TW540155B - Manufacturing method capacitor having tantalum pentoxide dielectric layer - Google Patents
Manufacturing method capacitor having tantalum pentoxide dielectric layer Download PDFInfo
- Publication number
- TW540155B TW540155B TW090114035A TW90114035A TW540155B TW 540155 B TW540155 B TW 540155B TW 090114035 A TW090114035 A TW 090114035A TW 90114035 A TW90114035 A TW 90114035A TW 540155 B TW540155 B TW 540155B
- Authority
- TW
- Taiwan
- Prior art keywords
- scope
- patent application
- item
- dielectric layer
- capacitor
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 title claims abstract description 13
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 238000003860 storage Methods 0.000 claims abstract description 14
- 238000000137 annealing Methods 0.000 claims abstract description 9
- 230000003647 oxidation Effects 0.000 claims abstract description 8
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 8
- 238000005229 chemical vapour deposition Methods 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 7
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000004151 rapid thermal annealing Methods 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 238000009834 vaporization Methods 0.000 claims description 4
- 230000008016 vaporization Effects 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 239000012159 carrier gas Substances 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 17
- 239000010936 titanium Substances 0.000 abstract description 10
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 47
- 239000004408 titanium dioxide Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000011257 shell material Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
540155540155
五、發明說明(1) 發明領域: 本發明係有關於一種電容 於一種具有五氧化二組介電層 於動態隨機存取記憶體(dram 雜二氧化鈦以降低電容器之漏 存容量。 器的製造方法,特別是有關 之電谷器的製造方法,適用 )中’其在五氧化二纽中摻 電流且不會降低電容器之儲 相關技術說明: 電路ΐί隨機存取,(DRAM)是-種廣泛應用的積體 關cell)大多是由一電曰H動態Λ機存取記憶單元( 習此蓺去阱a 電容器所構成。如熟 %=者所知,電容器是用來儲存電荷以提供電子 ,,、應具有足夠大的電容量, ' 充電更”refresh)的頻V方了避免貝料的流失並減低 目刖日益高度積集化之dram 結構的疊層形電容器來實現 ::屑利用二度空間 S : meta1’ MIM)或金屬-絕緣物—半 構來組成電容器。复中,為WC(Lnductor,MIS)材質結 上可從:(ι)增加儲存電極的匕電接容器的電容量,理論 的介電常數,和(3)減小介提高介電層 在增加儲存電極表面積方電曰的厚度歲個方向著手。 的(rugged )表面構造,彳、 八’、理不外是形成縐褶 造’其相關的研究成果心==等立體的電極構 複雜許多。而在減小介雷s ^ 製私步驟均遠較傳統者 "電層的厚度方面,現今製造的記憶V. Description of the invention (1) Field of the invention: The present invention relates to a capacitor having a group of two pentoxide layers in a dynamic random access memory (dram hybrid titanium dioxide to reduce the leakage capacity of a capacitor. Manufacturing method of the device) In particular, related to the manufacturing method of the electric valley device, it is applicable.) 'It is doped with pentoxide and does not reduce the storage capacity of the capacitor. Relevant technical description: Circuit random access, (DRAM) is a widely used Most of the integrated cells are composed of a dynamic H-mechanical access memory cell (a capacitor that is used to remove wells). As known by% =, capacitors are used to store electric charges to provide electrons. It should have a sufficiently large capacitance, and the frequency of 'recharging is more refreshed' in order to avoid the loss of shell material and reduce the size of the stacked capacitors with the increasingly highly integrated dram structure. Space S: meta1 'MIM) or metal-insulator-half structure to form a capacitor. In the complex, the WC (Lnductor, MIS) material can be connected from: (ι) to increase the capacitance of the dagger electrical connection container for the storage electrode, theoretical The electric constant, and (3) decrease the dielectric and increase the dielectric layer in the direction of increasing the thickness of the storage electrode surface. The surface structure of the rugged surface structure, 彳, '', is justified to form creases' The related research results are that the three-dimensional electrode structure is much more complicated. In terms of reducing the thickness of the dielectric layer, the manufacturing steps are much larger than those of the traditional " electric layer.
M0155 五、發明說明(2) Γ :電容f多已使用極薄之介電層、然而當其厚度小於50 丹二郃容易因直接载子隧穿(direct tunneUng )而產 二ΐ:!流’影響元件的特性。®此,另有研究致力 二Ϊ 介電常數的介電材才斗,以取代-般常用的氧 化矽層,㈣更進一步提昇電容器的電容量,其中五氧化 :組(Ta2 05 )是頗受重視的介電層材料之一。不幸地,此 材:本身具有高漏電流的缺點,目此在習知做法中 =匕二組中摻雜雜質,例如石夕。如此的確可降低漏電流 摻雜石夕同時會使得五氧化二组的介電常數降 直4丨^電谷器之電容量降低。另外,Sait0等人於美國 專利第4, 734, 340號揭示一種介電薄膜, =電層中糝雜二氧化鈦(Ti〇2),其中鈦對:的原-百刀比(at· % )在〇·;[到4的範圍。 人下ΐΐ照第1A至1B圖,說明一習知具有五氧化二钽 之電容”製造方法。首先’⑹第u圖所示,提供 :巧0 *例如疋一矽晶圓,其上形成有電晶體元件,以M0155 V. Description of the invention (2) Γ: Most capacitors f have used extremely thin dielectric layers. However, when the thickness is less than 50 Å, it is easy to produce two ions due to direct carrier tunneling (!) Flow! Affects the characteristics of the component. ® This, another research is dedicated to the dielectric constant of the dielectric material to replace the commonly used silicon oxide layer, to further enhance the capacitor's capacitance, of which the pentoxide: group (Ta2 05) is quite popular One of the most important dielectric layer materials. Unfortunately, this material: itself has the disadvantage of high leakage current, so it is known practice to dope impurities in the second group, such as Shi Xi. This can indeed reduce the leakage current. Doping Shi Xi will also reduce the dielectric constant of the second pentoxide group and reduce the capacitance of the valley device. In addition, Saito et al., U.S. Patent No. 4,734,340, disclose a dielectric thin film = doped titanium dioxide (Ti〇2) in an electrical layer, in which the original-to-blade ratio (at ·%) of the titanium pair: 〇; [to the range of 4. The person below explains the manufacturing method of a capacitor having tantalum pentoxide according to FIGS. 1A to 1B. First, as shown in the figure u, provide: Q0 * For example, a silicon wafer is formed thereon Transistor element to
Li ii70件上的絕緣保護層。此處為了簡化圖式 :僅:示一平整的基板10。#著,在基板1〇上沈積一圖案 之第一導電層1 2,例如是—複晶矽層,以作為」電容^ 的儲存電極12。然後,以化學氣相沈積法(*心。31» v:pV=:tion’ CVD)在第一導電層12與基板10上形 ,例如是摻雜石夕之五氧化二组介電層14以改 二=。接下來’請參照第1_,在五氧化二 “電質層14表面上形成第二導電層’以作為一電容器的Insulating protective layer on Li ii70 pieces. In order to simplify the figure here: only: a flat substrate 10 is shown. In addition, a pattern of the first conductive layer 12 is deposited on the substrate 10, for example, a polycrystalline silicon layer, as the storage electrode 12 of the capacitor ^. Then, a chemical vapor deposition method (*. 31 »v: pV =: tion 'CVD) is formed on the first conductive layer 12 and the substrate 10, for example, the second group of pentoxide-doped dielectric layers 14 To change two =. Next, please refer to Section 1_, forming a second conductive layer on the surface of the dielectric layer 14 as a capacitor.
540155 五、發明說明(3) - 相對電極1 6,其材質係一金屬,例如鉑(p t )或鎢(w ) 中如此即完成記憶元件電容器的製造。然而,上述介電層 ,以摻雜矽來降低漏電流,但是卻同時因矽的加入而^ 。氣化二鈕之介電常數降低,亦即降低了電容器之電容量 有鑑於此,本發明之目的,在提供一種具有五氧化二 層之電容器的改良製造方法,藉由在介電材料中摻 雉一,化鈦來降低漏電流的發生,提昇元件的性質,並可 、、隹持高介電常數,使電容器保有高的儲存容量。 發明概述:540155 V. Description of the invention (3)-The counter electrode 16 is made of a metal, such as platinum (p t) or tungsten (w). This completes the manufacture of the memory element capacitor. However, the above-mentioned dielectric layer is doped with silicon to reduce leakage current, but at the same time due to the addition of silicon ^. The dielectric constant of the gasified second button is reduced, that is, the capacitance of the capacitor is reduced. In view of this, an object of the present invention is to provide an improved manufacturing method of a capacitor having a second pentoxide layer by doping the dielectric material. First, titanium oxide can reduce the occurrence of leakage current, improve the properties of components, and can support high dielectric constant, so that capacitors maintain high storage capacity. Summary of the invention:
電 電 層 在 電 六^發明的目的在於提供一種具有五氧化二鈕介電層之 ,,製造方法,適用於動態隨機存取記憶體中,可‘低 容器中漏電流的產生,提昇元件的性質。 一 本發明的另一目的在於提供一種具有五氧化二鈕介電 之電谷器製k方法,適用於動態隨機存取記, 電ΐΐ生的!時,維持電容器中介電:料高的介 吊數使電谷器保有高的儲存容量。 電*ϊίΐ述之㈣,本發明之具有五氧化二钽介電層之 列方法,於動態隨機存取記憶體中,包括下 春 ::户提供一基板’在基板形成第一導電層以作為電容 層成=%極;。ΐ第一導電層上形成一介電層,其中介電 /曰Ta 的V;〜5 1 X (Tl〇2 ) χ 且滿足〇. 15 <χ <0. 25 及Ti /Ta的原子百分比比率在8· 8到16· 7 at. 介電層上形成一第二導電層以作為上。、 ^ 在 电增忭馮上述電容器之相對電極The purpose of the invention is to provide a dielectric layer with a pentoxide button. The manufacturing method is suitable for dynamic random access memory. It can reduce the leakage current in the container and improve the properties of the device. . 1. Another object of the present invention is to provide a method for making an electric valley device with a two-button pentoxide dielectric, which is suitable for dynamic random access memory. At the same time, the dielectric constant of the capacitor is maintained: the high number of dielectrics allows the valley device to maintain a high storage capacity. According to the description, the method of the present invention having a tantalum pentoxide dielectric layer in a dynamic random access memory includes the following spring: a user provides a substrate to form a first conductive layer on the substrate as Capacitance layer becomes =% pole ;.介 A dielectric layer is formed on the first conductive layer, in which the dielectric / V of Ta; ~ 5 1 X (Tl02) χ and satisfying 0.15 < χ < 0.25 and Ti / Ta atoms The percentage ratio forms a second conductive layer on top of the dielectric layer of 8.8 to 16.7 at. , ^ The opposite electrode of the above capacitor in Denso
540155540155
並完成上述電容器之劁 在700 °C的條件下,對雷、a中形成介電層之後,更包括 以及接著在450 °C的悴件=施—快速熱處理的步驟; 處理的步驟。 条件下對介電層實施-電聚氧化退火 圖式之簡單說明: 目的、特徵和優點能更明顯易懂, ,並配合所附圖式,作詳細說明如 為讓本發明之上述 下文特舉一較佳實施例 下: 一鈕介電層之電 第1A至1B圖係綠 容器的製造方法; 示出習知具有五氧化And complete the capacitors described above. After the dielectric layer is formed in thunder and a at 700 ° C, the steps of applying and rapid heat treatment at 450 ° C and subsequent steps are included. A brief description of the dielectric layer implementation-electrolytic oxidation annealing scheme under conditions: Purpose, characteristics, and advantages can be more clearly understood, and in conjunction with the attached drawings, a detailed description is provided. In a preferred embodiment: The manufacturing method of a green container of a button dielectric layer 1A to 1B is shown;
第2 A至2 D圖係繪子山4曰城丄心 ^ , f _ 、出根據本發明實施例之具有五惫 二钽介電層之電容器的製造方法; 虱》 第3圖係繪不出根據本發明實施例之漏電流與摻 Ta2 05的T i 02莫耳百分比關係圖。 ”; 第4圖’,、繪不出根據本發明實施例之介電常數與 雜於Ta2 05的Ti02莫耳百分比關係圖。 多 [符號說明] 10、20〜基板; 12、22〜第一導電層; 14、24〜介電層;Figures 2A to 2D are pictures of Mount Zishan 4 and the city center ^, f _, and a method for manufacturing a capacitor with a five-tantalum dielectric layer according to an embodiment of the present invention; A graph showing the relationship between the leakage current and the Ta 02 05-doped Moire percentage according to the embodiment of the present invention. "Figure 4", the relationship between the dielectric constant and the percentage of Ti02 moles of Ta02 05 according to the embodiment of the present invention cannot be drawn. [Symbol] 10, 20 ~ substrate; 12, 22 ~ first Conductive layer; 14,24 ~ dielectric layer;
2 4 a〜經高溫快速熱處理之介電層; 24b〜經低溫電漿氧化退火處理之介電層; 26〜第二導電層。 較佳實施例之詳細說明:2 4 a ~ dielectric layer subjected to rapid high temperature heat treatment; 24b ~ dielectric layer subjected to low temperature plasma oxidation annealing treatment; 26 ~ second conductive layer. Detailed description of the preferred embodiment:
0503-6284TW ; TSMC2001-0108 ; Chen.ptd 第7頁0503-6284TW; TSMC2001-0108; Chen.ptd Page 7
540155 五、發明說明(5)540155 V. Description of the invention (5)
以下參 一紐介電層 憶體(DRAM 如是一矽晶 體元件上的 區。此處為 板20上形成 等金屬,經 照第2A 之電容 )。首 圓,其 絕緣保 了簡化 一第一 習知微 一絕緣物一金屬型 此處儲存電極22亦 屬一絕緣物一半導 至2D圖說明本發明實施例之具有五氧化 器的製造方法,適用於動態隨機存取圮 先,請參照第2A圖,提供一基板2〇,例 上形成有半導體元件,以及覆蓋在半導 護層,其具有接觸窗以露出元件的接觸 圖式僅繪示一平整的基板20。接著在基 導電層2 2,例如是鉑(p t )、嫣(w ) 影蝕刻製程定義其圖案後,形成一金屬 (MIM)電谷器之儲存電極22。另外, 可使用複晶矽(poly —Si )以形成一金 體(MIS )型電容器之儲存電極。The following is a reference to the dielectric layer memory (if the DRAM is a region on a silicon crystal device. Here is a metal formed on the board 20, according to the capacitor of 2A). In the first circle, the insulation is simplified. A first known micro-insulator is a metal type. Here, the storage electrode 22 is also an insulator. The half leads to a 2D figure to explain the manufacturing method with a pentoxide in the embodiment of the present invention. Prior to dynamic random access, please refer to FIG. 2A, a substrate 20 is provided, for example, a semiconductor element is formed on it, and a semiconductor protective layer is covered. The contact pattern has a contact window to expose the element. Leveling substrate 20. Then, after the base conductive layer 22, for example, a platinum (pt), or (w) shadow etching process is used to define its pattern, a storage electrode 22 of a metal (MIM) valley device is formed. In addition, poly-Si can be used to form a storage electrode for a gold body (MIS) type capacitor.
接下來,利用具有兩個液體輸送系統(H(luid delivery system,LDS)的化學氣相沉積(CVD)設備 (未繪示)來實施一低壓化學氣相沉積(1〇w pressure CVD,LPCVD )以在基板2〇的表面及儲存電極22的表面沉積 一介電層24,其中分別以分解溫度接近的Ti(C3H7〇) 2((:111119〇2)2及73((:2115〇)5作為反應前驅物,例如前者約為 270/C 且後者約為 22(TC。另外,Ti(C3H7〇)2(CiiHi9〇2)2 的汽 化溫度在130到240 °C的範圍且Ta(C2H5〇)5的汽化溫度在5〇 到80 °C的範圍。由於前者為固態,故此處會加入可溶性有 機溶劑,例如是(:4札0,以將其形成液態。接著,上述前驅 物,流率分別控制在o.ias o cc/min的範圍,且更通入 氮氣(Ar)及氧氣(〇2)作為反應所需之載氣(carrier gas ) ’其中氬氣的流率控制在2〇到7〇 sccm的範圍,且氧Next, a low pressure chemical vapor deposition (10w pressure CVD, LPCVD) is performed using a chemical vapor deposition (CVD) device (not shown) having two liquid delivery systems (H (luid delivery system, LDS)). A dielectric layer 24 is deposited on the surface of the substrate 20 and the surface of the storage electrode 22, wherein Ti (C3H7〇) 2 ((: 111119〇2) 2 and 73 ((: 2115〇) 5, which are close to each other at decomposition temperatures) As the reaction precursor, for example, the former is about 270 / C and the latter is about 22 (TC. In addition, the vaporization temperature of Ti (C3H7〇) 2 (CiiHi9〇2) 2 is in the range of 130 to 240 ° C and Ta (C2H5. The vaporization temperature of) 5 is in the range of 50 to 80 ° C. Since the former is solid, a soluble organic solvent is added here, such as (: 4) to form a liquid. Then, the above precursors have a flow rate. Controlled separately in the range of o.ias o cc / min, and more nitrogen (Ar) and oxygen (〇2) as the carrier gas required for the reaction 'where the flow rate of argon is controlled to 20 to 7〇sccm range, and oxygen
540155 五、發明說明(6) ' ----- 氣的^率,制在3〇到200 seem的範圍。同時,利用加熱管 加熱这些氣體與前驅物,例如在丨5 〇到2 〇 〇 ^的範圍,且基 板20的沉積溫度控制在330到400 °C的範圍。在上述的製^ ,下’可將工作壓力控制在"㈣^的範^的^ 一來’可形成摻雜二氧化鈦的五氧化二鈕介電層22,其中 介電層22的成分比為(Ta2〇5)ix (Ti〇2)x且滿足〇ΐ5<χ = 0.25及Ti /Ta的原子百分比比率在88到167 at· %的 辜巳圍。在此組成的介電層2 2可有效地降低漏電流,且不 低介電常數。 接著’請參照第3圖,其繪示出在施加電場強度〇. 5 MV/cm之下,漏電流j與摻雜於Ta2〇5的^〜莫耳百分比關 係圖。如圖所示,本發明者發現當Ti〇2莫耳百分比在15到 25 mol %範圍時,亦即Ti/Ta的原子百分比比率在8· 8到 1 6· 7 at· %的範圍,相較於沒有摻雜時,漏電流降低了約 兩個級數,而在習知方法中,例如Ti /Ta的原子百分比在 0 · 1到4 a t · %的範圍時,其漏電流相較於沒有摻雜時,僅 降低一個級數。 接下來,請參照第2B到2C圖,其分別繪示出在形成介 電層24之後,對上述介電層22實施一快速熱退火處理及一 電漿氧化退火處理之步驟。如第2B圖所示,在7〇〇°c的條 件下’通入氧化氮(%〇)或氮氣(%)以對介電層22實施 快速熱退火(rapid thermal annealing,RTA)處理以形 成經高溫快速熱處理之介電層24a。接著,如第2C圖所示 ,在4 5 0 °C的條件下,通入氧氣(〇2 )以對介電層24a實施 540155 五、發明說明⑺ ' -—— -- 電漿氧化退火(Plasma oxidation annealing, Ρ0Α)處 理以形成經低溫電漿氧化退火處理之介電層24b。如此一 來,可使摻雜二氧化鈦的五氧化二鈕維持高的介電常數, 的範圍,近似於五氧化二钽未摻雜二氧化鈦 時的介電常數。 ^ τ·η,參照第4圖,其繪示出介電常數與摻雜於Ta2〇5的 Τι 〇2莫耳百分比關係圖。其中,在7〇〇它下, =熱退火處理並在45(rc下,對Τ&Λ實施電聚m ^ 如圖所示’本發明者發現當Ti〇2莫耳百分比在15到 25 mol %範圍時,亦即Ti/Ta的原子百分比比率在8 8到 %的範圍’相較於沒有摻雜時,其介電常數 會降低。 面上Ϊί ’ Ϊ參f第2D圖’在經退火處理之介電層24b表 :士:積-第二導電層26 ’例如是麵、鶴等金屬,以形成 電W之相對電極26並完成MIM電容器或MIS電容器之製造 由上述可知,根據本發明實施例 不但可有效減少漏電流的產生而提昇元件; 維持高的介電常數而使五氧化二組 = 雜雜質而降低,亦即電容器可維持高的儲。 2然本發明已以較佳實施例接露如上,然:並以 限疋本發明’任何熟習此項技藝者 ’、 神和_,當可作更動與。田t脫離本發明之精 當視後附之申請專利範圍所界定者為準。 叉祀囷 0503-6284TW ; TSMC2001-0108 ; Chen.ptd 第10頁540155 V. Description of the invention (6) '----- The rate of Qi is in the range of 30 to 200 seem. At the same time, these gases and precursors are heated using a heating tube, for example, in the range of 500 to 2000, and the deposition temperature of the substrate 20 is controlled in the range of 330 to 400 ° C. In the above-mentioned manufacturing process, 'the working pressure can be controlled within the range of " ㈣ ^' s ^ Yilai 'can form a titanium dioxide doped pentoxide button dielectric layer 22, wherein the composition ratio of the dielectric layer 22 is (Ta205) ix (Ti〇2) x and satisfying ΐ5 < χ = 0.25 and an atomic percentage ratio of Ti / Ta ranging from 88 to 167 at ·%. The dielectric layer 22 composed here can effectively reduce the leakage current without lowering the dielectric constant. Next, please refer to FIG. 3, which shows the relationship between the leakage current j and the percentage of ^ ~ mole doped in Ta205 under the applied electric field strength of 0.5 MV / cm. As shown in the figure, the present inventors found that when the molar percentage of Ti0 2 is in the range of 15 to 25 mol%, that is, the atomic percentage ratio of Ti / Ta is in the range of 8 · 8 to 16 · 7 at ·%. The leakage current is reduced by about two stages compared to when it is not doped. In the conventional method, for example, when the atomic percentage of Ti / Ta is in the range of 0. 1 to 4 at.%, The leakage current is compared to When there is no doping, only one step is reduced. Next, please refer to FIGS. 2B to 2C, which respectively illustrate the steps of performing a rapid thermal annealing treatment and a plasma oxidation annealing treatment on the dielectric layer 22 after the dielectric layer 24 is formed. As shown in FIG. 2B, under a condition of 700 ° C, nitrogen oxide (% 〇) or nitrogen (%) is passed in to perform rapid thermal annealing (RTA) on the dielectric layer 22 to form Dielectric layer 24a subjected to high-temperature rapid heat treatment. Next, as shown in FIG. 2C, under the condition of 450 ° C, oxygen (〇2) is introduced to perform 540155 on the dielectric layer 24a. 5. Description of the invention ⑺ '-——-Plasma oxidation annealing ( Plasma oxidation annealing (POA) treatment to form a dielectric layer 24b that is subjected to a low temperature plasma oxidation annealing treatment. In this way, the dielectric constant of the titanium dioxide doped pentoxide button can be maintained in a range close to that when tantalum pentoxide is not doped with titanium dioxide. ^ τ · η, referring to FIG. 4, which shows the relationship between the dielectric constant and the percentage of Ti 2 Molar doped in Ta205. Among them, at 700, = thermal annealing treatment and electropolymerization of T & Λ at 45 (rc) ^ As shown in the figure, the inventors found that when the percentage of Ti02 Moore is 15 to 25 mol In the range of%, that is, the ratio of the atomic percentage of Ti / Ta is in the range of 88 to% ', the dielectric constant will be lower than that when it is not doped. On the surface,' Ϊ 参 f 第 2D 图 'is annealed. Processed dielectric layer 24b Table: ±: second conductive layer 26 ′ is a metal such as a surface, a crane, etc. to form a counter electrode 26 of electricity W and complete the manufacture of a MIM capacitor or a MIS capacitor. As can be seen from the above, according to the present invention The embodiment can not only effectively reduce the generation of leakage current and improve the component; maintain a high dielectric constant and reduce the second group of pentoxide = impurity impurities, that is, the capacitor can maintain a high storage. 2 However, the present invention has been implemented in a better way The example is disclosed as above, however, and to limit the present invention 'anyone skilled in this art', Shenhe _, can be changed and changed. Tian t departs from the essence of the present invention as defined by the scope of patents attached Foreword: Fork Worship 0503-6284TW; TSMC2001-0108; Chen.ptd Page 10
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW090114035A TW540155B (en) | 2001-06-11 | 2001-06-11 | Manufacturing method capacitor having tantalum pentoxide dielectric layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW090114035A TW540155B (en) | 2001-06-11 | 2001-06-11 | Manufacturing method capacitor having tantalum pentoxide dielectric layer |
Publications (1)
Publication Number | Publication Date |
---|---|
TW540155B true TW540155B (en) | 2003-07-01 |
Family
ID=29580326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW090114035A TW540155B (en) | 2001-06-11 | 2001-06-11 | Manufacturing method capacitor having tantalum pentoxide dielectric layer |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW540155B (en) |
-
2001
- 2001-06-11 TW TW090114035A patent/TW540155B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100222455B1 (en) | Semiconductor device and method of fabricating method | |
Huang | Huang | |
TW459334B (en) | Method for fabricating capacitors of semiconductor device | |
US9887083B2 (en) | Methods of forming capacitors | |
JP2012041633A (en) | SUBSTANCE EQUIPPED WITH Zr-Ge-Ti-O OR Hf-Ge-Ti-O DIELECTRIC MATERIAL, AND ITS MANUFACTURING METHOD | |
JP4035626B2 (en) | Capacitor manufacturing method for semiconductor device | |
JP2001203339A (en) | Method of manufacturing capacitor of semiconductor element | |
JP2001036045A (en) | Capacitor of semiconductor memory device and manufacture thereof | |
CN100466262C (en) | Capacitor for semiconductor device and method for manufacturing same | |
KR100504435B1 (en) | Method of forming capacitor in semiconducotr device | |
KR100293713B1 (en) | Method of manufacturing capacitor of memory element | |
TW540155B (en) | Manufacturing method capacitor having tantalum pentoxide dielectric layer | |
TWI264110B (en) | Method of forming capacitor of semiconductor device | |
KR100342873B1 (en) | Method for forming capacitor of semiconductor device | |
JP4088913B2 (en) | Capacitor manufacturing method for semiconductor device | |
KR100549566B1 (en) | Capacitor Formation Method of Semiconductor Device | |
KR20010017212A (en) | Method of manufacturing a capacitor in a semiconductor device | |
KR100882090B1 (en) | Method for fabricating capacitor of semiconductor device | |
KR100373162B1 (en) | Method of manufacturing a capacitor in a semiconductor device | |
CN1215548C (en) | Making method for capacitor with tantalum anhydride | |
TWI290588B (en) | Method for forming a titanium nitride layer | |
KR100702116B1 (en) | Fabrication method for semiconductor device having high insulator capacitor | |
KR100549567B1 (en) | Capacitor Formation Method of Semiconductor Device | |
KR100437618B1 (en) | METHOD FOR FORMING SEMICONDUCTOR CAPACITOR USING (Ta-Ti)ON DIELECTRIC THIN FILM | |
KR100440777B1 (en) | Method of manufacturing capacitor in semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |