TW531792B - Method of forming nickel silicide using a one-step rapid thermal anneal process and backend processing - Google Patents

Method of forming nickel silicide using a one-step rapid thermal anneal process and backend processing Download PDF

Info

Publication number
TW531792B
TW531792B TW90130176A TW90130176A TW531792B TW 531792 B TW531792 B TW 531792B TW 90130176 A TW90130176 A TW 90130176A TW 90130176 A TW90130176 A TW 90130176A TW 531792 B TW531792 B TW 531792B
Authority
TW
Taiwan
Prior art keywords
nickel
resistance
silicide
regions
semiconductor
Prior art date
Application number
TW90130176A
Other languages
Chinese (zh)
Inventor
Eric N Paton
Ercan Adem
Jacques J Bertrand
Paul R Besser
Matthew S Buynoski
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/729,699 external-priority patent/US6605513B2/en
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Application granted granted Critical
Publication of TW531792B publication Critical patent/TW531792B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate

Abstract

A self-aligned silicide process that can accommodate a low thermal budget and form silicide regions (64, 66) of small dimensions in a controlled reaction. In a first temperature treatment, nickel metal or nickel alloy (52) is reacted with a silicon material (46) to form at least one high resistance nickel silicide region (56, 58). Unreacted nickel (54) is removed. A dielectric layer (60) is then deposited over the high resistance nickel silicide regions (56, 58). In a second temperature treatment, the at least one high resistance nickel silicide region (56, 58) and dielectric layer (60) are reacted at a prescribed temperature to form at least one low resistance silicide region (64, 66) and process the dielectric layer (60). Bridging between regions is avoided by the two-step process as silicide growth is controlled, and unreacted nickel (54) between nickel silicide regions (56, 58) is removed after the first temperature treatment. The processing of the high resistance nickel silicide regions (56, 58) and the dielectric layer (60) are conveniently combined into a single temperature treatment. In other embodiments, the second temperature treatment is performed prior to, and separate from, the depositing and processing of the dielectric layer (60).

Description

531792 A7531792 A7

五、發明說明(i ) [發明之技術界定範圍] (請先閱讀背面之注意事項再填寫本頁) 本發月係娜及種使用單一步驟快速熱退火處理及尾 端製程形成矽化鎳之方法。 [發明背景] 在半導體製程工業中,自行對齊矽化物之形成,已知 係一種欲處理以形成半導體裝置之半導體結構的預先界定 之區域上,積體化成低電阻材料的方法。詳言之,自行對 齊矽化物製程,係一種使半導體結構之矽區域與金屬反應 以形成矽化物區域的方法。彼等自行對齊之矽化物,係可 在彼等半導體結構上面選擇形成,而不必樣式化或蝕刻已 殿積之石夕化物,藉以形成一些低電阻之區域。 經濟部智慧財產局員工消費合作社印製 鈦、鈷和鎳,係一些已被用來與矽材料反應以便在半 導體結構上面形成自行對齊矽化物的金屬。自行對齊法 中,可於半導體結構上形成矽化鈦。第丨圖係顯示一範例 性石夕基質10,此矽基質1〇上面形成有一多晶矽區域16。 與此多晶矽區域16相鄰的,有一些隔片14。此等隔片14 可為氧化物、氮化物、或其他陶瓷材料。該等矽基質1〇, 具有一些活性區域12,彼等在特性上係屬摻雜矽,以及在 功月b上可做為一電晶體之源極和沒極。在第2圖中,在第 1圖之半導體結構上面,係澱積有一層鈦金屬或鈦合金 18。第2圖之半導體結構,接著會遭受一溫度範圍在550 1至750°C内之第一快速熱退火(RTA)。第3圖係顯示第2 圖之半導體結構在此第一快速熱退火後之半導體結構。有 某些鈦金屬或鈦合金層18,會與其多晶矽區域16反應, 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 1 91991 531792 A7 —---~~-~___ 五、發明說明(2 ) (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 、形成冋電阻矽化物(TiSi2)區域22。此外,有某些鈦層18 會與其活性區域12之矽反應,以形成高電阻矽化鈦(TiSi2) 區域20。在第一快速熱退火期間,並無鈦層i8會與其隔 片14反應。由於矽化物並不會在該等隔片上面形成,該等 高電阻矽化鈦區域20、22,係在一自行對齊之方式中形 成,因為其並不需要樣式化或自隔片蝕刻掉矽化物,來界 定該等多晶矽區域16和活性區域12上面之矽化鈦區域 20、22。在该等隔片14上面形成矽化物係不當的,因為此 將會導致彼等閘極與源極/汲極區域12間之橋接。第3 圖之未反應的金屬19中的鈦,係使用傳統式剝除技術來加 以剝除。第4圖係顯示第3圖之半導體結構在剝除未反應 之金屬層19後之情形。該等高電阻矽化鈦區域2〇、22, 在上述未反應之金屬19的濕式剝除後,將會與該半導體結 構保持積體成形。第4圖之半導體結構,接著會遭受一溫 度範圍在750C至900C内之第二快速熱退火。第5圖係顯 示第4圖之半導體結構在此第二快速熱退火後之半導體結 構’其中之高電阻石夕化鈦區域20、22,將會反應以形成一 些低電阻石夕化物(TiSh)區域24、26。該等低電阻石夕化鈦區 域24,係形成於其多晶矽區域16上面,以及該等低電阻 矽化鈦區域26,係形成於其矽基質1 〇之活性區域i2上 面0 上文所述使用鈦金屬或鈦合金層在一自行對齊之方式 中形成低電阻矽化鈦的二步驟快速熱退火程序,有著幾項 缺點。隨著半導體技術之進步,某一定半導體結構之尺度, 本紙張尺度適用中國國家標準(CNS)A4規格(21G X 297公爱) ------ 2 91991 531792 A7V. Description of the invention (i) [Technical scope of the invention] (Please read the precautions on the back before filling out this page) This post is about a method for forming nickel silicide using a single step rapid thermal annealing treatment and a tail end process. . [Background of the Invention] In the semiconductor process industry, the formation of self-aligned silicide is known as a method of integrating into a low-resistance material on a pre-defined area of a semiconductor structure to be processed to form a semiconductor device. In detail, the self-aligned silicide process is a method of reacting a silicon region of a semiconductor structure with a metal to form a silicide region. These self-aligned silicides can be selectively formed on their semiconductor structures, without having to pattern or etch the already-built silicides to form some low-resistance areas. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, titanium, cobalt, and nickel are metals that have been used to react with silicon materials to form self-aligned silicides on semiconductor structures. In the self-alignment method, titanium silicide can be formed on a semiconductor structure. FIG. 丨 shows an exemplary stone matrix 10 with a polycrystalline silicon region 16 formed on the silicon matrix 10. Adjacent to this polycrystalline silicon region 16, there are some spacers 14. These spacers 14 may be oxide, nitride, or other ceramic materials. The silicon substrates 10 have some active regions 12, which are doped silicon in characteristics, and can be used as the source and the anode of a transistor on the power b. In Figure 2, a layer of titanium metal or titanium alloy 18 is deposited on the semiconductor structure of Figure 1. The semiconductor structure of FIG. 2 is then subjected to a first rapid thermal annealing (RTA) in a temperature range of 550 1 to 750 ° C. FIG. 3 shows the semiconductor structure of FIG. 2 after the first rapid thermal annealing. There are certain titanium metal or titanium alloy layers 18 that will react with its polycrystalline silicon region 16. The paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) 1 91991 531792 A7 —--- ~~-~ ___ V. Description of the invention (2) (Please read the notes on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs to form a silicon resistive silicide (TiSi2) area22. In addition, some titanium layers 18 may react with the silicon of its active region 12 to form a high-resistance titanium silicide (TiSi2) region 20. During the first rapid thermal anneal, no titanium layer i8 will react with its spacer 14. Since silicides are not formed on the spacers, the high-resistance titanium silicide regions 20 and 22 are formed in a self-aligning manner because they do not need to be patterned or etched away from the spacers. To define the polysilicon regions 16 and the titanium silicide regions 20 and 22 above the active region 12. It is improper to form silicides on the spacers 14, because this will cause a bridge between their gate and source / drain regions 12. The titanium in the unreacted metal 19 in Fig. 3 is stripped using a conventional stripping technique. Fig. 4 shows the semiconductor structure of Fig. 3 after the unreacted metal layer 19 is stripped. The high-resistance titanium silicide regions 20 and 22 will be formed integrally with the semiconductor structure after wet stripping of the unreacted metal 19 described above. The semiconductor structure of FIG. 4 is then subjected to a second rapid thermal annealing in a temperature range of 750C to 900C. Figure 5 shows the semiconductor structure of Figure 4 after the second rapid thermal annealing of the semiconductor structure. Among them, the high-resistance titanium oxide regions 20 and 22 will react to form some low-resistance silicon oxide compounds (TiSh). Areas 24, 26. The low-resistance siliconized titanium regions 24 are formed on the polycrystalline silicon region 16, and the low-resistance titanium siliconized regions 26 are formed on the active region i2 of the silicon substrate 10. Titanium is used as described above. The two-step rapid thermal annealing process for forming a low-resistance titanium silicide in a self-aligned manner of a metal or titanium alloy layer has several disadvantages. With the advancement of semiconductor technology, a certain semiconductor structure size, this paper size applies to China National Standard (CNS) A4 specification (21G X 297 public love) ------ 2 91991 531792 A7

五、發明說明( (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 希望能變得更小。例如,希望該等多晶矽區域16和隔片 14,在半導體基質10上面之形成能盡可能小,藉以使用此 一類型之結構,來增強彼等半導體裝置之性能。例如,彼 等採用此一般性半導體結構之電晶體, 係以如此小之尺度 來設計及加以具現’俾使該等電晶體能在較快之速度下執 行電腦指令。其經常需要在彼等半導體結構上面形成低電 阻石夕化鈦區域’以促成一半導體裝置之半導體組件的電性 内連接。此等範例性區域為第5圖之活性區域12與多晶石夕 區域16。在二步驟之快速熱退火程序中使用鈦,藉以在一 自行對齊之方式中形成>5夕化鈦,對較小尺度之半導體結構 而言並非有效’因為欽金屬或銀合金層,並不會與彼等類 似第1至5圖之多晶矽區域16和活性區域12等矽材料之 小表面完全反應。鈦在一自行對齊石夕化物製程中的此項缺 點背後之理由是,鈦與矽材料之反應,會受制於矽化物之 核化,以及因而該石夕化物並非在一致之方式中形成。誠如 第3至5圖中所例示,鈦金屬或鈦合金與石夕材料之反應, 將會形成一些零散的、不一致的矽化鈦區域,而不適用於 某些類似電晶體等半導體裝置中之矽化物區域的形成。由 於並非所有之欽金屬或欽合金會在小半導體結構之碎材料 上面反應,鈦與石夕質材料之反應,並無法適當地降低該半 導體結構之矽質組件的電阻值。因此,對於相對小的半導 體結構使用鈦並不足以達到在一自行對齊之方式形成矽化 物的目地。在一自行對齊石夕化物中使用鈦之限制,經常係 被稱作線寬度之相依性。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 3 91991 531792 A7 -----2Z______ 五、發明說明(4 ) (請先閱讀背面之注意事項再填寫本頁) 使用鈦金屬或鈦合金來形成一半導體結構中之石夕化欽 的另-項缺點是,該等第一和第二快速熱退火所遭逢之溫 度係相當高。此等高溫限制了半導體結構利用自行對齊石夕 化物=設計。彼等高溫會對半導體結構誘導出應力,以及 會破壞其半導體裝置之機能。形成矽化鈦之二步驟快速熱 退火程序的其他缺點亦很常見。 經濟部智慧財產局員工消費合作社印製 鈷亦可與例如多晶矽或矽基質等之矽材料反應,藉以 在半導體結構中形成自行對齊之矽化鈷區域。舉例而 言,第6圖係顯示一具有活性區域12之半導體基質⑺和 半導體基貝10上面所形成之一多晶石夕區域16。彼等隔 片係形成於該矽基質1〇上面,而鄰接該多晶矽區域 16。誠如第7圖中所示,在第6圖之半導體結構上面,係 形成有一層鈷金屬或鈷合金28。第7圖之半導體結構,將 會遭受一溫度範圍在450。(:至51(TC内之第一快速熱退 火第8圖係顯示該等多晶碎區域16和活性區域12上面 所形成,而為第一快速熱退火程序之產物的高電阻矽化鈷 (CoSi)區域30、32。任何未反應之金屬鈷或鈷合金29,係 使用傳統式剝除技術來加以濕剝除。第9圖顯示第8圖之 半導體結構’其在剝除未反應之金屬鈷或鈷合金29後,於 上述石夕基質10之多晶矽區域16和活性區域12上,具有高 電阻碎化始區域30、32。在該等隔片14上面並無矽化鈷 形成;此一特徵例示出彼等自行對齊矽化物之自行對齊特 性。此外’其剝除運作並不會剝除掉任何已形成之矽化鈷, 以及僅會剝除掉其未反應之金屬鈷或姑合金29。第9圖之 本紙張尺度適用中國國家標準(CNS)A4規格(21G X 297公爱) " - 4 91991 531792 A7V. Description of the invention ((Please read the notes on the back before filling out this page) The Intellectual Property Bureau of the Ministry of Economic Affairs' employee consumer cooperatives hope to become smaller. For example, it is hoped that these polycrystalline silicon regions 16 and spacers 14 will be used in semiconductors. The formation on the substrate 10 can be as small as possible, thereby using this type of structure to enhance the performance of their semiconductor devices. For example, their transistors using this general semiconductor structure are designed and designed on such a small scale. Realize 'enable these transistors to execute computer instructions at a faster speed. They often need to form low-resistance titanium oxide regions on their semiconductor structures' to promote the electrical properties of the semiconductor components of a semiconductor device. These exemplary regions are the active region 12 and the polycrystalline stone region 16 in Fig. 5. Titanium is used in a two-step rapid thermal annealing process to form > titanium oxide in a self-aligning manner. Is not effective for smaller-scale semiconductor structures because the metal or silver alloy layers are not similar to their polycrystalline silicon regions 16 and 15 in Figures 1 to 5. The small surface of silicon material such as active region 12 completely reacts. The reason behind this shortcoming of titanium in a self-aligning process is that the reaction between titanium and silicon material is subject to the nucleation of the silicide, and therefore the Shixi compounds are not formed in a consistent manner. As illustrated in Figures 3 to 5, the reaction of titanium metal or titanium alloy with Shixi materials will form some scattered and inconsistent titanium silicide regions, which are not applicable. The formation of silicide regions in certain semiconductor devices such as transistors. Since not all Chin metals or Chin alloys will react on the broken materials of small semiconductor structures, the reaction between titanium and stone materials is not suitable. Reduce the resistance value of the silicon component of the semiconductor structure. Therefore, the use of titanium for relatively small semiconductor structures is not sufficient to achieve the purpose of forming silicide in a self-aligned manner. The limitation of using titanium in a self-aligned stone compound , Often referred to as the dependency of line width. This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 3 91991 53179 2 A7 ----- 2Z______ V. Description of the Invention (4) (Please read the notes on the back before filling this page) Using titanium metal or titanium alloy to form Shi Xihuaqin in a semiconductor structure Yes, the temperatures encountered by these first and second rapid thermal anneals are quite high. These high temperatures limit the use of self-aligned semiconductors = design in semiconductor structures. Their high temperatures can induce stress on the semiconductor structure and can damage it. The function of its semiconductor device. Other shortcomings of forming a two-step rapid thermal annealing procedure of titanium silicide are also common. Cobalt printed by the consumer cooperative of employees of the Intellectual Property Bureau of the Ministry of Economic Affairs can also react with silicon materials such as polycrystalline silicon or silicon substrates. A self-aligned cobalt silicide region is formed in the semiconductor structure. For example, FIG. 6 shows a semiconductor substrate ⑺ having an active region 12 and a polycrystalline silicon region 16 formed on the semiconductor substrate 10. These spacers are formed on the silicon substrate 10 and are adjacent to the polycrystalline silicon region 16. As shown in FIG. 7, a layer of cobalt metal or cobalt alloy 28 is formed on the semiconductor structure of FIG. The semiconductor structure of FIG. 7 will be subjected to a temperature range of 450. (: To 51 (Figure 8 of the first rapid thermal annealing in TC) shows the high-resistance cobalt silicide (CoSi) formed on the polycrystalline broken regions 16 and the active regions 12 and is the product of the first rapid thermal annealing process. ) Regions 30, 32. Any unreacted metallic cobalt or cobalt alloy 29 is wet-striated using conventional stripping techniques. Figure 9 shows the semiconductor structure of Figure 8 'which is stripping unreacted metal cobalt Or cobalt alloy 29, on the polycrystalline silicon region 16 and active region 12 of the above-mentioned stone matrix 10, there are high-resistance fragmentation initiation regions 30 and 32. No cobalt silicide is formed on the spacers 14; this feature is exemplified The self-aligning characteristics of their self-aligned silicides. In addition, their stripping operation will not strip any formed cobalt silicide, and it will strip only their unreacted metallic cobalt or alloys. The paper size of the figure applies to the Chinese National Standard (CNS) A4 specification (21G X 297 public love) "-4 91991 531792 A7

經濟部智慧財產局員工消費合作社印製 半導體結構,接著會遭受一溫度範圍在760 °C至840 °C内之 第二快速熱退火。此第二快速熱退火,可使該等高電阻石夕 化鈷區域30、32反應,以形成一些低電阻矽化鈷(c〇Si2) 區域34、36。第10圖係顯示上述矽基質1〇之多晶矽區域 和活性區域12上面所形成之低電阻矽化鈷區域34、36。 在半導體製程中使用銘金屬或始合金使與碎材料反應 以產生矽化#,有著幾項缺點。其一項缺點是,其形成低 電阻(Co Sid所需要之二步驟快速熱退火程序,將需要相當 高的溫度。此等高溫可能會不與其半導體結構現有組件之 半導體製程相容,或為其所希望。詳言之,此等高溫會對 現有半導體結構之其他半導體組件及/或擴散材料誘導出 應力。 使用鎳來形成自行對齊梦化物,業已建立出使用單一 步驟快速熱退火程序。舉例而言,第11圖係顯示一具有活 性區域12之石夕基質10。在此石夕基質上面形成有一多晶 矽區域16,且彼等隔片14在形成上係鄰接此多晶矽區域 16。在第11圖之範例性半導體結構上面,形成有一層鎳金 屬或鎳合金。舉例而言,第12圖係顯示一層形成在第u 圖之半導體結構上方的鎳金屬或鎳合金38。單一步驟快速 熱退火,係在一範圍在350。(:至7〇〇t之溫度下進行,以使 該鎳金屬或鎳合金反應,以形成一電阻相當低的矽化物。 舉例而言,第13圖係描繪自此單一步驟快速熱退火形成之 矽化物區域40、42。在其所必需而範圍在35〇〇c至7〇〇力 之快速熱退火溫度下’在該等活性區域12上面所形成之矽 卜紙張尺度適用中國國家標準(CNS)A4規格⑵G x 297 5 91991 ---Aw--------t-----I (請先閱讀背面之注咅?事項再填寫本頁) 線· ϋ ϋ - 531792 A7 五、發明說明(6 化鎳與多晶梦區域16上面所形成之砍化㈣,可能會發生 非期望的橋接。剝除未反應之鎳層4A,而留下4 結構。 (請先閱讀背面之注意事項再填寫本頁) 上述矽化鎳之單一步驟快速熱退火,將會引發出某些 問題。其一問較,石夕化錄相對地難以控制之反應和過量 之形成,將會如第14圖中所見,在多晶矽區域16上面所 形成之矽化鎳40與活性區域12上面所形成之矽化鎳42 間’造成上述之橋接現象。 [發明概要] A 一自行對齊矽化物程序,需要能在處理期間允許低熱 預异,以及能使金屬或合金與矽材料有一受控之矽化反 應。此外,一自行對齊矽化物程序,需要能結合半導體裝 置之製期間的製程步驟。 經濟部智慧財產局員工消費合作社印製 此等與其他需要,可藉由本發明之實施例而滿足,其 挺供了一種單一步驟溫度處理程序和尾端製程,藉以在一 半導體結構内,形成一些自行對齊之矽化鎳區域。本發明 包括在一矽材料上面澱積一層鎳金屬或鎳合金。至少有一 部分鎳金屬或合金,會有一段第一周期之期間在第一溫度 下,與至少一部分之矽層反應,以形成至少一高電阻矽化 鎳層。未反應之鎳金屬或鎳合金,將會自該半導體結構移 除,而留下至少一積體化進此半導體結構之高電阻矽化物 層内。在此至少之一高電阻矽化鎳層上方,接著會澱積一 介電質層。此介電質層和至少之一高電阻矽化鎳層,將會 有一段第二周期之期間經歷第二溫度,以形成至少一低電 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公f~ ----- 91991 531792 A7Semiconductor structures printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs will then be subjected to a second rapid thermal annealing in a temperature range of 760 ° C to 840 ° C. This second rapid thermal annealing can cause these high-resistance cobalt sulfide regions 30 and 32 to react to form some low-resistance cobalt silicide (coSi2) regions 34 and 36. Figure 10 shows the low-resistance cobalt silicide regions 34, 36 formed on the polycrystalline silicon region 10 of the silicon substrate 10 and the active region 12 above. There are several disadvantages to using a metal or starting alloy in semiconductor processes to react with broken materials to produce silicified #. One disadvantage is that it forms a low resistance (the two-step rapid thermal annealing process required for Co Sid, which will require quite high temperatures. These high temperatures may not be compatible with the semiconductor process of existing components of its semiconductor structure, or it Hopefully, in particular, these high temperatures can induce stress on other semiconductor components and / or diffusion materials of existing semiconductor structures. The use of nickel to form self-aligning dream compounds has established a rapid thermal annealing process using a single step. In other words, FIG. 11 shows a stone matrix 10 with an active region 12. A polycrystalline silicon region 16 is formed on the stone matrix, and the spacers 14 are formed adjacent to the polycrystalline silicon region 16. In FIG. 11 An exemplary semiconductor structure has a layer of nickel metal or nickel alloy formed on it. For example, Figure 12 shows a layer of nickel metal or nickel alloy 38 formed over the semiconductor structure on figure u. A single step rapid thermal annealing, system Performed at a temperature ranging from 350 ° to 700 ° to react the nickel metal or nickel alloy to form a silicon with a relatively low resistance For example, Figure 13 depicts the silicide regions 40, 42 formed from this single step of rapid thermal annealing. At the necessary rapid thermal annealing temperature ranging from 3500c to 700 ° force, ' The size of the silicon paper sheet formed on the active areas 12 applies the Chinese National Standard (CNS) A4 specification⑵G x 297 5 91991 --- Aw -------- t ----- I (please first Read the note on the back? Matters and then fill out this page) Line · ϋ ϋ-531792 A7 V. Description of the invention (6 Nickel and polycrystalline dream region 16 formed by the cleavage of plutonium, undesired bridging may occur. Peeling In addition to the unreacted nickel layer 4A, the structure is left. (Please read the precautions on the back before filling out this page.) The rapid thermal annealing of the above nickel silicide in one step will cause some problems. The relatively difficult-to-control reaction and excess formation of Shi Xihualu will be seen in FIG. 14 between the nickel silicide 40 formed on the polycrystalline silicon region 16 and the nickel silicide 42 formed on the active region 12 'causing the above. [Brief of the Invention] A. Self-aligning silicide process requires Low heat pre-differentiation is allowed during processing, and a controlled silicidation reaction between metal or alloy and silicon material is allowed. In addition, a self-aligned silicide process requires process steps that can be combined with the fabrication of semiconductor devices. Bureau of Intellectual Property, Ministry of Economic Affairs These and other needs for employee consumer cooperatives can be met by embodiments of the present invention, which provide a single-step temperature processing procedure and tail-end process to form some self-aligned nickel silicide in a semiconductor structure. The invention includes depositing a layer of nickel metal or nickel alloy on a silicon material. At least a portion of the nickel metal or alloy will react with at least a portion of the silicon layer at a first temperature during a first cycle to Forming at least one high-resistance nickel silicide layer. Unreacted nickel metal or nickel alloy will be removed from the semiconductor structure, leaving at least one integrated body in the high-resistance silicide layer of the semiconductor structure. Over this at least one high-resistance nickel silicide layer, a dielectric layer is then deposited. This dielectric layer and at least one high-resistance nickel silicide layer will undergo a second temperature during a second cycle to form at least one low-electricity paper. The paper is compliant with China National Standard (CNS) A4 specifications (210 X 297 male f ~ ----- 91991 531792 A7

五、發明說明(7 ) 阻矽化鎳層。 本發明具有可在一相當低的溫度下製造矽化物之優 rtt先閱讀背面之注幸?事項再填寫本頁) 點。此一特徵可降低一半導體結構之其他現有半導體組件 上面的應力。此一特徵亦可容許有更複雜及有用的半導體 結構之半導體製程。本發明之另一優點是,該等鎳金屬層 可在一受控之方式中,與該等矽質材料層反應。此係一重 要及有用的屬性,蓋有足夠之矽化鎳會反應,以致線寬度 之相依性,便不會成為一種障礙,以及彼等在同一半導體 、’々構上面所形成之碎化物區域間,將可避免橋接現象。此 外’本發明在遭受第二溫度達一段第二周期之期間之單一 步驟中具有結合高電阻矽化鎳層之製程與介電質之製程的 優點。 經濟部智慧財產局員工消費合作社印製 刖述之需要,亦可藉由本發明之實施例而滿足,其提 供了一種二步驟溫度處理程序,可在一半導體結構内,形 成自行對齊之石夕化鎳區域。此種二步驟溫度處理,包括在 碎材料上面殿積'層錄金屬或錄合金。至少有一部分鎳 金屬或合金,會有一段第一周期之期間,於第一溫度下, 與至少一部分之矽層反應,以形成至少一高電阻石夕化鎳 層。所有未反應之鎳金屬或鎳合金,將會自該半導體結構 移除’而留下至少一積體化進此半導體結構内之高電阻梦 化物層。此至少一南電阻碎化錄層,將會有一段第二周期 之期間’於第一溫度下反應’以形成至少一低電阻碎化鎳 層。 本發明具有可在一相當低的溫度下製造;5夕化物之優 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) --- 7 91991 531792 五、發明說明(8 ) 點此特徵可降低一半導體結構之其他現有半導體組件 上面的應力。此一特徵可容許有更複雜及有用的半導體結 構之半導體製程。本發明之另_優點是,該等錄金屬層可 在一受控之方式中,與該等矽質材料層反應。此係一重要 及有用的屬f生,蓋有足夠之石夕化錄會反應,以致線寬度之 相依性,便不會成為一種障礙,以及彼等在同一半導體結 構上面所形成之矽化物區域間,將可避免橋接現象。 本發明之前述和其他特徵、形貌和優點,將可由以下 配合所附諸圖之詳細說明,而更臻明確。 [圖示之簡單說明] 第1圖係在一矽化物形成前一典型之半導體結構的一 個習知技術簡圖; 第2圖係f 1圖之半導體結構在此半導體結構上面澱 積有一鈦金屬或鈦合金層的一個習知技術簡圖; 第3圖係第2圖之半導體結構在第一快速熱退火後的 一個習知技術簡圖; 第4圖係第3圖之半導體結構在移除其未反應之欽金 屬或鈦合金後的一個習知技術簡圖; 第5圖係第4圖之半導體結構在第二快速熱退火後的 一個習知技術簡圖; 第6圖係在一矽化物形成前一典型之半導體結構的一 個習知技術簡圖; 第7圖係第6圖之半導體結構在此半導體結構上面殿 積有一鈷金屬或鈷合金層的一個習知技術簡圖; 1本紙張尺度適用中國國家標準(CNS)A4規;297 ) 8 ▲ 91991 531792 A7 B7 五、發明說明(9 第8圖係第7圖之半導體处 艰〜構在第一快速熱退火後的 一個習知技術簡圖; 第9圖係第8圖之半導體处致 守篮結構在移除其未反應之鈷金 屬或鈷合金後的一個習知技術簡圖; 第10圖係第9圖之半導體結構在第二快速熱退火後的 一個習知技術簡圖; 第11圖係在—石夕化物形士 y籾沿成則一典型之半導體結構的 一個習知技術簡圖; 第12圖係第l1W之半導體結構在此半導體結構上面 澱積有一鎳金屬或鎳合金層的—個習知技術簡圖; 第13圖係第12圖之半導I#么士播少抑 丁守锻結構在早一快速熱退火後 的一個習知技術簡圖; 第14圖係第13圖之半導鞅姓德+ # 口干等體結構在移除其未反應之鎳 金屬或鎳合金後的一個習知技術簡圖; 第1 5圖係一半導體結構之簡圖; 第16圖係第15圖之半導體結構在此半導體結構上面 澱積有一鎳金屬或鎳合金層的一個簡圖; 第17圖係第16圖之半導體結構在第一溫度處理後的 一個簡圖; 第18圖係第17圖之半導體結構在移除其未反應之鎳 金屬或鎳合金後的一個簡圖; 第19圖係第18圖之半導體結構在澱積一介電質層後 的一個簡圖; (請先閱讀背面之注意事項再填寫本頁) 訂---------線! 經濟部智慧財產局員工消費合作社印製5. Description of the invention (7) Nickel silicide blocking layer. The invention has the advantage that silicide can be produced at a relatively low temperature. Please fill in this page again. This feature reduces stress on other existing semiconductor components of a semiconductor structure. This feature also allows semiconductor processes with more complex and useful semiconductor structures. Another advantage of the present invention is that the nickel metal layers can react with the siliceous material layers in a controlled manner. This is an important and useful attribute. Covering enough nickel silicide will react so that the dependence of the line width will not become an obstacle, and between the fragmentation regions formed on the same semiconductor and structure. Will avoid bridging. In addition, the present invention has the advantage of combining the process of the high-resistance nickel silicide layer with the process of the dielectric in a single step during the second temperature for a period of the second cycle. The need to print a narrative by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economics can also be met by the embodiment of the present invention, which provides a two-step temperature processing program that can form a self-aligned lithography within a semiconductor structure Nickel area. This two-step temperature treatment includes layering metal or alloy on top of the shredded material. At least a portion of the nickel metal or alloy will react with at least a portion of the silicon layer at a first temperature during a first cycle to form at least one high-resistance nickelized nickel layer. All unreacted nickel metal or nickel alloy will be removed 'from the semiconductor structure, leaving at least one high resistance dream compound layer integrated into the semiconductor structure. The at least one south resistance shredded layer will have a period of 'reaction at the first temperature' for a second period to form at least one low resistance shattered nickel layer. The invention has the advantages that it can be manufactured at a relatively low temperature; the paper size of the compound is suitable for the Chinese National Standard (CNS) A4 (210 X 297 mm)-7 91991 531792 V. Description of the invention (8) This feature can reduce the stress on other existing semiconductor components of a semiconductor structure. This feature allows semiconductor processes with more complex and useful semiconductor structures. Another advantage of the present invention is that the metal recording layers can react with the siliceous material layers in a controlled manner. This is an important and useful genus, which is covered with enough stone chemistry to react, so that the dependence of the line width will not become an obstacle and the silicide regions formed on the same semiconductor structure. This will avoid bridging. The foregoing and other features, shapes, and advantages of the present invention will be made clearer by the following detailed description in conjunction with the accompanying drawings. [Brief description of the diagram] FIG. 1 is a conventional technical diagram of a typical semiconductor structure before a silicide is formed; FIG. 2 is a semiconductor structure of FIG. F 1 on which a titanium metal is deposited A conventional technology diagram of a titanium or titanium alloy layer; FIG. 3 is a conventional technology diagram of the semiconductor structure of FIG. 2 after the first rapid thermal annealing; FIG. 4 is a removal of the semiconductor structure of FIG. 3 A schematic diagram of a conventional technique after its unreacted metal or titanium alloy; FIG. 5 is a schematic diagram of a conventional technique after the second rapid thermal annealing of the semiconductor structure of FIG. 4; and FIG. 6 is a silicidation A schematic diagram of a conventional technology of a former typical semiconductor structure; FIG. 7 is a schematic diagram of a conventional technology of the semiconductor structure of FIG. 6 on which a cobalt metal or cobalt alloy layer is deposited; The paper size applies Chinese National Standard (CNS) A4 regulations; 297) 8 ▲ 91991 531792 A7 B7 V. Description of the invention (9 Figure 8 is the semiconductor process of Figure 7 ~ a practice constructed after the first rapid thermal annealing Technical diagram; Figure 9 is of Figure 8 A schematic diagram of a conventional technique of the cage structure at the conductor after removing its unreacted cobalt metal or cobalt alloy; FIG. 10 is a conventional technique of the semiconductor structure of FIG. 9 after the second rapid thermal annealing Figure 11 is a schematic diagram of a conventional technique of a typical semiconductor structure along the line of Shi Xihuanshi 籾 籾; Figure 12 is a semiconductor structure of the l1W semiconductor on which nickel metal is deposited. Or a nickel alloy layer—a conventional technology diagram; FIG. 13 is a conventional technology diagram of the semiconducting I # Modified Broadcasting and Ding Shou forging structure of FIG. 12 after the early rapid thermal annealing; Fig. 14 is a schematic diagram of a conventional technique after the semi-conducting Xingde + # of the dry mouth is removed from its unreacted nickel metal or nickel alloy. Fig. 15 is a simplified diagram of a semiconductor structure. FIG. 16 is a schematic diagram of the semiconductor structure of FIG. 15 on which a nickel metal or nickel alloy layer is deposited; FIG. 17 is a schematic diagram of the semiconductor structure of FIG. 16 after a first temperature treatment Figure 18 is the unreacted semiconductor structure in Figure 17 when it is removed A schematic diagram of nickel metal or nickel alloy; Figure 19 is a schematic diagram of the semiconductor structure of Figure 18 after a dielectric layer is deposited; (Please read the precautions on the back before filling this page) Order --------- Line! Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs

9 91991 531792 A7 B7 五、發明說明(: 經濟部智慧財產局員工消費合作社印製 的一個簡圖。 [元件符號說明] 10 矽基質/半導體基質12 隔片 16 鈦金屬或鈦合金層19 高電阻矽化鈦區域 高電阻矽化物(TiSi2)區域 26低電阻石夕化物(TiSi2)區域 钻金屬或姑合金層 未反應之金屬鈷或鈷合金 32高電阻石夕化姑(CoSi)區域 36低電阻矽化鈷(CoSi2)區域 鎳金屬或鎳合金 40、42石夕化物區域 鎳層 44 矽基質 活性區域 48 隔片 多晶矽區域 52 鎳金屬或鎳合金 未反應之鎳金屬或鎳合金 58高電阻矽化鎳區域60、62介電質層 66石夕化物區域 [較佳實施例之詳細說明] 本發明係論及一種可在一半導體結構上面形成矽化鎳 之單一步驟溫度處理及尾端製程。本發明之程序包括在一 矽層上面澱積一鎳金屬或鎳合金。該等鎳金屬或鎳合金與 石夕層’會在/又第一周期之期間,在第一溫度下反應,以 14 18 20 22 24 28 29 30 34 38 4A 46 50 54 56 64 活性區域 多晶矽區域 未反應金屬鈦層 10 91991 (請先閱讀背面之注意事項再填寫本頁) 訂---------線! 消 5317929 91991 531792 A7 B7 V. Description of the invention (: A simple picture printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. [Explanation of Symbols of Components] 10 Silicon substrate / Semiconductor substrate 12 Separator 16 Titanium metal or titanium alloy layer 19 High resistance Titanium silicide area High resistance silicide (TiSi2) area 26 Low resistance lithium oxide (TiSi2) area Drilling metal or alloy layer unreacted metal cobalt or cobalt alloy 32 High resistance lithography (CoSi) area 36 Low resistance silicidation Cobalt (CoSi2) region Nickel metal or nickel alloy 40, 42 Lithium oxide region Nickel layer 44 Silicon substrate active region 48 Separator polycrystalline silicon region 52 Nickel metal or nickel alloy Unreacted nickel metal or nickel alloy 58 High resistance nickel silicide region 60 , 62 dielectric layer, 66 silicon oxide region [detailed description of the preferred embodiment] The present invention relates to a single-step temperature treatment and tail end process for forming nickel silicide on a semiconductor structure. The procedure of the present invention includes A nickel metal or nickel alloy is deposited on a silicon layer. The nickel metal or nickel alloy and the stone layer will react at a first temperature during the first cycle to 14 18 20 22 24 28 29 30 34 38 4A 46 50 54 56 64 Active area polycrystalline silicon area unreacted metal titanium layer 10 91991 (Please read the precautions on the back before filling this page) Order --------- Line!

形成至少一尚電阻矽化鎳層。接著剝除未反應之鎳金屬或 鎳合金,以及至少有一高電阻矽化鎳層,可保持積體化進 该半導體結構内。在此較高電阻矽化鎳區域上方,接著會 |炎積一;|電質層。此介電質層和至少之一高電阻矽化鎳, 將會有一段第二周期之期間,經歷第二溫度,以形成至少 —低電阻矽化鎳區域。藉由採用一單一步驟溫度處理及尾 端製程,以取代轉化矽化鎳中所採用之單一步驟快速熱退 火程序,本發明可減輕一半導體裝置之石夕化物間的橋接現 象,以及T減少纟處理一導體裝置所需之步驟數。 在本發明之另一實施例中,其第二退火步驟係在澱積其介 電質層前執行,以便形成該等低電阻之矽化鎳區域。 第15圖係一範例性半導體結構。此半導體結構係包括 一矽基質44,在此矽基質44上面,形成有一多晶矽區域 5〇。與此多晶矽區域50相鄰的’係一些隔片48。該矽基 質44亦可能包括一些活性區域。此等活性區域可藉由摻雜 之矽來加以特性化。上述矽基質44上面所形成之多晶矽區 域50,可用做一電晶體之間#,以及該等活性區域杯,可 用做一電晶體之源極和汲極。該等隔片48可由氧化物、氮 化物、或其他陶瓷材料來加以形成。該等隔片48之功能, 可以是使其多晶矽區域50與該等活性區域“相隔離,或 者是使一電晶體之閘極與一電晶體之源極和沒極相隔離。Forming at least one high-resistance nickel silicide layer. The unreacted nickel metal or nickel alloy is then stripped, and at least one high-resistance nickel silicide layer can be kept integrated into the semiconductor structure. Above this higher-resistance nickel silicide region, there will then be | flammability; | electrical layer. The dielectric layer and at least one high-resistance nickel silicide will undergo a second temperature during a second period to form at least a low-resistance nickel silicide region. By adopting a single-step temperature treatment and a tail-end process to replace the single-step rapid thermal annealing process used in the conversion of nickel silicide, the present invention can reduce the bridging phenomenon between petrified compounds of a semiconductor device, and the T reduction treatment The number of steps required for a conductor device. In another embodiment of the present invention, the second annealing step is performed before depositing its dielectric layer to form the low-resistance nickel silicide regions. FIG. 15 is an exemplary semiconductor structure. The semiconductor structure includes a silicon substrate 44 on which a polycrystalline silicon region 50 is formed. Adjacent to this polysilicon region 50 are spacers 48. The silicon substrate 44 may also include some active regions. These active regions can be characterized by doped silicon. The polycrystalline silicon region 50 formed on the above silicon substrate 44 can be used as a transistor #, and the active region cups can be used as the source and the drain of a transistor. The spacers 48 may be formed of an oxide, a nitride, or other ceramic materials. The functions of the spacers 48 may be to "isolate" the polycrystalline silicon region 50 from the active regions, or to isolate the gate of a transistor from the source and anode of a transistor.

第16圖顯示第15圖之半導體結構在彼等鎳金屬或鎳 合金52業已在一傳統式之方式中凝積至此半導體結構上 面後的情形。帛17圖^圖之丰導贈錢A 本紙張尺度適用中國國家標準(CNS)A4規格⑽χ挪公£^ 91991Fig. 16 shows the semiconductor structure of Fig. 15 after their nickel metal or nickel alloy 52 has been deposited onto the semiconductor structure in a conventional manner.帛 Figure 17 ^ Pioneer of Gifts A This paper size applies to China National Standard (CNS) A4 specifications

0 t---------線! (請先閱讀背面之注意事項再填寫本頁) 11 531792 A7 12 經濟部智慧財產局員工消費合作社印製 五、發明說明( 使其鎳金屬或鎳合金52與該等多晶矽區域5〇和活性區域 46反應以形成高電阻矽化鎳(犯3以或沁2“)區域%之第一 溫度處理後的情形。此第一溫度處理,係處於一範圍在25〇 C至35(TC之溫度下。此一溫度處理,與其習知技術所採 用來建立矽化鎳之單一步驟快速熱退火溫度相較,或者與 其習知技術之矽化鈦或習知技術之矽化鈷的第一快速熱退 火中所採用之溫度相較,係處於一相當低之溫度下。此外, 其第一溫度處理可為一特性為在一段相當短之周期期間内 其溫度會迅速斜昇及迅速斜降之快速熱退火。彼等可用於 快速熱退火之範例性退火程序有,雷射退火程序、電燈加 熱退火程序、或其他輻射式退火程序。該第一溫度處理可 使經歷-範圍在15秒至9〇秒之第一周期時間,但最好為 30秒至60秒。 在第18圖中,第17圖之半導體結構,係藉由一傳統 式剝除技術,剝除其未反應之鎳金屬或鎳合金54。彼等範 例性傳統式剝除技術’包含使用過氧化硫、鹽酸、硝酸、 磷酸、或此等剝除劑之混合物。其未反應之錄金屬或錄合 金54的剝除,並不會移除其第—溫度處理中所形成之高電 阻矽化鎳區域56、58。此外’在該等隔片48上面,並無 :金屬或鎳合金52反應,因為此等隔片係由氧化物或氮化 田或其他類似材料形成。⑪化鎳此—形成階段中所用的低 ✓皿’相照於一典型之輩 ^ ^ 早步驟矽化鎳形成程序中所可能發 生者,可免於在該等隔片48上面形成未經控制之石夕化物。 能,因為該等石夕化鎳“ 本A張尺玟適《Τϊ國家標準 91991 ϋ ϋ n ϋ ϋ I n n ϋ ϋ ϋ I · I ϋ n H ϋ ϋ ϋ 一 η « n ϋ I I ϋ I ϋ I ϋ ϋ ϋ n n H I ϋ ϋ ϋ ϋ ϋ ϋ I ϋ ϋ n ϋ ϋ ϋ ϋ ϋ I I (請先閱讀背面之注意事項再填寫本頁) 12 531792 A70 t --------- line! (Please read the notes on the back before filling out this page) 11 531792 A7 12 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (making its nickel metal or nickel alloy 52 with these polycrystalline silicon regions 50 and active regions 46 reaction to form a high-resistance nickel silicide (three or two "region) after a first temperature treatment. This first temperature treatment is in a range of 25 ° C to 35 ° C. This temperature treatment is compared with the single-step rapid thermal annealing temperature used to establish nickel silicide used in the conventional technology, or the first rapid thermal annealing used in the conventional technology titanium titanium silicide or the conventional technology cobalt cobalt silicide. The temperature is relatively low. In addition, its first temperature treatment can be a rapid thermal annealing characterized by a rapid ramp-up and rapid ramp-down of its temperature during a relatively short period of time. They Exemplary annealing procedures that can be used for rapid thermal annealing include laser annealing procedures, electric lamp heating annealing procedures, or other radiation annealing procedures. The first temperature treatment can experience a range of-15 seconds. The first cycle time is 90 seconds, but it is preferably 30 seconds to 60 seconds. In Figure 18 and Figure 17, the semiconductor structure is stripped of its unreacted nickel metal by a conventional stripping technique. Or nickel alloy 54. Their exemplary conventional stripping techniques include the use of sulfur peroxide, hydrochloric acid, nitric acid, phosphoric acid, or a mixture of these stripping agents. The stripping of unreacted metal or metal alloy 54, The high-resistance nickel silicide regions 56, 58 formed during the first temperature treatment will not be removed. In addition, there is no: metal or nickel alloy 52 reaction on the spacers 48 because these spacers are formed by Formation of oxides or nitrided fields or other similar materials. Nickel halide—the low level used in the formation phase. ✓ Reflected in a typical generation ^ ^ What may happen during the early steps of nickel silicide formation can be avoided Uncontrolled petrified compounds are formed on the spacers 48. Yes, because the petrified nickel "this sheet size is in compliance with" National Standard 91991 "ϋ ϋ n ϋ ϋ I nn ϋ ϋ ϋ I · I ϋ n H ϋ ϋ ϋ η η «n ϋ II ϋ I ϋ I ϋ ϋ ϋ nn HI ϋ ϋ ϋ ϋ ϋ I ϋ ϋ n ϋ ϋ ϋ ϋ ϋ I I (please read the Notes on the back to fill out Page) 12 531792 A7

五、發明說明(13 ) 將不需要為隔離該半導體結構上面之希望位置處的石夕化鎳 區域56、58而被姓刻。 第19圖係一澱積在第18圖之半導體結構上方的介電 質層的圖示。其介電質層60係該半導體結構之另一組件, 以及可能並不與該半導體結構中矽化物之形成相關。該介 電質層60可在歷經過一溫度處理之製程前,被用作一隔離 層。 第20圖係第19圖之半導體結構在一依據本發明之一 範例性實施例的第二溫度處理後的圖示。此第二溫度處 理,係處於一範圍在350°C至700°C之溫度下。此外,該第 二溫度處理可為一特性為迅速斜昇及迅速斜降至此溫度處 理之目標溫度之快速熱退火。第18圖之實施例的高電阻石夕 化鎳區域,將會反應(”轉變")形成低電阻矽化鎳區域 (NiSi)64、66。此外,該第二溫度處理,亦可用來將第19 圖之介電質層60處理成第20圖之介電質層62。彼等石夕化 物區域56、58和介電質層60之製程為尾端製程。此尾端 製程係此技藝之術語,用以描述一後繼步驟中所完成之處 理步驟。在某些較佳實施例中,上述之第二溫度處理,係 處於一範圍在約35(TC至約7〇〇°C之溫度下,藉以形成其最 低電阻之矽化鎳,以及可維持一合理之低熱預算。該第二 溫度處理,與其習知技術就其他類型之矽化物所需要 < 快 速熱退火溫度相較,係一相當低的溫度。該第二溫度處理 有關之時間周期,可在15秒至15分鐘之間。 在另一實施例中,上述之第二溫度處理,係在該介電 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 91991 -------------鐮 (請先閱讀背面之注咅?事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 11111111 — — — — — — — — — — — — — — — — — — — — — — 13 14 531792 A7 ___Β7_____ 明說明(14 ) 6〇澱積前執行,以及因而可在其相連結之尾端製程 與其分開地形成其較低電阻之矽化鎳。 本發明提供了一種自行對齊矽化物程序,其可允許低 算,以及可在一受控之反應中形成小尺度之矽化物區 本發明可經由一可形成高電阻石夕化鎳之單一步驟溫度 和尾端製程,來處理一介電質層,以及自此高電阻矽 ’形成低電阻矽化鎳。在第一溫度處理中,彼等鎳金 鎳合金’將會與一石夕材料反應,以形成高電阻;5夕化鎳 ’其未反應之金屬或鎳合金,接著會自該半導體結構 。在該等高電阻矽化鎳區域上面,接著會澱積一介電 。於第二溫度處理中,該等高電阻矽化鎳區域會在一 之溫度下反應,以形成低電阻石夕化鎳,以及同時處理 電質層。使用二步驟溫度處理,可容許在一受控之方 ’以及在一相當低之溫度下,形成小尺度之砍化物。 明可有效地形成矽化物,以及可允許一半導體製程期 低熱預算,同時可大程度地避免彼等習知形成石夕化鎳 術所呈現的橋接現象。此外,本發明可在相同之溫度 步驟中,結合該等介電質層和高電阻矽化物區域之製 雖然本發明業已做了詳細之說明和圖示,理應清楚瞭 f是,彼等僅為圖示及範例,而不應視限制,本發明之 丨係界定於所附之申請專利範圍。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 91991 (請先閱讀背面之注意事項再填寫本頁) 訂---------線! -H ϋ n ϋ nV. Description of the invention (13) It will not be necessary to be engraved for isolating the nickel sulfide regions 56, 58 at the desired positions above the semiconductor structure. FIG. 19 is an illustration of a dielectric layer deposited over the semiconductor structure of FIG. 18. FIG. The dielectric layer 60 is another component of the semiconductor structure, and may not be related to the formation of silicide in the semiconductor structure. The dielectric layer 60 can be used as an isolation layer before undergoing a temperature treatment process. FIG. 20 is a diagram of the semiconductor structure of FIG. 19 after a second temperature treatment according to an exemplary embodiment of the present invention. This second temperature treatment is performed at a temperature ranging from 350 ° C to 700 ° C. In addition, the second temperature treatment may be a rapid thermal annealing having a characteristic of rapid ramp-up and rapid ramp-down to a target temperature for this temperature processing. The high-resistance petrified nickel region of the embodiment of FIG. 18 will react ("transform") to form low-resistance nickel silicide regions (NiSi) 64 and 66. In addition, the second temperature treatment can also be used to The dielectric layer 60 shown in Fig. 19 is processed into the dielectric layer 62 shown in Fig. 20. The process of the lithosphere regions 56, 58 and the dielectric layer 60 is a tail-end process. This tail-end process is part of this technique. A term used to describe the processing steps performed in a subsequent step. In some preferred embodiments, the second temperature treatment described above is at a temperature in the range of about 35 ° C to about 700 ° C. In order to form the nickel silicide with the lowest resistance, and to maintain a reasonable low thermal budget, the second temperature treatment is quite low compared to the conventional technology required for other types of silicides < rapid thermal annealing temperature. The time period related to the second temperature treatment may be between 15 seconds and 15 minutes. In another embodiment, the second temperature treatment described above applies the Chinese national standard on the dielectric paper scale ( CNS) A4 size (210 X 297 mm) 91991- ----------- Sickle (Please read the note on the back? Matters before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 11111111 — — — — — — — — — — — — — — — — — — — — — — 13 14 531792 A7 ___ Β7 _____ It is stated (14) that 60 is performed before deposition, and thus its lower resistance nickel silicide can be formed separately from its associated tail end process. The present invention provides a self-aligned silicide process that allows low calculations and can form silicide regions on a small scale in a controlled reaction. The present invention can pass a single step temperature that can form high-resistance nickel silicide. And tail-end processes to process a dielectric layer and to form low-resistance nickel silicides from high-resistance silicon. In the first temperature treatment, their nickel-gold-nickel alloys will react with a stone material to form High resistance; nickel oxide, its unreacted metal or nickel alloy, will then come from the semiconductor structure. On top of these high resistance nickel silicide areas, a dielectric will be deposited. In the second temperature treatment, the Contour resistance The nickelized region will react at a temperature to form a low-resistance nickel sulfide and to simultaneously process the electrical layer. The use of two-step temperature treatment allows a controlled method and a relatively low temperature. The formation of small-scale chopping compounds can effectively form silicides, and allow a low thermal budget for a semiconductor process, while largely avoiding the bridging phenomenon that they are familiar with in the formation of petrified nickel. In addition, The present invention can combine these dielectric layers and high-resistance silicide regions in the same temperature step. Although the present invention has been described and illustrated in detail, it should be clear that f is, they are only illustrations And examples, and should not be construed as limiting, the scope of the present invention is defined by the scope of the attached patent application. This paper size applies to China National Standard (CNS) A4 specifications (210 X 297 public love) 91991 (Please read the precautions on the back before filling this page) Order --------- Line! -H ϋ n ϋ n

n n n In n n I

Claims (1)

經濟部智慧財產局員工消費合作社印製 531792 C8 六、申請專利範圍 1· -種半導體製程方法,其包括之步驟有: 在至少一矽層(46)上面,澱積鎳金屬或鎳合金 (52); 於一 #又第一周期之期間,在一第一溫度下,使至少 一部分之鎳金屬或鎳合金(52),與矽層(45)反應,以形 成至少一高電阻矽化鎳區域(56,58) ·· 移除未反應之鎳金屬或鎳合金(54);以及 於一段第二周期之期間,在一第二溫度下,使該等 咼電阻石夕化鎳區域(56,58)反應,以形成至少一低電阻石夕 化錄區域(64,66)。 2·如申請專利範圍第1項之半導體製程方法,復包括在使 該等高電阻矽化鎳區域(56,58)反應前,在至少一之高電 阻珍化鎳區域(56,58)上面,澱積一介電質層(6〇)。 3·如申請專利範圍第1項之半導體製程方法,其中第一溫 度係在約250°C至約350°C之範圍内。 4.如申請專利範圍第1項之半導體製程方法,其中第二溫 度係在约400°C至約600乞之範圍内。 5·如申請專利範圍第1項之半導體製程方法,其中高電阻 鎳矽化物區域(56,58),係至少為N“Si和Niji中的一 個’以及其低電阻碎化鎳區域(64,66)係]sjiSi。 6·如申請專利範圍第1項之半導體製程方法,其中第—胃 期期間,係約15至約90秒,以及第二周期期間,係約 15至約90伊。 7.如申請專利範圍第1項之半導體製程方法,其中第_胃 — — — — — I1IIII -Him— ^ ·11111111 - (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 15 91991 531792 A8B8C8D8 六、申請專利範圍 期期間,係約30至約60秒,以及第二周期期間,係約 30至約60秒。 8. 如申請專利範圍第1項之半導體製程方法,其中第一和 第二反應步驟,係形成二步驟快速熱退火程序。 9. 如申請專利範圍第2項之半導體製程方法,其中第一反 應步驟和第二反應步驟,係形成一具有尾端製程之單一 步驟快速熱退火程序。 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 16 91991Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 531792 C8 VI. Application for Patent Scope 1 · A semiconductor process method including the steps of: depositing nickel metal or nickel alloy (52) on at least one silicon layer (46) ); During a first cycle, at least a portion of the nickel metal or nickel alloy (52) is reacted with the silicon layer (45) at a first temperature to form at least one high-resistance nickel silicide region ( 56,58) ·· Removing unreacted nickel metal or nickel alloy (54); and during a second cycle, at a second temperature, the rubidium resistors are turned into nickel regions (56,58 ) Reaction to form at least one low-resistance lithography region (64,66). 2. If the semiconductor manufacturing method according to item 1 of the patent application scope includes: before reacting the high-resistance nickel silicide regions (56,58), at least one of the high-resistance nickel silicide regions (56,58), A dielectric layer (60) is deposited. 3. The semiconductor process method according to item 1 of the patent application range, wherein the first temperature is in a range of about 250 ° C to about 350 ° C. 4. The semiconductor process method according to the first patent application range, wherein the second temperature is in a range of about 400 ° C to about 600 ° C. 5. The semiconductor process method according to item 1 of the patent application scope, wherein the high-resistance nickel silicide region (56,58) is at least one of N "Si and Niji 'and its low-resistance crushed nickel region (64, 66) Department] sjiSi. 6. The semiconductor manufacturing method according to item 1 of the patent application range, wherein the period from the first gastric period is about 15 to about 90 seconds, and the period from the second period is about 15 to about 90 seconds. 7 .If you apply for the semiconductor manufacturing method of item 1 of the patent scope, in which the _stomach — — — — — I1IIII -Him — ^ · 11111111-(Please read the precautions on the back before filling this page) This paper size applies to Chinese national standards (CNS) A4 specification (210 X 297 mm) 15 91991 531792 A8B8C8D8 VI. During the patent application period, it is about 30 to about 60 seconds, and during the second cycle, it is about 30 to about 60 seconds. 8. If you apply The semiconductor process method of the first item in the patent scope, wherein the first and second reaction steps form a two-step rapid thermal annealing process. 9. For the semiconductor process method of the second item of the patent scope, the first reaction step and the second step Reaction steps It is a single-step rapid thermal annealing process with a tail end process. (Please read the precautions on the back before filling this page.) Printed on paper standards applicable to the Chinese National Standard (CNS) A4 specifications. (210 X 297 mm) 16 91991
TW90130176A 2000-12-06 2001-12-06 Method of forming nickel silicide using a one-step rapid thermal anneal process and backend processing TW531792B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72969800A 2000-12-06 2000-12-06
US09/729,699 US6605513B2 (en) 2000-12-06 2000-12-06 Method of forming nickel silicide using a one-step rapid thermal anneal process and backend processing

Publications (1)

Publication Number Publication Date
TW531792B true TW531792B (en) 2003-05-11

Family

ID=27111928

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90130176A TW531792B (en) 2000-12-06 2001-12-06 Method of forming nickel silicide using a one-step rapid thermal anneal process and backend processing

Country Status (7)

Country Link
EP (1) EP1342260A1 (en)
JP (1) JP2004521486A (en)
CN (1) CN1633703A (en)
AU (1) AU2002230565A1 (en)
GB (1) GB2390224B (en)
TW (1) TW531792B (en)
WO (1) WO2002047145A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232756B2 (en) 2003-04-16 2007-06-19 Samsung Electronics Co., Ltd. Nickel salicide process with reduced dopant deactivation
KR100870176B1 (en) * 2003-06-27 2008-11-25 삼성전자주식회사 Nickel alloy salicide process, Methods of fabricating a semiconductor device using the same, nickel alloy silicide layer formed thereby and semiconductor devices fabricated using the same
JP4623006B2 (en) * 2004-06-23 2011-02-02 日本電気株式会社 Semiconductor device and manufacturing method thereof
US7385294B2 (en) 2005-09-08 2008-06-10 United Microelectronics Corp. Semiconductor device having nickel silicide and method of fabricating nickel silicide
CN1937181B (en) * 2005-09-19 2010-11-17 联华电子股份有限公司 Semiconductor element with nickel silicide and method for preparing nickel silicide
US7456095B2 (en) * 2005-10-03 2008-11-25 International Business Machines Corporation Method and apparatus for forming nickel silicide with low defect density in FET devices
US7622374B2 (en) 2005-12-29 2009-11-24 Infineon Technologies Ag Method of fabricating an integrated circuit
JP2007242894A (en) * 2006-03-08 2007-09-20 Toshiba Corp Semiconductor device and its manufacturing method
CN100442460C (en) * 2006-04-03 2008-12-10 中芯国际集成电路制造(上海)有限公司 Method for forming nickel silicide by plasma annealing
US7432255B2 (en) 2006-05-16 2008-10-07 Hoffmann-La Roche Inc. 1H-indol-5-yl-piperazin-1-yl-methanone derivatives
JP5538975B2 (en) 2010-03-29 2014-07-02 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
CN102468150B (en) * 2010-11-19 2013-12-04 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor device
CN103165485B (en) * 2011-12-08 2015-11-25 中芯国际集成电路制造(上海)有限公司 The monitoring method of Millisecond annealing technology stability

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980024663A (en) * 1996-09-18 1998-07-06 윌리엄 비. 켐플러 Method for forming silicide region
EP0836223A3 (en) * 1996-10-08 1999-12-15 Texas Instruments Inc. Method of forming a silicide layer
US5953612A (en) * 1997-06-30 1999-09-14 Vlsi Technology, Inc. Self-aligned silicidation technique to independently form silicides of different thickness on a semiconductor device
US6071782A (en) * 1998-02-13 2000-06-06 Sharp Laboratories Of America, Inc. Partial silicidation method to form shallow source/drain junctions

Also Published As

Publication number Publication date
JP2004521486A (en) 2004-07-15
GB2390224B (en) 2004-12-08
EP1342260A1 (en) 2003-09-10
WO2002047145A1 (en) 2002-06-13
AU2002230565A1 (en) 2002-06-18
GB0315661D0 (en) 2003-08-13
GB2390224A (en) 2003-12-31
CN1633703A (en) 2005-06-29

Similar Documents

Publication Publication Date Title
TW531792B (en) Method of forming nickel silicide using a one-step rapid thermal anneal process and backend processing
US6605513B2 (en) Method of forming nickel silicide using a one-step rapid thermal anneal process and backend processing
KR100966384B1 (en) Nickel silicide method and structure
TW445646B (en) Fabrication method of semiconductor device using selective epitaxial growth
JP2006516174A (en) Method of using silicide contacts in semiconductor processes
JPH08116054A (en) Semiconductor device comprising cobalt silicide film and its manufacture
JPH08204187A (en) Manufacture of semiconductor device
US6391767B1 (en) Dual silicide process to reduce gate resistance
TW410387B (en) Fabrication of a semiconductor device
US6383906B1 (en) Method of forming junction-leakage free metal salicide in a semiconductor wafer with ultra-low silicon consumption
JP2820122B2 (en) Method for manufacturing semiconductor device
JP3175725B2 (en) Method for manufacturing semiconductor device
TW451318B (en) Method for forming a silicide of metal with a high melting point in a semiconductor
US5869397A (en) Method of manufacturing semiconductor device
TWI240961B (en) Semiconductor device and method for manufacturing the same
US6429455B1 (en) Method to enhance the formation of nucleation sites on silicon structures and an improved silicon structure
TW400579B (en) Method for manufacturing semiconductor device with titanium nitride
TW466700B (en) Manufacturing method of salicide
JP3729368B2 (en) Manufacturing method of semiconductor device
JP2001015740A (en) Semiconductor device and manufacture thereof
TW531795B (en) Self-aligned metal silicide process using cobalt silicide
KR100628253B1 (en) Method for Forming Self-Aligned Silcide of Semiconductor Device
TW463303B (en) Method for forming contact hole in self-aligned silicide process
TW436865B (en) Manufacture method for increasing contact area of gate
JP3639745B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees