TW550840B - Light emitting diode device - Google Patents

Light emitting diode device Download PDF

Info

Publication number
TW550840B
TW550840B TW91117368A TW91117368A TW550840B TW 550840 B TW550840 B TW 550840B TW 91117368 A TW91117368 A TW 91117368A TW 91117368 A TW91117368 A TW 91117368A TW 550840 B TW550840 B TW 550840B
Authority
TW
Taiwan
Prior art keywords
layer
light
emitting diode
patent application
diode structure
Prior art date
Application number
TW91117368A
Other languages
Chinese (zh)
Inventor
Li-Hsin Kuo
Original Assignee
Uni Light Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uni Light Technology Inc filed Critical Uni Light Technology Inc
Priority to TW91117368A priority Critical patent/TW550840B/en
Application granted granted Critical
Publication of TW550840B publication Critical patent/TW550840B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light emitting diode is made by a compound semiconductor in which light emitting from an active region with a multi-quantum well structure. The active region is sandwiched by InGaA1P-based lower and upper cladding layers. Emission efficiency of the active region is improved by adding light and electron reflectors in the light emitting diode. These InGaA1P-based layers are epitaxially grown by organometal1ic vapor-phase epitaxy (OMVPE) on a GaAs substrate with a thin thickness to improve the thermal gradient, reliability, brightness quality, and performance in light emitting.

Description

550840 五、發明說明(i) 5 - 1發明領域: 本發明係有關於一種半導體發光二極體結構,更特別 地是一種在薄底材上之半導體發光二極體元件。 5 - 2發明背景: 發光二極體(LED; light emitting diode)廣泛的用 於不同的領域中,如做為光源用以降低電源消耗、高效率 以及高可靠性。更特別地是,複合式半導體如GaP(綠色波 長)、GaAsP(黃色、橘色或是紅色波長)以及G a A 1 A s (紅色 波長)係廣泛的用於在可見光波長範圍之發光二極體的材 料。 然而,每一個G a P及G a A s P的發光效率係為間接形的半 導體材料,即使利用透明底材做為消除光吸收的影響,其 發光效率大約是低於〇. 5 %。在其它方面來說,影響發光效 率是在短波長範圍的間接轉折狀態。例如,在可見光波長 為6 3 5 nm時,其發光效率約為1 %。 在三-五族(I I I -V)複合式半導體混合晶體不包含氮化 物(nitride), InGaAl P混合晶體顯示出間接轉折型態的最 大能階帶,且其吸收光能力可以做為發光元件其發光的波 長為0 . 5至0 . 6微米(m i c r ο η )。特別地是,發光二極體包含550840 V. Description of the invention (i) 5-1 Field of invention: The present invention relates to a semiconductor light emitting diode structure, and more particularly to a semiconductor light emitting diode element on a thin substrate. 5-2 Background of the Invention: Light emitting diodes (LEDs) are widely used in different fields, such as light sources to reduce power consumption, high efficiency and high reliability. More specifically, compound semiconductors such as GaP (green wavelength), GaAsP (yellow, orange, or red wavelength) and G a A 1 A s (red wavelength) are widely used as light emitting diodes in the visible light wavelength range. Body material. However, the luminous efficiency of each Ga P and Ga A s P is an indirect semiconductor material. Even if a transparent substrate is used as a material to eliminate the influence of light absorption, its luminous efficiency is less than about 0.5%. In other respects, influencing luminous efficiency is an indirect turning state in the short wavelength range. For example, when the visible light wavelength is 6 3 5 nm, its luminous efficiency is about 1%. In III-V (III-V) composite semiconductor mixed crystals do not contain nitrides, InGaAl P mixed crystals show the maximum energy band of the indirect transition type, and their light absorption capacity can be used as a light-emitting element. The wavelength of light emission is 0.5 to 0.6 microns (micr ο η). In particular, the light emitting diode contains

第5頁 550840 五、發明說明(2) G a A s底材以及I n G a A 1 P層,其晶格係數對準於G a A s底材, 藉由此結構可以在高亮度下發射出綠光到紅光波長。然而 ,在此類型的發光二極體,在短波長範圍内其光效率仍然 是不夠的。 參考第一圖係表示傳統發光二極結構1 0 0之示意圖。 在此圖中,發光二極體元件結構100包含具有四面體InQ.5( G a ! -XA 1 x) 〇, 5P合金系統且在η — G a A s底材1 0 2上形成之雙相異 結構(DH; double hetero-structure),其中 n-GaAs底材 1 0 2之厚度約為3 5 0微米(um )。在傳統的發光二極體1 0 2中 ,底材厚度為須要考慮的問題。一般而言,GaAs底材102 係直接從製造廠商購買得到,並且利用一前置製程(pre-p r 〇 c e s s )將G a A s底材1 0 2利用研磨的方式或是餘刻將G a A s 底材1 0 2的厚度磨到適合做為發光二極體底材之厚度,如 1 8 0微米。然而,無論是研磨或是蝕刻製程,Ga As底材1 0 2 的一致性以及經過前置製程之後其底材材料的可靠性會影 響整個發光二極體在形成之後的發光效率。此外,GaAs底 材1 0 2的溫度也由於底材1 0 2的厚度太高無法維持一致性, 以致於在蠢晶形成底材102的過成中’造成底材10 2上下有 溫差存在,此得底材1 0 2的溫度較無法控制,使得發光二 極體結構1 〇 〇的發光效率降低。 接著,同樣是參考第一圖,具有前偏壓(forward bias)之p-n接面之發光二極體100由p型包覆層(p-type 11 111 111 III I ill ill j _1 lilli 111 I lii iliiil iliiil ! 第6頁 550840 五、發明說明(3) cladding layer)108中射入電洞(hole),由 η-型(n-type: 包覆層1 0 4將電子射入主動區域中。其主動層(active layer)發射可見光是由於電子和電洞在主動區中重新再結 合的原因。射入電子和電洞如同少數載子穿過主動區域並 且電子、電洞的再結合是藉由發光再結合或是非發光再結 合。以InGaAlP為主的發光二極體結構1 0 0的發光波長可以 錯由改變在主動層中In〇5( Gai_xAlx)〇5P合金銘成份的ϊ來 調整,且InGaAlP為主的發光二極體1 00具有適當的能帶以 聚集特有的發光波長。例如’如紅光或是黃-綠光之短波 長,其鋁成份的濃度要較高而產生發光。另外,因為低載 子密度的關係,使得主動層1 0 6的厚度在主動區域會減少 。主動區域用於載子注射以及載子再結合以產生光,且一 般主動區域的厚度大約為0. 3至0. 5微米。為了得到較高的 發光效率,位於主動區域所需要的材料品質則有所要求。 此要求即是在主動區域上的不純物會減少非發光再結合中 心的濃度。 一般來說,Ino./GahAlU主動層106為未摻雜層, Φ 且其電性可以是η或p型,其摻雜濃度約為5 * 1 0 15至1 * 1 0 17每 平方公分。就其它方面,在主動層1 0 6摻雜的程度係隨著 在主動區域中銘成份的含量增加而增加。這是由於在主動 區域内較高的鋁濃度為造成不純物的成份增加。對於短波 長而言,增加鋁在主動區域的濃度與發射光的内部量子效 應的降低有關。如以上所述,較高濃度的鋁在主動區域係Page 5 550840 V. Description of the invention (2) G a A s substrate and I n G a A 1 P layer, the lattice coefficient of which is aligned with the G a A s substrate, through which the structure can be under high brightness Emit green to red wavelengths. However, in this type of light emitting diode, its light efficiency in the short wavelength range is still insufficient. Reference to the first figure is a schematic diagram showing a conventional light emitting diode structure 100. In this figure, the light emitting diode element structure 100 includes a double having a tetrahedral InQ.5 (G a! -XA 1 x) 〇, 5P alloy system and formed on a η — G a A s substrate 1 02 Dissimilar structure (DH; double hetero-structure), where the thickness of the n-GaAs substrate 102 is about 350 micrometers (um). In the conventional light emitting diode 102, the thickness of the substrate is an issue to be considered. Generally speaking, the GaAs substrate 102 is directly purchased from the manufacturer, and the G a A s substrate 102 is ground or the G is etched by a pre-process (pre-p cess). The thickness of a A s substrate 10 2 is ground to a thickness suitable for a light emitting diode substrate, such as 180 μm. However, whether it is a grinding or etching process, the consistency of Ga As substrate 102 and the reliability of the substrate material after the pre-processing process will affect the luminous efficiency of the entire light emitting diode after formation. In addition, the temperature of the GaAs substrate 102 is too high to maintain consistency due to the thickness of the substrate 102, which results in a temperature difference between the substrate 102 and the substrate 102 during the formation of the stupid substrate 102. The temperature of the obtained substrate 102 is relatively uncontrollable, so that the luminous efficiency of the light emitting diode structure 1000 is reduced. Next, referring also to the first figure, the light emitting diode 100 having a forward biased pn junction is formed by a p-type cladding layer (p-type 11 111 111 III I ill ill j _1 lilli 111 I lii iliiil iliiil! Page 6 550840 V. Description of the invention (3) The cladding layer 108 is injected into a hole, and the n-type (n-type: cladding layer 104) emits electrons into the active area. The active layer emits visible light due to the recombination of electrons and holes in the active area. The injected electrons and holes pass through the active area as a few carriers and the recombination of electrons and holes is achieved by Luminescent recombination or non-luminous recombination. The luminous wavelength of the light emitting diode structure 100, which is mainly composed of InGaAlP, can be adjusted by changing the composition of the In55 (Gai_xAlx) 〇5P alloy in the active layer, and InGaAlP-based light-emitting diodes 100 have appropriate energy bands to gather unique light-emitting wavelengths. For example, 'short wavelengths such as red light or yellow-green light, the concentration of aluminum components must be higher to generate light. In addition, Because of the low carrier density, the active layer 10 6 The degree will be reduced in the active area. The active area is used for carrier injection and carrier recombination to generate light, and the thickness of the active area is generally about 0.3 to 0.5 microns. In order to obtain higher luminous efficiency, it is located in the active area. The quality of the material required for the area is required. This requirement is that impurities in the active area will reduce the concentration of the non-luminescent recombination center. Generally, the Ino./GahAlU active layer 106 is an undoped layer, Φ and Its electrical property can be η or p-type, and its doping concentration is about 5 * 1 0 15 to 1 * 1 0 17 per square centimeter. In other aspects, the degree of doping in the active layer 106 is the same as that in the active layer. The increase in the content of the component in the region increases. This is due to the higher aluminum concentration in the active region to increase the composition of impurities. For short wavelengths, increasing the concentration of aluminum in the active region and the internal quantum effect of the emitted light Relevant. As mentioned above, higher concentrations of aluminum

第7頁 550840 五、發明說明(4) 隨著增加深平面以引起非發光再結合在發光層内而增加, 而使得發光效率而降低。 η型(1 0 4 )或p型 具有一能階高於主動 覆層104、 108需要有 供給足夠的注射載子 。而在 In〇5( Ga 卜 XA1 動區域的載子回流至 厚度不夠則會影響到 此,大部份的注射載 溢流的載子的非發光 以,在傳統的發光二 隨著元件的波長變短 :1 0 8 )包覆層提供一注射載子的來源並 區域以限制注射載子及發光。這些包 良好的導電性以及適當的摻雜濃度以 進入主動區域以得到一高的發光效率 x) 〇. 5P層應具有足夠的厚度以防止在主 包覆層,但是I η 〇.5( Ga〗_XA 1 x) G.5P層的 整個發光二極體1 0 0的發光效率。因 子會溢流進入包覆層,且會由於這些 性重組而造成漏電流的現象發生。所 極體1 0 0包含雙相異結構的發光效率 而降低。 Φ 在P型包覆層1 0 8之後,形成做為分散發光效率的電流 分散層(current spreading layer)110。電流分散層 110 須要將發光波長由主動區域穿透至半導體材料。此外,一 窗戶層(window layer)112須要有效的分散電流進入主動 層1 0 6以及包覆層,且窗戶層1 1 2須要高的摻雜濃度且需要 足夠的厚度。接著在窗戶層Π 2的上方有一金屬接觸( 1116七31(301^&(:1:)114,位於〇3八3底材10 2下方也有一金屬接 觸 1 1 6 〇Page 7 550840 V. Description of the invention (4) As the deep plane is increased to cause non-luminescence to recombine in the light-emitting layer, the light-emitting efficiency is reduced. The n-type (104) or p-type has an energy level higher than that of the active coatings 104, 108, and needs to supply sufficient injection carriers. However, the backflow of the carriers in the InO5 (Ga and XA1 moving regions to an insufficient thickness will affect this. Most of the injected carriers are non-luminous, and in the traditional light-emitting diodes, the wavelength of the element follows the wavelength of the element. Shortened: 108) The cladding layer provides a source and area for injection carriers to limit injection carriers and luminescence. These packages have good conductivity and proper doping concentration to enter the active region to obtain a high luminous efficiency x) 0.5 P layer should have sufficient thickness to prevent the main cladding layer, but I η 0.5 (Ga 〖XA 1 x) Luminous efficiency of the entire light emitting diode 100 of the G.5P layer. Factors can overflow into the cladding layer and cause leakage currents due to these reorganizations. The polar body 100 includes a bi-different structure and the luminous efficiency is reduced. Φ After the P-type cladding layer 108, a current spreading layer 110 is formed to disperse the luminous efficiency. The current dispersing layer 110 needs to transmit the light emission wavelength from the active region to the semiconductor material. In addition, a window layer 112 needs to effectively disperse current into the active layer 106 and the cladding layer, and the window layer 1 2 needs a high doping concentration and a sufficient thickness. Then there is a metal contact (1116-731 (301 ^ & (: 1:) 114) above the window layer Π2, and there is also a metal contact below the substrate 10 2 1 1 6 〇

第8頁 550840 五、發明說明(5) 根據以上所述,可以知道在傳統的發光二極體1 0 0中 由於GaAs底材1 02的厚度為影響整個發光二極體發光效率 的主要原因之一,另在在傳統的I nGaA 1 P系列的發光二極 體1 0 0中較難得到具有高發光效率的黃光以及綠光。 5 - 3發明目的及概述: 本發明的主要目的在於提供一種厚度薄以及斜切角度 朝向< 1 1 1 > A面,其錯切角度大於1 0度角之G a A s底材以增加 發光二極體的免度。 本發明的再一目的在於改善整體發光二極體元件的可 靠性以增加元件品質及發光亮度。 本發明的另一目的在於節省形成發光二極體元件之製 程 本發明的又一目的在於改善整個GaAs底材的溫度梯度 以增加發光二極體的散熱效率。 根據以上所述之目的,本發明提供了 一種具有薄層 GaAs底材之發光二極體結構。該結構包含薄的GaAs底材並 且具有一斜切角度且傾向於<1 1 1>A面,一用於改善GaAs底 材表面平滑性以及一致性之緩衝層(B u f f e r 1 a y e r)位於Page 8 550840 V. Description of the invention (5) According to the above, it can be known that the thickness of the GaAs substrate 102 in the traditional light emitting diode 100 is one of the main factors affecting the light emitting efficiency of the entire light emitting diode. First, it is difficult to obtain yellow light and green light with high luminous efficiency in the conventional light emitting diode 100 of the InGaA 1 P series. 5-3 Objects and Summary of the Invention: The main object of the present invention is to provide a G a A s substrate with a thin thickness and a chamfered angle orientation < 1 1 1 > Increase the immunity of light-emitting diodes. Yet another object of the present invention is to improve the reliability of the overall light-emitting diode device to increase the quality of the device and the light-emitting brightness. Another object of the present invention is to save the process of forming a light emitting diode element. Another object of the present invention is to improve the temperature gradient of the entire GaAs substrate to increase the heat dissipation efficiency of the light emitting diode. According to the above-mentioned object, the present invention provides a light-emitting diode structure having a thin-layer GaAs substrate. The structure contains a thin GaAs substrate and has a chamfered angle and tends to < 1 1 1 > A surface, a buffer layer (B u f f e r 1 a y e r) for improving the surface smoothness and consistency of the GaAs substrate is located

第9頁 550840 五、發明說明(6)Page 9 550840 V. Description of the invention (6)

GaAs底材上、一分散型布拉格反射層(DBR; Distributed Bragg Reflector)位於緩衝層上方並用以反射由主動區域 (active region)傳導來的發射光、一下層包覆層(i〇wer cladding layer)位於分散型布拉格反射層上,其作用是 將載子(carrier)注射進入主動區域並且將载子侷限在主 動區域内。接著,一多重量子井層(MQW; multi-quantum we 1 1 s )位於下層包覆層上方,此層是用來取代傳統的主動 層並且在短波長的發光範圍内,增加主動層的效率以及減 少紹在多重量子井内的含量。此外,多重量子井層可以增 加發光二極體的發光效率。然後一上層包覆層(upper cladding layer)位於多重量子井上方,此上層包覆層係 用於將載子注射進入主動區域並且將載子限制在主動區域 内,其中下層包覆層與上層包覆層的導電性相反。接著, 一電流阻塞層(current blocking layer)位於上層包覆層 的上方,其功用是用於在垂直平面上形成一低阻值之路徑 以注射載子’然後在電流分散層(c u r r e n t s p r e a d i n g layer)上方有一窗戶層(wind〇w layer)係在發光二極體中 做為電流分散用。然後在窗戶層的上方有一金屬接觸( metal contact )在GaAs底材下方有一金屬接觸。 在本發明的發光二極體結構中,由於GaAs底材的厚度 4 ’使得在蟲晶成長的過程中,其溫度差很小很容易控制 开> 成溫度’且其材料的一致性以及可靠性也可以增加因此 而增加發光二極體的發光亮度;此外由於形成的厚度薄,On the GaAs substrate, a distributed Bragg reflector (DBR; Distributed Bragg Reflector) is located above the buffer layer and is used to reflect the emitted light transmitted from the active region, and the lower cladding layer Located on the decentralized Bragg reflector, its role is to inject carriers into the active area and confine the carriers to the active area. Next, a multi-quantum well layer (MQW; multi-quantum we 1 1 s) is located above the lower cladding layer. This layer is used to replace the traditional active layer and increase the efficiency of the active layer in the short-wavelength light emission range. And reduce the content of Shao in multiple quantum wells. In addition, multiple quantum well layers can increase the luminous efficiency of light emitting diodes. An upper cladding layer is then located above the multiple quantum wells. This upper cladding layer is used to inject carriers into the active region and confine the carriers within the active region. The lower cladding layer and the upper cladding layer The cladding has the opposite conductivity. Next, a current blocking layer is located above the upper cladding layer. Its function is to form a low-resistance path on the vertical plane to inject carriers, and then above the current spreading layer. A window layer (window layer) is used in the light-emitting diode for current dispersion. Then there is a metal contact above the window layer and a metal contact below the GaAs substrate. In the light-emitting diode structure of the present invention, because the thickness of the GaAs substrate is 4 ′, the temperature difference during the growth of the worm crystal is small, and the opening temperature is easy to control> the formation temperature is consistent and reliable. It can also increase the luminous brightness of the light-emitting diodes. In addition, due to the thin thickness,

550840 五、發明說明(7) 所以在利用研磨或是蝕刻方式將GaAs底材磨成適用於發光 二極體結構之厚度之製程可以大幅度的簡化。 5 - 4發明詳細說明: 本發明的一些實施例會詳細描述如下。然而,除了詳 細描述外,本發明還可以廣泛地在其他的實施例施行,且 本發明的範圍不受限定,其以之後的專利範圍為準。 的發光二極體,其發光顏色可以藉由 〇. 5P合金在主動層内的組成來調整,並 以 I n G a A 1 P為: 改變 I n q 5 ( G a 卜XA 1 且具有適當的能隙以聚集特殊的發光波長。在主動區域内 的I η 〇. 5( Ga hA 1 x) 〇. 5P合金傾向於有次序(or der )結構造成在 能隙寬度(width of the band gap)減少。在主動區域内 的鋁需要較高的含量以達到相同的發射光波長,但是會造 成在主動區域内的高雜質密度並且造成低的放射效率。有 次序結構的起源像是半導體薄膜内,原子以次序或是組成 的改變可導因於原子的靜態位移(static displacement) ,因而產生在晶格四面體形變中的局部變化。在I n G. 5(550840 V. Description of the invention (7) Therefore, the process of grinding the GaAs substrate to a thickness suitable for a light emitting diode structure by grinding or etching can be greatly simplified. 5-4 Detailed Description of the Invention: Some embodiments of the present invention will be described in detail as follows. However, in addition to the detailed description, the present invention can also be widely implemented in other embodiments, and the scope of the present invention is not limited, which is subject to the scope of subsequent patents. The light emitting color of the light emitting diode can be adjusted by the composition of the 0.5P alloy in the active layer, and I n G a A 1 P is: Change I nq 5 (G a and XA 1 and have appropriate The energy gap is focused on a special emission wavelength. I η 0.5 (Ga hA 1 x) 0.5P alloy in the active region tends to have an or der structure resulting in a width of the band gap. Decrease. Aluminum in the active region needs a higher content to achieve the same emitted light wavelength, but it will cause high impurity density and low radiation efficiency in the active region. The origin of the ordered structure is like in the semiconductor film, Changes in the order or composition of the atoms can be caused by the static displacement of the atoms, which results in local changes in the lattice tetrahedron deformation. In I n G. 5 (

Ga i-xA 1 x) 〇. 5P合金系統中,銦(I n; i nd i um )具有比鎵(Ga; gallium)或是I呂(Al; aluminum)原子有較大的四面體共價 半徑。因此,四面體共價半徑的差異性會產生同類聚集。 結果,相對地產生晶體結構局部形變收縮與延長。由 spin〇dal分解熱力學(spin〇dal decompositionGa i-xA 1 x) 〇. In the 5P alloy system, indium (I n; i nd i um) has a larger tetrahedral covalent than gallium (Al; aluminum) atoms. radius. Therefore, the difference in the covalent radius of the tetrahedron will produce homogeneous aggregation. As a result, the local deformation and shrinkage of the crystal structure are relatively generated. Spin〇dal decomposition thermodynamics

第11頁 550840 五、發明說明(8) thermodynamic)的觀點來看,在相圖(phase diagram)中 ,在一轉折溫度(transition temperature)下,具有一有 · 次序(order )至無次序(di sorder)之轉折狀態。由實驗與 , 熱力學理論上的差別在於動能與表面結構次序形成上之考 量。由我們的實驗可以知道,1 n ◦·5 ( G a ι-χΑ 1 x) Q #薄膜遵循 spinodal分解熱力學基本原理’在長晶溫度為至770 。(:之間傾向於有某種不同程度的次序結構。而發光二極體 成長的溫度約高於7 〇 〇°C磊晶成長溫度。 就另一方面來說,〈〇〇1&gt; GaA s的重新成長在〈〖〖ο &gt;方 向的側表面層具有可變性壓縮與延展的區域。因為銦有比 · 鎵或是紹具有更大的四面體共價半控,在成長面上的可變 性延長與壓縮性,是能里合適的成核位置,斜於個別的銦 、鎵或是鋁原子而言,極適合它們的成長。這點暗示著, 除了上述有次序與沒有次序的轉折溫度以外,有次序結構 : 的形成與底材的表面結構有關。由我們的實驗,有次序的 · 程度可以藉由使用不同的錯切角度之以^底材而獲得改善 — 。有次序與無次序轉折溫度乃因為底材GaAs切割角度的增 加而下降。在錯切GaAs底材的表面,週期性延展與收縮的 表面重建區域,可以由底材GaAs錯切角度的增加而獲得改 善。由以上結果可以知道’隨著GaAs底材之錯切角度的增 加,在InGaA 1P内的原子次序規則程度會顯著的減少。 此外,為了增加發光一極體整體的發光欵率,除了Page 11 550840 V. Description of the invention (8) Thermodynamic) In the phase diagram, at a transition temperature, there is an order from order to di order). The difference between experiment and thermodynamic theory lies in the consideration of the formation of kinetic energy and surface structure order. It can be known from our experiments that the 1 n ◦ · 5 (G a ι-χΑ 1 x) Q # thin film follows the basic principle of thermodynamics of spinodal decomposition 'at the growth temperature of 770 ° C. (: There tends to be a certain degree of sequential structure between them. The temperature at which the light emitting diode grows is higher than about 700 ° C epitaxial growth temperature. On the other hand, <〇〇1> GaA s The re-growth of the side surface layer in the direction of "〖〖ο &gt;" has a region of variable compression and extension. Because indium has a larger tetrahedral covalent half-control than that of gallium or Shao, the Denaturation elongation and compressibility are suitable nucleation sites, which are inclined to individual indium, gallium or aluminum atoms, which are very suitable for their growth. This point implies that in addition to the above-mentioned orderly and non-ordered transition temperatures In addition, there is an ordered structure: The formation is related to the surface structure of the substrate. From our experiments, the degree of ordered · can be improved by using different substrates with different cut angles-ordered and unordered The turning temperature is reduced due to the increase of the cutting angle of the substrate GaAs. On the surface of the miscut GaAs substrate, the surface reconstruction area that is periodically extended and contracted can be improved by increasing the miscut angle of the substrate GaAs. From the above If know 'wrong GaAs substrate as the cut angle is increased, the degree of atomic order in the InGaA 1P rules will significantly reduced. In addition, the entire light-emitting Xin order to increase the rate of a polar body, except

第12頁 550840 五、發明說明(9) G a A s底材成長在&lt;110〉A之表面之外,一般GaA s底材由廠商 取得時的的厚度大約為3 5 0微米,然後再利用研磨或蝕刻 的方式,將底材研磨至合適於做為發光二極體底材之厚度 ,一般大約為1 8 0微米。但是,由厚度3 5 0微米蝕刻至1 8 0 微米,需要花費較多的製程成本;因此,在本發明的最佳 實施例中,所使用的GaAs底材厚度為1 5 0至2 5 0微米,最佳 厚度為2 1 0微米,形成此厚度範圍的GaAs底材的優點是所 形成的厚度較薄所需要的製程成本減少,可以在同一製程 中形成較多量的GaAs底材;另外,在研磨至1 80彳啟米時, 所使用的蝕刻或研磨製程也可以大幅的簡化,而可以很快 的得到所需要的底材厚度,再者’在利用蠢晶的方式形成 此厚度之GaAs底材時,其形成溫度可以有良好的控制,使 得底材上下之間的溫度梯度不會有太大的變化,而可以得 到一可靠性良好的底材。此外,具有較薄厚度之底材其散 熱性也較佳,使得其發光效率也可以增加。另外,在GaAs 底材上方形成薄膜時具有較一致性的散熱效率,因此可以 改善發光二極體的散熱作用以及增加整個發光二極體的發 光效能。 在某一成長溫度下’ I η 〇 5 ( G a 1—χΑ 1 X) 〇 5P合金糸統中規 則結構被視為降低量子效率的一因素。因此,必須增加鋁 在InQ.5( Ga^Al x) G.5P主動區域的成分,來獲得特定能階寬 度的量子井’因此’可以藉由In〇5( Ga卜χΑ1χ)〇.5Ρ蠢晶成長 在一錯切底材上,而使得轉折溫度降低並低於7 0 0°C。 550840Page 12 550840 V. Description of the invention (9) G a A s substrate grows beyond the surface of <110> A. Generally, the thickness of the GaA s substrate when obtained by the manufacturer is about 350 μm, and then By grinding or etching, the substrate is ground to a thickness suitable for use as a light emitting diode substrate, generally about 180 microns. However, etching from a thickness of 350 micrometers to 180 micrometers requires a larger process cost; therefore, in the preferred embodiment of the present invention, the thickness of the GaAs substrate used is 150 to 250. Micron, the optimal thickness is 210 micrometers. The advantage of forming a GaAs substrate in this thickness range is that the process cost required to form a thinner thickness is reduced, and a larger amount of GaAs substrate can be formed in the same process; in addition, When it is ground to 180 彳, the etching or grinding process used can also be greatly simplified, and the required substrate thickness can be quickly obtained. Furthermore, GaAs with this thickness can be formed by using stupid crystals. When the substrate is formed, its formation temperature can be well controlled, so that the temperature gradient between the top and bottom of the substrate does not change much, and a reliable substrate can be obtained. In addition, a substrate with a thinner thickness also has better heat dissipation, so that its luminous efficiency can be increased. In addition, the thin film formed on the GaAs substrate has a relatively uniform heat dissipation efficiency, so the heat dissipation effect of the light emitting diode can be improved and the light emitting efficiency of the entire light emitting diode can be increased. At a certain growth temperature, the regular structure in the I η 〇 5 (G a 1-χΑ 1 X) 〇 5P alloy system is considered as a factor that reduces the quantum efficiency. Therefore, it is necessary to increase the composition of aluminum in the active region of InQ.5 (Ga ^ Alx) G.5P to obtain a quantum well with a specific energy step width. 'So' can be achieved by In〇5 (Ga 卜 χΑ1χ). The crystals grow on a staggered substrate, which reduces the transition temperature to below 700 ° C. 550840

效率 材的 梯邊 入是 之吸 梯邊 似陷 沿著 動區 而減 光再 中, 最佳 率〇 此外,含鋁之InG.5( Ga卜XA1 x) Q 5P多重量子井 旦 可藉由增加底材的錯切角度,而獲得改善。在二: 斜切愈朝向&lt;111〉A表面,會暴露俞多的 一 σ心夕的陽離子终端階 緣(cation terminated step ^ 、 經由-階梯狀陷啡(step traps)g:)且::=的融 附雜質和終端階梯間的鍵結形狀有關。陽離“ 緣有一單一鍵結並提供較弱的吸附位置。 且囚此,階梯 阱效應(step trapping efficiency)會隨 &lt; 1 1 1 &gt; A之斜切角度增加而減少其附著效應。所^= 雜質的加入(例如矽或氧),將隨著錯切角度的辦加 少。這些不純物質可以作為光發射區域的深層及^發 結合的中心’並影響發光二極體的發射效率。本發^ 以GaAs為底材且斜切角度沿者&lt; 1丄丨&gt;A大於丨〇度角,其 斜切角度為1 5度角’被視為所發射的光具有較佳的效 此外’以I n G a A 1 P為主的發光二極體之薄膜平滑度與 品質可由形成在一斜切底材GaAs結構而獲得改善。過去用 來改善半導體的表面平滑度所應用之磊晶技術如液相磊晶 法(Liquid Phase Epitaxy, LPE)或氣相磊晶法(chemicalThe efficiency of the ladder edge of the efficiency material is that the suction edge of the ladder seems to be sunk along the moving area and the light is reduced. The optimal rate is 0. In addition, aluminum-containing InG.5 (GaB XA1 x) Q 5P multiple quantum wells can be used Increasing the off-cut angle of the substrate improves it. On the second: the oblique cut is more toward the surface of &lt; 111> A, which will expose Yu Duo's cation terminated step ^, via-step traps g :) and: = The fusion impurities are related to the shape of the bond between the terminal steps. The positive edge has a single bond and provides a weaker adsorption site. Furthermore, the step trapping efficiency decreases with the increase of the chamfering angle of &lt; 1 1 1 &gt; ^ = The addition of impurities (such as silicon or oxygen) will increase with the miscut angle. These impurities can be used as the deep layer of the light emitting region and the center of the light emitting junction 'and affect the emission efficiency of the light emitting diode. The present invention ^ uses GaAs as the substrate and the angle of the chamfered angle &lt; 1 丄 丨 &gt; A is greater than 丨 0 degree angle, and the chamfered angle is 15 degree angle 'is regarded as the emitted light has a better effect In addition, the film smoothness and quality of light-emitting diodes based on I n G a A 1 P can be improved by forming a GaAs structure on a chamfered substrate. In the past, it has been used to improve the surface smoothness of semiconductors. Crystal technology such as liquid phase epitaxy (LPE) or gas phase epitaxy (chemical

Vapor Deposition, CVD)以改善薄膜的平滑度。本發明中 ,則是以I nGaA 1 P為基礎的發光二極體並應用有機金屬氣 相磊晶法(Organometalic Vapor Phase Epitaxy, 0MVPEVapor Deposition (CVD) to improve the smoothness of the film. In the present invention, a light-emitting diode based on InGaA 1 P and an organic metal gas phase epitaxy method (Organometalic Vapor Phase Epitaxy, 0MVPE) is used.

第14頁 550840 五、發明說明(11) )長在斜切角度大於10度的角度形成在GaAs底材上,來改 善薄膜表面平滑度。由我們的研究中得知,發光二極體結 構的平滑度會隨著底材錯切角度的增加而增加,這種平滑 度的改善對於三-五族非匹配(m i s m a t c h)相異結構如g a P 、AlGaP與InGaAlP為主的磊晶成長在GaAs底材上特別明顯 。這些磊晶層如〇8?、八1〇3?與11^3八1?合金與底材之間的 晶格不匹配的程度大約為〇 - 3 · 6 %,並與合金的組成有關。 在非匹配底材上沉積過程中’薄膜初期成長傾向於在Page 14 550840 V. Description of the invention (11)) The angle of the bevel is greater than 10 degrees and is formed on the GaAs substrate to improve the smoothness of the film surface. It is known from our research that the smoothness of the light-emitting diode structure will increase with the increase of the substrate cut-off angle. This improvement in smoothness is for three-five mismatch dissimilar structures such as ga The epitaxial growth based on P, AlGaP and InGaAlP is particularly evident on GaAs substrates. The degree of lattice mismatch between these epitaxial layers such as 〇8 ?, 11033 and 11 ^ 3 八 11 alloy and the substrate is about 0-3.6%, and is related to the composition of the alloy. The initial growth of the thin film during the deposition on a non-matching substrate tends to

底材上長出一些形狀如小島的結晶物,這些小島的大小隨 著薄膜與底材的非匹配度增加而增大。這將導致薄膜上形 成南岔度的線狀差排(thread dislocation),且增加了 /儿積 &gt;專膜的表面粗縫度。這些高密度的晶體缺陷與粗縫薄 膜表面,可以藉著增加表面結晶點數目及減少結核島面積 及在非匹配異質結構的晶格常數做一梯度(gradient)變 化而獲得改善。薄膜結核點數目增加及島面積的減小,在 本發明中是請求項的另一重點。可應用GaAs底材斜切一個 大於10度角度,且以一個InGaAlP中間層插入到發光二 體In〇.5( Ga^AlJuP蠢晶層與窗戶層之間作為梯产 達到此一效果。在錯切底材上,底材階梯邊緣合采Crystals like small islands grow on the substrate. The size of these islands increases as the mismatch between the film and the substrate increases. This will result in a thread dislocation with a south divergence on the film, and increase the surface roughness of the film. These high-density crystal defects and rough seam film surfaces can be improved by increasing the number of crystalline points on the surface, reducing the area of nodule islands, and making a gradient change in the lattice constant of the unmatched heterostructure. Increasing the number of thin film nodules and reducing the island area are another focus of the claims in the present invention. GaAs substrate can be applied to cut an angle greater than 10 degrees, and an InGaAlP intermediate layer is inserted between the light emitting body In0.5 (Ga ^ AlJuP stupid crystal layer and the window layer as a ladder to achieve this effect. In the wrong Cut the substrate, the edges of the substrate step are combined

錯切角度增加而增加。這些階梯邊緣提供一個㈢&amp;著底材 置給沉積薄膜的成核位置。因此,密度較$而低的症量位 小島結核在錯切底材上會導致薄膜品質的^加遍積較小的 滑的程度’而薄膜品質的改變會增加發光— /達到敕平 %Inclination angle increases and increases. These step edges provide a ㈢ &amp; substrate placement to the nucleation site of the deposited film. Therefore, the density of the disease is lower than that of the low-density small island tuberculosis on the wrong cut substrate, which will result in a thin film of ^ plus the product of a small degree of slippage.

550840 五、發明說明(12) 出效率。 此外,薄膜表面之平滑度可以增加元件製程的範圍, 例如發光二極體的金屬接點製造與封裝、薄膜的品質、發 光體之致率、元件製造的製程空間(process window of device fabrication),藉由成長發光二極體中 In〇. 5( Gah Α1 χ) ο·#基礎結構在錯切角度1 〇度角或以上的GaAs底材上。550840 V. Description of the invention (12) Output efficiency. In addition, the smoothness of the film surface can increase the range of device manufacturing processes, such as metal contact manufacturing and packaging of light-emitting diodes, the quality of thin films, the accuracy of light-emitting bodies, and the process window of device fabrication. By growing the In0.5 (Gah Α1 χ) ο # # base structure in the light-emitting diode on a GaAs substrate with a cut angle of 10 degrees or more.

參考第二圖係表示發光二極體結構之示意圖。根據以 上所描述之優點,在第二圖中,其發光二極體1 〇之結構至 少包含一光反射層與一個四面體合金InG.5( ( GahAlJuP 長在η型傾斜(n — type misoriented) GaAs底材12上面。而 發光二極體1 〇是由一個η型GaAs緩衝層(buffer layer) 14,一個11型八1八3/八1/31-/5-或111().5(〇3卜41,)0.疋為主之分 散型布拉格反射層(DBR; distributed Bragg reflector) 16,一做為第一包覆層的過InG 5( Gai_xAlx)Q 5p下層包覆 層(cladding layer) 18,一應變(strain)未滲雜 In/GahAlJuP/Ino./Ga卜xA1x)〇.5P多重量子井(MQW ; multiple quantum well) 20,一做為第二包覆層的 p-型 In〇.5(Ga 卜XA1 X)Q.5P上層包覆層 22,一薄的 IruYGahAl X)Q.5P · 中間阻障層(intermediate barrier layer) 24, 一 p-型 GaP或AlGaAs電流麥塞層( current blocking layer)26, 一窗戶層(window layer) 28、做為第一金屬層之一頂層 金屬接觸(metal electrode contact) 30與一底層金屬接Reference to the second figure is a schematic diagram showing the structure of a light emitting diode. According to the advantages described above, in the second figure, the structure of the light-emitting diode 10 includes at least a light reflecting layer and a tetrahedron alloy InG.5 ((GahAlJuP is n-type misoriented) GaAs substrate 12. The light emitting diode 10 is composed of an η-type GaAs buffer layer 14, and an 11-type one-eight-eight-eight-eight / eight-eight-three-one-one-one-one. 〇3 卜 41,) 0. 疋 -based distributed Bragg reflector (DBR; distributed Bragg reflector) 16, a first cladding layer over InG 5 (Gai_xAlx) Q 5p cladding layer ) 18. One strain (strain) is not doped with In / GahAlJuP / Ino. / Gabu xA1x). 0.5P multiple quantum well (MQW; multiple quantum well) 20. One is p-type In as the second cladding layer. 〇.5 (Ga, XA1 X) Q.5P upper cladding layer 22, a thin IruYGahAl X) Q.5P · Intermediate barrier layer 24, a p-type GaP or AlGaAs current meser layer (Current blocking layer) 26, a window layer 28, a top metal contact 30 as one of the first metal layers, and a bottom metal contact

第16頁 55084016th page 550840

盡在本發明的最佳實施例中,係利用多重 傳統的主動層1 〇 6 (如第一圖所示)。呈 里子井取代In the preferred embodiment of the present invention, multiple conventional active layers 106 are used (as shown in the first figure). Was replaced by Lizijing

AlAs/Ino^CGa^.AlJo,?^ Tj A 1 1 主的分散型布拉格反射層16的光反 °„儿)為 於以GUI 5PU _ 用於反射光並位 。此外,一 In ΓΓ Λ1、 Μ 極體結構10的底層 〇.s(Ga “A 1 χ) 〇.5Ρ為主的阻障層 覆層20以及窗戶層28之間以及一金係插入旌已 沾μ古呈 八M W 4 屬接觸3 0位於窗戶層2 8 的上方另一金屬接觸32則是位於以“底材^的下方。 在第二圖中發光二極體結構1〇是長在有一声大 至0 . 4微米矽滲雜G a a s緩衝層1 4長在# # 曰AlAs / Ino ^ CGa ^ .AlJo,? ^ Tj A 1 1 The light reflection of the main dispersed Bragg reflective layer 16 is used to align the reflected light with GUI 5PU _. In addition, an In ΓΓ Λ1, The bottom layer of Μ polar body structure 10 (Ga "A 1 χ) 0.5P-based barrier layer cover layer 20 and window layer 28, and a gold system inserted into the substrate has been deposited in the ancient age of 8 MW 4 genus The contact 30 is located above the window layer 2 8 and the other metal contact 32 is located below the substrate ^. In the second figure, the light emitting diode structure 10 is grown with a sound as large as 0.4 micron silicon. Impregnated G aas buffer layer 1 4 长 在 # # Yue

GaAs級衝層U是用來改善GaAs底材1〇成長表面上的平滑性 與均勻性。成長GaAs緩衝層1 4對於發光二極體丨〇之多 子井異質介面(heter〇—interfaces)薄膜較佳的品質是必 要的。接者GaAs緩衝層14之後,一分散型布拉格反射層16 位於在GaAs緩衝層14上面以提供光線反射。這層光線反 射層1 6的製成物質是選自於能階的禁止能階帶高度( prohibited band height)與主動區域非常近似的材質所 組成。這層16製成物質的選擇需考慮晶格匹配(latt ice mat ch i ng)、能隙帶與反射係數的差別及個別反射層的滲 雜極限(doping limit of individual reflecting layer )。一般而言,一個十到二十的布拉格反射層丨6的週期能The GaAs-level punching layer U is used to improve the smoothness and uniformity of the growth surface of the GaAs substrate 10. Growing the GaAs buffer layer 14 is necessary for the better quality of the light emitting diodes and hetero-interfaces thin films. After the GaAs buffer layer 14 is connected, a dispersed Bragg reflection layer 16 is positioned on the GaAs buffer layer 14 to provide light reflection. The material of this light reflecting layer 16 is made of a material selected from the prohibited band height of the energy level and the active region which are very similar. The choice of materials made in this layer 16 requires consideration of lattice matching, differences in energy bands and reflection coefficients, and doping limit of individual reflecting layers. Generally speaking, a periodic energy of ten to twenty Bragg reflectors

第17頁 550840 五、發明說明(14) 增加光線外部 of emitting 用布拉格反射 層1 6的反射波 數關係如下為 反射係數。布 進來的入射光 能隙以防止任 層的層與層反 反射層1 6較佳 演著需要需要 入傳遞層的功 量子效率(external quantum efficiency 1 i gh t)的1 · 5倍於一般的發光二極體但未使 層1 6的狀況下。A 1 A s / A 1 XG a ! _XA s布拉格反射 的波長λ由個別反射層的厚度來決定,其函 d /4η,其中η是布拉格反射層16各層的 拉格反射層1 6的目的是用來反射由主動區域 線,A 1 XG a !_XA s的能隙必須大於主動區域的 何光線的吸收。此外,在布拉格反射層1 6各 射係數的差必須儘可能的加大以獲得布拉格 的再反射效率。但是,布拉格反射層1 6也扮 高密度2 *1 0 17/cm2)的傳導載子的電流注 能0 由於在A 1 A s -底材的布拉格反射層16中η -型滲雜濃度 的本質限制(intrinsic limitation),布拉格反射層16 的限制以達到一低的順向作業偏壓並同時得到布拉格反射 層1 6中反射率大於或等於9 0 - 9 5 %的效率。一般而言,以 I n G a A 1 P -為基礎的布拉格反射層1 6的週期大約為十至二十 之間。另一個布拉格反射層1 6的候用元素為In〇.5(Ga i_xAl x) 〇. 5P -底材合金,它可以比AlAs/AlGaAs -底材的布拉格反射 層1 6底材達到更高的導電度,但是,它卻被成長在GaAs底 材1 2上晶格匹配的控制性給抵消了。 在第二圖中,η-型下層包覆層18是用來供給載子注入Page 17 550840 V. Description of the invention (14) Increase the external wave of the Bragg reflection layer 16 of the reflected wave number. The relationship between the reflected wave numbers is the reflection coefficient as follows. The incoming light energy gap to prevent any layer and layer anti-reflection layer 16 is better to perform 1.5 times than the ordinary quantum efficiency 1 i gh t that needs to enter the transmission layer. In a state where the light emitting diode is not used but the layer 16 is used. A 1 A s / A 1 XG a! _XA s The Bragg reflection wavelength λ is determined by the thickness of the individual reflection layer, and its function d / 4η, where η is the Lag reflection layer 16 of each layer of the Bragg reflection layer 16 The purpose is The energy gap used to reflect the line from the active area, A 1 XG a! _XA s must be greater than any light absorption in the active area. In addition, the difference of the respective reflection coefficients in the Bragg reflection layer 16 must be as large as possible to obtain the Bragg re-reflection efficiency. However, the Bragg reflector 16 also plays a high density 2 * 1 0 17 / cm2). The current injection energy of the conductive carriers is 0 due to the η-type impurity concentration in the Bragg reflector 16 of the A 1 A s-substrate. Intrinsic limitation. The Bragg reflective layer 16 is limited to achieve a low forward operating bias and at the same time to obtain an efficiency in the Bragg reflective layer 16 with a reflectance greater than or equal to 90-95%. In general, the period of the Bragg reflective layer 16 based on I n G a A 1 P-is about ten to twenty. Another candidate element for the Bragg reflective layer 16 is In0.5 (Ga i_xAl x) 0.5P-substrate alloy, which can achieve higher than the Bragg reflective layer 16 substrate of AlAs / AlGaAs-substrate Electrical conductivity, however, is offset by the lattice-matching controllability of growth on the GaAs substrate 12. In the second figure, the n-type lower cladding layer 18 is used to supply carrier injection.

aa

第18頁 550840 五、發明說明(15) 主動區域並將載子偈限在主動區域。π -型下層包覆層18中 鋁的分子組成大約在0 · 7至1之間,且與主動區域的放射波 長有關係。η -型下層包覆層1 8的厚度必須比載子的擴散長 度來的厚,以避免載子由主動區域擴散到η型下層包覆層 18° 在InG.5( Ga^Al X) G.5P内的η型或ρ型的摻雜濃度範圍造 成在主動區域内有效率的電子與電洞發光性的再結合是必 須的。任何個別注入載子的溢流會因為ρ - η接面的位置偏 離與滲雜分子在主動區域的内部擴散而導致非發射再結合 (non-rad i at i ve recombination)中心的產生,而造成 放射光的效率的減少。 緊接著在η型下層包覆層18之後,一應變的Iny(Gai_x 八1〇丨-//111(),5(〇81_,1:()().5?多重量子井20插入11型(下層)18 與P型(上層)包覆層22中間當作為主動層。在本發明中的 最佳實施例是以I n G a A 1 P為超晶格(s u p e r 1 a 11 i c e)的多重 量子井2 0用來增加主動層的效率與減少量子井中鋁的含量 。在發光二極體1 0中量子井結構可以增加放射光的效率。 量子井是由一窄能帶隙的”井&quot;與一較高能隙的阻障( barrier with a higher band gap)形成。結果,電子與 電洞的能量被量化(侷限)且在電流入射方向不能自由移 動。但仍能在入射電流的垂直平面上自由移動且能再結合 。在多重望;子井 I n y( G a i_xA 1 x) 1—yP / I η 〇 5( G a ι-χΑ 1 x) 〇. 5P 2 0中’Page 18 550840 V. Description of the invention (15) Active area and limit carriers to active area. The molecular composition of aluminum in the π-type lower cladding layer 18 is between approximately 0.7 to 1 and is related to the radiation wavelength of the active region. The thickness of the η-type lower cladding layer 18 must be thicker than the diffusion length of the carriers to prevent the carriers from diffusing from the active region to the η-type lower cladding layer 18 ° at InG.5 (Ga ^ Al X) G The doping concentration range of η-type or ρ-type in .5P results in the recombination of efficient electrons with hole luminescence in the active region is necessary. The overflow of any individual injected carriers will be caused by the non-rad i at i ve recombination center due to the deviation of the position of the ρ-η junction and the diffusion of the dopant molecules in the active area. Reduced efficiency of emitted light. Immediately after the n-type lower cladding layer 18, a strained Iny (Gai_x 八 10〇 丨-// 111 (), 5 (〇81_, 1: () (). 5? Multiple quantum wells 20 are inserted into type 11 (Lower layer) 18 and the P-type (upper layer) cladding layer 22 are used as active layers. The preferred embodiment in the present invention uses I n G a A 1 P as a superlattice (super 1 a 11 ice). Multiple quantum wells 20 are used to increase the efficiency of the active layer and reduce the aluminum content in the quantum wells. The structure of the quantum wells in the light emitting diode 10 can increase the efficiency of the emitted light. The quantum wells are formed by a narrow band gap. " The well is formed with a barrier with a higher band gap. As a result, the energy of electrons and holes is quantified (limited) and cannot move freely in the direction of current incidence. Freely move on the vertical plane and can be recombined. In multiple views; sub-well I ny (G a i_xA 1 x) 1-yP / I η 〇5 (G a ι-χΑ 1 x) 〇 5P 2 0 中 '

第19頁 550840 五、發明說明(16) 在傳導帶中催促導電帶能階向上,而侷限在價帶的載子催 促價帶能階向下。多重量子井結構2 0會移動(sh i f t)放射 光的有效波長到一個較短波長。因此,主動區域中銘的含 量可以大量減少,使得對於一特定放射光源波長,發光二 極體1 0的多重量子結構將增加非輻射重組的生命期,且減 少光線放射的被吸收。Page 19 550840 V. Description of the invention (16) In the conduction band, the energy level of the conductive band is urged upward, and the carriers confined to the valence band urge the energy level of the valence band downward. The multiple quantum well structure 20 shifts (sh i f t) the effective wavelength of the emitted light to a shorter wavelength. Therefore, the content of the inscription in the active region can be greatly reduced, so that for a specific radiation source wavelength, the multiple quantum structure of the light emitting diode 10 will increase the lifetime of non-radiative recombination and reduce the absorption of light radiation.

因此,多重量子井結構2 0降低了鋁含量,輻射再結合 的載子生命期也縮短了 。因此,具有多重量子井2 0主動區 域的發光二極體1 0其量子效率會大量增加。多重量子井2 0 中合金的鋁的組成大約在0至0. 3之間,相對應之波長介於 紅光到綠-黃光之間,它隨者量子井的厚度與量子井的數 目而調整。在多重量子井2 0中紹組成直接能隙的合金 Ino./GahAlJ^P,多重量子井20的發射光波長與井的厚 度有極大的關連性。 當多重量子井2 0的厚度減少,其導電帶量子化載子將 有效副能帶(sub-band)往上推,且共價帶量子化載子將 有效副能帶往下推。多重量子井2 0的量子化帶結構在井厚 大約1到1 0微米相當敏感。結果,由於能階結構的量子化 ,電子與電洞再結合時波長會變短。In〇.5( Ga^Al x) 〇.5P合 金的一般總厚度大約在1到1 0微米之間,最佳發光效率週 期為1 0到50。另一方面,發光的内部量子效率也和井對壅 塞(井/阻)厚度比率有關。一般有效率的載子再結合 550840 五、發明說明(17) -- 時,井與壅塞的比值大約在〇· 75到丨· 25之間。 參考第三圖,係表示一 1右夕 3 1 , . , , · ”有夕重3:子阻障(Mqb· multi -quantum barrier )之省;^ 也 一 Λ iyD, 的其中之-的實施例中,發二:;f 5°結f。在本發明 傾斜GaAs底材52的GaAs緩衝層54°、==構5〇疋由位於n•型 的分散型布拉格反射層56、:二:::,衝層“上方 於刀散型布拉格反射厣t 方的η型下層包覆層58、位於n型下芦 射層5让 土广嘈a復層5 8上方的庫轡 多重量子井60、位於應變多重量子并Rnp古认+乃的L艾 至里于开6 0上方的電子反射層Therefore, the multiple quantum well structure 20 reduces the aluminum content, and the carrier lifetime of radiation recombination is also shortened. Therefore, the quantum efficiency of a light-emitting diode 10 with multiple quantum wells 20 active regions will increase significantly. The composition of the aluminum alloy in the multiple quantum well 20 is between 0 and 0.3, and the corresponding wavelength is between red and green-yellow light. It is adjusted according to the thickness of the quantum well and the number of quantum wells. In the multiple quantum well 20, a direct energy gap alloy Ino./GahAlJ^P is composed. The emission light wavelength of the multiple quantum well 20 has a great correlation with the thickness of the well. When the thickness of the multiple quantum well 20 is reduced, the quantized carriers of its conductive band push the effective sub-band up, and the quantized carriers of the covalent band push the effective sub-band down. The quantized band structure of the multiple quantum well 20 is quite sensitive at well thicknesses of about 1 to 10 microns. As a result, due to the quantization of the energy level structure, the wavelength becomes shorter when electrons and holes recombine. The general total thickness of the In0.5 (Ga ^ Alx) 0.5P alloy is between about 1 to 10 microns, and the optimal luminous efficiency period is 10 to 50. On the other hand, the internal quantum efficiency of luminescence is also related to the ratio of well-to-thickness (well / resistance) thickness. General efficient carrier recombination 550840 V. Description of the invention (17)-When the ratio of well to congestion is between about 0.75 and 25. Referring to the third figure, it shows the implementation of a 1 right night 3 1,.,, · "You Xi Zhong 3: the province of the sub-block (Mqb · multi-quantum barrier); ^ also a Λ iyD, which is the implementation of- In the example, two: f 5 ° junction f. In the present invention, the GaAs buffer layer 54 of the tilted GaAs substrate 52 is 54 °, == 50 °, and is formed by a dispersed Bragg reflective layer 56 located in the n • type: :, The punching layer is above the n-type lower cladding layer 58 on the square of the scatter-type Bragg reflection 厣 t, and the Ku 辔 multiple quantum well 60 located above the n-type lower reed layer 5 to make the soil wide and a layer 5 8 Electron reflection layer located above the strained multiple quantum and Rnp ancient recognition + Nai Ai Zhili Kai 60

(electron reflector) 62、位於電子反射層62上方的_ 上層包覆層64、位於p型上層包覆層64上方的薄應變中間 阻障層I η 〇· 5( G a卜XA 1 x) 〇. 5P 6 6、位於中間阻障層β 6上方的p 型GaΡ或是ρ型AlGaAs電流麥塞層(current blocking 1 ay e r ) 6 8、位於電流分散層6 8上方的窗戶層7 0、位於發光 一極結構50上方的金屬接觸72以及位於Ga As底材5 2下方的 下層金屬接觸7 4所構成。 在本發明的最佳實施例中,一薄的應變中間阻障層6 6 插入到P-型上層包覆層64上方以增加p型上層包覆層64的 阻障高度(barr i er he i ght)。電子反射層62同樣是以有 機金屬氣相蠢晶法來成長’並且需要非常準確的介面對比 、層的厚度與組成的準確控制。此外,薄的應變中間阻障 層6 6有一能階其大小等於或大於p型上層包覆層6 4的能階 ,並且位於接近主動層6 0的區域以防止載子由主動區域溢(electron reflector) 62. An upper cladding layer 64 located above the electron reflecting layer 62, a thin strained intermediate barrier layer I η 0.5 (G abu XA 1 x) located above the p-type upper cladding layer 64. 5P 6 6. The p-type GaP or p-type AlGaAs current blocking layer (current blocking 1 ay er) 6 located above the intermediate barrier layer β 6 6. The window layer 70 located above the current dispersing layer 6 8 The metal contact 72 above the light emitting monopole structure 50 and the lower metal contact 74 under the Ga As substrate 52 are formed. In the preferred embodiment of the present invention, a thin strained intermediate barrier layer 6 6 is inserted above the P-type upper cladding layer 64 to increase the barrier height of the p-type upper cladding layer 64 (barr i er he i ght). The electron reflecting layer 62 is also grown by an organic metal vapor phase stupid method 'and requires a very accurate interface ratio, accurate control of layer thickness and composition. In addition, the thin strained intermediate barrier layer 66 has an energy level that is equal to or greater than the energy level of the p-type upper cladding layer 64, and is located in an area close to the active layer 60 to prevent carriers from overflowing from the active area.

第21頁 550840 五、發明說明(18) 流進入p型上層包覆層6 4以改善發光二極體5 0的發光效率 。而p -型I η 〇. 5A 1 〇. 5P電子反射層6 2是為應變的(s t r a i n e d ),其位置接近主動區域,具有相當的厚度與應力以防止 由主動區域所產生的電子穿隧(tunneling)效應。由於 In〇.s(Ga ι-χΑ1 χ) 05Ρ / Ino.5Alo.5P超晶格的週期增力口’主動區 域之光射出效率也增加時,此乃是因為電子反射層6 2的反 射率增加之原因。Page 21 550840 V. Description of the invention (18) The flow enters the p-type upper cladding layer 64 to improve the luminous efficiency of the light emitting diode 50. The p-type I η 0.5A 1 0.5P electron reflective layer 62 is strained, its position is close to the active region, and it has a considerable thickness and stress to prevent electron tunneling from the active region ( tunneling) effect. When the light emission efficiency of the active region of the periodic booster of the In〇.s (Ga ι-χΑ1 χ) 05P / Ino.5Alo.5P superlattice also increases, this is because of the reflectance of the electron reflection layer 62. Reason for increase.

然而,這種現象在個別的電子反射層6 2的厚度為2至5 毫米的範圍内,有梯度性(g r a d i e n t)或階段性(s t e p )厚 度增加時特別明顯,多層電子反射層62的Ir^.XGahAl Jo」 P的厚度變化(gradient),係表示由主動區域不同注射入 高能量電子的反射能量,因此,載子侷限在梯度或階梯似 區域並獲得高的電子入射能量,電子反射層6 2的多樣性( variety in electron reflector)可由層的厚度的梯度性 變化而獲得。在最佳實施例中,電子反射層6 2包含一應變 阻障層,接著有接近主動層60的Ino./GauAlU/InuAlo 5P超晶結構層以反射由主動區域來的溢流載子。 接下來,在多重量子井6 0與電子反射層62上方是一 p-型上層包覆層64。p -型上層包覆層6 4是用於將載子注入到 主動區域,並將載子侷限留在主動區域。p -型上層包覆層 6 4的厚度必須大於注入載子的擴散長度,以防止主動區域 的載子進入P型上層包覆層64。此外,ρ型上層包覆層6 4必 550840 五、發明說明(19) 須比η型下層包覆層5 8厚,其原因是因為在發光二極體5 0 的成長過程中Ρ型滲雜元素如Ζη原子或Mg原子的擴散性的 ' 關係。一典型的P -型上層包覆層6 4厚度大約在0 . 5到1 . 5微 _ 米之間。 接著在ρ-型上層包覆層6 4上方是一層滲雜密度大於ρ-型上層包覆層6 4的薄I η 〇. 5 ( Ga hXA 1 χ) 〇. 5Ρ中間應變層6 6,此 薄中間應變層6 6是用來確保注入載子能夠穿過及散開,並 為確保此薄中間應變層6 6的高傳導性以利電流在垂直於其 注入方向之平面上的有效率散開,在薄中間應變層6 6中鋁 的組成(約在0 . 1到0 . 5之間)其組成成份比ρ型上層包覆層 彳® 6 4還要小,並要和ρ型上層包覆層6 4的晶格匹配。厚度大 約在5 0至1 0 0 nm,而滲雜密度比ρ-型電導層高的中間電流 分散層6 8是設計來產生注入電流垂直平面的低電阻通道。 此外,薄中間應變層6 6有一比主動區域大的能隙,以防止 : 由主動區域發射的光線被吸附。 由於此一薄中間應變層6 6的厚度很薄且有一比ρ -型上 層包覆層6 4高卻又比窗戶層7 0低的滲雜濃度,可作為電流 在成長方向的阻障層及電流入射成長方向垂直平面的低阻 丨p 抗通道。因此根據上述,發光二極體5 0的光線發射效率之 提昇,在P型上層包覆層6 4與主動區域内的電流分散效應 將由In〇.5( Ga^Al x) G.5P阻障層的厚度、組成與摻雜程度而 定。However, this phenomenon is particularly noticeable when the thickness of the individual electron reflection layer 62 is in the range of 2 to 5 millimeters with a gradient or step thickness. The Ir ^ of the multilayer electron reflection layer 62 .XGahAl Jo ”P The thickness change indicates the reflected energy injected into the high-energy electrons from different active regions. Therefore, carriers are confined to gradient or step-like regions and obtain high electron incident energy. The electron reflection layer 6 The variety of 2 (variation in electron reflector) can be obtained by the gradient change of the thickness of the layer. In the preferred embodiment, the electron reflective layer 62 includes a strain barrier layer, followed by an Ino./GauAlU/InuAlo 5P supercrystalline structure layer close to the active layer 60 to reflect the overflow carriers from the active area. Next, above the multiple quantum well 60 and the electron reflection layer 62 is a p-type upper cladding layer 64. The p-type upper cladding layer 64 is used to inject carriers into the active region and confine the carriers to the active region. The thickness of the p-type upper cladding layer 64 must be greater than the diffusion length of the injected carriers to prevent carriers in the active region from entering the P-type upper cladding layer 64. In addition, the ρ-type upper cladding layer 6 4 must be 550840. 5. The description of the invention (19) must be thicker than the η-type lower cladding layer 58. The reason is that the P-type doping during the growth of the light-emitting diode 50 The diffusive 'relationship' of elements such as Zη atoms or Mg atoms. A typical P-type upper cladding layer 64 has a thickness of about 0.5 to 1.5 micrometers. Above the ρ-type upper cladding layer 6 4 is a thin I η 0.5 (Ga hXA 1 χ) 〇. 5P intermediate strain layer 6 6 which has a higher impurity density than the ρ-type upper cladding layer 64. The thin intermediate strain layer 66 is used to ensure that the injected carriers can pass through and disperse, and to ensure the high conductivity of the thin intermediate strain layer 66 to facilitate the effective spread of the current on a plane perpendicular to the injection direction, The composition of aluminum in the thin intermediate strain layer 6 6 (between 0.1 and 0.5) is smaller than that of the ρ-type upper cladding layer 彳 ® 6 4 and is coated with the ρ-type upper cladding layer. The lattices of layers 64 are matched. The intermediate current dispersion layer 68, which has a thickness of approximately 50 to 100 nm and a higher impurity density than the p-type conductivity layer, is a low-resistance channel designed to produce a vertical plane of injected current. In addition, the thin intermediate strain layer 66 has a larger energy gap than the active region to prevent: the light emitted from the active region from being absorbed. Since this thin intermediate strain layer 6 6 is very thin and has a doping concentration higher than that of the ρ-type upper cladding layer 64 but lower than the window layer 70, it can be used as a barrier layer in the direction of current growth and The low-impedance p-channel of current into the vertical plane of the growth direction. Therefore, according to the above, the light emission efficiency of the light emitting diode 50 is improved, and the current dispersion effect in the P-type upper cladding layer 64 and the active region will be blocked by In0.5 (Ga ^ Al x) G.5P The thickness, composition, and degree of doping of the layer depend.

第23頁 550840 五、發明說明(20) 接著,為本發明重要的特徵之一,一種會令I η 〇. 5( G a hA 1 χ) 〇. 5Ρ發光二才亟體5 〇產生最大功能發揮的途徑是在ρ 型I η 〇 5( Ga丨-χΑ 1 X) 0 5ρ層上加一層窗戶層70。使用GaP、Page 23 550840 V. Description of the invention (20) Next, it is one of the important features of the present invention. One will make I η 0.5 (G a hA 1 χ) 0.5 P light-emitting body 5 and produce the maximum function. The way to play is to add a window layer 70 on the p-type I η 〇5 (Ga 丨 -χΑ 1 X) 0 5ρ layer. Using GaP,

AlGaP或AlGaAs做為窗戶層70,由於GaP或GaAsP對於由發 光二極體5 0的主動區域放射出來的光有一個相對的可透光 能隙。本發明中利用有機金屬氣相磊晶法來成長在一斜切 方向〈1 1 1〉角度的Ga As底材5 2上發光二極體結構50包括pAlGaP or AlGaAs is used as the window layer 70. Since GaP or GaAsP has a relatively light-transmittable energy gap for light emitted from the active area of the light emitting diode 50. In the present invention, an organic metal vapor phase epitaxy method is used to grow a light emitting diode structure 50 on a Ga As substrate 5 2 at an angle <1 1 1> in a beveled direction including p

型 GaP、AlGaP或 AlGaAs窗戶層 70。磊晶沈積 AlGaAs、GaP 或其他的族半導體表面以液相氣相蠢晶法或化學氣相沉積 磊晶成長方式以改善沉積薄膜之平滑性。而在本發明中, 三-五族化合物如GaP、AlxGahP,其中X小於〇·认AlyGai_y As ’其中y小於1大於〇 · 5 ’ GaP及A 1 xGa hxp均是在發光二極 體放射波長在6 5 0至5 6 5 nm範圍内當做為窗戶層7 〇來分散 注入電流,因為GaP、AlxGai_xP對於放射波長“ο至5 6 5 nm 而言是透明的。 此外,發光效率也與窗戶層7 0的厚度有關係。當窗戶 層厚度增加時因為較寬度的電流散開面積以及由發光二極 體側面散出的光都會增加’發光二極體的輸出也會增加。 因此’我們可以得到’利用厚度較薄以及傾斜角度朝 向&lt;111 &gt;A面以及其錯切角度大於10度之GaAs底材做為發光 二極體的底材,可以節省製程成本;此外,其底材形成時Type GaP, AlGaP or AlGaAs window layer 70. Epitaxial deposition AlGaAs, GaP or other group semiconductor surfaces are epitaxially grown by liquid-phase vapor phase or chemical vapor deposition to improve the smoothness of the deposited film. In the present invention, Group III-V compounds such as GaP and AlxGahP, in which X is less than 0 · AlyGai_y As 'where y is less than 1 and greater than 0.5' GaP and A 1 xGa hxp are both at the light emitting diode emission wavelength at In the range of 6 5 0 to 5 6 5 nm, it is used as the window layer 7 to disperse the injected current, because GaP and AlxGai_xP are transparent to the emission wavelength “ο to 5 6 5 nm. In addition, the luminous efficiency is also the same as that of the window layer 7 The thickness of 0 is related. When the thickness of the window layer increases, the wider the current spreading area and the light emitted from the side of the light emitting diode will increase, the output of the light emitting diode will also increase. Therefore, 'we can get' the use of The thinner thickness and the inclination angle towards the &lt; 111 &gt; A surface and the GaAs substrate whose stagger angle is greater than 10 degrees as the substrate of the light emitting diode can save process costs; in addition, when the substrate is formed,

第24頁 550840 五、發明說明(21) 的溫度梯度(therma 1 grad i ent )最小可以很容易的控制在 磊晶成長時的溫度;再者,其發光效率以及散熱度也較傳 統的G a A s底材來得好。 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍;凡其它未脫離本發明所揭示之 精神下所完成之等效改變或修飾,均應包含在下述之申請 專利範圍内。Page 24, 550840 5. The minimum temperature gradient (therma 1 grad i ent) of the invention description (21) can easily control the temperature during epitaxial growth; moreover, its luminous efficiency and heat dissipation are also more traditional than G a A s substrate comes well. The above are merely preferred embodiments of the present invention, and are not intended to limit the scope of patent application for the present invention; all other equivalent changes or modifications made without departing from the spirit disclosed by the present invention shall be included in the following Within the scope of patent application.

第25頁 550840 圖式簡單說明 第一圖係根傳統所揭露技術之發光二極體結構之示意 圖, 第二圖係根據本發明所揭露之技術,發光二極體結構 之截面示意圖;及 第三圖係根據本發明所揭露之技術,發光二極體結構 之戴面示意圖。 主要部分之代表符號: 10 發光二極體結構 12 G a A s底材 14 緩衝層 16 分散型布拉格反射層 1 8 η型下層包覆層 20 多層量子井 2 2 ρ型上層包覆層 24 中間阻障層 2 6 電流壅塞層 28 窗戶層 3 0 金屬接觸 3 2 金屬接觸 50 發光二極體結構 5 2 G a A s底材550840 on page 25 illustrates the schematic diagram of the first structure of the light-emitting diode according to the conventionally disclosed technology, and the second diagram is the cross-sectional view of the structure of the light-emitting diode according to the technology disclosed in the present invention; and the third FIG. Is a schematic diagram of a light emitting diode structure wearing surface according to the technology disclosed in the present invention. Representative symbols of main parts: 10 Light-emitting diode structure 12 G a A s substrate 14 Buffer layer 16 Dispersive Bragg reflector 1 8 η-type lower cladding layer 20 Multi-layer quantum well 2 2 ρ-type upper cladding layer 24 Middle Barrier layer 2 6 Current blocking layer 28 Window layer 3 0 Metal contact 3 2 Metal contact 50 Light emitting diode structure 5 2 G a A s substrate

第26頁 550840 圖式簡單說明 5 4 緩衝層 5 6 分散型布拉格反射層 5 8 η型下層包覆層 60 應變多重量子井 62 電子反射層 6 4 ρ型上層包覆層 66 中間應變阻障層 68 電流壅塞層 70 窗戶層 7 2 金屬接觸 7 4 金屬接觸 1 0 0發光二極體結構 1 0 2 G a A s底材 1 0 4 η型下層包覆層 1 0 6主動層 1 0 8 ρ型上層包覆層 1 1 0電流分散層 112窗戶層 1 1 4金屬接觸 1 1 6金屬接觸P.26 550840 Brief description of the drawing 5 4 Buffer layer 5 6 Dispersive Bragg reflection layer 5 8 η-type lower cladding layer 60 Strain multiple quantum wells 62 Electron reflection layer 6 4 ρ-type upper cladding layer 66 Intermediate strain barrier layer 68 current blocking layer 70 window layer 7 2 metal contact 7 4 metal contact 1 0 0 light emitting diode structure 1 0 2 G a A s substrate 1 0 4 η-type lower cladding layer 1 0 6 active layer 1 0 8 ρ Type upper cladding layer 1 1 0 current dispersion layer 112 window layer 1 1 4 metal contact 1 1 6 metal contact

第27頁Page 27

Claims (1)

550840 六、申請專利範圍 1. 一種發光二極體結構,該發光二極體結構包含: 一底層金屬接觸; 具有一第一導電性之一 G a A s底材位於該底層金屬接觸 上方,其中該G a A s底材傾斜角度大於1 0度並斜切朝向&lt; 1 1 1 &gt;A面; 具有該第一導電性之一光反反射層位於GaAs底材上方 上方 方 f 具有該第一導電性之一第一包覆層位於該光反反射層 一主動層位於該第一包覆層上方; 具有一第二導電性之&lt;第二包覆層位於該主動層上 其中該第二導電性相反於該第一導電性; 一電流壅塞層位於該第二包覆層上方; 一窗戶層位於該電流壅塞層上方;及 一頂層金屬接觸位於該窗戶層上方。 2. 如申請專利範圍第1項之發光二極體結構,其中上述 GaAs底材傾斜最佳角度為15度。 3. 如申請專利範圍第1項之發光二極體結構,其中上述 GaAs底材的厚度範圍約為150至2 5 0微米。 4. 如申請專利範圍第1項之發光二極體結構,其中上述 GaAs底材的最佳厚度約為210微米。550840 VI. Scope of patent application 1. A light emitting diode structure, the light emitting diode structure includes: a bottom metal contact; a G A A s substrate having a first conductivity is located above the bottom metal contact, wherein The G a A s substrate has an inclination angle greater than 10 degrees and is chamfered toward the &lt; 1 1 1 &gt; A surface; a light reflective layer having the first conductivity is located above the GaAs substrate and f has the first A conductive first coating layer is located on the photoreflection layer and an active layer is located above the first coating layer; a second conductive layer having a second conductivity is located on the active layer, wherein the first Two conductivity is opposite to the first conductivity; a current blocking layer is located above the second cladding layer; a window layer is located above the current blocking layer; and a top metal contact is located above the window layer. 2. For the light-emitting diode structure of the first patent application, wherein the optimal tilt angle of the GaAs substrate is 15 degrees. 3. For example, the light-emitting diode structure of the first patent application, wherein the thickness of the GaAs substrate is about 150 to 250 microns. 4. For the light-emitting diode structure of the first patent application, the optimal thickness of the GaAs substrate is about 210 microns. 550840 六、申請專利範圍 5.如申請專利範圍第1項之發光二極體結構,更包含具有 第一導電性的緩衝層位於該GaAs底材與該光反反射層之間 6. 如申請專利範圍第1項之發光二極體結構,其中上述光 反反射層包含一分散型布拉格反射(DBR; distributed bragg reflector)。 7. 如申請專利範圍第6項之發光二極體結構,其中上述布 拉格反射層包含具有該第一導電性之A1 As/AlxGa卜xAs-結 構。 8. 如申請專利範圍第6項之發光二極體結構,其中上述布 拉格反射層包含具有第二導電性以InG.5( Ga^Al x) 〇.5P為主 之結構。 9. 如申請專利範圍第1項之發光二極體結構,其中上述主 動層包含一應變及未摻雜之in/GanAl x) i—yP/Ino.ZGa卜XA1 x) 0.5P結構· 1 0 .如申請專利範圍第1項之發光二極體結構,更包含一中 間阻障層位於該第二包覆層及該窗戶層之間。550840 VI. Application for patent scope 5. If the light emitting diode structure of the first patent application scope, further includes a buffer layer having a first conductivity between the GaAs substrate and the light reflective layer 6. Such as patent application The light-emitting diode structure of the first item, wherein the light reflective layer includes a distributed Bragg reflector (DBR). 7. The light-emitting diode structure according to item 6 of the patent application, wherein the Bragg reflective layer includes an A1 As / AlxGa and xAs-structure having the first conductivity. 8. The light emitting diode structure according to item 6 of the patent application scope, wherein the Bragg reflecting layer includes a structure having a second conductivity, mainly InG.5 (Ga ^ Alx) 0.5P. 9. For example, the light-emitting diode structure of the scope of the patent application, wherein the active layer includes a strained and undoped in / GanAl x) i-yP / Ino.ZGabu XA1 x) 0.5P structure · 1 0 . For example, the light-emitting diode structure of the first patent application scope further includes an intermediate barrier layer between the second cladding layer and the window layer. 第29頁 550840 六、申請專利範圍 Ί1.如申請專利範圍第1項之發光二極體結構,其中上述中 間阻障層包含以I n G a A 1 P為主之結構。 1 2 .如申請專利範圍第1項之發光二極體結構,其中上述電 流壅塞層包含具有該第二導電性之Gai_xAl X)P層。 1 3 .如申請專利範圍第1項之發光二極體結構,其中上述窗 戶層用於分散位於該發光二極體内的電流。 1 4. 一種發光二極體結構’該發光二極體結構包含: 一底層金屬接觸; 具有一第一導電性及厚度範圍約1 5 0至2 5 0微米之一 GaAs底材位於該底層金屬接觸上方,其中該GaAs底材傾斜 角度大於10度並斜切朝向&lt;1 1 1&gt;A面; 具有該第一導電性之一光反反射層位於GaAs底材上方 具有該第一導電性之一第一包覆層位於該光反反射層 上方; 一主動層位於該第一包覆層上方; 一電子反射層位於該主動層上方; 具有一第二導電性之一第二包覆層位於該電子反射層 上方,其中該第二包覆層的厚度厚於該第一包覆層且該第 二導電性相反於該第一導電性; 一電流壅塞層位於該第二包覆層的上方;Page 29 550840 6. Scope of patent application Ί 1. The light-emitting diode structure according to item 1 of the scope of patent application, wherein the above intermediate barrier layer includes a structure mainly composed of I n G a A 1 P. 1 2. The light-emitting diode structure according to item 1 of the scope of the patent application, wherein the current blocking layer includes a Gai x Al X) P layer having the second conductivity. 1 3. The light-emitting diode structure according to item 1 of the scope of patent application, wherein the window layer is used to disperse the current in the light-emitting diode. 1 4. A light emitting diode structure 'The light emitting diode structure includes: a bottom metal contact; a GaAs substrate having a first conductivity and a thickness ranging from about 150 to 250 microns is located on the bottom metal Contacting above, wherein the GaAs substrate has an inclination angle greater than 10 degrees and is chamfered toward the &lt; 1 1 1 &gt; plane A; a light reflective layer having the first conductivity is located above the GaAs substrate and has the first conductivity A first cladding layer is located above the light reflective layer; an active layer is located above the first cladding layer; an electron reflective layer is located above the active layer; a second cladding layer having a second conductivity is located Above the electron reflection layer, wherein the thickness of the second cladding layer is thicker than the first cladding layer and the second conductivity is opposite to the first conductivity; a current blocking layer is located above the second cladding layer ; 第30頁 550840 六、申請專利範圍 一窗戶層位於電流壅塞層的上方,其中該窗戶層係作 為分散位於該發光二極體結構内的電流;及 一頂層金屬接觸位於該窗戶層的上方。 1 5 .如申請專利範圍第1 4項之發光二極體結構,其中上述 G a A s底材傾斜最佳角度約為1 5度。 1 6 .如申請專利範圍第1 4項之發光二極體結構,其中上述 G a A s底材的最佳厚度為2 1 0微米。 1 7 .如申請專利範圍第1 4項之發光二極體結構,更包含具 有該第一導電性之一緩衝層位於GaAs底材及該光反反射層 之間。 1 8 .如申請專利範圍第1 4項之發光二極體結構,其中上述 光反反射層包含一分散型布拉格反射層(DBR; distributed bragg reflector)。 1 9 .如申請專利範圍第1 8項之發光二極體結構,其中上述 分散型布拉格反射層包含具有該第一導電性之 A1 As/Al xGahAs-結構。 2 0 .如申請專利範圍第1 8項之發光二極體結構,其中上述 分散型布拉格反射層包含具有第二導電性以Ino.^GahAl X)Page 30 550840 6. Scope of patent application A window layer is located above the current blocking layer, wherein the window layer is used to disperse the current located in the light emitting diode structure; and a top metal contact is located above the window layer. 15. The light-emitting diode structure according to item 14 of the scope of patent application, wherein the optimal angle of the aforementioned G a A s substrate tilt is about 15 degrees. 16. The light-emitting diode structure according to item 14 of the scope of patent application, wherein the optimal thickness of the G a A s substrate is 210 micrometers. 17. The light-emitting diode structure according to item 14 of the scope of patent application, further comprising a buffer layer having the first conductivity between the GaAs substrate and the light reflective layer. 18. The light-emitting diode structure according to item 14 of the scope of patent application, wherein the light-reflective layer includes a distributed Bragg reflector (DBR). 19. The light-emitting diode structure according to item 18 of the scope of patent application, wherein the above-mentioned dispersed Bragg reflective layer includes an A1 As / Al xGahAs-structure having the first conductivity. 2 0. The light-emitting diode structure according to item 18 of the scope of patent application, wherein the above-mentioned dispersed Bragg reflective layer includes a second conductive material (Ino. ^ GahAl X) 第31頁 550840 六、申請專利範圍 0.5p為主之結構。 2 1.如申請專利範圍第1 4項之發光二極體結構5其中上述 主動層包含一一應變及未摻雜之I n y( Ga i_xA 1 x)卜yP / I η 〇. 5( Ga^AlJ^P多重量子井。 2 2 .如申請專利範圍第1 4項之發光二極體結構,其中上述 電子反射層包含一 Iny(Gai-xAlx)i-yP/In〇5(Gai-xAlx)Q5P 超晶 格結構。 2 3 .如申請專利範圍第1 4項之發光二極體結構,更包含一 中間阻障層位於該第二包覆層及該電流壅塞層之間。 2 4 .如申請專利範圍第1 4項之發光二極體結構,其中上述 中間阻障層包含以I n G a A 1 P為主之結構。 2 5 .如申請專利範圍第1 4項之發光二極體結構,其中上述 電流壅塞層包含具有該第二導電性之Ino.^GanAl X)P層。Page 31 550840 VI. The structure of patent application is mainly 0.5p. 2 1. The light emitting diode structure according to item 14 of the scope of patent application 5 wherein the active layer includes a strained and undoped I ny (Ga i_xA 1 x) yP / I η 0.5 (Ga ^ AlJ ^ P multiple quantum well. 2 2. The light-emitting diode structure according to item 14 of the patent application scope, wherein the above-mentioned electron reflection layer includes an Iny (Gai-xAlx) i-yP / In〇5 (Gai-xAlx) Q5P superlattice structure. 2 3. For example, the light emitting diode structure of item 14 of the scope of patent application, further includes an intermediate barrier layer between the second cladding layer and the current blocking layer. 2 4 The light-emitting diode structure of the scope of patent application No. 14 in which the above intermediate barrier layer includes a structure mainly composed of I n G a A 1 P. 2 5. The light-emitting diode of the scope of patent application No. 14 Structure, wherein the current blocking layer includes an Ino. ^ GanAl X) P layer having the second conductivity. 第32頁Page 32
TW91117368A 2002-08-01 2002-08-01 Light emitting diode device TW550840B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91117368A TW550840B (en) 2002-08-01 2002-08-01 Light emitting diode device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91117368A TW550840B (en) 2002-08-01 2002-08-01 Light emitting diode device

Publications (1)

Publication Number Publication Date
TW550840B true TW550840B (en) 2003-09-01

Family

ID=31713596

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91117368A TW550840B (en) 2002-08-01 2002-08-01 Light emitting diode device

Country Status (1)

Country Link
TW (1) TW550840B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466314B (en) * 2008-03-05 2014-12-21 Advanced Optoelectronic Tech Light emitting device of iii-nitride based semiconductor
TWI699008B (en) * 2017-12-01 2020-07-11 大陸商泉州三安半導體科技有限公司 Yellow-green light-emitting diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466314B (en) * 2008-03-05 2014-12-21 Advanced Optoelectronic Tech Light emitting device of iii-nitride based semiconductor
TWI699008B (en) * 2017-12-01 2020-07-11 大陸商泉州三安半導體科技有限公司 Yellow-green light-emitting diode

Similar Documents

Publication Publication Date Title
US8324637B2 (en) High efficiency LEDs with tunnel junctions
US6720570B2 (en) Gallium nitride-based semiconductor light emitting device
US6608328B2 (en) Semiconductor light emitting diode on a misoriented substrate
US6784461B2 (en) Group III nitride light emitting devices with progressively graded layers
US5661074A (en) High brightness electroluminescent device emitting in the green to ultraviolet spectrum and method of making the same
US5804834A (en) Semiconductor device having contact resistance reducing layer
US9978905B2 (en) Semiconductor structures having active regions comprising InGaN and methods of forming such semiconductor structures
US9397258B2 (en) Semiconductor structures having active regions comprising InGaN, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures
US9246057B2 (en) Semiconductor structures having active regions comprising InGaN, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures
US10431711B2 (en) Semiconductor heterostructure polarization doping
US20040051108A1 (en) Group lll nitride emitting devices with gallium-free layers
JPH04212479A (en) Semiconductor light-emitting device
US20020104997A1 (en) Semiconductor light emitting diode on a misoriented substrate
JP3561536B2 (en) Semiconductor light emitting device
US20040021142A1 (en) Light emitting diode device
KR100330228B1 (en) GaN-based Semiconductor Light Emitting Devices of Quantum Well Electronic Structures Resonating with Two-dimensional Electron Gas
TW550840B (en) Light emitting diode device
CN113422293B (en) InGaN/GaN quantum well laser with stepped upper waveguide and preparation method thereof
CN1230923C (en) Light-emitting diode structure
JP2004095827A (en) Light emitting diode
TW480751B (en) Semiconductor light emitting diode based on off-cut substrate
KR101198759B1 (en) Nitride light emitting device
KR20190140835A (en) Ⅲ-ⅴcompound based light emitting diode
JP4277363B2 (en) Group III nitride semiconductor light emitting device
US20230070171A1 (en) Light emitting diode and method of fabricating the same

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees