦 不需透過U型透鏡來進行聚光,而不會有u型透鏡增益低的 問題。此外,光探測器製作在内連線結構上方之上層導體 層時’光探測器之製作面積更可大幅增加,於是可大大地 573367 五、發明說明(2) &胃填充係數’有效提升所能捕捉之光線強度。 此外’為避免像素元件等之背面電極與後續形成之本徵半 導體直接接觸而引發蕭基接合介面(Sch〇ttky juncti〇n Interface)’進而導致垂直漏電流產生。目前的解決方式 係在背面電極與本徵半導體之間加入一層N+半導體層,以 隔離背面電極與本徵半導體。 請參照第1圖至第4圖,其係繪示習知升高薄膜感光二極體 之背面電極的製程剖面圖。首先提供基材1 〇 〇,此處所提供 之基材1 0 0可為已形成有組成感光元件所必備之元件,例如 電晶體及主動區等,且由於此感光二極體為升高型式,因 此基材1 0 0中亦包括有内連線結構位於上述之電晶體或主動 區上。接著,沉積上層金屬層1〇2覆蓋在基材1〇〇上,再定 義上層金屬層102,而暴露出部分之基材1〇〇,並在基材1〇〇 上形成具有所需圖案之上層金屬層102,形成如第1圖所示 之結構。 然後’沉積N+型非晶矽層1〇4覆蓋在所暴露之基材1〇〇以及 上層金屬層1 0 2上,而形成如第2圖所示之結構。再利用微 影(Photo lithograph )與蝕刻技術定義N+型非晶矽層1〇4, 而去除部分之N+型非晶矽層1 〇4,並暴露出部分之基材 100,以圖案化N+型非晶矽層104。經圖案化之N+型非晶矽 層1 04僅包覆在上層金屬層1 〇2外圍,且N+型非晶矽層1 〇4與 其所包覆之上層金屬層1 0 2構成背面電極1 0 5,如第3圖所示 之結構。為了確保製程可靠度,以使得N +型非晶矽層1 〇 4在 圖案化過程完成後,能完全將上層金屬層1 〇 2包覆住,因此 573367 五、發明說明(3) 一'一~ --- ^型非晶矽層104之厚度至少約為0 2微米& m)。如此一 層= 型尺非寸晶石夕層104之尺寸將遠大於其所包覆之上層金屬 背面電極1 05形成後,沉積本徵非晶矽層i 〇 以及所暴露出之基材100上。再沉積P+i非^ 層1 08覆蓋在本徵非晶矽層i 〇6上。其中,p+型非晶矽層 108、本徵非晶矽層106、以及N+型非晶矽層1〇4構成piN薄 膜堆疊結構。PIN薄膜堆疊結構形成後,形成透光之氧化銦 錫(Indium Tin Oxide; ITO)層11〇覆蓋在P+型非晶矽層1〇8 當作像素元件之上電極’而完成了像素元件之製作(如第4 圖所示)。 然而,由於在製作N+型非晶矽層104來包覆背面電極1〇5之 上層金屬層1 0 2時’受限於製程技術,N +型非晶矽層1 〇 4之 尺寸遠較上層金屬層1 〇 2之尺寸大,因而引發擴展法則 (Extension Rule),進而導致像素元件尺寸增加,或造成 像素元件之填充係數下降。 發明内容:573367 V. Description of the invention (1) The technical field to which the invention belongs: The present invention relates to a method for manufacturing a self-aligned rear electrode (Thin-Film Photodiode), In particular, it relates to the self of an elevated (P + Amorphous SiliCQn; p + a-Si) / intrinsic / N + amorphous silicon (pIN) film photodiode Method for manufacturing alignment electrode. Prior art: Generally, conventional image sensors (I m ag e Sen sor) or pixels (p i X e 1) elements 'such as photosensitive ^ a ^ polar body' are made directly on the broken substrate. However, with the miniaturization of the size of pixel elements, a multilayer interconnection structure is adopted to increase the circuit density. In this way, the photosensitivity will decrease due to light scattering, low u-shaped lens gain, and low fill factor (Fi 1 1 Fact or), which will affect the light intensity that the pixel element can capture. In order to solve the problem caused by the miniaturization of the size of the pixel element, currently, a raised type PI N thin film pixel element has been exhibited to improve the fill factor and thereby increase the light sensitivity. The so-called elevated pixel element refers to a pixel element that lifts its photodetector from a silicon substrate to an upper conductor layer above an interconnect structure. In this way, the light sensed by the photodetector does not need to pass through the interconnect structure, avoiding the occurrence of light scattering to affect the light intensity, and it does not need to focus through the U-shaped lens, and there will be no u-shaped lens gain Low problem. In addition, when the photodetector is fabricated on the upper conductor layer above the interconnect structure, the production area of the photodetector can be greatly increased, so that it can greatly increase 573367 V. Description of the invention (2) & gastric filling factor The intensity of light that can be captured. In addition, 'to prevent the back electrode of the pixel element and the like from coming into direct contact with the intrinsic semiconductor that is subsequently formed, the Schottky junction interface (Schottky junction interface)' is caused, which in turn causes vertical leakage current. The current solution is to add an N + semiconductor layer between the back electrode and the intrinsic semiconductor to isolate the back electrode from the intrinsic semiconductor. Please refer to FIG. 1 to FIG. 4, which are cross-sectional views showing a process for forming a conventional back electrode of a thin film photodiode. Firstly, a substrate 100 is provided. The substrate 100 provided here may be a component necessary for forming a photosensitive element, such as a transistor and an active region. Since the photosensitive diode is an elevated type, Therefore, the substrate 100 also includes an interconnect structure located on the transistor or the active region. Next, an upper metal layer 102 is deposited to cover the substrate 100, and an upper metal layer 102 is defined, and a part of the substrate 100 is exposed, and a desired pattern is formed on the substrate 100. The upper metal layer 102 has a structure as shown in FIG. 1. Then, the N + -type amorphous silicon layer 104 is deposited on the exposed substrate 100 and the upper metal layer 102 to form a structure as shown in FIG. 2. Photolithography and etching technology are used to define the N + type amorphous silicon layer 104, and a part of the N + type amorphous silicon layer 104 is removed, and a part of the substrate 100 is exposed to pattern the N + type Amorphous silicon layer 104. The patterned N + -type amorphous silicon layer 104 covers only the periphery of the upper metal layer 1 02, and the N + -type amorphous silicon layer 104 and the upper metal layer 1 0 2 that it covers constitute the back electrode 10 5. The structure shown in Figure 3. In order to ensure the reliability of the process, so that the N + -type amorphous silicon layer 104 can completely cover the upper metal layer 100 after the patterning process is completed, so 573367 V. Description of the invention (3) One 'one The thickness of the ^ -type amorphous silicon layer 104 is at least about 0.2 micrometers (m). Such a layer = the size of the non-inch crystal stone layer 104 will be much larger than that of the overlying upper metal layer. After the back electrode 105 is formed, the intrinsic amorphous silicon layer i 0 and the exposed substrate 100 are deposited. A P + i non- ^ layer 108 is deposited over the intrinsic amorphous silicon layer i 06. Among them, the p + type amorphous silicon layer 108, the intrinsic amorphous silicon layer 106, and the N + type amorphous silicon layer 104 constitute a piN thin film stack structure. After the PIN thin film stack structure is formed, a light-transmitting Indium Tin Oxide (ITO) layer 11 is covered with a P + -type amorphous silicon layer 108 as an electrode on the pixel element, and the fabrication of the pixel element is completed. (As shown in Figure 4). However, the size of the N + amorphous silicon layer 104 is much larger than that of the upper layer when the N + amorphous silicon layer 104 is produced to cover the back metal layer 105 and the upper metal layer 102 is limited by process technology. The size of the metal layer 102 is large, which triggers an extension rule, which in turn leads to an increase in the size of the pixel element or a decrease in the fill factor of the pixel element. Summary of the invention:

鑒於上述習知薄膜感光二極體之背面電極的製作過程中, 受限於製程方式’導致包覆在背面電極之導體層上的N+型 非晶石夕層的尺寸無法有效縮減,而造成感光二極體之像素 尺寸增加,並使得像素所能捕捉之光線強度減少。此外, 更需另外藉助一道光罩步驟,才可定義出導體層上之N+型 非晶矽層。 因此,本發明的主要目的之一就是在提供一種感光二極體In view of the fact that the conventional backside electrode of the thin film photodiode is manufactured in the above process, it is limited by the process method, which results in that the size of the N + type amorphous stone layer coated on the conductive layer of the backside electrode cannot be effectively reduced, resulting in light sensitivity. The pixel size of the diode increases, and the intensity of light that the pixel can capture decreases. In addition, an additional mask step is required to define the N + type amorphous silicon layer on the conductor layer. Therefore, one of the main objects of the present invention is to provide a photodiode

第7頁 573367 五、發明說明(4) 之自我對準背面電 (Etching Back)技 金屬層,而以自我 相當輕易地便可有 導體材料層直接接 本發明之另一目的 作感光二極體之背 面電極之導體層上 衝層,而將導體層 極體之像素的尺寸 強度。 本發明之再一目的 電極的製造方法, 形成自我對準背面 行N+半導體緩衝層 程成本。 根據以上所述之目 自我對準背面電極 其中此基材上至少 括依序堆疊之一上 在上層金屬層上; 基材;形成一第二 構,並覆蓋在暴露 晶矽層,以暴露出 極的製造方法,其係 術形成N +半導體緩衝 對準方式完成背面電 效防止上層金屬層與 觸’而避免垂直漏電 就是在提供一種利用 面電極的方法,藉由 順利地形成厚度相當 完全包覆住。因此, ,進而可有效提升像 就是在提供一種薄膜 藉由回蝕刻步驟便可 電極,而不需另外再 的圖案化。因此,可 的’本發明更提供了 的製造方法,至少包 包括一堆疊結構,且 層金屬層以及一第一 定義上述之堆疊結構 N+型非晶矽層包覆住 之基材上;以及去除 先前所暴露之基材, 利用回蝕刻 層完全包覆住上層 極之製作。因此, 後續形成之本徵半 流的產生。 自我對準的方式製 回餘刻步驟可在背 薄之N +型半導體緩 可大幅縮小感光二 素所能捕捉的光線 感光二極體之背面 以自我對準的方式 使用一道光罩來進 簡化製程,降低製 一種感光二極體之 括:提供一基材, 此堆疊結構至少包 N+型非晶矽層覆蓋 ’以暴露出部分之 已定義之堆疊結 部分之第二N+型非 而形成自我對準背Page 7 573367 V. Description of the invention (4) Self-aligned backside metal (Etching Back) technology metal layer, and it is quite easy to have a conductive material layer directly connected to another object of the present invention as a photodiode The conductive layer of the back electrode is punched on, and the dimensional strength of the pixel of the conductive layer polar body. Another object of the present invention is a method for manufacturing an electrode, which forms a self-aligned backside N + semiconductor buffer layer process cost. According to the purpose described above, the back electrode is self-aligned, wherein at least one of the substrates is sequentially stacked on the upper metal layer; the substrate; a second structure is formed, and the exposed crystalline silicon layer is covered to expose The manufacturing method of the electrode is to form an N + semiconductor buffer alignment method to complete the back side electrical effect to prevent the upper metal layer from touching and avoid vertical leakage. This is to provide a method using a surface electrode, which can form a complete package with a smooth thickness. Cover it. Therefore, to further enhance the image effectively is to provide a thin film electrode which can be etched back without the need for additional patterning. Therefore, the manufacturing method provided by the present invention further includes at least a stacked structure, a metal layer, and a substrate defined by the above-mentioned stacked structure N + type amorphous silicon layer; and removing The previously exposed substrate is fabricated by completely covering the upper layer with an etch-back layer. Therefore, the subsequent formation of an intrinsic semi-current. The self-aligning method can be used to make the remaining steps. The thin N + semiconductor can greatly reduce the light that the photodiode can capture. The back of the photodiode uses a photomask to simplify the self-alignment. The process of reducing the production of a photodiode includes: providing a substrate, the stacked structure including at least an N + -type amorphous silicon layer covering to expose a part of the second N + -type of the defined stack junction portion and form itself Aim at the back

第8頁 573367 五、發明說明(5) 面電極。 其中,去除部分之第二N +型非晶矽層之步驟係自 驟,可利用回蝕刻方式來達成。 、我對準步 藉由對第二N+型非晶石夕層之回姓刻步驟,即可以 、 的方式使上層金屬層完全為第一 N+型非晶矽層與=我對準 非晶矽層所包覆。因此,不僅可防止後續形成之 =N+型 矽層直接與背面電極之上層金屬層接觸,而避 ,非晶 屬層與本徵非晶矽層所形成之蕭基接合介面所導 層金 漏電流產生。此外,更可大幅縮減包覆上層金 之垂直 非晶矽層的厚度,而縮小像素尺寸並增加感光二型 捕捉之光線強度。 视體所能 實施方式: 本發明揭露一種P I N薄膜感光二極體之自我對 製造方法,係利用回蝕刻技術在背面電極之 電極的 我對準的方式包覆一層相當薄之N+半導體緩衝片 隔離導體層與本徵半導體層。因此,不僅可避; 流,簡化製程,降低成本,更可達到減 / · 升填充係數的…為了使本發明」: = ; =提 備,可參照下列描述並配合第5圖至第9圖之^盡與元 請參照第5圖至第9圖,其係繪示本發 ::。 士 薄膜感光二極體之自我對準背面 =實施例升咼 明升高薄膜感光二極體之自我對J = f剖面圖。本發 供基材200,其中值得注意的二V:發電:的製作首先提 電極係應用於感光二極體等成光二本由發明之自我對準背面 瓶寻U尤7L件中,因此此處所提供Page 8 573367 V. Description of the invention (5) Surface electrode. The step of removing a part of the second N + -type amorphous silicon layer is automatic and can be achieved by an etch-back method. I. Alignment step By engraving the second N + type amorphous stone layer, it is possible to make the upper metal layer completely the first N + type amorphous silicon layer and align the amorphous silicon layer. Covered by layers. Therefore, it can not only prevent the subsequently formed = N + silicon layer from directly contacting the metal layer above the back electrode, but also avoid the gold leakage current guided by the Schottky interface formed by the amorphous metal layer and the intrinsic amorphous silicon layer. produce. In addition, the thickness of the vertical amorphous silicon layer covering the upper layer of gold can be greatly reduced, thereby reducing the pixel size and increasing the light intensity captured by the photosensitive type II. A visually acceptable embodiment: The present invention discloses a self-aligning manufacturing method of a PIN thin film photodiode, which is covered with a relatively thin layer of N + semiconductor buffers to isolate the electrodes on the back electrode using an etch-back technique. Conductor layer and intrinsic semiconductor layer. Therefore, it is not only avoidable; streamline, simplify the process, reduce costs, but also can reduce / increase the fill factor ... In order to make the invention ": =; = Provision, you can refer to the following description and cooperate with Figures 5 to 9 Please refer to Figure 5 to Figure 9 for the completeness and detail, which shows this hair ::. Self-aligned back side of a thin film photodiode = Example Example: The self-alignment of a thin film photodiode is raised. J = f sectional view. This hair is provided for the substrate 200, of which the noteworthy two V: power generation: First of all, the electrode system is applied to a photodiode and other photogenic diodes. The self-aligned back bottle of the invention is found in 7L pieces. provide

573367 五、發明說明(6)573367 V. Description of Invention (6)

之基材2 0 0可為已形成有組成感光元件所必備之元件,例如 電晶體及主動區等。此外,本發明之感光二極體為升高型 式’因此基材2 0 0中亦包括有内連線結構位於上述之電晶體 或主動區上。由於,此基材2 0 0之組成並非本發明之重點, 量可不再冗述。接著,利用例如化學氣相沉積法或濺鍍法 形成上層導體層2 0 2覆蓋在基材2 0 0上,藉以作為背面電極 之導電層。其中,上層導體層20 2之材質可例如為鋼、銘、 或鋁銅合金等金屬。上層導體層2 0 2形成後,以例如電衆增 益化學氣相沉積(PECVD)之方式,形成N+型半導體緩衝層 20 4覆蓋在上層導體層20 2上,而在基材20 0上形成如第5圖 所示之堆疊結構。其中,N+型半導體緩衝層204之材質可例 如為非晶。 形成N+型半導體緩衝層204後,利用例如微影及蝕刻技術進 行背面電極之圖案定義’藉以去除部分之N+型半導體緩衝 層204以及部分之上層導體層202,而在基材2〇〇上形成且有 所需圖案上層導體層202及N+型半導體緩衝層2〇4,並暴露 出部分之基材20 0,所形成之結構如第6圖所示。The base material 200 may be a necessary element for forming a photosensitive element, such as a transistor and an active region. In addition, the photodiode of the present invention is of an elevated type, so the substrate 200 also includes an interconnect structure on the transistor or the active region. Since the composition of the substrate 2000 is not the focus of the present invention, the amount can be omitted. Next, for example, a chemical vapor deposition method or a sputtering method is used to form an upper conductor layer 202 to cover the substrate 200 as a conductive layer for the back electrode. The material of the upper conductor layer 202 may be, for example, a metal such as steel, metal, or aluminum-copper alloy. After the upper conductor layer 202 is formed, an N + type semiconductor buffer layer 20 4 is formed to cover the upper conductor layer 202 by a method such as electric mass gain chemical vapor deposition (PECVD), and the substrate 200 is formed as The stacked structure shown in FIG. 5. Among them, the material of the N + type semiconductor buffer layer 204 may be, for example, amorphous. After the N + -type semiconductor buffer layer 204 is formed, a pattern definition of the back electrode is performed using, for example, lithography and etching techniques to remove a portion of the N + -type semiconductor buffer layer 204 and a portion of the upper conductor layer 202, and form the substrate 200 In addition, there is an upper conductor layer 202 and an N + type semiconductor buffer layer 204 of a desired pattern, and a part of the substrate 200 is exposed. The structure formed is shown in FIG. 6.

完成上層導體層20 2及N+型半導體緩衝層2〇4之圖案定義 後,以例如電漿增益化學氣相沉積之方式形成另一個N+型 半導體緩衝層206包覆住上層導體層202及N+型半導體緩後 層204所構成之堆疊結構,並覆蓋在所暴露出之基材2〇〇 上’而形成如第7圖所示之結構。其中,N+型半導體緩衝 2 〇 4之材質可例如為非晶矽。 接著以例如回姓刻的方式去除部分之N +型半導體緩衝層After the pattern definition of the upper conductor layer 202 and the N + -type semiconductor buffer layer 204 is completed, another N + -type semiconductor buffer layer 206 is formed to cover the upper conductor layer 202 and the N + type by, for example, plasma gain chemical vapor deposition. The stacked structure formed by the semiconductor retardation layer 204 is covered on the exposed substrate 200 ′ to form the structure shown in FIG. 7. The material of the N + -type semiconductor buffer 204 may be, for example, amorphous silicon. Then, for example, part of the N + -type semiconductor buffer layer is removed by engraving.

573367 五、發明說明(7) 206,而暴露出部分之基材2〇〇,並使得殘留之尺+型半導體 緩衝層20 6以及N+型半導體緩衝層20 4完全包覆住上層導體 層20 2,如第8圖所示。其中,殘留之N+型半導體緩衝層 206、N+型半導體緩衝層204、以及上層導體層2〇 2構成自我 對準之背面電極207。 本發明之一特徵就是藉由回钱刻技術,即可以自我對準的 方式,使N+型半導體緩衝層20 6與n+型半導體緩衝層2〇4完 全將上層導體層20 2予以包覆。因此,可省下一道定義N+型 半導體緩衝結構之光罩手續,進而達到簡化製程以及降低 製程成本的目的。 在本發明之一較佳實施例中,位於N+型半導體緩衝層204與 上層導體層2 0 2所構成之堆疊結構侧壁之N+型半 ⑽較寬處的厚度可小至約為Q.Wm,因此遠比術曰 的0/ 2私瓜小。故,本發明與習知技術相較之下,不僅可有 效縮減背面電極之尺寸,而達到縮小像素尺寸之目的更 可增加光線之填充率。 工:1Π形成後’:用例如電漿增益化學氣相沉積技術 :層=與_半導體緩衝層m、以及所暴露出 ^ ° 中’本徵半導體層208之材質可例如為 :心導體層2 0 2完全為N+型半導體緩衝層2 +導體緩衝層204所包覆,因此,可防t太 1 直接接觸到上層導體層202。如此一來,可“ ?層208 體層2G8與上層導體層2G2之間產生蕭基接合介面^半/ 573367 五、發明說明(8) ^----_ 效防止,兩者間之蕭基接合介面所導致之垂直漏電流產 生。接著,利用例如電漿増益化學氣相沉積法形成^ 導體層210覆蓋在本徵半導體層2〇8上。其中,p+型 層210之材質可例如為非晶矽。而上述之p+型半導體;體 210、本徵半導體層2 08、以及背面電極20 7之N+型半^於樓 衝層2 0 6與N +型半導體緩衝層2 〇 4即形成p I N堆疊結構。然 後,利用例如濺鍍沉積的方式形成透光導體層2丨2覆蓋& 型半導體層21 0上,而形成如第9圖所示之結構,完成升言 PIN薄膜感光二極體元件之製作。其中,此透光導體層 之材質至少包括氧化銦錫。 9 綜上所述,本發明之一優點就是因為利用回蝕刻技術,可 以自我對準方式使所形成之N+半導體緩衝層完全包覆住上 層導體層。因此,非常輕易地便可防止上層導體層與本 半導體材料層接觸,而達到有效避免垂直漏電流產^的二 的。 本發明之又一優點就是因為藉由回蝕刻步驟可在背面電極 之導體層上順利地形成厚度相當薄之N+型半導體緩衝層: 而將導體層完全包覆住。因此,可大幅縮小感光二極體之 像素的尺寸,進而達到提升像素所能捕捉之光線強度的目 的。 本發明之再一優點就是因為藉由回蝕刻步驟便可以自我 準的方式形成自我對準背面電極,因此,可省下一道光罩 定義手續,進而達到簡化製程以及降低製程成本的目的。 如熟悉此技術之人員所瞭解的,以上所述僅為本發明之較573367 V. Description of the invention (7) 206, and a part of the substrate 200 is exposed, so that the remaining scale + type semiconductor buffer layer 20 6 and the N + type semiconductor buffer layer 20 4 completely cover the upper conductor layer 20 2 , As shown in Figure 8. Among them, the remaining N + -type semiconductor buffer layer 206, the N + -type semiconductor buffer layer 204, and the upper conductor layer 202 constitute a self-aligned back electrode 207. One feature of the present invention is that the N + -type semiconductor buffer layer 20 6 and the n + -type semiconductor buffer layer 20 4 can completely cover the upper conductor layer 202 by self-alignment. Therefore, a mask procedure for defining an N + type semiconductor buffer structure can be saved, thereby achieving the purpose of simplifying the process and reducing the process cost. In a preferred embodiment of the present invention, the thickness of the N + -type half-width of the side wall of the stacked structure formed by the N + -type semiconductor buffer layer 204 and the upper conductor layer 202 can be as small as about Q.Wm. , So it is much smaller than the 0/2 private melon. Therefore, compared with the conventional technology, the present invention can not only effectively reduce the size of the back electrode, but also achieve the purpose of reducing the pixel size, and can increase the fill rate of light. After the formation of 1 ′: using, for example, a plasma gain chemical vapor deposition technique: layer = and_semiconductor buffer layer m, and the exposed intrinsic semiconductor layer 208 may be, for example, a core conductor layer 2 0 2 is completely covered by the N + -type semiconductor buffer layer 2 + conductor buffer layer 204, so that t 1 can be prevented from directly contacting the upper conductor layer 202. In this way, "? Layer 208 body layer 2G8 and upper conductor layer 2G2 can generate a Schottky joint interface ^ half / 573367 V. Description of the invention (8) ^ ----_ Effective prevention, the Schottky joint between the two The vertical leakage current caused by the interface is generated. Then, a conductive layer 210 is formed on the intrinsic semiconductor layer 208 by, for example, plasma-benefit chemical vapor deposition. The material of the p + type layer 210 may be, for example, amorphous. The above-mentioned p + -type semiconductor; the body 210, the intrinsic semiconductor layer 208, and the N + -type half of the back electrode 207 are formed on the substrate layer 2 0 6 and the N + -type semiconductor buffer layer 2 0 4 to form p IN. A stacked structure. Then, a light-transmitting conductor layer 2 丨 2 is formed to cover the & type semiconductor layer 2 10 by, for example, sputtering deposition, and the structure shown in FIG. 9 is formed to complete the PIN film photodiode. Fabrication of components. Among them, the material of the light-transmitting conductor layer includes at least indium tin oxide. 9 In summary, one of the advantages of the present invention is that by using the etch-back technology, the formed N + semiconductor buffer layer can be self-aligned. Completely covers the upper conductor layer. Therefore, It is very easy to prevent the upper conductor layer from contacting the semiconductor material layer, and to effectively avoid vertical leakage current. Another advantage of the present invention is that the conductor layer of the back electrode can be smoothly passed through the etch-back step. The N + -type semiconductor buffer layer with a relatively thin thickness is formed on the ground: the conductor layer is completely covered. Therefore, the size of the pixels of the photodiode can be greatly reduced, thereby achieving the purpose of increasing the light intensity that the pixels can capture. Another advantage is that since the self-aligned back electrode can be formed in a self-aligned manner by the etch-back step, the procedure of defining a mask can be saved, thereby achieving the purpose of simplifying the process and reducing the cost of the process. If you are familiar with this technology What the person understands is that the above is only a comparison of the present invention.

第12頁Page 12

573367 五、發明說明(9) 佳實施例而已,並非用以限定本發明之申請專利範圍;凡 其它未脫離本發明所揭示之精神下所完成之等效改變或修 飾,均應包含在下述之申請專利範圍内。 第13頁 573367 圖式簡單說明 本發明的較佳實施例已於前述之說明文字中輔以下列圖形 做更詳細的闡述,其中: 第1圖至第4圖係繪示習知升高薄膜感光二極體之背面電極 的製程剖面圖;以及 第5圖至第9圖係繪示本發明之較佳實施例升高薄膜感光二 極體之自我對準背面電極的製程剖面圖。573367 V. Description of the invention (9) It is only a good example and is not intended to limit the scope of patent application of the present invention; all other equivalent changes or modifications made without departing from the spirit disclosed by the present invention shall be included in the following Within the scope of patent application. Page 13 573367 Schematic illustration of the preferred embodiment of the present invention has been described in more detail in the preceding explanatory text with the following figures, where: Figures 1 to 4 show the conventionally raised thin film photodiodes And FIG. 5 to FIG. 9 are cross-sectional views illustrating a process of self-aligning a back electrode of a raised thin film photodiode according to a preferred embodiment of the present invention.

圖號對照說明: 100 基 材 102 上層 金 屬 層 104 N+型 非 晶 矽 層 105 背面 電 極 106 本 徵 非 晶 矽 層 108 P+型 非 晶 矽 層 110 氧 化 銦 錫 層 200 基材 202 上 層 導 體 層 204 N+型 半 導 體 緩衝層 206 N+型 半 導 體 緩衝層 207 背面 電 極 208 本 徵 半 導 體 層 210 P+型 半 導 體 層 212 透 光 導 體 層Comparative description of drawing numbers: 100 substrate 102 upper metal layer 104 N + type amorphous silicon layer 105 back electrode 106 intrinsic amorphous silicon layer 108 P + type amorphous silicon layer 110 indium tin oxide layer 200 substrate 202 upper conductor layer 204 N + Type semiconductor buffer layer 206 N + type semiconductor buffer layer 207 back electrode 208 intrinsic semiconductor layer 210 P + type semiconductor layer 212 light-transmitting conductor layer

第14頁Page 14

Claims (1)

573367573367 六、申請專利範圍 1· 一種感光二極體(Photodiode)之自我對準背面電極 (Self-aligned Rear Electrode)的製造方法,至少包括· 提供一基材,其中該基材上至少包括一堆疊結構,且^堆· 疊結構至少包括依序堆疊之一上層導體層以及一第一 1型 半導體層覆蓋在該上層導體層上; 定義該堆疊結構,以暴露出部分之該基材; 形成一第二N+型半導體層包覆住已定義之該堆疊結構,並 覆蓋在暴露之該基材上;以及 去除部分之該第二N+型半導體層,以暴露出該基材,而形 成該自我對準背面電極。 2.如申請專利範圍第1項所述之感光二極體之自我對準背面 電極的製造方法,其中該上層導體層之材質至少包括金 屬。6. Scope of patent application 1. A method for manufacturing a self-aligned rear electrode of a photodiode, at least including: providing a substrate, wherein the substrate includes at least a stacked structure And the stack structure includes at least one upper conductor layer and a first type 1 semiconductor layer stacked on the upper conductor layer in order; defining the stack structure to expose a part of the substrate; forming a first Two N + -type semiconductor layers cover the defined stack structure and cover the exposed substrate; and a portion of the second N + -type semiconductor layer is removed to expose the substrate and form the self-alignment Back electrode. 2. The method for manufacturing a self-aligned back electrode of a photodiode according to item 1 of the scope of patent application, wherein the material of the upper conductive layer includes at least metal. 3.如申請專利範圍第1項所述之感光二極體之自我對準背面 電極的製造方法,其中該第一 N+型半導體層之材質至少包 括非晶矽(a-Si)。 •如申請專利範圍第1項所述之感光二極體之自我對準背面 電極的製造方法,其中該第二N+型半導體層之材質至少包 括非晶矽。3. The method for manufacturing a self-aligned back electrode of a photodiode according to item 1 of the scope of the patent application, wherein the material of the first N + -type semiconductor layer includes at least amorphous silicon (a-Si). • The method for manufacturing a self-aligned back electrode of a photodiode as described in item 1 of the scope of patent application, wherein the material of the second N + type semiconductor layer includes at least amorphous silicon. 第15頁 573367 六、申請專利範圍 5. 如申請專利範圍第1項所述之感光二極體之自我對準背面 電極的製造方法,其中去除部分之該第二N+型半導體層的 步驟利用一回餘刻(Etching Back)方式。 6. 如申請專利範圍第1項所述之感光二極體之自我對準背面 電極的製造方法,其中於去除部分之該第二N+型半導體層 的步驟後,更至少包括形成一本徵(Intrinsic)半導體層覆 蓋在該自我對準背面電極以及暴露之該基材上。Page 15 573367 VI. Patent Application Range 5. The method for manufacturing a self-aligned back electrode of a photodiode as described in item 1 of the patent application range, wherein the step of removing part of the second N + type semiconductor layer uses a Etching Back method. 6. The method for manufacturing a self-aligned back electrode of a photodiode as described in item 1 of the scope of patent application, wherein after the step of removing a portion of the second N + type semiconductor layer, it further includes forming at least one intrinsic ( An Intrinsic) semiconductor layer covers the self-aligned back electrode and the exposed substrate. 7. 如申請專利範圍第6項所述之感光二極體之自我對準背面 電極的製造方法,其中該本徵半導體層之材質至少包括非 晶矽。 8. 如申請專利範圍第6項所述之感光二極體之自我對準背面 電極的製造方法,其中於形成該本徵(Intrinsic)半導體層 之步驟後,更至少包括形成一 P+型半導體層覆蓋在該本徵 半導體層上。7. The method for manufacturing a self-aligned back electrode of a photodiode as described in item 6 of the scope of patent application, wherein the material of the intrinsic semiconductor layer includes at least amorphous silicon. 8. The method for manufacturing a self-aligned back electrode of a photodiode according to item 6 in the scope of the patent application, wherein after the step of forming the intrinsic semiconductor layer, the method further includes forming at least a P + type semiconductor layer Overlying the intrinsic semiconductor layer. 9. 如申請專利範圍第8項所述之感光二極體之自我對準背面 電極的製造方法,其中該P+型半導體層之材質至少包括非 晶矽。 1 0 .如申請專利範圍第8項所述之感光二極體之自我對準背9. The method for manufacturing a self-aligned back electrode of a photodiode according to item 8 of the scope of the patent application, wherein the material of the P + type semiconductor layer includes at least amorphous silicon. 10. Self-aligning back of photodiode as described in item 8 of the scope of patent application 第16頁 573367Page 16 573367 六、申請專利範圍 e t 面電極的製造方法,其中於形成該51半導體層之步驟 後,更至少包括形成一透光導體層覆蓋在該p+型半導體層 上0 11 ·如申請專利範圍第1 〇項所述之感光二極體之自我對準背 面電極的製造方法,其中該透光導體層之材質至少包括氧 化銦錫(ιτο)。 1 2 ·如申請專利範圍第1項所述之感光二極體之自我對準背 面電極的製造方法,其中該感光二極體係一升高 (Elevated)薄膜感光二極體。 13.—種感光二極體之自我對準背面電極的製造方法,至少 基材,其中該基材上矣少包括一堆疊結構,且該堆 疊結構至少包括依序堆疊之一上層金屬層以及一第一 N+型 非晶矽層覆蓋在該上層金屬層上;_ . 定義該堆疊結構,以暴露出部分之該基材,> 4 v丄 尬 «々齑後已定義之該堆疊結構,並6. Scope of applying for a patent The manufacturing method of the surface electrode, wherein after the step of forming the 51 semiconductor layer, it further includes at least forming a light-transmitting conductor layer to cover the p + -type semiconductor layer. The method for manufacturing a self-aligned back electrode of a photodiode according to the item, wherein the material of the light-transmitting conductor layer includes at least indium tin oxide (ιτο). 1 2 · The method of manufacturing a self-aligned back electrode of a photodiode as described in item 1 of the scope of patent application, wherein the photodiode system is an Elevated film photodiode. 13. A method for manufacturing a self-aligned back electrode of a photodiode, at least a substrate, wherein the substrate includes at least a stacked structure, and the stacked structure includes at least one upper metal layer and a A first N + -type amorphous silicon layer covers the upper metal layer; _. Defines the stacked structure to expose a part of the substrate, > the stacked structure defined after 4 v 丄 々 齑, and 形成一第二Ν+塑非晶矽層包覆住匕 覆蓋在暴露之該基材上;以及 丄& LC:I a厝,以暴露出該基材’而形 去除部分之該第二N +型非晶矽層 成該自我對準背面電極。 光二極體之自我對準背 1 4 ·如申請專利範圍第1 3項所述之感Forming a second N + plastic amorphous silicon layer overlying the exposed substrate; and 丄 & LC: I a 厝 to expose the substrate 'and remove a portion of the second N The + -type amorphous silicon layer forms the self-aligned back electrode. Photodiode self-alignment back 1 4 · Feel as described in item 13 of patent application scope 573367 六、申請專利範圍 面電極的製造方法,其中該感光二極體係一升高薄膜感光 二極體。 1 5 .如申請專利範圍第1 3項所述之感光二極體之自我對準背 面電極的製造方法,其中去除部分之該第二N +型非晶矽層 的步驟係利用一回蝕刻方式。573367 6. Scope of patent application The method for manufacturing a surface electrode, wherein the photodiode system raises the film photodiode. 15. The method for manufacturing a self-aligned back electrode of a photodiode as described in item 13 of the scope of patent application, wherein the step of removing a portion of the second N + type amorphous silicon layer is by an etch-back method . 1 6.如申請專利範圍第1 3項所述之感光二極體之自我對準背 面電極的製造方法,其中於去除部分之該第二N+型非晶矽 層的步驟後,更至少包括形成一本徵半導體層覆蓋在該自 我對準背面電極以及暴露之該基材上。 1 7.如申請專利範圍第1 6項所述之感光二極體之自我對準背 面電極的製造方法,其中該本徵半導體層之材質至少包括 非晶矽。16. The method for manufacturing a self-aligned back electrode of a photodiode according to item 13 of the scope of patent application, wherein after the step of removing a part of the second N + type amorphous silicon layer, it further includes at least forming An intrinsic semiconductor layer covers the self-aligned back electrode and the exposed substrate. 1 7. The method for manufacturing a self-aligned back surface electrode of a photodiode as described in item 16 of the scope of patent application, wherein the material of the intrinsic semiconductor layer includes at least amorphous silicon. 1 8.如申請專利範圍第1 6項所述之感光二極體之自我對準背 面電極的製造方法,其中於形成該本徵半導體層之步驟 後,更至少包括形成一 P+型非晶矽層覆蓋在該本徵半導體 層上。 1 9 .如申請專利範圍第1 8項所述之感光二極體之自我對準背 面電極的製造方法,其中於形成該P+型非晶矽層之步驟 後,更至少包括形成一透光導體層覆蓋在該P+型非晶矽層1 8. The method for manufacturing a self-aligned back electrode of a photodiode as described in item 16 of the scope of patent application, wherein after the step of forming the intrinsic semiconductor layer, the method further includes forming at least a P + type amorphous silicon A layer covers the intrinsic semiconductor layer. 19. The method for manufacturing a self-aligned back electrode of a photodiode as described in item 18 of the scope of patent application, wherein after the step of forming the P + -type amorphous silicon layer, it further includes at least forming a light-transmitting conductor Layer overlying the P + type amorphous silicon layer 第18頁 573367 六、申請專利範圍 上。 2 0 ·如申請專利範圍第1 9項所述之感光二極體之自我對準背 面電極的製造方法,其中該透光導體層之材質至少包括氧 化銦錫。 21.—種感光二極體之自我對準背面電極的製造方法,至少 包括: 提供一基材,其中該基材上至少包括一堆疊結構,且該堆 疊結構至少包括依序堆疊之一上層金屬層以及一第一 N+型 非晶矽層覆蓋在該上層金屬層上; 定義該堆疊結構,以暴露出部分之該基材; 形成一第二N+型非晶矽層包覆住已定義之該堆疊結構,並 覆蓋在暴露之該基材上;以及 進行一回蝕刻步驟,藉以暴露出該基材,並使該上層金屬 層為殘留之該第一 N+型非晶矽層以及該第二N+型非晶矽層 所完全包覆。 2 2 .如申請專利範圍第2 1項所述之感光二極體之自我對準背 面電極的製造方法,其中該感光二極體係一升高薄膜感光 二極體。 2 3.如申請專利範圍第2 1項所述之感光二極體之自我對準背 面電極的製造方法,其中於去除部分之該第二N +型非晶矽Page 18 573367 6. The scope of patent application. 20 · The method for manufacturing a self-aligned back electrode of a photodiode as described in item 19 of the scope of patent application, wherein the material of the light-transmitting conductor layer includes at least indium tin oxide. 21. A method for manufacturing a self-aligned back electrode of a photodiode, at least comprising: providing a substrate, wherein the substrate includes at least a stacked structure, and the stacked structure includes at least one upper metal layer sequentially stacked Layer and a first N + type amorphous silicon layer cover the upper metal layer; define the stacked structure to expose a part of the substrate; form a second N + type amorphous silicon layer to cover the defined layer Stacking the structure and covering the exposed substrate; and performing an etching step to expose the substrate and leave the upper metal layer as the first N + amorphous silicon layer and the second N + Type amorphous silicon layer is completely covered. 2 2. The method for manufacturing a self-aligned back surface electrode of a photodiode as described in item 21 of the scope of patent application, wherein the photodiode system raises the thin-film photodiode. 2 3. The method for manufacturing a self-aligned back surface electrode of a photodiode as described in item 21 of the scope of patent application, wherein a part of the second N + type amorphous silicon is removed 第19頁 573367 六、申請專利範圍 層的步驟後,更至少包括形成一本徵半導體層覆蓋在殘留 之該第一 N+型非晶矽層與該第二N+型非晶矽層、以及暴露 之該基材上。 2 4 ·如申請專利範圍第2 3項所述之感光二極體之自我對準背 面電極的製造方法,其中該本徵半導體層之材質至少包括 非晶矽。 2 5 .如申請專利範圍第2 3項所述之感光二極體之自我對準背 面電極的製造方法,其中於形成該本徵半導體層之步驟 後,更至少包括形成一 P+型非晶矽層覆蓋在該本徵半導體 層上。 2 6 .如申請專利範圍第2 5項所述之感光二極體之自我對準背 面電極的製造方法,其中於形成該P+型非晶矽層之步驟 後,更至少包括形成一氧化銦錫層覆蓋在該P+型非晶矽層 上。Page 19 573367 6. After the step of applying for the patent scope layer, it further includes forming at least an intrinsic semiconductor layer to cover the remaining first N + type amorphous silicon layer and the second N + type amorphous silicon layer, and exposing the On the substrate. 2 4 · The method for manufacturing a self-aligned back electrode of a photodiode as described in item 23 of the scope of patent application, wherein the material of the intrinsic semiconductor layer includes at least amorphous silicon. 25. The method for manufacturing a self-aligned back electrode of a photodiode as described in item 23 of the scope of patent application, wherein after the step of forming the intrinsic semiconductor layer, the method further includes at least forming a P + type amorphous silicon A layer covers the intrinsic semiconductor layer. 26. The method for manufacturing a self-aligned back electrode of a photodiode as described in item 25 of the scope of patent application, wherein after the step of forming the P + type amorphous silicon layer, it further includes forming at least indium tin oxide A layer covers the P + type amorphous silicon layer. 第20頁Page 20
TW91136020A 2002-12-12 2002-12-12 Method for manufacturing self-aligned rear electrode of photodiode TW573367B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91136020A TW573367B (en) 2002-12-12 2002-12-12 Method for manufacturing self-aligned rear electrode of photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91136020A TW573367B (en) 2002-12-12 2002-12-12 Method for manufacturing self-aligned rear electrode of photodiode

Publications (2)

Publication Number Publication Date
TW573367B true TW573367B (en) 2004-01-21
TW200410419A TW200410419A (en) 2004-06-16

Family

ID=32734324

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91136020A TW573367B (en) 2002-12-12 2002-12-12 Method for manufacturing self-aligned rear electrode of photodiode

Country Status (1)

Country Link
TW (1) TW573367B (en)

Also Published As

Publication number Publication date
TW200410419A (en) 2004-06-16

Similar Documents

Publication Publication Date Title
US8866249B2 (en) Photoelectric conversion device and manufacturing method thereof
WO2019196840A1 (en) Array substrate and manufacturing method therefor, display panel, and display device
TWI397130B (en) Method for manufacturing a pixel structure and the pixel structure
TWI259576B (en) Method for fabricating image sensor using salicide process
TWI331401B (en) Method for fabricating a pixel structure and the pixel structure
US9128341B2 (en) Visible sensing transistor, display panel and manufacturing method thereof
JP2002258325A (en) Thin film transistor liquid crystal display device
WO2016206206A1 (en) Thin film transistor and manufacturing method thereof, array substrate, and display device
TWI261360B (en) A method of manufacturing a thin film transistor matrix substrate
WO2022165913A1 (en) Array substrate and display panel
US10629834B2 (en) Thin film transistor, method for preparing the same, and display device
WO2019214435A1 (en) Ray detector array substrate and manufacturing method therefor, and ray detector
CN112242407B (en) Array substrate and preparation method thereof
US11569406B2 (en) Pin device and manufacturing method thereof, photosensitive device and display device
TWI251330B (en) CMOS image sensor and method for producing the same
TW573367B (en) Method for manufacturing self-aligned rear electrode of photodiode
CN112599621B (en) Photoelectric conversion structure, preparation method thereof and display device
JP2011023444A (en) Method for manufacturing photoelectric converter
CN115064612B (en) Manufacturing method of photoelectric detector
US20220293812A1 (en) Photoelectric Detection Substrate, Preparation Method Thereof and Photoelectric Detection Apparatus
TWI773774B (en) Semiconductor device and method for forming the same
JP3049800B2 (en) Method for forming bump electrode of semiconductor light receiving element
CN116314224A (en) Flat panel detector pixel structure and preparation method thereof
JP3404025B2 (en) Image sensor
JPH06204443A (en) Solid-state image sensing apparatus and manufacture thereof

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees