TW524725B - Method and device for main shaft synchronous control - Google Patents

Method and device for main shaft synchronous control Download PDF

Info

Publication number
TW524725B
TW524725B TW091107840A TW91107840A TW524725B TW 524725 B TW524725 B TW 524725B TW 091107840 A TW091107840 A TW 091107840A TW 91107840 A TW91107840 A TW 91107840A TW 524725 B TW524725 B TW 524725B
Authority
TW
Taiwan
Prior art keywords
workpiece
guide sleeve
motor
spindle
guide
Prior art date
Application number
TW091107840A
Other languages
Chinese (zh)
Inventor
Masakazu Sagasaki
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of TW524725B publication Critical patent/TW524725B/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4163Adaptive control of feed or cutting velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/72Auxiliary arrangements; Interconnections between auxiliary tables and movable machine elements
    • B23Q1/76Steadies; Rests
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49108Spindle speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)
  • Numerical Control (AREA)

Abstract

main spindle synchronous control device is adapted to control the speed of main spindle induction motor 130a which drives a main spindle 1004 holding a work 1003, and also to control the speed of rotary guide bush induction motor 130b which drives rotary guide bush 1005 guiding the work 1003. The main spindle synchronous control device includes a main spindle speed correction computing device 41 for computing a rotational speed command for the rotary guide bush induction motor 130b according to the gap between the work 1003 and the rotary guide bush 1005, and a rotational speed data conversion device 44 for controlling the rotary guide bush induction motor 130b with the rotational speed command computed by the main spindle speed correction computing device 41 as a rotational speed command for the rotary guide bush induction motor 130b, so that excessive heat will not be generated by a large amount of current flowing through the motor for driving the rotary guide bush when cutting the work having a shape equivalent to a round rod material.

Description

524725 -五、發明說明(1) [發明說明] 1發明之技術領域] - 本發明係關於一種主軸同步控制方法及其裝置,其係 _同步控制自動車床等之主軸與導套軸者。 ’ [先前技術] 以第1 0圖至第1 5圖說明先前技術。其中第1 0圖係表示 數值控制裝置之主要部份,其具備有主軸同步控制裝置, 以同步控制用以驅動自動車床主軸之主軸馬達(以下簡稱 邊主軸馬達),及用以驅動旋轉導套軸之主軸馬達(以下 Έ稱旋轉導套軸馬達)者。第1 1圖係一種工具機之自動車 床的構造圖;第1 2圖係第1 1圖所示之中心主軸與旋轉導套 之詳細構造圖;第1 3圖係表示控制主軸馬達回轉及停止等 主要部份之加工程式;第1 4圖係表示導套軸馬達電流於實 際切削中之變化之時序圖;第1 5圖係表示旋轉導套與圓形 工件之位置關係之剖視圖。 在第1 0圖中,1係數值控制裝置、2係加工程式、3係 ’加工程式解析處理部份、4係内插處理部、5係控制電路、 * 6係機械控制信號處理部、7係記憶體、8係參數設定部、9 晝面顯示部、1 0 a係主軸之軸控制部(以下簡稱主軸控 $部)、1 Ob係旋轉導套軸之軸控制部(以下簡稱導套軸 控制部份)、1 1係資料輸出入電路、1 2 a係主軸之主軸放 大器(以下簡稱主軸放大器)、1 2 b係旋轉導套軸之主軸 放大器(以下簡稱導套軸放大器)、1 3 a係主t軸之主軸馬 達(以下簡稱主軸馬達)、及1 3 b係旋轉導套軸之主軸馬524725-V. Description of the invention (1) [Explanation of the invention] 1 Technical field of the invention]-The present invention relates to a method and a device for synchronously controlling a spindle, which are _synchronously controlling a spindle and a guide sleeve shaft of an automatic lathe and the like. [Prior Art] The prior art will be described with reference to FIGS. 10 to 15. Figure 10 shows the main part of the numerical control device, which is equipped with a spindle synchronization control device to synchronously control the spindle motor (hereinafter referred to as the side spindle motor) used to drive the spindle of the automatic lathe, and to drive the rotary guide sleeve The spindle motor of the shaft (hereinafter referred to as the rotary guide bushing shaft motor). Fig. 11 is a structural diagram of an automatic lathe of a machine tool; Fig. 12 is a detailed structural diagram of a center spindle and a rotary guide bush shown in Fig. 11; Fig. 13 is a diagram showing control of rotation and stop of a spindle motor Fig. 14 is a timing chart showing the change of the guide sleeve shaft motor current during actual cutting; Fig. 15 is a sectional view showing the positional relationship between the rotating guide sleeve and the circular workpiece. In Fig. 10, 1 coefficient control device, 2 series processing program, 3 series processing program analysis processing section, 4 series interpolation processing section, 5 series control circuit, 6 series mechanical control signal processing section, 7 System memory, 8 series parameter setting section, 9 day surface display section, 10 a series spindle control section (hereinafter referred to as the spindle control section), 1 Ob series rotary control sleeve axis control section (hereinafter referred to as the guide sleeve) Axis control part), 1 1 series data input / output circuit, 1 2 a series spindle amplifier (hereinafter referred to as spindle amplifier), 1 2 b series spindle amplifier for rotating guide sleeve shaft (hereinafter referred to as guide sleeve shaft amplifier), 1 3 a is the spindle motor of the main t-axis (hereinafter referred to as the spindle motor), and 1 3 b is the spindle horse of the rotating guide sleeve shaft

313583.ptd 第6頁 524725313583.ptd Page 6 524725

五、發明說明 輪馬達( (2) 以下簡稱旋轉導套軸馬達 在第Π圖及第12圖中,1000係自動車床機械之框體、 1 〇 〇 1係切削後述工件之工具、1 0 0 2係用以保持工具1 0 0 1之 /、持木、1 Q Q 3係工件,其係由一條稱為棒材之長條圓形金 屬=料所構成者、丨0 0 4係主軸、1 〇 〇 5係旋轉導套、1 〇 〇 6係 皮帶輪,其係設置於旋轉導套軸馬達13b之軸端者、及 1 〇 〇 7係正時皮帶。 其次說明主軸馬達13a與旋轉導套軸馬達13b之主轴同 步控制動作。 一條長工件1〇〇3係由主軸10Q4之夹頭(無圖示)與旋 轉導套1 0 0 5所固定。該工件1 0 0 3係以相對於主軸1〇〇4之旋 轉,令而旋轉,且以相對於Z轴之指令而由右往左移動, 並猎由上下移動之工具1 〇 〇 2進行旋削加工。此時,控制使 旋轉導套1005與主軸10 04同步旋轉。如第n圖所示,自動 車床之座標系,係設定其通常之左右方向為2軸,上下方 向為X軸’且保持架1 0 〇 2僅限於朝χ軸方向移動。 本例如第12圖所示,主軸10〇4係由主軸馬達13&本身 構成主軸台’亦即主軸1 0 04與主軸馬達13a之轉速比為i · 1。旋轉導套1 0 0 5藉由正時皮帶1〇〇7與皮帶輪1〇〇6相連 接,並藉由旋轉導套軸馬達13b而驅動。為說明方便起 見,將旋轉導套1 0 0 5與旋轉導套軸馬達13b之皮帶輪比 (齒輪比)設定為1 : 1。亦即,控制使旋轉導套軸馬達 13b與主轴馬達13a同步旋轉時,旋轉導套1〇〇5、主軸 1〇〇4、及以主軸夾頭所固定之圓形工件1〇〇3,亦將同步旋V. Description of the invention Wheel motor ((2) Rotary guide bushing shaft motor is hereinafter referred to as Figure Π and Figure 12, 1000 is the frame of automatic lathe machine, 001 is the tool for cutting the workpiece described later, 1 0 0 2 is used to hold the tool 1 0 0 1 /, holding wood, 1 QQ 3 series of workpieces, which are composed of a long circular metal = bar called bar, 丨 0 0 4 series spindle, 1 〇 〇5 series rotary guide sleeve, 〇06 series pulley, which are installed on the shaft end of the rotary guide sleeve shaft motor 13b, and 〇07 series timing belt. Next, the spindle motor 13a and the rotary guide sleeve shaft motor will be described. 13b spindle synchronous control action. A long workpiece 1003 is fixed by the chuck (not shown) of the spindle 10Q4 and the rotary guide bushing 105. The workpiece 1003 is relative to the spindle 10. 〇4 rotation, order and rotation, and move from right to left with a command relative to the Z axis, and hunting the tool 1 〇2 for up and down to perform the turning process. At this time, control the rotation guide 1005 and the spindle 10 04 synchronous rotation. As shown in figure n, the coordinate system of the automatic lathe is set to its normal left and right direction 2 axes, the up-down direction is X-axis' and the cage 10 is limited to move in the χ-axis direction. As shown in Figure 12, for example, the main shaft 1004 is formed by the main shaft motor 13 & itself, which is the main shaft. The speed ratio of 1 0 04 to the spindle motor 13a is i · 1. The rotary guide bushing 1 0 5 is connected to the pulley 1006 by a timing belt 1007, and is rotated by the rotary guide bushing shaft motor 13b. Drive. For convenience of explanation, the pulley ratio (gear ratio) of the rotary guide bushing 105 and the rotary guide bushing shaft motor 13b is set to 1: 1. That is, the rotary guide bushing shaft motor 13b and the spindle motor are controlled When 13a rotates synchronously, the rotary guide sleeve 105, the spindle 1004, and the circular workpiece 1003 fixed by the spindle chuck will also rotate synchronously.

313583.ptd 第7頁 524725 •五、發明說明(3) 轉。 • 第1 3圖所示驅動主軸馬達驅動之部份的加工程式,其 中指令M3係表示主軸馬達13&之旋轉起動指令、指令S1係、 表示主軸馬達1 3 a之轉速指令(此時係以1 〇 〇 〇 rpm旋轉)、 而指令M5係表示主軸馬達13a之旋轉停止指令。 ’ 主軸馬達13a與旋轉導套軸馬達13b,係預先以參數 設定為經常同步旋轉。由磁帶機等讀取之加工程式^係: 存於記憶體7。執行加工程式2時,加工程式解狀由’、儲 由記憶體7之各區塊讀取加工程式2,所讀取之 H d #加工程式解析處理部3中進行處理。 巧2 以第1 3圖之加工程式為例加以說明,加工程 理部3由記憶體7中讀取主軸馬達1 3 a之旋轉起動指"人解析處 轉速指令s 1。該等讀取出之指令係於加工程式解9十Μ3與 3中,判斷為應通知至控制(r u d d e r )電路5之指人斤處理部 回路係記述關於切削油之開關等機械控制信號之“中該 將解析結果通知至機械控制信號處理部6。機械护控制’並 處理部6將通知之解析結果轉換為機械控制信號T制信號 至控制電路5。控制電路5判斷主軸馬達1 3a是否U、’並輪出 —之狀態後,如為可旋轉之狀態,將旋轉起動信號可旋轉 春^ S 1作為轉速資料輸出至機械控制信號處理部f。與轉逮指 輸入至機械控制信號處理部6之旋轉起動作 資料,將傳送至内插處理部4。於内插處理部與轉速 速資料換算為主軸13a之旋轉位置指令。又,^中,將轉 1 3a與旋轉導套轴馬達1扑係預先以參數主轴馬達 °又疋為經常同步 524725 五、發明說明(4) 〜〜 控制,故對於旋轉導套軸馬達13b,由主軸馬達丨^ 貢料亦可計算旋轉導套軸馬達13b之旋轉位置指令。^逮 馬達1 3 a與旋轉導套軸馬達i 3 b之旋轉位置指令,係八軸 出至主軸控制部1 〇a與導套軸控制部丨〇b。 ’、刀別輪 該等旋轉位置指令係依照主軸控制部工〇a盥導 > 制部10b中所預設之加減速模式,重新計算在每單位控 之伺服位置指令,並輸出至資料輸出入電路1 1 D誃、間 位置指令藉由資料輸出入電路丨丨,分別傳送至主】服 12a與導套軸放大器12b。 放大器 主軸放大器12a與導套軸放大器12b,依照 服位置指令,分別控制主軸馬達工3a與旋轉 之伺 之位置並令其旋轉。此時,因對應主軸馬達13a之ii13b ,告MOa與對應旋轉導套轴馬達Ub之導套 之主轴控 加減速模式已調整為相同, 工制邛1〇b的 與旋轉導套1 0 0 5在轉速改變:主住,工件 執行表示中心主軸旋代y 、,、=步旋轉。 工程式解析處理部3透 τ止之加工私式指令M5時,加 輸出至控制電路5。 :械控制信號處理部e將解析結果 旋轉開始信號。機械工1]電^路5接收旋轉停止指令M5後關斷 號關斷後,將旋轉I玉=仏號處理部6檢測出旋轉開始信 處理部4中,對主輛〒止心令傳送至内插處理部4。於内插 達轉速指令〇之指人控制4 1 0 a與旋轉導套軸控制部1 0 b下 該指令係依照該 中預設之加減速模 控制部1 0 a與導套軸控制部1 〇 b ^ 重新計算在伺服位置、,並將其輸出313583.ptd Page 7 524725 • V. Description of the invention (3) Turn. • The processing program that drives the part driven by the spindle motor shown in Fig. 13 where the command M3 is the rotation start command of the spindle motor 13 & the command S1 is the speed command of the spindle motor 1 3 a (at this time it is based on (1000 rpm rotation), and the command M5 indicates a rotation stop command of the spindle motor 13a. The main shaft motor 13a and the rotary guide bushing shaft motor 13b are previously set to rotate constantly in synchronization with parameters. The processing program read by the tape drive etc. is stored in the memory 7. When the processing program 2 is executed, the processing program 2 is read and stored in each block of the memory 7 to read the processing program 2, and the read H d #processing program analysis processing section 3 performs processing. Qiao 2 Take the processing program in Fig. 13 as an example for explanation. The processing unit 3 reads the rotation start finger of the spindle motor 1 a from the memory 7 and the speed analysis instruction s 1 in the human analysis unit. These read out instructions are in the processing program solutions 90M3 and 3, and it is judged that the circuit of the finger handling unit of the control circuit 5 should be notified to the rudder circuit 5 which describes the mechanical control signals such as the switch of the cutting oil. The analysis result is notified to the mechanical control signal processing unit 6. The mechanical protection control and processing unit 6 converts the notified analysis result into a mechanical control signal T signal to the control circuit 5. The control circuit 5 determines whether the spindle motor 1 3a is U , 'And round out— If it is in a rotatable state, the rotation start signal can be rotated and spring ^ S 1 is output as the speed data to the mechanical control signal processing section f. And the turning finger is input to the mechanical control signal processing section The rotation starting motion data of 6 will be transmitted to the interpolation processing unit 4. The interpolation processing unit and the speed data are converted into the rotation position command of the main shaft 13a. Also, ^, will rotate 1 3a and the rotary guide sleeve shaft motor 1 The flutter system is based on the parameter spindle motor ° and 经常 as a constant synchronization. 524725 V. Description of the invention (4) ~~ Control, so for the rotating guide sleeve shaft motor 13b, the rotation can also be calculated by the spindle motor. Rotary position command of the sleeve motor 13b. ^ The rotational position command of the motor 1 3a and the rotary guide shaft motor i 3 b are output from the eight axes to the main shaft control section 10a and the guide shaft control section 丨 0b. 'Rotary position commands such as the knife wheel are in accordance with the acceleration and deceleration mode preset in the spindle control department worker 〇a guide> 10b, and the servo position instructions in each unit are recalculated and output to the data output. The input circuit 1 1 D 誃 and the intermediate position command are transmitted to the main server 12a and the guide sleeve shaft amplifier 12b through the data input and output circuits. The amplifier spindle amplifier 12a and the guide sleeve shaft amplifier 12b are respectively according to the service position instructions. Control the position of the spindle motor 3a and the rotation servo and make it rotate. At this time, due to the corresponding spindle motor 13a to ii13b, the MOA and the corresponding guide bushing motor of the guide bush shaft Ub have been adjusted to the same mode. The rotation speed of the industrial guide 〇10b and the rotary guide bushing 105 are changed: the main part is moved, and the workpiece is executed to indicate the center spindle rotation y ,,,, = step rotation. The engineering-type analysis processing unit 3 through When M5 is used, add Out to the control circuit 5 .: The mechanical control signal processing unit e rotates the analysis result to the rotation start signal. Mechanic 1] Circuit 5 receives the rotation stop command M5, and after the shutdown number is turned off, it rotates I 玉 = 仏 # processing unit 6 In the rotation start letter processing unit 4, a stop command for the host vehicle is transmitted to the interpolation processing unit 4. The finger control 4 1 0 a which interpolates the rotation speed command 0 and the rotation guide shaft control unit 1 0 The instruction under b is in accordance with the preset acceleration and deceleration mode control section 1 a and guide shaft control section 1 〇 b ^ recalculated at the servo position and output it.

第9頁Page 9

313583.ptd 524725 五、發明說明(5) - 心出入電路1 1。該伺服位置指令係藉由資料輸出入電路 11傳主轴放Al§12a ’與導套轴放大器12b。該等主軸 放Λ益12a與導套軸放大器12b,依昭所姑/ 北八处 馬達1〃3&與疑轉導套軸馬達丨3b同步並減速 旋轉導套軸馬達131)之電流值 ’ 化,係如第U圖所示。亦即,旋轉、導刀削中如何變 轉速旋轉時,於切削工件1 0 0 3前輪馬達13b以固定 需之電流為電流i 使夂轉導套1005旋轉所 於時刻=流通於旋轉導套軸馬達13b。 參,固定從電夺,旋轉導套轴馬達13b之電 持續至切削結^ 緩緩增加至電流值I 2。該電流值I 2將 少,而回復至 ^刻t2。切削結束後電流值將再度減 第15圖係軏導套1 0 0 5旋轉所需之電流值II。 係的剖視圖,旋轉導套1 0 0 5與圓形工件1 003之位置關 圓形工件1〇〇3之二將旋轉導套10〇5之内徑設定為D2,將 圓形工件1〇〇3之化设定為D1時’通常於旋轉導套1005與 其為Dg,並將圓間存在有(D2 —D1)之空隙。將該空隙定義 Dl=Wd,形工件1 0 0 3之直徑定義為Wd時,則 朝箭頭A之方向f。此時,主軸1004夾住圓形工件1003並 _ 〇 0 4之圓形轉日守’旋轉導套1⑽5亦與夾住於主軸 此時,由 ^ 03,朝箭頭A之方向同步旋轉。 外徑部相接觸、",轉導套1 0 0 5之内徑部與圓形工件1 0 0 3之 工件1003之外,灰轉’因此旋轉導套1〇05之内徑部與圓形 形工件1 〇 〇 3文彳Γ "卩之接觸點C,將隨著旋轉導套1 〇 〇 5與圓 旋轉而移動。假設旋轉導套丨〇〇 5之内徑部與313583.ptd 524725 V. Description of the Invention (5)-The heart access circuit 1 1. The servo position command is transmitted through the data input / output circuit 11 to the main shaft Al§ 12a 'and the guide sleeve shaft amplifier 12b. These spindles put Λ benefit 12a and guide bushing shaft amplifier 12b according to the current value of Zhaozhaogu / North Eight Motor 1〃3 & synchronize with the suspected guide bushing shaft motor 3b and decelerate and rotate the guide bushing shaft motor 131) ' , As shown in Figure U. In other words, when rotating at a variable speed during rotation and guide cutting, the front wheel motor 13b cuts the workpiece with a fixed current required as the current i to make the rotary guide 1005 rotate at the moment = flowing through the rotary guide shaft The motor 13b. For example, the electric power from the rotary guide bushing shaft motor 13b is fixed until the cutting result ^ is gradually increased to the current value I 2. The current value I 2 will be small, and will return to ^ tick t2. After cutting, the current value will decrease again. Figure 15 shows the current value II required for the guide bush to rotate 1 0 5. The cross-sectional view of the system, the position of the rotary guide bushing 105 and the circular workpiece 1 003 is close to the circular workpiece 1003. The inner diameter of the rotary guide bushing 005 is set to D2, and the circular workpiece 100 is set. When the conversion of 3 is set to D1 ', usually the rotating guide sleeve 1005 is Dg, and there is a gap (D2-D1) between the circles. When the clearance is defined as Dl = Wd, and the diameter of the shaped workpiece 1 0 0 3 is defined as Wd, then the direction f of the arrow A is directed. At this time, the main shaft 1004 clamps the circular workpiece 1003 and the rotative guide sleeve 1⑽5 of _ 〇 0 4 is also clamped to the main shaft. At this time, it rotates from ^ 03 in the direction of arrow A synchronously. The outer diameter part is in contact with the inner diameter part of the guide bushing 1 0 0 5 and the workpiece 1003 of the round workpiece 1 0 3, and the gray diameter is rotated. Therefore, the inner diameter part of the guide bushing 1005 and the round part The contact point C of the shaped workpiece 1 03 " quot " will move with the rotation of the guide bush 1005 and the circle. Suppose the inner diameter part of the rotating guide sleeve 〇〇〇 5 and

3l3583.Ptd3l3583.Ptd

第10頁 524725 五、發明說明(〇 ' ~ ' —~~~ --—— _ Ξ =二t 1 0 0 3之?徑部之間不會滑動’當圓形工件1 0 0 3旋 俨之差日才,由,旋轉導套1 0 0 5之内徑與圓形工件1 0 0 3之外 ^10〇3,亦即存在有空隙,將使得旋轉導套1 0 0 5與圓形工 之接觸點,變為;r (D2_D1),亦即延遲冗Dg2D點。 斑=,;rDg相當於點C與點D之距離。惟因旋轉導套‘ι〇〇5 Γ〇05鱼工件1〇03的接觸點之摩擦阻力小,實際上旋轉導套 1 0 0 3旋f形工彳ί1〇(?之間將適當地產生滑動。故圓形工件 I 一圈時,旋轉導套1 0 0 5將位於點c而非點D。在該 狀〜、下,為使旋轉導套軸馬達13b旋轉,不需較大之電 流。 =因旋削等使得圓形工件丨〇 〇3承受到箭頭E方向之切 ^員f時,接觸點之摩擦阻力將變大,旋轉導套1〇〇5與圓 :4 1 〇 〇 3將不易產生滑動。此時圓形工件1 〇 〇 3旋轉一圈 時,旋轉導套丨〇 〇 5將位於點D。惟因相對 〇 之旋轉指令位置係點C,故旋轉導套轴馬達=套過切削 負載所產生之摩擦阻力而定位於點C,並將產生扭矩。 如此主軸馬達13a每旋轉一圈,接觸點D將朝箭頭B之 方向移動’與指令位置c之差將逐漸增大亦即,旋轉導套 轴馬達13b必須產生更大之扭矩。旋轉導套軸馬達Ub產生 較大之扭矩時,因其最後新產生之扭矩將超過切削負載所 產生之摩擦阻力,故旋轉導套1 〇 〇 5與圓形工件丨〇 〇 3之間將 產生滑動,藉此使得接觸點回到C點方向。藉由反覆以上 之動作在旋轉導套轴馬達丨3 b將有比較非切削時更大之電 流流通。Page 10 524725 V. Description of the invention (〇 '~' — ~~~ --—— _ Ξ = 2 t 1 0 0 3? There will be no sliding between the diameter parts' When the circular workpiece 1 0 0 3 spin The difference is just that, the inner diameter of the rotating guide sleeve 1 0 05 and the round workpiece 1 0 3 ^ 10 03, that is, there is a gap, which will make the rotating guide sleeve 1 0 0 5 and circular The contact point of the work becomes: r (D2_D1), that is, the delayed redundant Dg2D point. Spot = ,; rDg is equivalent to the distance between point C and point D. However, due to the rotating guide sleeve 'ι〇〇5 Γ〇05 fish workpiece The frictional resistance at the contact point of the 〇03 is small. Actually, the guide sleeve 1 will rotate between 10 and 3, and sliding will occur appropriately. Therefore, when the circular workpiece I makes one turn, the guide sleeve 1 is rotated. 0 0 5 will be located at point c instead of point D. In this state ~, in order to rotate the rotary guide sleeve shaft motor 13b, no large current is required. = Round workpieces due to turning, etc. When cutting f in the direction of the arrow E, the frictional resistance at the contact point will increase, and the rotating guide sleeve 1005 and the circle: 4 1 3 will not easily slip. At this time, the circular workpiece 1 1 rotates 1 During the circle, the rotating guide sleeve 〇〇〇5 will be located at point D However, because the rotation command position relative to 0 is point C, the rotary guide bushing shaft motor = the frictional resistance generated by the cutting load over the sleeve is positioned at point C, and torque will be generated. In this way, every time the spindle motor 13a rotates, it contacts Point D will move in the direction of arrow B and the difference between command position c will gradually increase, that is, the rotary guide bushing shaft motor 13b must generate a larger torque. When the rotary guide bushing shaft motor Ub generates a larger torque, The newly generated torque will exceed the frictional resistance generated by the cutting load, so a slip will occur between the rotary guide bushing 005 and the circular workpiece 丨 003, thereby bringing the contact point back to the direction of point C. By By repeating the above actions, a larger current will flow in the rotating guide sleeve shaft motor 3b than in non-cutting.

313583.ptd 第11頁 524725 五、發明說明(7) 以往之數值控制裝置中,工件1 0 〇 3為圓形工件時,因 •流通於用以驅動旋轉導套之旋轉導套軸馬達1 3 b之電流, _會在從切削開始至切削結束之期間增大,故旋轉導套軸馬 達13b將發熱,所產生之熱能經由正時皮帶1007或空氣傳; '導至旋轉導套1005,旋轉導套1〇05會被加熱,而產生工件 1 0 0 3之加工精度惡化等問題。 其對策例如曰本特開平1 0 - 3 44 0 1號公報所記載,根據 於前述工件1003與前述旋轉導套1005之間所產生之空隙 量,算出前述旋轉導套軸馬達13b之旋轉位置指令之修正 鲁 ’並以將該修正量相對於前述主轴馬達1 3 &之旋轉位置 指令予以修正後之旋轉位置指令,作為前述旋轉導套軸馬 達13b之旋轉位置指令,以防止流通於旋轉導套軸馬達13b 之電流在從切削開始至切削結束之期間增大,並減少旋轉 導套軸馬達1 3b之發熱量。 惟曰本特開平1〇 —344〇1號公報所記載之發明,由於以 旋轉位置指令驅動主軸馬達13a與旋轉導套軸馬達i3b,且 ,對=旋轉導套軸馬達丨3b下達修正之旋轉位置指令,因此 ,前提係必須使用可控制位置之主軸放大器及主豆 構造及處理將更為複雜。 ” •故為適用於廉價之車床,期能有更簡單之處理及廉價 [發明之概述]313583.ptd Page 11 524725 V. Description of the invention (7) In the conventional numerical control device, when the workpiece 10 was a circular workpiece, it was distributed to the rotary guide sleeve shaft motor used to drive the rotary guide sleeve 1 3 The current of b will increase during the period from the beginning of cutting to the end of cutting. Therefore, the rotary guide bushing shaft motor 13b will generate heat, and the generated heat energy will be transmitted through the timing belt 1007 or air; The guide bush 1005 is heated, which causes problems such as a deterioration in machining accuracy of the workpiece 103. The countermeasures are described in, for example, Japanese Patent Laid-Open No. 1 0-3 44 0 1, and the rotational position command of the rotary guide sleeve shaft motor 13 b is calculated based on the amount of gap generated between the workpiece 1003 and the rotary guide sleeve 1005. Correction Lu 'and use the correction of the correction amount relative to the rotation position command of the spindle motor 1 3 & as a rotation position command of the rotation guide sleeve shaft motor 13b to prevent the circulation of the rotation guide The current of the sleeve motor 13b increases during the period from the start of cutting to the end of cutting, and reduces the heat generation of the rotary guide shaft motor 13b. However, the invention described in Japanese Patent Application Laid-Open No. 10-344〇1, because the spindle motor 13a and the rotary guide bushing shaft motor i3b are driven by the rotational position command, and the corrected rotation is issued to the rotary guide bushing shaft motor 3b. Position command, therefore, the premise is that the spindle amplifier and main bean that can control the position must be constructed and processed more complicated. "• So it is suitable for cheap lathes, with simpler handling and cheaper [Overview of invention]

313583.ptd 第12頁 524725 五、發明說明(8) 主軸放大器及主軸馬達等高價裝置,而可使用反相器 (inverter)裝置及感應電動機等廉價裝置者。 本發明之另一目的在於提供一種作業員不需特地測量 工件與旋轉導套間空隙量之主軸同步控制方法及其裝置。 本發明為使工件與引導該工件之旋轉導套之接觸位置 實際上經常在同一位置,根據工件與引導該工件之旋轉導 套間所產生之空隙量,計算出導套軸馬達之轉速指令。 本發明為使工件與引導該工件之旋轉導套之接觸位置 實際上經常在同一位置,根據工件與引導該工件之旋轉導 套間所產生之空隙量,修正前述主轴馬達之轉速指令,並 以該修正後之轉速指令,作為導套轴馬達之轉速指令。 本發明為使切削時導套軸馬達之電流值降低而改變轉 速指令,並以電流值變為預定電流值時之轉速指令,作為 導套軸馬達之轉速指令。 本發明預先儲存導套軸馬達之非切削時之電流值,並 以切削時之導套軸馬達之電流值與預先儲存之電流值實際 上變為相同時之轉速指令,作為導套軸馬達之轉速指令。 本發明具備主軸速度修正計算機構,其係為使工件與 引導該工件之旋轉導套之接觸位置實際上經常在同一位 置,根據工件與引導該工件之旋轉導套間所產生之空隙 量,計算出導套轴馬達之轉速指令者。 本發明具備主轴速度修正計算機構,其係為使工件與 引導該工件之旋轉導套之接觸位置實際上經常在同一位 置,根據工件與引導該工件之旋轉導套間所產生之空隙313583.ptd Page 12 524725 V. Description of the invention (8) Inexpensive devices such as spindle amplifiers and spindle motors, and inexpensive devices such as inverter devices and induction motors can be used. Another object of the present invention is to provide a method and a device for synchronously controlling the main shaft without requiring the operator to specifically measure the gap between the workpiece and the rotary guide sleeve. According to the present invention, the contact position between the workpiece and the rotating guide sleeve that guides the workpiece is often at the same position, and the rotation speed command of the guide sleeve shaft motor is calculated according to the amount of space generated between the workpiece and the rotating guide sleeve that guides the workpiece. In the invention, the contact position between the workpiece and the rotary guide sleeve that guides the workpiece is often in the same position. According to the amount of the gap between the workpiece and the rotary guide sleeve that guides the workpiece, the speed command of the spindle motor is corrected, The corrected speed command is used as the speed command of the guide shaft motor. The present invention changes the speed command to reduce the current value of the guide sleeve shaft motor during cutting, and uses the speed instruction when the current value becomes a predetermined current value as the speed instruction of the guide sleeve shaft motor. The present invention pre-stores the current value of the guide bushing shaft motor during non-cutting, and uses the rotation speed command when the current value of the guide bushing shaft motor during cutting and the pre-stored current value become substantially the same as the guide bushing shaft motor. Speed command. The invention is provided with a spindle speed correction calculation mechanism, which is to make the contact position of the workpiece and the rotary guide sleeve that guides the workpiece is often in the same position, and calculate based on the amount of gap generated between the workpiece and the rotary guide sleeve that guides the workpiece. The speed commander of the guide sleeve shaft motor. The invention is provided with a spindle speed correction calculation mechanism, which is to make the contact position of the workpiece and the rotary guide sleeve that guides the workpiece is often in the same position, and according to the gap generated between the workpiece and the rotary guide sleeve that guides the workpiece

313583.ptd 第13頁 524725 五、發明說明(9) 量,修正主軸馬達之轉速指令,並以該修正後之轉速指 •令,作為導套軸馬達之轉速指令者。 _ 本發明具備有:記憶體,其係預先儲存導套軸馬達之 預定電流值者;及修正主軸速度決定機構,其係以導套軸 1馬達切削時之電流值與預先儲存於記憶體之電流值實際上 變為相同時之轉速指令,作為前述導套軸馬達之轉速指 ° 在本發明中,儲存於記憶體之電流值,係導套軸馬達 之非切削時之電流值。 • _ 本發明係將由修正主軸速度決定機構所決定之導套軸 馬達之轉速指令儲存於記憶體。 [實施本發明之最佳形態] 實施形態1 以下根據第1圖至第5圖及第15圖,說明本發明之實施 形態1。 第1圖係本實施形態1中,具備主軸同步控制裝置之數 -值控制裝置1之主要部份方塊圖;第2圖係表示數值控制裝 置1之參數設定晝面;第3圖係加工前之作業員之工作流程 €圖;第4圖係由設定之空隙量,將導套軸感應電動機之轉 •k控制在適當轉速之流程圖;第5圖係表示本實施形態1 中,導套軸用感應電動機1 3 Ob之非切削時/切削時之電流 狀態;及第1 5圖係圓形工件插入於旋轉導套時,兩者位置 關係之剖視圖。 第1圖中與習知例相同或類似部份以同一符號表示313583.ptd Page 13 524725 V. Description of the invention (9) Correct the speed command of the spindle motor, and use the corrected speed command as the speed command of the guide shaft motor. _ The present invention is provided with: a memory, which stores a predetermined current value of the guide shaft motor in advance; and a correction spindle speed determination mechanism, which uses the current value of the guide shaft 1 motor during cutting and the pre-stored in the memory The current value actually becomes the same rotation speed command as the rotation speed of the guide sleeve shaft motor. In the present invention, the current value stored in the memory is the current value of the guide sleeve shaft motor during non-cutting. • The present invention stores the rotation speed command of the guide shaft motor determined by the correction spindle speed determination mechanism in the memory. [Best Mode for Carrying Out the Invention] Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 5 and 15. Fig. 1 is a block diagram of the main part of the number-value control device 1 provided with the spindle synchronization control device in the first embodiment; Fig. 2 is a view showing the parameter setting day surface of the numerical control device 1; Fig. 3 is before processing Diagram of the work flow of the operator; Figure 4 is a flow chart for controlling the rotation of the guide sleeve shaft induction motor at an appropriate speed based on the set gap amount; Figure 5 shows the guide sleeve in this first embodiment The non-cutting / cutting current state of the shaft induction motor 1 3 Ob; and FIG. 15 are cross-sectional views of the positional relationship between the circular workpiece when it is inserted into the rotary guide sleeve. Figure 1 shows the same or similar parts as the conventional examples with the same symbols

313583.ptd 第14頁 524725 五、發明說明(ίο) 之,4 1係主軸速度修正計算機構、4 4係轉速資料變換機 構、1 0 1係類比資料輸出電路、1 2 0 a係主軸用之反相器裝 置、102b係導套軸用反相器裝置、130a係主軸用感應電動 機、及130b係導套軸用感應電動機。 在第2圖所示之參數設定畫面中,其顯示標題係「準 備參數」,資料之設定係在畫面左下之「# ()資料 ()」部份進行。在畫面底部顯示有用以選擇該畫面顯示 標題之選單「基本1、基本2、準備參數、歸零、伺服」。 在該畫面顯示有兩個之參數項目,「工件外形尺寸」之參 數值係「2 0」、「導套空隙量」參數值係「0. 0 2」,該設 定值係藉由參數設定部8儲存於記憶體7。 其次以第3圖所示之流程圖,說明加工前作業員之流 程。 在步驟1中,作業員使用微測計等,檢測如第1 5圖所 示之旋轉導套1 〇 〇 5與圓形工件1 0 〇 3之空.隙量。在步驟2 中,將步驟1所測出之空隙量,設定於第2圖所示之「準備 參數」之參數設定晝面中「導套空隙量」之項目,亦即設 定Dg之值,本例係設定為0 . 02 mm,並同時設定「工件外形 尺寸」,在本例中為20mm。在步驟3中,作業員將異形工 件(例如剖面為正六角形之棒材)信號關斷或設定為無 效。 該異形工件信號可設置為機械操作盤之開關,亦可於 數值控制裝置1之設定畫面中設定。設置該異形工件信號 之理由,其係對於旋轉導套軸用感應電動機1 30b之指令進313583.ptd Page 14 524725 V. Description of the Invention (41) Of the 4 1 series spindle speed correction calculation mechanism, 4 4 series speed data conversion mechanism, 1 0 1 analog data output circuit, 1 2 0 a spindle An inverter device, an inverter device for a 102b-based guide sleeve shaft, an induction motor for a 130a-based spindle, and an induction motor for a 130b-based guide sleeve shaft. In the parameter setting screen shown in Figure 2, its display title is "Preparation parameters", and the setting of data is performed in the "# () 信息 ()" part at the bottom left of the screen. The menu at the bottom of the screen is useful to select the title of the screen display "Basic 1, Basic 2, Preparing Parameters, Zeroing, Servo". There are two parameter items displayed on this screen. The parameter value of "Workpiece Dimension" is "2 0", and the parameter value of "Guide Sleeve Amount" is "0. 0 2". The setting value is determined by the parameter setting section. 8 is stored in memory 7. Next, the flow of the operator before processing will be described with the flowchart shown in FIG. 3. In step 1, the operator uses a micrometer or the like to detect a gap amount between the rotary guide bushing 1005 and the circular workpiece 1003 as shown in FIG. 15. In step 2, the gap amount measured in step 1 is set in the parameter setting of the "preparation parameters" shown in Fig. 2 as the "guide sleeve gap amount" item on the day surface, that is, the value of Dg is set. In the example, it is set to 0.02 mm, and at the same time, the "workpiece external dimension" is set, which is 20 mm in this example. In step 3, the operator turns off or sets the signal of a special-shaped workpiece (such as a bar with a regular hexagon profile) to invalid. The special-shaped workpiece signal can be set as a switch of the mechanical operation panel, or it can be set in the setting screen of the numerical control device 1. The reason for setting the special-shaped workpiece signal is based on the instruction of the induction motor 1 30b for the rotating guide sleeve shaft.

313583.ptd 第15頁 524725 五、發明說明(11) 行修正之情形下,於主軸與旋 時,因該修正使得主軸用感應 感應電動機130b相互產生反動 生扭轉之問題;或異形工件過 應電動機130a或旋轉導套軸用 之馬達)將持續產生過大之扭 問題。因此,必須預先判斷插 或圓形工件。 其次藉由第4圖之流程圖, 馨t之空隙量,將旋轉導套轴用 為適當速度之流程。 步驟1 0中,主軸速度修正 所設定之異形工件信號。異形 行任何處理而結束處理。異形 驟 1 1。 y 步驟11中,由導套主軸速 -驟2中儲存於記憶體7之資料( 「0」時進入步驟1 2, 「〇」以 步驟12中,輸入於機械控 號與轉速資料傳送至内插處 轉速資料換算為主軸用感應電 軸用感應電動機130a與旋轉導 以參數等預先設定為隨時同步 應電動機130b,亦由主軸用感 轉導套之間插入異形工件 電動機130a與旋轉導套軸用 ’造成所插入之異形工件發 粒而無法扭轉時,主軸用感 感應電動機1 3 0 b (輸出較小 矩,而造成超過負載警告之 入於旋轉導套者為異形工件 說明以第3圖所示之流程設 感應電動機130b之轉速控制 5十异機構41檢查於步驟3中 工件信號為導通時,不需進 工件信號為關斷時,進入步 度修正计异機構4 1,讀取步 導套空隙量),該設定值為 外之情形進入步驟1 3。 制彳自5虎處理部6之旋轉起動 理部4,於内插處理部4中將 動機130a之轉速指令。因主 套軸用感應電動機13〇b,係 控制,對於旋轉導套軸用感 應電動機1 3 0 a之轉速資料纟313583.ptd Page 15 524725 V. Description of the invention (11) In the case of the correction of the main shaft and the rotation time, due to the correction, the induction induction motor 130b for the main shaft will react to each other and cause torsion; 130a or the motor used to rotate the guide bushing shaft) will continue to produce excessive torque problems. Therefore, it is necessary to judge the insert or round workpiece in advance. Secondly, according to the flow chart in Fig. 4, the clearance of Xin t is used as the flow of the guide shaft at an appropriate speed. In step 10, the spindle speed is corrected for the set workpiece signal. Alien performs any processing and ends processing. Alien Steps 1 1. y In step 11, the data stored in the memory 7 in the guide sleeve spindle speed-step 2 ("0" enters step 12; "〇" enters the mechanical control number and speed data in step 12 to the inside) Insertion speed data is converted into induction motor 130a for the main shaft induction motor and the rotary guide. Parameters are preset to be synchronous motor 130b at any time. Special-shaped workpiece motor 130a and the rotary guide shaft are also inserted between the main shaft induction guide bush. If the inserted special-shaped workpiece is grainy and cannot be twisted with ', the spindle induction motor 1 3 0 b (outputs a small moment and causes the load to exceed the load warning and enters the rotating guide sleeve as a special-shaped workpiece. The flow shown is to set the rotation speed control of the induction motor 130b to 50 different mechanisms 41 to check in step 3 when the workpiece signal is on, when the workpiece signal is not required to be turned off, enter the step correction differentiating mechanism 41, and read the step. The amount of the guide sleeve gap), if the setting value is outside, proceed to step 13. The rotation start processing unit 4 is controlled from the 5 tiger processing unit 6, and the rotation speed of the motor 130a is commanded in the interpolation processing unit 4. Because of the main sleeve For shaft Induction motor 13〇b is a control system, and the rotational speed data of the induction motor 1 30 a for the rotating guide bushing shaft 纟

313583.ptd 第16頁 524725 五、發明說明(12) 計算旋轉導套軸用感應電動機130b之轉速指令。主轴用感 應電動機130a與旋轉導套軸用感應電動機13 Ob之轉速指 令,係以轉速資料變換機構44變換為傳送至反相器裝置 1 2 0 a及1 2 0 b之指令方法一種的電壓指令。 具體方法如以下所述。將控制對象之感應電動機丨3〇 a 及130b最高轉速(例如5000rpm)預先設定於反相器裝置 120a及120b。本設定中,通常反相器裝置能以輸入電壓 10V,且在最高轉速5000 rpm下使感應電動機旋轉。其次轉 速資料變換機構4 4,將由内插處理部4所計算之轉速指令 變換為電壓指令,例如,轉速指令為1 0 0 0 r pm時,電壓指 令變為10(V)x 1 0 0 0 / 5 0 0 0二2(V)。由轉速資料變换機構44 所變換之電壓指令,係輸出至類比資料輸出電路1 〇 1。 類比資料輸出電路1 〇 1中,將從轉速資料變換機構44 輸入之電壓指令,作為實際之電壓亦即類比電壓,輸出至 反相器裝置120a及120b。本實施形態1施加反相器裝置 120a及120b電壓係2V,反相器裝置120a及120b檢測出從類 比資料輸出電路1 0 1輸出之施加電壓後,以對應之轉速 (在本例中為1 〇 〇 〇 r pm )控制感應電動機1 3 0 a及1 3 0 b後結 束處理。 步驟13之說明如第15圖所示,因旋轉導套1〇〇5與圓形 工件1 0 0 3旋轉一圈時之接觸點,需與旋轉前之接觸點相 同,故旋轉導套1005之内周與圓形工件1〇〇3之外周之速 度’亦即周速度必須一致,其公式如方程式(1 )所示。 hx Sgx (Wd + Dg)/60 = 2;rx Smx Wd/60(1)313583.ptd Page 16 524725 V. Description of the invention (12) Calculate the rotation speed instruction of the induction motor 130b for the rotating guide sleeve shaft. The rotation speed command of the induction motor 130a for the main shaft and the induction motor 13 Ob for the rotary guide sleeve shaft is converted by the speed data conversion mechanism 44 into a voltage command that is transmitted to the inverter device 1 2 0 a and 1 2 0 b. . The specific method is described below. The maximum speeds of the induction motors 30a and 130b (for example, 5000 rpm) to be controlled are set in advance to the inverter devices 120a and 120b. In this setting, the inverter device can usually rotate the induction motor with an input voltage of 10V and a maximum speed of 5000 rpm. Next, the rotation speed data conversion mechanism 4 4 converts the rotation speed command calculated by the interpolation processing unit 4 into a voltage command. For example, when the rotation speed command is 1 0 0 0 r pm, the voltage command becomes 10 (V) x 1 0 0 0 / 5 0 0 0 2 2 (V). The voltage command converted by the rotation speed data conversion mechanism 44 is output to the analog data output circuit 101. In the analog data output circuit 101, the voltage command input from the rotation speed data conversion mechanism 44 is output to the inverter devices 120a and 120b as the actual voltage, that is, the analog voltage. In the first embodiment, the voltages of the inverter devices 120a and 120b are 2V, and the inverter devices 120a and 120b detect the applied voltage output from the analog data output circuit 1 0 1 at a corresponding speed (1 in this example). 〇〇〇r pm) Control the induction motor 130a and 130b, and then finish the process. The description of step 13 is shown in Fig. 15. Because the contact point of the rotating guide bushing 1005 and the circular workpiece 1 03 should be the same as the contact point before the rotation, the rotating guide bushing 1005 The speed of the inner periphery and the outer periphery of the round workpiece in 2003 must be consistent. The formula is shown in equation (1). hx Sgx (Wd + Dg) / 60 = 2; rx Smx Wd / 60 (1)

313583.ptd 第17頁 524725 五、發明說明(13) 一'-"~~ 方程式左邊係表示旋轉導套1〇〇5内周之周速度( 秒),右邊係表示圓形工件1 0 0 3外周之周速度(轉/秒/ _ ) 。Sg係旋轉導套1 0 0 5之轉速(rpm),Sm係圓形工件1 〇 之轉速(rpm),Wd係圓形工件之外形尺寸(龍),及以係 轉導套1 0 05與圓形工件1 00 3之空隙量(mm),其中方輕式>313583.ptd Page 17 524725 V. Description of the invention (13) A '-" ~~ The left side of the equation indicates the speed (seconds) of the inner circumference of the rotary guide bushing 105, and the right side represents the circular workpiece 1 0 0 3 peripheral speed (revolutions / second / _). Sg is the rotation speed (rpm) of the rotating guide bushing 105, Sm is the rotation speed (rpm) of the round workpiece 10, Wd is the outer dimension (long) of the round workpiece, and the rotation guide bushing 1 0 05 and Clearance (mm) of round workpiece 1 00 3, square light type >

(1 )亦可變形為方程式(2 )。 I(1) can also be transformed into equation (2). I

Sg(rpm)二Wd/(Wd+Dg)x Sm (2) 主軸速度修正計算機構41讀取步驟2中儲存於記憶體7 ^資料(工件外形尺寸,及旋轉導套丨〇 〇 5與圓形工件1 〇 ” 二隙i)後,以方程式(2)計算出旋轉導套軸感用應電 動機1 3 0 b之轉速。具體範例之計算應用如以下所述。此時 為使計算簡單,將旋轉導套1005與旋轉導套軸用感應電動 機130b之齒輪比(皮帶輪比)設定為1:;[,將主軸1〇〇4與 主軸用感應電動機130a之齒輪比設定為1:1。由於“係^ 轉導套軸用感應電動機130b之轉速,Sm.係主軸用感應電動 機130a之轉速,因此分別設定Wd = 2〇mm、Dg = 〇· 〇2mm、及 -Sm = 5000rpm時,旋轉導套軸用感應電動機13〇1)之轉速係 Sg二20/(20+〇·〇2)χ 5000=4995(rpm)。 步驟14中,主軸速度補正計算機構41將步驟13中計算 .之結果,藉由轉速資料變換機構44變換為電壓指令,= 進一步藉由類比資料輸出電路1 〇 1,將類比資料電9壓"輸出& 至旋轉導套軸用反相器褒置120b。上述範例之電壓指^ 10(V)x 4995/5000二9·990(V)。 旋轉導套軸用反相器裝置120b,·依照類比資料輸出電Sg (rpm) 2 Wd / (Wd + Dg) x Sm (2) The spindle speed correction calculation mechanism 41 reads the data stored in the memory 7 in step 2 ^ data (outside dimensions of the workpiece, and the rotating guide sleeve 〇〇〇 05 and the circle After forming the workpiece 1 0 ″ and two clearances i), calculate the speed of the rotating guide bush shaft sensing application motor 1 3 0 b according to equation (2). The calculation application of the specific example is as follows. At this time, to make the calculation simple, Set the gear ratio (belt ratio) of the rotary guide sleeve 1005 to the rotary guide sleeve shaft induction motor 130b to 1 :; [, and set the gear ratio of the main shaft 1004 to the main shaft induction motor 130a to 1: 1. Because "Because the rotation speed of the induction motor 130b for the guide sleeve shaft, Sm. Is the rotation speed of the induction motor 130a for the spindle, so when Wd = 20mm, Dg = 〇 · 〇2mm, and -Sm = 5000rpm, the rotation guide The rotation speed of the sleeve induction motor 13〇1) is Sg = 20 / (20 + 〇 · 〇2) χ 5000 = 4995 (rpm). In step 14, the spindle speed correction calculation mechanism 41 calculates the result calculated in step 13. The speed data conversion mechanism 44 converts the result into a voltage command, and further, the analog data output circuit 1 〇1, the analog data is 9 volts " Output & Set to 120b for inverter guide shaft. The voltage of the above example refers to ^ 10 (V) x 4995/5000 and 9 · 990 (V). Inverter device 120b for rotary guide sleeve shaft

313583.ptd 第18頁 ^/25 轉。姑 °之電壓使旋轉導套軸用感應電動機130b旋 應雷氣 套軸用感應電動機130b將會以此主軸用感 機1 3 0 a稽慢之轉速旋轉。 J^上述 Μ 1 Γ: 丁 η,。 系圖說明時,旋轉導套1005之内徑部與圓形 工材1 0 0 3之外一 ' p傻部之接觸點C雖如以上所述,於旋轉一圈 後變為接觸% h ,。、 1)0惟旋轉導套1005之轉速亦以上述方程式 (2 )所計算之鮭& 、迷旋轉,亦即旋轉導套1005之轉速比圓形 工件1 0 0 3之鞋、$… 〜迷慢,因此旋轉導套1 〇 〇 5之内徑部與圓形工 件1 0 0 3之外彳a却 p k 4之接觸點的相對關係相同。 gp I 11旋削等使得圓形工件1 0 0 3受到切削負載時,旋 轉導套轴用感應電動機丨3〇1)亦不會產生多餘之扭矩,亦即 如第5圖所示,旋轉導套軸用感應電動機130b之電流,其 電流值於切削時(t1至t 2之期間)與非切削時均係11,故 旋轉導套軸用感應電動機130b之發熱,於切削時與非切削 時將不改變。 實施形態2 其次根據第5圖至第9圖說明本發明實施形態2。本發 明實施形態2係於空隙量無法測定時,將旋轉導套軸馬達 之轉速控制成適當轉速者。 第5圖係本發明實施形態2中,加工第二次以後之旋轉 導套抽感應電動機1 3 b之非切削時/切削時之電流狀雜的 圖;第6圖係具備主軸同步控制装置之數值控制裝置丨之主 要部份方塊圖;第7圖係為了控制旋轉導套軸馬達1 3b之反 饋電流值上升,將旋轉導套軸馬達13b之轉速控制成適當313583.ptd p. 18 ^ / 25 rpm. The voltage of 180 ° causes the induction motor 130b for the rotating guide sleeve shaft to rotate in response to the thunder gas. The induction motor 130b for the sleeve shaft will rotate at the slow speed of the main shaft sensor 130a. J ^ above M 1 Γ: Ding η ,. In the illustration, the contact point C of the inner diameter portion of the rotating guide sleeve 1005 and the round piece 1 0 3 is not equal to the contact% h after one rotation, as described above, . 1) 0, but the rotation speed of the rotating guide sleeve 1005 is also calculated by the above formula (2): salmon & rotation, that is, the rotation speed of the rotating guide sleeve 1005 is higher than the shoes of the circular workpiece 1 0 0 3, $ ... ~ It is slow, so the relative relationship between the inner diameter portion of the rotating guide bushing 005 and the circular workpiece 1a but the contact point of pk4 is the same. gp I 11 Rotating etc. When a circular workpiece 1 0 3 is subjected to a cutting load, the induction motor for rotating the guide sleeve shaft does not generate excess torque, that is, as shown in Figure 5, the rotating guide sleeve The current of the induction motor 130b for the shaft is 11 during cutting (period t1 to t2) and non-cutting. Therefore, the heating of the induction motor 130b for the rotating guide sleeve shaft will be generated during cutting and non-cutting. not changing. Embodiment 2 Next, Embodiment 2 of the present invention will be described with reference to Figs. 5 to 9. In the second embodiment of the present invention, when the gap amount cannot be measured, the rotation speed of the rotary guide sleeve shaft motor is controlled to an appropriate rotation speed. Fig. 5 is a diagram showing the current in the non-cutting / cutting state of the rotary guide bushing induction motor 1 3 b after the second processing of the second embodiment of the present invention; Fig. 6 is a diagram of a spindle synchronization control device The block diagram of the main part of the numerical control device 丨 Figure 7 is to control the rotation of the rotary guide bushing shaft motor 13b to increase the rotation current of the rotary guide bushing shaft motor 13b.

313583.ptd Μ 19頁 524725 —~~------ •^、發明說明(15) mm i i, —-7x %兄咧(15) -----313583.ptd Μ page 19 524725 — ~~ ------ • ^, description of the invention (15) mm i i, —-7x% brother (15) -----

π出適當轉速之~ ,…丁去' 稍馬達1 之士77 士 之電流變化的時序圖:二【9圖係表示實際切削中所對 ,之序號、方塊編號、奴輮導套軸馬達1 3b之雷泣禮、β Γ 轉導套軸馬達13b之轉速,於記憶體7之儲存範,例。旋 ? 6圖之方塊圖中’與習知例相同或類似部份 一付號矣;·ν ,/1 9後修正主I*祜危a丄. J 轉速之流程圖;第8圖係紅轉導套轴馬達13b,以第一 工算出適當轉速之過轾中,旋轉導套軸馬達Ub之;\加 之電流變、a沾眭忘_ ;及第9圖係矣二也— M日寸 /疼正主k 相同或類似部份以同 资各 ,42係修正主轴速度決定機構、及43係電产 變化量檢測機構。 冤机 有關加工 比設為1 : 為 1 ·· 1 開始第〆次之動作,以第7圖之流程圖說 其中與實施形態1同樣地,主軸與主軸馬達13a之齒輪 旋轉導套與旋轉導套軸馬達13b之齒輪比亦^ 在步驟20中,修正主軸速度決定機構42檢查異形工件 =旒,異形工件信號為導通時,不需進行任何處理而結束 處理;異形工件信號為關斷時,進入步驟21。 在步驟2 1中,將機械控制信號處理部6之旋轉起動信 ^^速資料傳送至内插處理部4,於内插處理部4中將轉 、,資料換异為主軸馬達13a之轉速指令。因主軸馬達13a與 旋轉導套軸馬達13b,係以參數等預先設定為隨時同步控 &彳,對於旋轉導套軸馬達丨3 b,亦由主軸馬達1 3 a之轉速資 料來計算旋轉導套馬達13b之轉速指令。主軸馬達13a與旋 轉導套軸馬達1 3b之轉速指令,分別輸出至主軸控制部1 0 a 與導套軸控制部1 〇 b。 該等轉速指令係於主轴控制部1〇3與導套軸控制部10bπ out of the appropriate speed ~, ... Ding '' Timer diagram of the current change of the motor 1 taxi 77 taxi: 2 [9 figure shows the serial number, block number, slave guide sleeve shaft motor 1 in actual cutting. The lightning speed of 3b, and the rotation speed of the β Γ transduction sleeve motor 13b are stored in the memory 7, for example. The block diagram of Figure 6 is the same as or similar to the conventional example, with a number of 矣; · ν, / 19 after 19 to modify the main I * 祜 critical a 丄. J speed flow chart; Figure 8 is red The guide bushing shaft motor 13b calculates the appropriate rotation speed by the first operation, and rotates the guide bushing shaft motor Ub; \ plus the electric current change, a dimming _; and Fig. 9 is the second one—M 日 inch / Pain is the same or similar part with the same capital, 42 series of correction spindle speed determination mechanism, and 43 series of electricity production change detection mechanism. The processing ratio of the machine is set to 1: The first operation is set to 1 ... 1. The flow chart in FIG. 7 is used to explain the same as in the first embodiment. The gear rotating guide sleeve and the rotating guide sleeve of the spindle and the spindle motor 13a are the same as in the first embodiment. The gear ratio of the shaft motor 13b is also ^ In step 20, the correction of the spindle speed determination mechanism 42 checks the abnormal workpiece = 旒, when the signal of the abnormal workpiece is on, the processing is ended without any processing; when the signal of the abnormal workpiece is off, enter Step 21. In step 21, the rotation start signal of the mechanical control signal processing section 6 is transmitted to the interpolation processing section 4. In the interpolation processing section 4, the rotation and data are changed to the rotation speed instruction of the spindle motor 13a. . Because the spindle motor 13a and the rotary guide sleeve shaft motor 13b are preset to be synchronized and controlled at any time with parameters and the like, for the rotary guide sleeve shaft motor 3b, the rotation guide is also calculated from the rotational speed data of the spindle motor 1 3a. Sets the rotation speed command of the motor 13b. The rotation speed commands of the spindle motor 13a and the rotary guide sleeve motor 1 3b are output to the spindle control portion 10a and the guide sleeve shaft control portion 10b, respectively. These speed instructions are provided in the main shaft control section 103 and the guide bush shaft control section 10b.

524725 五、發明說明(16) 中’作為步驟狀之指令輸入至咨來丨 速指令藉由資料輸出入電路1丨,’八〕出入電路1 1。該等轉 12a與導套軸放大器121)。 刀別傳送至主軸放大器 主軸放大器12a與導套軸放 速指令分別控制主軸馬達丨3a與導二,、根據所接收之轉 之旋轉。因本構造中資料輸出入雷 ^ 使 、 电路11,與主軸放大器 1 2a及導套轴放大器1 2b之間係使用串列通信來連接,故内 插處理部4可將主轴放大器12a與導套軸放大哭之資 料’例如實際轉速及電流值等資料,藉由資料輸出入電路 1 1、軸控制部1 0 a及1 Ob來取得。 步驟22中,電流變化量檢測機構43藉由資料輸出入電 路1 1及軸控制部1 0 b ’項取旋轉導套軸馬達1儿之電流值, 以確認切削傳送指令開始後,旋轉導套軸馬達1 3b之電流 值是否增加。此時切削傳送指令開始,其係從加工程式解 析處理部3讀取並判定加工程式之切削相關之命令(直線 (G1)、圓弧(G2、G3)、螺旋(G32)等)之資訊。無法確認 電流值之增加時,判斷為非實際切削中而結束處理,可確 認電流值之增加時,判斷為實際切削開始並進入步驟2 3。 步驟2 3中,電流變化量檢測機構4 3從加工程式解析處 理部3 ’取得電流值增加㈤(非切削時)所對應之加工程 式2之序號及方塊編號等資訊,並將其與旋轉導套軸馬達 1 3b增加前之電流值一同儲存。例如以第9圖所示之表,儲 存於記憶體7。電流值係從主軸放大器1 2 b,以實際電流值 /標準電流值(%)為反饋,故以實際電流值/標準電流值524725 5. In the description of the invention (16), ‘as a step-like instruction is input to the consulting 丨 speed instruction through the data input / output circuit 1 丨,’ eight] access circuit 11. The rotations 12a and the guide shaft amplifier 121). The tool is transmitted to the spindle amplifier. The spindle amplifier 12a and the guide sleeve shaft speed command respectively control the spindle motor 3a and guide two, and rotate according to the received rotation. Since the data input / output circuit 11 in this structure is connected to the spindle amplifier 12a and the guide bush shaft amplifier 12b using serial communication, the interpolation processing unit 4 can connect the spindle amplifier 12a and the guide bush. The data of the shaft magnification cry, such as the actual speed and current value, is obtained through the data input / output circuit 11 and the shaft control unit 10 a and 1 Ob. In step 22, the current change detection mechanism 43 takes the current value of the rotary guide bushing shaft motor 1 through the data input / output circuit 11 and the shaft control section 10b 'to confirm that the cutting guide is rotated, and then rotates the guide bushing. Whether the current value of the shaft motor 13b increases. At this time, the cutting transfer instruction starts, and it reads and determines the cutting-related commands (straight line (G1), circular arc (G2, G3), spiral (G32), etc.) of the processing program from the processing program analysis processing unit 3. If the increase of the current value cannot be confirmed, it is judged that the actual cutting is not in progress and the processing is terminated. When the increase of the current value is confirmed, it is judged that the actual cutting is started and the process proceeds to step 2 3. In step 2 3, the current change detection unit 4 3 obtains the information such as the serial number and block number of the processing program 2 corresponding to the increase in current value (in the case of non-cutting) from the processing program analysis processing unit 3 ′, and compares it with the rotation guide. The current value before the sleeve motor 1 3b is increased is stored together. For example, a table shown in FIG. 9 is stored in the memory 7. The current value is from the spindle amplifier 1 2 b, and the actual current value / standard current value (%) is used as a feedback, so the actual current value / standard current value

313583.ptd 第21頁 524725 .五、發明說明(17) -- 「%」儲存之。之後,電流變化量檢測機構43通知修正主 -軸速度決定機構4 2實際切削開始。 步驟24中’修正主軸速度決定機構42接收到電流變化 量檢測機構4 3之通知後,讀取並比較步驟2 3中儲存於記憶 體7之旋轉導套軸馬達1 3 b之非切削時之電流值(實際電流 值/標準電流值U)),與現在之旋轉導套軸馬達1 3b之電 流值(實際電流值/標準電流值。記憶體7中儲存之 電k值與現在紅轉導套轴馬達1 3 b之電流值不^一致時,進 入步驟2 5 ;在電流值一致之情況下則進入步驟2 6。步驟2 5 鲁, 修正主軸速度決定機構42將傳送至旋轉導套軸馬達 13b之轉速指令’減去預設值後下達指令矣旋轉導套馬達 13b。例如現在旋轉導套軸馬達之轉速為5〇〇〇rpm,且 預設值為lrpm之情況下,將變為5〇〇〇rpin - lrPm = 4999rpm, 並以4999rpm作為轉速指令,以控制旋轉導套軸馬達13b。 此時,預設值係以參數設定部8所設定之參數,取決於作 業員之判斷。其次返回步驟24重覆進行處理,步驟24中, ~當記憶體7所儲存之電流值與現在旋轉導套軸馬達1 3b之電 流值一致時,例如旋轉導套軸馬達1 3 b之轉速變為 4 9 9 5 r p m,旋轉導套軸馬達1 3 b之電流值將與非切削時相 儀h。亦即如第8圖所示,於時刻11開始切削,旋轉導套軸 馬達1 3 b之電流值雖由I 1上升至I 2,但於時刻11 3,修正主 軸速度決定機構42開始修正傳送至旋轉導套軸馬達131:)之 轉速指令時,旋轉導套軸馬達1 3 b之電流值開始下降’隶 後將與非切削時之電流值I 1相同。313583.ptd Page 21 524725. 5. Description of the invention (17)-"%" is stored. After that, the current change amount detecting means 43 notifies the correction master-axis speed determining means 42 that the actual cutting is started. In step 24, the correction spindle speed determining mechanism 42 receives the notification of the current change detection mechanism 43 and reads and compares the non-cutting time of the rotary guide sleeve shaft motor 1 3b stored in the memory 7 in step 23. The current value (actual current value / standard current value U)), and the current value of the current rotating guide sleeve shaft motor 1 3b (actual current value / standard current value. The electric k value stored in the memory 7 and the current red transduction If the current values of the sleeve motor 1 3 b are not consistent, proceed to step 2 5; if the current values are consistent, proceed to step 2 6. Step 2 5 Lu, the correction spindle speed determination mechanism 42 will be transmitted to the rotating guide sleeve shaft The rotation speed command of the motor 13b is given after subtracting the preset value. The rotary guide sleeve motor 13b is issued. For example, if the speed of the rotary guide sleeve shaft motor is 5000 rpm and the preset value is 1 rpm, it will become 50000rpin-lrPm = 4999rpm, and 4999rpm is used as the speed command to control the rotary guide sleeve shaft motor 13b. At this time, the preset value is a parameter set by the parameter setting section 8 and depends on the judgment of the operator. Then return to step 24 to repeat the processing. In step 24, when the current value stored in the memory 7 is consistent with the current value of the rotating guide sleeve shaft motor 1 3b, for example, the rotation speed of the rotating guide sleeve shaft motor 1 3 b becomes 4 9 9 5 rpm, and the rotating guide The current value of the sleeve motor 1 3 b will be compared with the non-cutting phase meter h. That is, as shown in FIG. 8, cutting starts at time 11. Although the current value of the rotating guide sleeve motor 1 3 b increases from I 1 to I 2, but at time 11 3, when the correction spindle speed determining mechanism 42 starts correcting the rotation speed command transmitted to the rotary guide sleeve shaft motor 131 :), the current value of the rotary guide sleeve shaft motor 1 3 b starts to decrease. The current value I 1 during non-cutting is the same.

313583.ptd 第22頁 524725 五、發明說明(18) 步驟26中,將修正主軸速度決定機構42所確定之旋轉 導套軸馬達13b轉速,寫入於對應步驟23中所儲存之第9圖 中序號及方塊編號之項目。 加工程式執行至最後之期間,藉由反覆進行本處理, 而將一個加工程式中所對應之旋轉導套軸馬達1 3b之轉速 儲存於記憶體7。 第二次以後之加工,亦即第二個以後工件之加工,係 如第9圖所示,由補正主軸速度決定機構42讀取於第一次 加工中儲存於記憶體之資料(轉速),並以所對應之序號 及方塊編號之轉速作為指令,輸出至旋轉導套軸馬達 1 3 b,每當檢測出對應該處理之序號及分塊編號時反覆進 行該處理。 如第5圖所示,旋轉導套軸馬達1 3 b之電流,於切削中 (11至12之期間)與非切削時之電流值均係11,故旋轉導 套軸馬達1 3 b之發熱,於切削時與非切削時均不改變。 上述實施形態2中,電流值係由主軸放大器1 2 b,以實 際電流值/標準電流值(%)為反饋,因此電流值係以實際 電流值/標準電流值(%)儲存於記憶體7。儲存於記憶體7 之電流值與現在電流值,上述說明雖係以百分比比較之, 但將實際電流值之數值儲存於記憶體7,與現在電流值之 數值相比較亦可。 上述實施形態2中,雖係以切削時之電流值,與儲存 於記憶體7之非切削時之導套軸馬達之電流值成為相同時 之轉速指令作為以後之轉速指令來使用,但亦可將切削時313583.ptd Page 22 524725 V. Description of the invention (18) In step 26, the rotation speed of the rotating guide sleeve shaft motor 13b determined by the correction spindle speed determination mechanism 42 is written in the ninth image stored in the corresponding step 23. Serial and box numbered items. During the period from the execution of the processing program to the last, this processing is repeated, and the rotation speed of the rotary guide bushing shaft motor 1 3b corresponding to one processing program is stored in the memory 7. The second and subsequent processing, that is, the processing of the second and subsequent workpieces, is shown in FIG. 9, and the data (speed) stored in the memory during the first processing is read by the correction spindle speed determination mechanism 42. And take the corresponding serial number and the speed of the block number as a command, and output it to the rotary guide sleeve shaft motor 1 3 b. When the corresponding serial number and block number are detected, the process is repeated. As shown in Figure 5, the current of the rotating guide bushing shaft motor 1 3 b is 11 during cutting (period 11 to 12) and non-cutting, so the heating of the rotating guide bushing shaft motor 1 3 b No change during cutting and non-cutting. In the second embodiment, the current value is fed back from the spindle amplifier 1 2 b with the actual current value / standard current value (%) as a feedback, so the current value is stored in the memory 7 as the actual current value / standard current value (%) . The current value stored in the memory 7 is compared with the current current value. Although the above description is compared as a percentage, the actual current value is stored in the memory 7 and can be compared with the current current value. In the second embodiment described above, although the current value during cutting is the same as the current speed command when the guide shaft motor is stored in the memory 7 during non-cutting, the speed command is used as the subsequent speed command, but it can also be used When cutting

313583.ptd 第23頁 524725 五、發明說明(19) 電流值與儲存於記憶體7之非切削時之導套軸馬達電流值 •成為近似值時的轉速指令作為以後之轉速指令來使用。 . 依據上述說明之本發明,僅以轉速指令即可控制使工 件與引導該工件之旋轉導套之接觸位置實質上經常在同一 '位置。不需使用習知之用以控制位置之主軸放大器及主軸 馬達等高價裝置,而使用反相器裝置及感應電動機等廉價 裝置即可。亦即,以簡單且廉價之構造,於切削時可使驅 動導套之馬達不會發生較大之扭矩,且不會有較大之電流 流通於驅動導套之馬達,故機械之加工精確度將不受驅動 套之馬達發熱的影響,可有效提升機械之加工精確度。 依據本發明其他之發明,為獲得用以使工件與引導該 工件之旋轉導套之接觸位置實質上經常在同一位置之轉速 指令,作業員不需特地測量工件與旋轉導套間之空隙量, 故可排除作業員之測量誤差,有效提升上述轉速指令設定 之可靠性。 本發明中雖使用主軸放大器與主軸馬達,但因僅以轉 、速指令進行控制,故可使用主軸放大器與主軸馬達中之廉 價者。由於不需要用以控制位置之檢測器,因此雖沒有比 1反相器裝置與感應電動機之組合廉價,但與習知之構造相 較更為廉價。 [產業上利用之可能性] 如上所述,本發明之主軸同步控制方法及其裝置,可 適用於自動車床等主軸與導套軸之同步控制。313583.ptd Page 23 524725 V. Explanation of the invention (19) Current value and current of guide bushing shaft motor during non-cutting stored in memory 7 • Speed command when approximate value is used as the speed command in the future. According to the invention described above, the contact position between the workpiece and the rotating guide sleeve that guides the workpiece can often be controlled to be substantially at the same position only by the rotation speed command. It is not necessary to use expensive devices such as a spindle amplifier and a spindle motor, which are conventionally used for position control, but to use inexpensive devices such as an inverter device and an induction motor. That is, with a simple and inexpensive structure, the motor driving the guide bush will not generate a large torque during cutting, and no large current will flow through the motor driving the guide bush, so the machining accuracy of the machine It will not be affected by the heat of the motor of the driving sleeve, which can effectively improve the machining accuracy of the machine. According to other inventions of the present invention, in order to obtain a rotation speed instruction that makes the contact position of the workpiece and the rotary guide sleeve that guides the workpiece substantially always at the same position, the operator does not need to specifically measure the gap between the workpiece and the rotary guide sleeve. Therefore, the measurement error of the operator can be eliminated, and the reliability of the above-mentioned speed instruction setting can be effectively improved. Although a spindle amplifier and a spindle motor are used in the present invention, since only the revolution and speed commands are used for the control, a cheaper one can be used. Since no detector is needed to control the position, although it is not cheaper than the combination of an inverter device and an induction motor, it is cheaper than the conventional structure. [Possibility of industrial use] As described above, the method and device for synchronously controlling a main shaft of the present invention can be applied to the synchronous control of a main shaft and a guide bushing shaft such as an automatic lathe.

313583.ptd 第24頁 524725 圖式簡單說明 [圖式之簡要說明] 第1圖係本發明實施形態1中具備主軸同步控制裝置之 數值控制裝置之主要部份方塊圖。 第2圖係本發明實施形態1中具備主軸同步控制裝置之 數值控制裝置之參數設定晝面之說明圖。 第3圖係本發明實施形態1之加工前作業員之工作之流 程圖。 第4圖係本發明實施形態1中,由導套空隙量算出並控 制導套軸馬達之轉速指令之流程圖。 第5圖係表示本發明實施形態1及2中,導套軸感應電 動機或主軸馬達之轉速更新後之電流狀態。 第6圖係本發明實施形態2中具備主軸同步控制裝置之 數值控制裝置之主要部份方塊圖。 第7圖係本發明實施形態2中,驅動導套之馬達的電流 值變為實際切削開始前之電流值為止前,更新導套軸馬達 之轉速指令之流程圖。 第8圖係本發明實施形態2中算出適當之轉速後,實際 切削時流至導套轴馬達之電流時間變化之時序圖。 第9圖係表示本發明之實施形態中,序號、方塊編 號、非切削時之導套軸馬達之電流值、及更新後之導套軸 馬達之轉速資料之儲存範例。 第10圖係數值控制裝置主要部份之方塊圖,該裝置係 用以進行驅動習知自動車床之主軸之主軸馬達與驅動導套 之主軸馬達的同步控制者。313583.ptd Page 24 524725 Brief description of the drawings [Brief description of the drawings] Fig. 1 is a block diagram of a main part of a numerical control device having a spindle synchronization control device in Embodiment 1 of the present invention. Fig. 2 is an explanatory diagram of a parameter setting day surface of a numerical control device provided with a spindle synchronization control device in Embodiment 1 of the present invention. Fig. 3 is a flowchart showing the work performed by the operator before processing according to the first embodiment of the present invention. Fig. 4 is a flowchart of calculating and controlling the rotation speed instruction of the guide sleeve shaft motor from the guide gap amount in the first embodiment of the present invention. Fig. 5 shows the current state after the rotation speed of the guide bush shaft induction motor or the spindle motor is updated in the first and second embodiments of the present invention. Fig. 6 is a block diagram of a main part of a numerical control device including a spindle synchronization control device in Embodiment 2 of the present invention. Fig. 7 is a flowchart for updating the rotation speed command of the guide shaft motor until the current value of the motor driving the guide sleeve becomes the current value before the actual cutting starts in the second embodiment of the present invention. Fig. 8 is a timing chart of the time variation of the current flowing to the guide sleeve shaft motor during actual cutting after calculating the appropriate rotation speed in the second embodiment of the present invention. Fig. 9 shows an example of storing the serial number, the block number, the current value of the guide bushing shaft motor during non-cutting, and the updated rotational speed data of the guide bushing shaft motor in the embodiment of the present invention. Fig. 10 is a block diagram of the main part of the coefficient value control device, which is a controller for synchronizing the spindle motor driving the spindle of the conventional automatic lathe and the spindle motor driving the guide bush.

313583.ptd 第25頁 524725 .圖式簡單說明 第11圖係一種工具機之自動車床之構造圖。 • 第12圖係第11圖所示之主軸與導套之詳細構造圖。 , 第1 3圖係表示控制主軸馬達回轉及停止等之主要部份 之加工程式。 , ’第1 4圖係表示習知導套軸馬達電流於實際切削中之變 化之時序圖。 第1 5圖係圓形工件插入至導套時,兩者相對關係之剖 視圖。 [元件符號說明] _ 加工程式 3 加工程式解析處理部 4 内插處理部 5 控制電路 6 機械控制信號處理部 Ί 記憶體 8 參數設定部 9 畫面顯示部 10a 軸控制部(主軸) 1 0 b軸控制部(導套軸) 11 資料輸出入電路 12a主軸放大器(主轴用) 12b 主軸放大器(導套軸用)13a主軸馬達(主軸用) .13b 主軸馬達(導套軸用) 41 主軸速度修正計算機構 42 修正主軸速度決定機構 ”43 電流變化量檢測機構 44 轉速資料變換機構 #01 類比資料輸出電路 120a反相器裝置(主軸用) 120b反相器裝置(導套軸用) 130a感應電動機(主軸用) 130b感應電動機(導套軸用)313583.ptd Page 25 524725. Brief description of the drawings Figure 11 is a structural diagram of a machine tool automatic lathe. • Figure 12 is the detailed structure diagram of the main shaft and guide bush shown in Figure 11. Fig. 13 is a processing program showing the main part of controlling the rotation and stop of the spindle motor. Figure 14 is a timing chart showing the changes in the current of the conventional guide sleeve shaft motor during actual cutting. Figure 15 is a cross-sectional view of the relative relationship between the circular workpiece when it is inserted into the guide sleeve. [Description of component symbols] _ Machining program 3 Machining program analysis processing section 4 Interpolation processing section 5 Control circuit 6 Mechanical control signal processing section Ί Memory 8 Parameter setting section 9 Screen display section 10a Axis control section (spindle) 1 0 b axis Control Unit (Guide Bushing) 11 Data I / O Circuit 12a Spindle Amplifier (For Spindle) 12b Spindle Amplifier (For Guide Bushing) 13a Spindle Motor (For Spindle) .13b Spindle Motor (For Guide Bushing) 41 Spindle Speed Correction Calculation Mechanism 42 Correction of spindle speed determination mechanism 43 Current change detection mechanism 44 Speed data conversion mechanism # 01 Analog data output circuit 120a inverter device (for main shaft) 120b inverter device (for guide shaft) 130a induction motor (spindle For 130b induction motor (for guide bushing shaft)

313583.ptd 第26頁 524725313583.ptd Page 26 524725

313583.ptd 第27頁313583.ptd Page 27

Claims (1)

524725 六、申請專利範圍 1. 一種主軸同步控制方法,其係控制:主軸馬達,其係 • 驅動用以保持工件之主軸;及導套軸馬達,其係驅動 .用以引導前述工件之旋轉導套,其特徵在於:為使前 述工件與引導該工件之旋轉導套之接觸位置實際上經, ^ 常在同一位置,根據前述工件與引導該工件之旋轉導 套間所產生之空隙量,計算出前述導套軸馬達之轉速 指令。 2. 一種主軸同步控制方法,其係控制:主軸馬達,其係 驅動用以保持工件之主軸;及導套軸馬達,其係驅動 • 用以引導前述工件之旋轉導套,其特徵在於:為使前 述工件與引導該工件之旋轉導套之接觸位置實際上經 常在同一位置,根據前述工件與引導該工件之旋轉導 套間所產生之空隙量,修正前述主軸馬達之轉速指 令,並以該修正後之轉速指令,作為前述導套軸馬達 之轉速指令。 3. 一種主軸同步控制方法,其係控制:主軸馬達,其係 ^ 驅動用以保持工件之主軸;及導套軸馬達,其係驅動 用以引導前述工件之旋轉導套,並且使前述工件與引 導該工件之旋轉導套之接觸點實際上經常在同一位 • 置,其特徵在於:為使切削時之前述導套軸馬達之電 流值降低而改變轉速指令,並以前述電流值變為預定 電流值時之轉速指令,作為前述導套軸馬達之轉速指 令。 4. 一種主軸同步控制方法,其係控制:主軸馬達,其係524725 VI. Scope of patent application 1. A method for synchronous control of a spindle, which is controlled by: a spindle motor, which is used to drive a spindle that holds a workpiece; and a guide shaft motor, which is used to drive the rotation guide of the aforementioned workpiece. The sleeve is characterized in that: in order to make the contact position between the workpiece and the rotating guide sleeve that guides the workpiece actually ^, it is usually at the same position, and is calculated based on the amount of space generated between the workpiece and the rotating guide sleeve that guides the workpiece The rotation speed command of the aforementioned guide shaft motor is issued. 2. A synchronous control method of a main shaft, which controls: a main shaft motor which drives a main shaft for holding a workpiece; and a guide sleeve shaft motor which drives a rotary guide sleeve for guiding the aforementioned workpiece, which is characterized by: The contact position between the workpiece and the rotary guide sleeve that guides the workpiece is often in the same position. According to the amount of gap generated between the workpiece and the rotary guide sleeve that guides the workpiece, the rotation speed command of the spindle motor is corrected, and the The corrected speed command is used as the speed command of the guide sleeve shaft motor. 3. A synchronous control method for a main shaft, which controls: a main shaft motor that drives a main shaft for holding a workpiece; and a guide sleeve shaft motor that drives a rotary guide sleeve for guiding the foregoing workpiece, and causes the foregoing workpiece and the The contact point of the rotating guide sleeve that guides the workpiece is often at the same position. It is characterized by changing the rotation speed command to reduce the current value of the guide sleeve shaft motor during cutting, and changing the current value to a predetermined value. The rotation speed command at the current value is used as the rotation speed command of the aforementioned guide shaft motor. 4. A spindle synchronous control method, which is controlled by: spindle motor, which is 313583.ptd 第28頁 524725 六、申請專利範圍 驅動用以保持工件之主軸;及導套軸馬達,其係驅動 用以引導前述工件之旋轉導套,並且使前述工件與引 導該工件之旋轉導套之接觸點實際上經常在同一位 置,其特徵在於:預先儲存前述導套軸馬達之非切削 時之電流值,並以切削時之前述導套軸馬達之電流值 與前述預先儲存之電流值實際上變為相同時之轉速指 令,作為前述導套轴馬達之轉速指令。 5. 一種主軸同步控制裝置,其係控制:主軸馬達,其係 驅動用以保持工件之主軸;及導套軸馬達,其係驅動 用以引導前述工件之旋轉導套,其特徵在於:具備有 主軸速度修正計算機構,其係為使前述工件與引導該 工件之旋轉導套之接觸位置實際上經常在同一位置, 根據前述工件與引導該工件之旋轉導套間所產生之空 隙量,計算出前述導套軸馬達之轉速指令。 6. 一種主軸同步控制裝置,其係控制:主軸馬達,其係 驅動用以保持工件之主軸;及導套軸馬達,其係驅動 用以引導前述工件之旋轉導套,其特徵在於··具備有 主軸速度修正計算機構,其係為使前述工件與引導該 工件之旋轉導套之接觸位置實際上經常在同一位置, 根據前述工件與引導該工件之旋轉導套間所產生之空 隙量,修正前述主軸馬達之轉速指令,並以該修正後 之轉速指令,作為前述導套軸馬達之轉速指令者。 7. 一種主軸同步控制裝置,其係控制:主軸馬達,其係 驅動用以保持工件之主軸;及導套軸馬達,其係驅動313583.ptd Page 28 524725 VI. Patent application scope Drives the main shaft to hold the workpiece; and guide sleeve shaft motor drives the rotary guide sleeve used to guide the workpiece, and enables the workpiece and the rotary guide to guide the workpiece The contact point of the sleeve is often in the same position, which is characterized in that the current value of the guide sleeve shaft motor during non-cutting is stored in advance, and the current value of the guide sleeve shaft motor and the previously stored current value are stored in advance. Actually, the same rotation speed command is used as the rotation speed command of the aforementioned guide shaft motor. 5. A spindle synchronous control device, which controls: a spindle motor which drives a spindle for holding a workpiece; and a guide sleeve axis motor which drives a rotating guide sleeve for guiding the aforementioned workpiece, which is characterized by: The spindle speed correction calculation mechanism is to make the contact position of the workpiece and the rotating guide sleeve that guides the workpiece always be at the same position, and calculate based on the amount of gap generated between the workpiece and the rotating guide sleeve that guides the workpiece. The rotation speed command of the aforementioned guide shaft motor. 6. A spindle synchronous control device, which controls: a spindle motor that drives a spindle for holding a workpiece; and a guide sleeve axis motor that drives a rotary guide sleeve for guiding the aforementioned workpiece, which is characterized by: There is a spindle speed correction calculation mechanism, which is to make the contact position of the workpiece and the rotary guide sleeve that guides the workpiece is often in the same position, and correct according to the amount of gap generated between the workpiece and the rotary guide sleeve that guides the workpiece. The speed command of the spindle motor is used as the speed command of the guide sleeve motor. 7. A spindle synchronous control device, which controls: a spindle motor, which drives a spindle for holding a workpiece; and a guide shaft motor, which drives 313583.ptd 第29頁 524725313583.ptd Page 29 524725 313583.ptd 第30頁313583.ptd Page 30
TW091107840A 2002-04-05 2002-04-17 Method and device for main shaft synchronous control TW524725B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/003436 WO2003084699A1 (en) 2002-04-05 2002-04-05 Spindle synchronous control method and apparatus therefor

Publications (1)

Publication Number Publication Date
TW524725B true TW524725B (en) 2003-03-21

Family

ID=28470428

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091107840A TW524725B (en) 2002-04-05 2002-04-17 Method and device for main shaft synchronous control

Country Status (2)

Country Link
TW (1) TW524725B (en)
WO (1) WO2003084699A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663017B (en) * 2017-12-21 2019-06-21 日商三菱電機股份有限公司 Numerical control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199304A (en) * 1986-02-24 1987-09-03 Citizen Watch Co Ltd Automatic lathe
JP3648858B2 (en) * 1996-07-26 2005-05-18 三菱電機株式会社 Spindle synchronous control method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663017B (en) * 2017-12-21 2019-06-21 日商三菱電機股份有限公司 Numerical control device

Also Published As

Publication number Publication date
WO2003084699A1 (en) 2003-10-16

Similar Documents

Publication Publication Date Title
JP5905158B2 (en) Numerical controller
US9513619B2 (en) Numerical control device which performs tapping operation by using a main spindle and a feed shaft
TWI431446B (en) Control parameter adjustment method and adjusting device
US9527176B2 (en) Control device for machine tool including rotary indexing device
US20150104263A1 (en) Machine tool
JP2005216135A (en) Threading/tapping controller
JP2010120150A (en) Estimation method for thermal deformation compensation of machine tool
JP2011118840A (en) Numerical control device having motor load torque measuring function
JP4620148B2 (en) Servo motor control device
JP4299865B2 (en) Machine tool control apparatus and control method
JP5845321B1 (en) System for calculating screw pitch
JP2005313280A (en) Numerical control device
JP4709588B2 (en) Thread cutting control method and apparatus
TW524725B (en) Method and device for main shaft synchronous control
US20210331261A1 (en) Gear machining apparatus
JP2010160019A (en) System and method for correcting rotation balance
JP2757269B2 (en) Rotary axis synchronous repetition control method and apparatus
JP2007105809A (en) Method of detecting slip of main spindle driving belt of machine tool
JP5334932B2 (en) Parameter setting method and parameter setting device
JPH0649260B2 (en) Synchronous control device
WO2010095668A1 (en) Machine tool and machining method
JP4110959B2 (en) Spindle synchronous control method and apparatus
JP2008225780A (en) Backlash correction method for pivoting shaft in machine tool
KR870000140B1 (en) Numerical control method
JP2004102568A (en) Numerical value control device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees